
CS356 Operating Systems Projects

Project 1: Android Process Tree

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Spring 2020

1.2Operating Systems

Objectives

 Install and use Android Virtual Devices (AVD)

 Install Native Development Kit (NDK), cross compile the program and run it
on AVD

 Effectively use Linux system calls for process control and management

 Familiarize task_struct

 Concurrent execution of processes

1.3Operating Systems

Enviroment

 Implementation
 AVD(Android Virtual Devices)

 SDK version r24.4.1

 Development
 Linux （64-bits）

 Ubuntu (recommended)
 Debian
 Fedora

 VMware

1.4Operating Systems

Resources

 Programming in C/UNIX System Calls and Subroutines
using C
 http://www.cs.cf.ac.uk/Dave/C/CE.html

 Posix Thread Programming
 https://computing.llnl.gov/tutorials/pthreads/

 Android SDK Install
 http://developer.android.com/sdk/installing/index.html?pkg=tools

 Android.mk
 http://developer.android.com/ndk/guides/android_mk.html

1.5Operating Systems

Install JDK

 JDK is Java SE Development Kit which is necessary for
android project.

 You can download it for your system at:
 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads-2133151.html

 Don’t forget to modify your Environment Variables.
 For Windows， just run the .exe file. Every thing will be done

automatically.
 For Linux, add these to ~/.bashrc

1.6Operating Systems

Install SDK

 For Windows
 http://www.cs.sjtu.edu.cn/~fwu/teaching/res/android-

sdk-windows.7z

 For Linux
 http://www.cs.sjtu.edu.cn/~fwu/teaching/res/android-

sdk-linux.tar.gz

 Extract them into a proper location.

1.7Operating Systems

Set Up AVD

 For Windows
 Double click “AVD Manager.exe”

 For Linux
 Execute ./tools/android avd in SDK folder.

 The recommended configuration of AVD is on next page

1.8Operating Systems

Set Up AVD (cont.)

 You can modify these
parameter by yourself
except “Target”.

 There will be a
warning when RAM is
bigger than 768 in
Windows.

1.9Operating Systems

Set Up AVD (cont.)

 Click Start to start you avd

1.10Operating Systems

Set Up AVD (cont.)

 If your Linux is 64-bits, you may get error report when
you creating avd:
 Failed to create the SD card.
 Failed to create sdcard in the AVD fold

 This is because your 64-bits system doesn’t have 32-bits
lib. Then you should install the necessary lib:
 sudo apt-get install libc6:i386 libgcc1:i386 gcc-4.6-base:i386

libstdc++5:i386 libstdc++6:i386

1.11Operating Systems

Set Up AVD (cont.)

 More Error

 sudo apt-get install lib32stdc++6

1.12Operating Systems

Set Up NDK

 Because our computer is x86 architecture while
most Android devices are ARM architecture,
executable files compiled on our computer cannot
be executed on the AVD

 We should cross compile the C files using
toolchains in NDK

1.13Operating Systems

Set Up NDK (cont.)

 For Windows
 http://www.cs.sjtu.edu.cn/~fwu/teaching/res/android-

ndk-r11-windows-x86_64.zip

 For Linux
 http://www.cs.sjtu.edu.cn/~fwu/teaching/res/android-

ndk-r11-linux-x86_64.zip

 Extract them into a proper location.

1.14Operating Systems

Set Up NDK (cont.)

 Extract the NDK files to a proper location.
 ~/android or /usr/lib/android/ for Linux
 X:\android-ndk-windows for Windows

 Add location path to your Environment Variables
 Type ndk-build -v to check whether the installation is

completed.

1.15Operating Systems

Build Project by NDK

 Make project directory.
mkdir hello
mkdir hello/jni

 Put your source code files in JNI folder.

1.16Operating Systems

Build Project by NDK (cont.)

 Writing a “Hello World” program
 For hello.h

#ifndef HELLOHEADER_H_
#define HELLOHEADER_H_
#include <stdio.h>
#endif /*HELLOHEADER_H_*/

1.17Operating Systems

Build Project by NDK (cont.)

 Writing a “Hello World” program
 For hello.c

#include “hello.h”
int main(int argc, char *argv[]){

printf("Hello World!\n");
return 0;

}

1.18Operating Systems

Build Project by NDK (cont.)

 Writing a “Hello World” program
 For Android.mk which is make file for any project.

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_SRC_FILES := hello.c # your source code
LOCAL_MODULE := helloARM # output file name
LOCAL_CFLAGS += -pie -fPIE # These two line cannot be
LOCAL_LDFLAGS += -pie -fPIE # change.
LOCAL_FORCE_STATIC_EXECUTABLE := true

include $(BUILD_EXECUTABLE)

1.19Operating Systems

Build Project by NDK (cont.)

 The LOCAL_CFLAGS += -pie -fPIE and LOCAL_LDFLAGS += -
pie -fPIE make the program compiled based on
PIE. Without these two lines, the program can
not be executed in Android.

 Type ndk-build in jni folder

 The executable file is in hello/libs/armeabi

1.20Operating Systems

Running on AVD

 To install and run the program you compiled, you can
use the multi-purpose Android Debug Bridge (ADB)
utility.

 Location of ADB
 #your sdk location#/platform-tools/
 You can add this directory to Environment Variables so that you

can directly type adb in other directory.

1.21Operating Systems

Some ADB command

 To check the AVD status:
 adb devices

 To move a file to the emulator:
 adb push #source path ~/hello/hello.o# #target path on device /data/misc#

 To use shell on Android:
 adb shell
 Then you can use shell command like linux.

 To pull a file out of the emulator:
 adb pull #source path in device# #target path#

 More commands about adb:
 adb help

1.22Operating Systems

Running on AVD (cont.)

 After uploading your program file to your AVD, you
should type the following command in shell to make it
executable:

 chmod +x #flie name#
 chmod 777 #flie name#

 Then, you can run your program on AVD.

1.23Operating Systems

Linux Modules

Kernel modules are pieces of code that
can be loaded and unloaded into the
kernel upon demand.

With modules, we can implement some
system calls without re-compilation.

Please study the following example to
learn how to use modules so you can
solve Problem 1.

1.24Operating Systems

Modules Source File

 You need to write .c files as the sources to
create a module. The following file’s name is
hello.c.

1.25Operating Systems

Modules Source File - Definition

 Properties of module. No need to change them

1.26Operating Systems

Modules Source File - Functions

1.27Operating Systems

Modules Source File – System Call

 You should change this part to accomplish project.
Set the syscall number as 356 .

 Sample of using system call

1.28Operating Systems

Modules Make File

 Save source file and make file in one folder.
 KID is the location of your kernel.
 Add Environment Variable

 #your ndk location#/toolchains/arm-linux-androideabi-4.9/prebuilt/linux-
x86_64/bin

 Type make in shell in the folder.
 Then you will get a file *.ko, this is your module.

1.29Operating Systems

Use Module

 Upload your .ko file to avd
 Install mod

 insmod *.ko

 Remove mod
 rmmod *.ko

 List mod
 lsmod

 Delete you .ko file before you want to update it.
 Remove the mod installed before you delete .ko file.

1.30Operating Systems

Problems

We have four problems for project 1.

Problem 1-3 is about implementing a system
call with modules.

Problem 4 is implementing a synchronization
algorithm.

1.31Operating Systems

Problem 1

 In Linux, we can use ps to check the
current process.

Furthermore, we can use pstree to see the
process tree intuitively.

 In Android, we can use ps, but cannot use
pstree

1.32Operating Systems

Problem 1

 Write a new system call in Android.
 The system call you write should take two arguments

and return the process tree information in a depth-
first-search (DFS) order.

 Each system call must be assigned a number. Your
system call should be assigned number 391.

1.33Operating Systems

Problem 1 (cont.)

 The prototype for your system call will be:
 int ptree(struct prinfo *buf, int *nr);

 You should define struct prinfo as:
struct prinfo {

pid_t parent_pid; /* process id of parent */
pid_t pid; /* process id */
pid_t first_child_pid; /* pid of youngest child */
pid_t next_sibling_pid; /* pid of older sibling */
long state; /* current state of process */
long uid; /* user id of process owner */
char comm[64]; /* name of program executed */

};You can make some revisions on them if you can
get the correct result.

1.34Operating Systems

Problem 1 (cont.)

 The argument buf points to a buffer for the process data,
and nr points to the size of this buffer (number of
entries). The system call copies as many entries of the
process tree data to the buffer as possible, and stores
the number of entries actually copied in nr.

 If pointer correlated with the variable in struct prinfo is
null, set the value in struct prinfo to 0.

 For example, the first_child_pid should be set to 0 if the
process does not have a child.

1.35Operating Systems

Problem 1 (cont.)

 Linux maintains a list of all processes in a doubly linked list. Each
entry in this list is a task_struct structure, which is defined in
include/linux/sched.h. When traversing the process tree data
structures, it is necessary to prevent the data structures from
changing in order to ensure consistency.

 For this purpose the kernel relies on a special lock, the tasklist_lock.
You should grab this lock before you begin the traversal, and only
release the lock when the traversal is completed. While holding the
lock, your code may not perform any operations that may result in a
sleep, such as memory allocation, copying of data into and out from
the kernel etc. Use the following code to grab and then release the
lock:

read_lock(&tasklist_lock);
...
...

read_unlock(&tasklist_lock);

1.36Operating Systems

Problem 1 (cont.)

 In order to learn about system calls, you may find it helpful to search
the linux kernel for other system calls and see how they are defined.
You can use the Linux Cross-Reference(LXR) to investigate
different system calls already defined. The
files kernel/sched/core.c andkernel/timer.c should provide good
reference points for defining your system call.

 You should not try to create your own linked list method for the data
structures inside the kernel, but use the existing infrastructure.
See include/linux/list.h and look for other places in the kernel where
lists are used for examples on how to use them (there are many
such places). Also, the course materials contain information about
linked lists in the kernel.

1.37Operating Systems

Problem 1 (cont.)

 Add system call dynamically.
 Use module.
 But the original android kernel does not support

module.
 Compile a New One.
 Kernel is supported on website.

 http://www.cs.sjtu.edu.cn/~fwu/teaching/res/android-
kernel.tar.gz

 Extract the kernel folder into the user folder.

 Linux Only

1.38Operating Systems

Start AVD

We will start AVD with a new kernel.
 emulator –avd YourAvdName –kernel KernelLocation –show-kernel
 YourAvdName could be OsPrj
 KernelLocation could be ~/kernel/goldfish/arch/arm/boot/zImage
 -show-kernel makes kernel information shown in your shell.

1.39Operating Systems

Some problem

Apt-get 404 not found.
 pls try again, the network is not stable.

AVD is tooooooooo slow.
 pls be patient.

Android Debug Bridge (adb) usage

1.40Operating Systems

Tips

 task_struct is defined in about line 1270 if you download
the Android source code from the website we have
provided.

 Some illegal operations (e.g, no-assigned struct pointer)
will make your Android virtual device crushed. Be
careful.

 Implement the system call with modules. You don’t have
to revise the kernel code.

 You only need to submit your module’s source code for
Problem 1.

1.41Operating Systems

Problem 2

Test your new system call
Write a simple C program which calls ptree
 Print the entire process tree (in DFS order)

using tabs to indent children with respect to
their parents.

 The output format of every process is:
printf(/* correct number of \t */);
printf("%s,%d,%ld,%d,%d,%d,%d\n", p.comm, p.pid, p.state,

p.parent_pid, p.first_child_pid, p.next_sibling_pid, p.uid);

1.42Operating Systems

Problem 2 – Sample Output

Example
...
init,1,1,0,31,2,0
...
servicemanager,44,1,1,0,45,1000
vold,45,1,1,0,47,0
netd,47,1,1,0,48,0
debuggerd,48,1,1,0,49,0
rild,49,1,1,0,50,1001
surfaceflinger,50,1,1,0,51,1000
zygote,51,1,1,369,52,0

system_server,369,1,51,0,421,1000
...
ndroid.launcher,529,1,51,0,550,10008
...

...
kthreadd,2,1,0,3,0,0

...
ksoftirqd/0,3,1,2,0,4,0
kworker/0:0,4,1,2,0,5,0
...
khelper,6,1,2,0,7,0
...

1.43Operating Systems

Problem 3

Generate a new process and output
“StudentIDParent” with PID, then
generates its children process, which
output “StudentIDChild” with PID.

Use execl to execute ptree in the child
process，show the connection between
above two processes.

1.44Operating Systems

Problem 4 – Burger Buddies Problem
 Cooks, Cashiers, and Customers are each modeled as a

thread.
 Cashiers sleep until a customer is present.
 A Customer approaching a cashier can start the order

process.
 A Customer cannot order until the cashier is ready.
 Once the order is placed, a cashier has to get a burger from

the rack.
 If a burger is not available, a cashier must wait until one is

made.
 The cook will always make burgers and place them on the

rack.
 The cook will wait if the rack is full.
 There are NO synchronization constraints for a cashier

presenting food to the customer.

1.45Operating Systems

Problem 4 – Burger Buddies Problem

1.46Operating Systems

Problem 4 – General Requirement

 Source file: BurgerBuddies.c

 Executable file: BBC

 Run: BBC #Cooks #Cashiers #Customers
#RackSize

1.47Operating Systems

Problem 4 – Sample Output
> ./BBC 2 4 41 10
Cooks [2], Cashiers [4], Customers [41]
Begin run.
Cook [1] make a burger.
Cook [1] make a burger.
Cook [2] make a burger.
Customer [10] come.
Casher [3] accepts an order.
Casher [3] take a burger to customor.
Customer [19] come.
Casher [2] accepts an order.
Casher [2] take a burger to customor.
Customer [7] come.
Casher [3] accepts an order.
Casher [3] take a burger to customor.
Customer [17] come.
Casher [2] accepts an order.
Cook [1] make a burger.
Casher [2] take a burger to customor.
……

1.48Operating Systems

Environment Variables

 JDK
Android location (only for Linux)
NDK location
ADB location
For linux, add them to:
 ~/.bashrc or /etc/profile
 Then source ~/.bashrc or /etc/profile

1.49Operating Systems

Environment Variables (cont.)

1.50Operating Systems

Environment Variables

For Windows

1.51Operating Systems

What to Submit
 A“tar” file of your DIRECTORY, containing:

 “Android.mk”
 Any “.cc”, “.c”, and “.h” files
 Any “readme” or “.pdf” files asked for in the project
 A text file containing the runs of your programs for each of the project

parts “testscript”
 Do not submit ALL runs you have done, just the output required to

demonstrate a successful (or unsuccessful) run
 If you cannot get your program to work, submit a run of whatever

you can get to work as you can get partial credit

 DO NOT SUBMIT your object or executable files,
remove them before you pack your directory

1.52Operating Systems

How to Submit

 Pack your entire Project directory (Only including
JNI dircetory)
tar –cvf Prj1+StudentID.tar project1

 Submit your Prj1+StudentID.tar file on Canvas.

1.53Operating Systems

For Help?

 Teaching Assistant
 Renjie Gu

 Email: grj165@sjtu.edu.cn

 Hongtao Lv
 Email: lvhongtao@sjtu.edu.cn

 Some useful website
 http://www.csdn.net/
 http://stackoverflow.com/
 http://developer.android.com/

1.54Operating Systems

For Help?

Q&A

