
CS307 Operating Systems

Virtual Memory

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

Background

 Code needs to be in memory to execute, but entire program rarely used

 Error code, unusual routines, large data structures

 Entire program code not needed at the same time

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory

 Program could be larger than physical memory

3Operating Systems

Virtual Memory That is Larger Than Physical Memory

4Operating Systems

Virtual Memory

 Virtual Memory – separation of user logical memory from physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical
address space

 Allows memory address spaces to be shared by several processes

 Allows for more efficient process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9Operating Systems

Demand Paging

 Could bring entire process into memory at load time

 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O

 Less memory needed

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper (pager) – never swaps a page into memory unless page will
be needed

10Operating Systems

Swap Paged Memory to Disk Space

11Operating Systems

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v in-memory – memory resident, i not-in-memory)

 Initially, valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

is i page fault

v
v
v

v

i

i
i

….

Frame # valid-invalid bit

page table

12Operating Systems

Page Table with Pages Not in Main Memory

13Operating Systems

Page Fault

 If there is a reference to a page and the page is not in memory, the
reference will trap to operating system:

page fault

1. Operating system looks at page table to decide:

 Invalid reference  abort

 Just not in memory

2. Get empty frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

14Operating Systems

Steps in Handling a Page Fault

15Operating Systems

What Happens if There is no Free Frame?

 Page replacement – find some page in memory, but not really in use, page
it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in minimum number
of page faults

18Operating Systems

Page Replacement

f

0

19Operating Systems

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk

 Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

20Operating Systems

Page Replacement Algorithms

 Page-replacement algorithm

 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

 String is just page numbers, not full addresses

 Repeated access to the same page, which is still in memory, does not
cause a page fault

 In all our examples, the reference string is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

21Operating Systems

Page-Replacement Algorithms

 First-In-First-Out (FIFO) Page Replacement

 Optimal Page Replacement

 Least Recently Used (LRU) Page Replacement

 LRU Approximation Page Replacement

 Counting Page Replacement

22Operating Systems

FIFO Page Replacement

 When a page must be replaced, the oldest page is chosen.

 Page faults: 15

 Consider the following reference string:

0 1 2 3 0 1 2 3 0 1 2 3 ……

23Operating Systems

Optimal Page Replacement

 Replace page that will not be used for longest period of time

 Page faults: 9

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

24Operating Systems

Least Recently Used (LRU) Page Replacement

 Use past knowledge rather than future

 Replace page that has not been used in most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

27Operating Systems

LRU Approximation Algorithms

 Reference bit/ byte

 With each page associate a bit, initially = 0

 When page is referenced, bit set to 1

 Replace any with reference bit = 0 (if one exists)

We do not specify the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Circular replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 Reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

28Operating Systems

Second-Chance Algorithm

29Operating Systems

Pop Quiz

 A memory system has three frames. Consider the following reference string

0 1 2 3 2 3 0 4 5 2 3 1 4 3 2 6 3 2 1 2
Draw a diagram to show the page replacement using Second-Chance

Algorithm and calculate the number of page faults.

0 1 2 3 2 3 0 4 5 2 3 1……

0

0

0

01

0

0

0

1

1

1

0

0

1

2

1

1

1

3

1

2

1

0

0

3

1

2

1

0

1

3

1

2

1

0

1

3

0

2

1

1

1

3

0

4

0

0

1

5

0

4

1

0

1

5

2

4

1

1

1

5

2

3

0

0

1

1

2

3

1

0

1

30Operating Systems

Counting Algorithms

 Keep a counter of the number of references that have been made to each
page

 Least Frequently Used (LFU) Algorithm: replaces page with smallest
count

 Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be
used

 Not commonly used

32Operating Systems

Homework

 Reading

 Chapter 9

 Exercise

 See course website

33Operating Systems

Demand Paging

System Characteristics

Size of memory 16 bytes

Frame Size 4 bytes per frame

Memory Management Structure Inverted Page Table

Replacement Policy LRU, Global Replacement

Virtual Page Size 4 bytes per page

Logical Addressing Space Size 32 bytes

Backing Store Size 12 blocks

Backing Store Block Size 4 bytes per block

34Operating Systems

Process Table

Process ID 0 1 2

Process Size (Bytes) 12 14 13

Pages allocated 3 4 4

Backing Store Map
(Page  Block)
Page 0 BS 0 BS 3 BS 7

Page 1 BS 1 BS 4 BS 8

Page 2 BS 2 BS 5 BS 9

Page 3 BS 6 BS 10

35Operating Systems

System Snapshot

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Contents O T O N G F U N - - - - A D * F

Block 0 1 2 3 4 5 6 7 8 9 10
Contents THRE AD*F UN-- RATE *MON OTON IC-- DEMA ND*P AGIN G---

Main Memory

Frame Page # PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 2 T 1 T
2 - - F - -
3 1 0 T 3 F

Inverted Page Table

Backing Store

36Operating Systems

PID 0 : Write ‘A’ at logical memory Address 11

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Contents O T O N G F U N - - - - A D * F
Change U N - A

Block 0 1 2 3 4 5 6 7 8 9 10
Contents THRE AD*F UN-- RATE *MON OTON IC-- DEMA ND*P AGIN G---
Change

Frame VP # PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 2 T 1 T
2 - 2 - 0 F T - 4 - T
3 1 0 T 3 F

Main Memory

Inverted Page Table

Backing Store

Process ID 0

Process Size (Bytes) 12

Pages allocated 3

Backing Store Map
(Page  Block)
Page 0 BS 0

Page 1 BS 1

Page 2 BS 2

Page 3

37Operating Systems

PID 1 : Read logical memory Address 6

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Contents O T O N G F U N - - - - A D * F
Change * M O N U N - A

Block 0 1 2 3 4 5 6 7 8 9 10
Contents THRE AD*F UN-- RATE *MON OTON IC-- DEMA ND*P AGIN G---
Change GFUN

Frame VP # PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 1 2 1 T 1 5 T F
2 - 2 - 0 F T - 4 - T
3 1 0 T 3 F

Main Memory

Inverted Page Table

Backing Store

Process ID 1

Process Size (Bytes) 14

Pages allocated 4

Backing Store Map
(Page  Block)
Page 0 BS 3

Page 1 BS 4

Page 2 BS 5

Page 3 BS 6

