CS307 Operating Systems

Virtual Memory

Fan Wu
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Spring 2020

Background

o Error code, unusual routines, large data structures
m Entire program code not needed at the same time

m Consider ability to execute partially-loaded program
o Program no longer constrained by limits of physical memory
e Program could be larger than physical memory

Operating Systems 2

m Code needs to be in memory to execute, but entire program rarely used

@xszu;

Virtual Memory That is Larger Than Physical Memory

page 0

page 1

page 2

£
1
\
\/

\ o~ ~NEpEE
c N EE N
~——1 __pmm
w0 888
o]

Operating Systems %l,&?ilt#

I

Virtual Memory

Only part of the program needs to be in memory for execution

address space

Allows for more efficient process creation

More programs running concurrently
Less I/0O needed to load or swap processes

m Virtual memory can be implemented via:
e Demand paging
o Demand segmentation

Operating Systems 4

m Virtual Memory — separation of user logical memory from physical memory

Logical address space can therefore be much larger than physical

Allows memory address spaces to be shared by several processes

@xszu;

Demand Paging

m Could bring entire process into memory at load time
m Or bring a page into memory only when it is needed
o Less /O needed, no unnecessary I/O
o Less memory needed
e Faster response
o More users

m Page is needed = reference to it
o invalid reference = abort
e not-in-memory = bring to memory

Lazy swapper (pager) — never swaps a page into memory unless page will
be needed

Swap Paged Memory to Disk Space

<
N A

swap out ol 185 2] 83 |
pro%ram ﬁ FE‘ ﬁ rE‘
400 501601 7
8] s[J10[H1[]
12 118114 15[]
program ~_ sWapin 16 17L L TieL]
20(21 [e2[23[]

-

main
memory

Operating Systems 10

@xszu;

Valid-Invalid Bit

m With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

m |Initially, valid—invalid bit is set to i on all entries
m Example of a page table snapshot:

Frame # valid-invalid bit
v
\
v
v
1
1
i
page table

m During address translation, if valid—invalid bit in page table entry
is i = page fault

Operating Systems 1

Page Table with Pages Not in Main Memory

0
1
2
valid-invalid | JE—
frame | bit « S
K —
4 A O ——
: 000
s © U]
T | e =
8
9 2 ’?‘ ’E‘ m
— page table
mamory L gog
1 o »
12 -
12
14
15
physical memory
Operating Systems 12 YERALE

Page Fault

m If there is a reference to a page and the page is not in memory, the
reference will trap to operating system:

page fault

1. Operating system looks at page table to decide:
o Invalid reference = abort
e Just notin memory
2. Get empty frame
3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

Operating Systems 13

Steps in Handling a Page Fault

@ page is on
backing store / .
- ™
|
operating
system
®
reference
trap
=
O]
oad M 2 i
®
restart | page table |
instruction
free frame — 4
P /= P i
® ®
reset page bring in
table missing page
physical
memory
Operating Systems 14 YERALE

What Happens if There is no Free Frame?

m Page replacement — find some page in memory, but not really in use, page
it out

e Algorithm — terminate? swap out? replace the page?

o Performance — want an algorithm which will result in minimum number
of page faults

@) r#x

Operating Systems 15

ar¥

Page Replacement

frame valid-invalid bit A
swap out
change victim
0 i to invalid @ page |Lp0]
v /
@ victim
reset page \
table for
page table new page @
esre
desired
page in
physical
memory
Operating Systems 18 YERALE

Page Replacement

m Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

Operating Systems 19

@xszu;

Page Replacement Algorithms

m Page-replacement algorithm
o Want lowest page-fault rate on both first access and re-access

m Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

e String is just page numbers, not full addresses

o Repeated access to the same page, which is still in memory, does not
cause a page fault

® In all our examples, the reference string is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Operating Systems 20

@xszu;

Page-Replacement Algorithms

First-In-First-Out (FIFO) Page Replacement

Optimal Page Replacement
m |east Recently Used (LRU) Page Replacement
m LRU Approximation Page Replacement

m Counting Page Replacement

@xszu;

Operating Systems 21

FIFO Page Replacement

m When a page must be replaced, the oldest page is chosen.

reference string

7 01 20 3 04230321201
2 2 [[[o] o [o] [
L [ol 3] 3] o] 2 [2] 2]
O E [l o [of ¢ B

page frames

m Consider the following reference string:
012301230123......

m Page faults: 15

Operating Systems 22

@xszu;

Optimal Page Replacement

m Replace page that will not be used for longest period of time

reference string
701 2030423032120 17°01

7
o [
] [

page frames

=T=Tm]
[=[S][]]

m Page faults: 9
® How do you know this?
e Can’tread the future
m Used for measuring how well your algorithm performs

@xszu;

Operating Systems 23

Least Recently Used (LRU) Page Replacement

m Use past knowledge rather than future
m Replace page that has not been used in most amount of time
m Associate time of last use with each page

reference string

7 01 2 0 3 0 4 2 3 0 383 2 1

[4] 4] [4] [o]
L] o} [o] [o] [o] o] o] [3] [2]
o O G [

page frames

® 12 faults — better than FIFO but worse than OPT
m Generally good algorithm and frequently used

@xszu;

Operating Systems 24

LRU Approximation Algorithms

m Reference bit/ byte
e With each page associate a bit, initially = 0
e When page is referenced, bit set to 1
o Replace any with reference bit = 0 (if one exists)
» We do not specify the order, however

m Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Circular replacement
o |f page to be replaced has
» Reference bit = 0 -> replace it
» Reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules

Operating Systems 27 @l,&?ilt#

Second-Chance Algorithm

reference pages
bits.

]
[
wim =il

1

CD{[@IGDGD)

circular queue of pages

(a)

Operating Systems 28

reference pages.
bits

KN

]
. %
3

circular queue of pages
(b)

@xszu;

Pop Quiz

® A memory system has three frames. Consider the following reference string

01232304523143263212

Draw a diagram to show the page replacement using Second-Chance
Algorithm and calculate the number of page faults.

o 1 2 3 2 3 0 4 5 2 3 1.4
o[[B1 Q1Q1 1 1 1 1»0 1 1‘0 1
of ol <] - St Shofios s (1 ool -1 o BlaofE
o |o 0 1 0 1 1.1 1 1 1 1 1

Counting Algorithms

page

count

used

® Not commonly used

m Keep a counter of the number of references that have been made to each

m Least Frequently Used (LFU) Algorithm: replaces page with smallest

m Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be

Homework Demand Paging
= Reading System Characteristics
* Chapter9 Size of memory 16 bytes
m Exercise Frame Size 4 bytes per frame

o See course website

Operating Systems 32 @l,&?ilt#

Memory Management Structure

Inverted Page Table

Replacement Policy

LRU, Global Replacement

Virtual Page Size

4 bytes per page

Logical Addressing Space Size

32 bytes

Backing Store Size

12 blocks

Backing Store Block Size

4 bytes per block

Operating Systems 33

@xszu;

Process Table
Process ID 0 1 2
Process Size (Bytes) 12 14 13
Pages allocated 3 4 4
Backing Store Map
(Page - Block)
Page 0 BSO BS3 BS7
Page 1 BS1 BS 4 BS 8
Page 2 BS2 BS5 BS9
Page 3 BS6 BS 10

System Snapshot

Main Memory
[Address [0 [1 [2 [3 [4 [5 [6 [7 [8 |9

Comentle IT IO IN IG IF

Backing Store

[Block [0 [2 [4 [5 6 [7 I8 B [10

1
Contents | THRE | AD*F | UN.

I3
- |RATE [*MON [OTON [IC-- |DEMA [ND*P [AGIN [G---

Inverted Page Table

Frame | Page # PID Valid Bit | Ref Word (Low = older) | Modified Bit
0 2 1 T 2 F

1 2 T 1 T

2 N - F - -

3 1 0 T 3 F

Operating Systems 35

@xszu;

PID 0 : Write ‘A’ at logical memory Address 11

PID 1 : Read logical memory Address 6

Process ID 0
Process Size (Bytes) 12
Pages allocated 3
Backing Store Map.
(Page > Block)
Main Memory Page BS0
[adaes To 11 2 5][4 5 6 7 I8 [0 [io [11 [z [13 [1a J1s]| 7! st
[Contents [O [T [0 [N |G [F U [N [- |- |- |- [A [D [* [F_|[Pagez BS2
Gage T T T T T T T T IWINTTAT T T T T
Backing Store
;gock To 1 2 3 T4 I5 T6 7 B To [0 |
Contents | THRE | AD*F_|UN— | RATE_|*MON_|OTON_|IC— |DEMA |ND*P_|AGIN |G— |
Change | I I I I I I I I I I]

Inverted Page Table

Frame |VP# PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 2 F

1 3 2 T 1 T

2 - 2 - 0 F T - 4 - T
3 1 0 T 3 F

Inverted Page Table

Frame |VP# | PID Valid Bit__| Ref Word (Low = older) Modified Bit
0 2 1 2 F
1 X T P T S 1 5 T F
2 -2 - o F T |- 4 - T
3 1 0 T 3 F

Operating Systems 37

Process ID 1
Process Size (Bytes) 4
Pages allocated 4
Backing Store Map.
(Page > Block)
Main Memory Page BS3
[Aades To 1]2 3 14 5 J6 |7 I8 o Jio Jui Ju2 [15 J1a Ji5 | BS4
[Contents [O |T [0 [N [G |F [U [N [- |- |- |- [A [D [* [F_|[Pagez BSS
Cage [[T T [*IMoINTUINT TAT T T T J5gs =56
Backing Store
;gock To I1 23 T4 B e 17 [9 []
Contents | THRE_|AD*F_| UN— | RATE | *MON_| OTON |IC— | DEMA _|ND*P_|AGIN |G— |
Change | I I I I I I I I I [GFuN]

@xszu;

