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Background

m Code needs to be in memory to execute, but entire program rarely used
e Error code, unusual routines, large data structures

m Entire program code not needed at the same time

m Consider ability to execute partially-loaded program
e Program no longer constrained by limits of physical memory
e Program could be larger than physical memory
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Virtual Memory That is Larger Than Physical Memory
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Virtual Memory

m Virtual Memory — separation of user logical memory from physical memory

Only part of the program needs to be in memory for execution

Logical address space can therefore be much larger than physical
address space

Allows memory address spaces to be shared by several processes
Allows for more efficient process creation

More programs running concurrently

Less I/O needed to load or swap processes

® Virtual memory can be implemented via:
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Demand Paging

m Could bring entire process into memory at load time
m Or bring a page into memory only when it is needed
e Less I/O needed, no unnecessary I/O
e Less memory needed
e Faster response
e More users

m Page is needed = reference to it
e invalid reference = abort
e not-in-memory = bring to memory

m Lazy swapper (pager) — never swaps a page into memory unless page will
be needed
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Swap Paged Memory to Disk Space
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Valid-Invalid Bit

m  With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

m |[nitially, valid—invalid bit is set to i on all entries
m Example of a page table snapshot:

Frame # valid-invalid bit

page table

® During address translation, if valid—invalid bit in page table entry
is i = page fault
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Page Table with Pages Not in Main Memory
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Page Fault

m If there is a reference to a page and the page is not in memory, the
reference will trap to operating system:

page fault

1. Operating system looks at page table to decide:
e |Invalid reference = abort
e Just not in memory
2. Get empty frame
3. Swap page into frame via scheduled disk operation

Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

Operating Systems 13




Steps in Handling a Page Fault
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What Happens if There is no Free Frame?

m Page replacement — find some page in memory, but not really in use, page
it out

e Algorithm — terminate? swap out? replace the page?

e Performance — want an algorithm which will result in minimum number
of page faults
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Page Replacement
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Page Replacement

m Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory
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Page Replacement Algorithms

m Page-replacement algorithm
e Want lowest page-fault rate on both first access and re-access

®m Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

e String is just page numbers, not full addresses

e Repeated access to the same page, which is still in memory, does not
cause a page fault

® In all our examples, the reference string is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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Page-Replacement Algorithms

m First-In-First-Out (FIFO) Page Replacement

m Optimal Page Replacement

m Least Recently Used (LRU) Page Replacement

m LRU Approximation Page Replacement

m Counting Page Replacement
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FIFO Page Replacement

®m When a page must be replaced, the oldest page is chosen.

reference string

i 01 2 0 3 0 4 2 3 0 3 2 1 2 01 7 0 1
AR FAE FREEERN  ER  FEE

ol [o lof [s| 8l [s| ] [2| Bl [ [ [i]fo o
JOHE Bk gl eI

page frames

m Page faults: 15
m Consider the following reference string:
012301230123......
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Optimal Page Replacement

m Replace page that will not be used for longest period of time

reference string
7 012 0 304 2303212201701

71 17 (7] 2] [o| |2 B 2| 7]
BEEE & E g 1Y Y
1] |1 3 3 3 1 1

page frames

m Page faults: 9
®m How do you know this?
e Can’t read the future
m Used for measuring how well your algorithm performs
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Least Recently Used (LRU) Page Replacement

m Use past knowledge rather than future
m Replace page that has not been used in most amount of time
m Associate time of last use with each page

reference string
/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 A

7272 E ELLEO I I .
0 19] |0 0 0 19] [8] [3 3 0 0
B O N 3 3] 2] [2] |2 2 2 7

page frames

m 12 faults — better than FIFO but worse than OPT
m Generally good algorithm and frequently used
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LRU Approximation Algorithms

m Reference bit/ byte
e With each page associate a bit, initially = 0
e When page is referenced, bit set to 1
e Replace any with reference bit = O (if one exists)
» We do not specify the order, however

m Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Circular replacement
e If page to be replaced has
» Reference bit = 0 -> replace it
» Reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules
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Second-Chance Algorithm
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Pop Quiz

® A memory system has three frames. Consider the following reference string

01232304523143263212

Draw a diagram to show the page replacement using Second-Chance
Algorithm and calculate the number of page faults.

0 1 2 3 2 3 0 4 5 2 3 1.
po| ilomilo®io] 1/3]| 1[3] 1/3] 1/3/®o[3]| 1|5 1/5®0|5] 1
of | of | 12| 1/2|9of1|Ho[1Ho[1| 1{0| o[0®ol0]| 1{2| o[ 2 B0
OI oI oI 1I oI 1I 1I»1I 1I 1I»1I 1I 1I
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Counting Algorithms

m Keep a counter of the number of references that have been made to each
page

m Least Frequently Used (LFU) Algorithm: replaces page with smallest
count

m Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be
used

® Not commonly used
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Homework

m Reading
e Chapter 9

B Exercise
e See course website
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Demand Paging

System Characteristics

Size of memory 16 bytes

Frame Size 4 bytes per frame

Memory Management Structure | Inverted Page Table

Replacement Policy LRU, Global Replacement
Virtual Page Size 4 bytes per page

Logical Addressing Space Size |32 bytes

Backing Store Size 12 blocks

Backing Store Block Size 4 bytes per block
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Process Table

Process 1D 0 1 2
Process Size (Bytes) 12 14 13
Pages allocated 3 4 4
Backing Store Map

(Page = Block)

Page 0 BS 0 BS 3 BS 7
Page 1 BS 1 BS 4 BS 8
Page 2 BS 2 BS 5 BS 9
Page 3 BS 6 BS 10
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System Snapshot

Main Memory

[\
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Address [0 |1 10 |11 |12 |13 |14 |15
*

Contents |O |[T |O |[N (G |F |U [N [- [- |- -

Backing Store

Block 0 1 2 3 4 5 6 7 8 9 10

Contents | THRE | AD*F | UN-- | RATE [ *MON |OTON |IC-- |DEMA | ND*P | AGIN | G---

Inverted Page Table

Frame |Page # PID Valid Bit | Ref Word (Low = older) | Modified Bit
0 2 1 T 2 F

1 3 2 T 1 T

2 - - F - -

3 1 0 T 3 F
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PID 0 : Write ‘A’ at logical memory Address 11

Process ID 0
Process Size (Bytes) 12
Pages allocated 3
Backing Store Map
(Page - Block)
: Page 0 BS 0
Main Memory e
Page 1 BS1
Address |0 |1 [2 [3 [4 |5 |6 |7 |8 (9 |10 [11 |12 |13 [14 |15
Contents |Q | T O IN IG |F U IN |- - - - A |D * F Page 2 BS 2
Change U |N |- A
Page 3

Backing Store

Block 0 1 2 3 4 5 6 7 8 9 10

Contents | THRE |AD*F |UN-- |RATE |*MON |OTON |IC-- |DEMA [ND*P |AGIN |G---

Change

Inverted Page Table

Frame | VP# PID Valid Bit | Ref Word (Low = older) Modified Bit
0 2 1 T 2 F

1 3 T 1 T

2 - 2 - 0 F T - 4 - T

3 1 0 T 3 F
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PID 1 : Read logical memory Address 6

Process ID 1
Process Size (Bytes) 14
Pages allocated 4
Backing Store Map
(Page > Block)
. Page 0 BS 3
Main Memory i8¢
Page 1 BS 4
Address | () 1 2 3 4 5 6 7 8 9 10 |11 |12 [13 [14 |15
Contents |Q | T O IN IG |F U IN |- - - - A |D * F Page 2 BS 5
Ch * -
ange M O |[N [U [N A Page 3 BS 6
Backing Store
Block 0 1 2 3 4 5 6 7 8 9 10
Contents | THRE |[AD*F |UN-- | RATE |*MON |[OTON |IC-- DEMA | ND*P | AGIN | G---
Change GFUN
Inverted Page Table
Frame | VP# PID Valid Bit | Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 1 1 T 1 5 T F
2 - 2 - F T - 4 - T
3 1 0 T 3 F
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