CS307 Operating Systems

Virtual Memory

Fan Wu

Department of Computer Science and Engineering
Shanghai Jiao Tong University

Spring 2020

Background

m Code needs to be in memory to execute, but entire program rarely used
e Error code, unusual routines, large data structures

m Entire program code not needed at the same time

m Consider ability to execute partially-loaded program
e Program no longer constrained by limits of physical memory
e Program could be larger than physical memory

Operating Systems 2

Virtual Memory That is Larger Than Physical Memory

page O
page 1
page 2 <.
E—
\ ———
memory |
page v physical
, memory
virtual
memory

Operating Systems 3

Virtual Memory

m Virtual Memory — separation of user logical memory from physical memory

Only part of the program needs to be in memory for execution

Logical address space can therefore be much larger than physical
address space

Allows memory address spaces to be shared by several processes
Allows for more efficient process creation

More programs running concurrently

Less I/O needed to load or swap processes

® Virtual memory can be implemented via:

Operating Systems 4

Demand paging
Demand segmentation

Demand Paging

m Could bring entire process into memory at load time
m Or bring a page into memory only when it is needed
e Less I/O needed, no unnecessary I/O
e Less memory needed
e Faster response
e More users

m Page is needed = reference to it
e invalid reference = abort
e not-in-memory = bring to memory

m Lazy swapper (pager) — never swaps a page into memory unless page will
be needed

Operating Systems 9

Swap Paged Memory to Disk Space

N
. L. 4

swap out O N [2] S |

progAram \ ﬁ ﬁ ﬁ ﬁ
4 5 6 7

- 8] | 9] [10] W[|
b 12 48[[14[5[]

program
B >\ swap in 16D17Q18Q19Q
2 20[|21 J22[123[]

-,

main
memory

Operating Systems 10

Valid-Invalid Bit

m With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

m |[nitially, valid—invalid bit is set to i on all entries
m Example of a page table snapshot:

Frame # valid-invalid bit

page table

® During address translation, if valid—invalid bit in page table entry
is i = page fault

Operating Systems 11

Page Table with Pages Not in Main Memory

0
i
0 A 2
valid—invalid
1 B frame bit 3 /—\
0| 4 |v 4 A D
2| 6 |v
4 E a[i 6| C ||
5 E 4 i 7 -
N 509 |v & B [F
A 8 |
7 H 7 [9 E = E H
logical pagpeanle 10
memory [
12
13
14
15

physical memory

Operating Systems 12

Page Fault

m If there is a reference to a page and the page is not in memory, the
reference will trap to operating system:

page fault

1. Operating system looks at page table to decide:
e |Invalid reference = abort
e Just not in memory
2. Get empty frame
3. Swap page into frame via scheduled disk operation

Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

Operating Systems 13

Steps in Handling a Page Fault

@ page is on
backing store

operating
system

reference

®

load M

@

trap

g - i

Operating Systems

restart page table
Instruction
free frame e o
reset page bring in
table missing page

physical
memory

14

What Happens if There is no Free Frame?

m Page replacement — find some page in memory, but not really in use, page
it out

e Algorithm — terminate? swap out? replace the page?

e Performance — want an algorithm which will result in minimum number
of page faults

Operating Systems 15

Page Replacement

frame valid—invalid bit

N ¥
change
0 |i to invalid
T1®
reset page
page table table for
new page

Operating Systems

swap out
victim

victim

<:>swap

desired
page in

physical
memory

18

E -

i

N
-

Page Replacement

m Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

Operating Systems 19

Page Replacement Algorithms

m Page-replacement algorithm
e Want lowest page-fault rate on both first access and re-access

®m Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

e String is just page numbers, not full addresses

e Repeated access to the same page, which is still in memory, does not
cause a page fault

® In all our examples, the reference string is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Operating Systems 20

Page-Replacement Algorithms

m First-In-First-Out (FIFO) Page Replacement

m Optimal Page Replacement

m Least Recently Used (LRU) Page Replacement

m LRU Approximation Page Replacement

m Counting Page Replacement

Operating Systems 21

FIFO Page Replacement

®m When a page must be replaced, the oldest page is chosen.

reference string

i 01 2 0 3 0 4 2 3 0 3 2 1 2 01 7 0 1
AR FAE FREEERN ER FEE

ol [o lof [s| 8l [s|] [2| Bl [[[i]fo o
JOHE Bk gl eI

page frames

m Page faults: 15
m Consider the following reference string:
012301230123......

Operating Systems 22

Optimal Page Replacement

m Replace page that will not be used for longest period of time

reference string
7 012 0 304 2303212201701

71 17 (7] 2] [o| |2 B 2| 7]
BEEE & E g 1Y Y
1] |1 3 3 3 1 1

page frames

m Page faults: 9
®m How do you know this?
e Can’t read the future
m Used for measuring how well your algorithm performs

Operating Systems 23

Least Recently Used (LRU) Page Replacement

m Use past knowledge rather than future
m Replace page that has not been used in most amount of time
m Associate time of last use with each page

reference string
/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 A

7272 E ELLEO I I .
0 19] |0 0 0 19] [8] [3 3 0 0
B O N 3 3] 2] [2] |2 2 2 7

page frames

m 12 faults — better than FIFO but worse than OPT
m Generally good algorithm and frequently used

Operating Systems 24

LRU Approximation Algorithms

m Reference bit/ byte
e With each page associate a bit, initially = 0
e When page is referenced, bit set to 1
e Replace any with reference bit = O (if one exists)
» We do not specify the order, however

m Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Circular replacement
e If page to be replaced has
» Reference bit = 0 -> replace it
» Reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules

Operating Systems 27

Second-Chance Algorithm

next
victim

Operating Systems

reference
bits

0

o]

pages

v

v

v
v

v

/

circular queue of pages

(a)

28

reference pages
bits

0

o]

= EH e =

y
S

circular queue of pages

(b)

Pop Quiz

® A memory system has three frames. Consider the following reference string

01232304523143263212

Draw a diagram to show the page replacement using Second-Chance
Algorithm and calculate the number of page faults.

0 1 2 3 2 3 0 4 5 2 3 1.
po| ilomilo®io] 1/3]| 1[3] 1/3] 1/3/®o[3]| 1|5 1/5®0|5] 1
of | of | 12| 1/2|9of1|Ho[1Ho[1| 1{0| o[0®ol0]| 1{2| o[2 B0
OI oI oI 1I oI 1I 1I»1I 1I 1I»1I 1I 1I

Operating Systems 29

Counting Algorithms

m Keep a counter of the number of references that have been made to each
page

m Least Frequently Used (LFU) Algorithm: replaces page with smallest
count

m Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be
used

® Not commonly used

Operating Systems 30

Homework

m Reading
e Chapter 9

B Exercise
e See course website

Operating Systems 32

Demand Paging

System Characteristics

Size of memory 16 bytes

Frame Size 4 bytes per frame

Memory Management Structure | Inverted Page Table

Replacement Policy LRU, Global Replacement
Virtual Page Size 4 bytes per page

Logical Addressing Space Size |32 bytes

Backing Store Size 12 blocks

Backing Store Block Size 4 bytes per block

Operating Systems 33

Process Table

Process 1D 0 1 2
Process Size (Bytes) 12 14 13
Pages allocated 3 4 4
Backing Store Map

(Page = Block)

Page 0 BS 0 BS 3 BS 7
Page 1 BS 1 BS 4 BS 8
Page 2 BS 2 BS 5 BS 9
Page 3 BS 6 BS 10

Operating Systems

34

System Snapshot

Main Memory

[\
w
B~
(9]
o)}
-
o0
O

Address [0 |1 10 |11 |12 |13 |14 |15
*

Contents |O |[T |O |[N (G |F |U [N [- [- |- -

Backing Store

Block 0 1 2 3 4 5 6 7 8 9 10

Contents | THRE | AD*F | UN-- | RATE [*MON |OTON |IC-- |DEMA | ND*P | AGIN | G---

Inverted Page Table

Frame |Page # PID Valid Bit | Ref Word (Low = older) | Modified Bit
0 2 1 T 2 F

1 3 2 T 1 T

2 - - F - -

3 1 0 T 3 F

Operating Systems K1)

PID 0 : Write ‘A’ at logical memory Address 11

Process ID 0
Process Size (Bytes) 12
Pages allocated 3
Backing Store Map
(Page - Block)
: Page 0 BS 0
Main Memory e
Page 1 BS1
Address |0 |1 [2 [3 [4 |5 |6 |7 |8 (9 |10 [11 |12 |13 [14 |15
Contents |Q | T O IN IG |F U IN |- - - - A |D * F Page 2 BS 2
Change U |N |- A
Page 3

Backing Store

Block 0 1 2 3 4 5 6 7 8 9 10

Contents | THRE |AD*F |UN-- |RATE |*MON |OTON |IC-- |DEMA [ND*P |AGIN |G---

Change

Inverted Page Table

Frame | VP# PID Valid Bit | Ref Word (Low = older) Modified Bit
0 2 1 T 2 F

1 3 T 1 T

2 - 2 - 0 F T - 4 - T

3 1 0 T 3 F

Operating Systems 36

PID 1 : Read logical memory Address 6

Process ID 1
Process Size (Bytes) 14
Pages allocated 4
Backing Store Map
(Page > Block)
. Page 0 BS 3
Main Memory i8¢
Page 1 BS 4
Address | () 1 2 3 4 5 6 7 8 9 10 |11 |12 [13 [14 |15
Contents |Q | T O IN IG |F U IN |- - - - A |D * F Page 2 BS 5
Ch * -
ange M O |[N [U [N A Page 3 BS 6
Backing Store
Block 0 1 2 3 4 5 6 7 8 9 10
Contents | THRE |[AD*F |UN-- | RATE |*MON |[OTON |IC-- DEMA | ND*P | AGIN | G---
Change GFUN
Inverted Page Table
Frame | VP# PID Valid Bit | Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 1 1 T 1 5 T F
2 - 2 - F T - 4 - T
3 1 0 T 3 F

Operating Systems 37

