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Bridge Crossing Example
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m Traffic only in one direction
m  Each section of a bridge can be viewed as a resource

m A deadlock occurs when two cars get on the bridge from
different directions at the same time

The Problem of Deadlock

= Example
e System has 2 disk drives
e P, and P, each hold one disk drive and each needs another one

= Example
e semaphores S and Q, initialized to 1
Po Py
@ wait (S); @ wait (Q);
@ wait (Q); @ wait (S);

m Deadlock: A set of blocked processes each holding some resources and
waiting to acquire the resources held by another process in the set

Deadlock Characterization

m Deadlock can arise if four conditions hold simultaneously.
e Mutual exclusion: only one process at a time can use a resource

e Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes

No preemption: a resource can be released only voluntarily by the
process holding it, after that process has completed its task

Circular wait: there exists a set {P,, P;, ..., P,} of waiting processes
such that P, is waiting for a resource that is held by P,, P, is waiting for
aresource that is held by P,, ..., P,_, is waiting for a resource that is
held by P,, and P, is waiting for a resource that is held by P,.

System Model

®m Processes P, P, ..., P,

® Resource types Ry, R, ..., R,
e.g., CPU, memory space, I/O devices

®m Each resource type R; has W, instances.

m Each process utilizes a resource as follows:
e request
® use

o release

Resource-Allocation Graph

m Deadlocks can be identified with system resource-
allocation graph.

o A setof vertices V and a set of edges E.

e Vis partitioned into two types:

» P={P;, P,, ..., P}, the set consisting of all the

processes in the system

» R={Ry, Ry, ..., Ry}, the set consisting of all lE‘

resource types in the system
R’
R/
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e E has two types:
» request edge — directed edge P> R;

» assignment edge — directed edge R, — P;
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Example of a Resource Allocation Graph

m P={P, P, P3g
B R={Ry, Ry Ry Ry}
m Resource instances:
o W=Wy=1
o W,=2
o W,=3

B E={P;2R;, P,?R3 R/2P,,
Ry 2P, Ry 2Py, Ry 2P3}

Resource Allocation Graph With A Deadlock

H A circle
R, Ry

o P,OR,P,>RDOP,>
RSP, ENEN

@) P

R,

Resource Allocation Graph With A Deadlock

® Two circles
R, Ry

o P,OR,P,>RDOP,>
RSP, ENEN

e P,OR;>P, >RSP, & W

o

R,

Graph With A Cycle But No Deadlock

A
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Basic Facts

m If graph contains no circle = no deadlock

m If graph contains a circle =
o if only one instance per resource type, then deadlock
o if several instances per resource type, possibility of deadlock

B Question:

e Can you find a way to determine whether there is a deadlock, given a
resource allocation graph with several instances per resource type?
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Methods for Handling Deadlocks

m  Ensure that the system will never enter a deadlock state
e Deadlock prevention
e Deadlock avoidance

m  Allow the system to enter a deadlock state and then recover
o Deadlock detection
o Deadlock recovery
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Deadlock Prevention

Restrain the ways request can be made

®  Mutual Exclusion — not required for sharable resources; must
hold for non-sharable resources

® Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

e Require process to request and be allocated all its resources
before it begins execution

e Or allow process to request resources only when the process
has none (has released all its resources)

e Low resource utilization; starvation possible

Deadlock Prevention (Cont.)
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m No Preemption

o [f a process that is holding some resources requests another resource
that cannot be immediately allocated to it, then all resources currently
being held are preempted

e Preempted resources are added to the list of resources for which the
process is waiting

o Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting

m Circular Wait — impose a total ordering of all resource types, and require
that each process requests resources in an increasing order of enumeration
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Deadlock Avoidance

Requires that the system has some additional a priori information
available

m  Requires that each process declare the maximum number of
resources of each type that it may need

®  The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can neverbe a
circular-wait condition

m Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes
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Safe State

®  When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state

m System is in safe state if there exists a safe sequence <P, P,, ..., P> of
ALL the processes in the systems such that for each P, the resources that
P, can still request can be satisfied by currently available resources +
resources held by all the P;, with j </

m Thatis:
If P/s resource needs are not immediately available, then P, can wait
until all P; have finished

When all P; are finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

e When P, terminates, P;,; can obtain its needed resources, and so on
m  Otherwise, system is in unsafe state
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Safe, Unsafe, Deadlock State

m [f a system is in safe state unsafe
= no deadlocks
deadlock

m If a system is in unsafe state
= possibility of deadlock

safe

® Avoidance
= ensure that a system will
never enter an unsafe state.
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Safe & Unsafe States

Maximum Available
Needs 3
10 5 5

Po
P, 4 2 2
P, 9 2 7

Safe sequence: ?
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Safe & Unsafe States

Maximum
Needs
10 5 5

Po
P, 4 4 0o <=
P, 9 2 7

Safe sequence: P,
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Available

1
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Safe & Unsafe States

Maximum
Needs
10 5 5

Po
P, 4 = -
P, 9 2 7

Safe sequence: P,
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Available

5
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Safe & Unsafe States

Maximum
Needs
10 10 0 <=

Po
P, 4 = -
P, 9 2 7

Safe sequence: P; > P,
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Available

0

Bprrist

Safe & Unsafe States

Maximum
Needs
10 - -

Po
P, 4 = -
P, 9 2 7

Safe sequence: P; > P,
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Available

10

Bprrist

Safe & Unsafe States

Maximum
Needs
Py 10 - -

P, 4 - -

P, 9 9 0o &=

Safe sequence: P; > Py > P,
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Available

3

Bprrist

Safe & Unsafe States

Maximum
Needs
10 - -

Po
P, 4 = -
P, 9 = =

Safe sequence: P; > Py > P,
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Safe & Unsafe States

Maximum Available
Needs 2
10 5 5

Po
P, 4 2 2
P, 9 3 6

Safe sequence: ?

@) rEiars
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Safe & Unsafe States

Maximum Available
Needs 4
10 5 5

Py
P, 4 - -
P, 9 3 6

Safe sequence: P; > ?

@) rEiars

Operating Systems 26

Avoidance Algorithms

m  Avoidance algorithms ensure that the system will never deadlock.

e Whenever a process requests a resource, the request is granted only if
the allocation leaves the system in a safe state.

m  Two avoidance algorithms
e Single instance of a resource type
» Use a resource-allocation graph

e Multiple instances of a resource type
» Use the banker’s algorithm

@) rEiars
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Resource-Allocation-Graph Algorithm

m Claim edge P, — R;indicates that process P; may request resource R;;
represented by a directed dashed line

m  Resources must be claimed a priori in the system

m Claim edge converts to request edge when a process requests a resource

m Request edge converts to an assignment edge when the resource is
allocated to the process

m  When a resource is released by a process, assignment edge reconverts to
a claim edge (the edge is removed if the process finishes)
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Resource-Allocation Graph Algorithm

m Suppose that process P; requests a resource R;

m The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a circle in the resource
allocation graph

2
Circle! Therefore, P,’s request cannot be
granted, and P, needs to wait.

Can we grant P,’s request for R,?

@x;zu;
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Banker’s Algorithm

m  Multiple instances
®  Each process must a priori claim maximum use
® When a process requests a resource it may have to wait

® When a process gets all its resources it must return them in a finite
amount of time

Operating Systems 30

@) rEiars




Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

® Available: Vector of length m. If available[j] = k, there are k
instances of resource type R; available

m Max:n x m matrix. If Max{i,j] = k, then process P, may request at
most k instances of resource type R;

m Allocation: nx m matrix. If Allocation[i] = k then P; is currently
allocated k instances of R;

m Need: nxm matrix. If Need[ij] = k, then P; may need k more
instances of R;to complete its task

Needli,j] = Max(i,j] — Allocationli,j]
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Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false, fori=0,1, ..., n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Need; < Work
If no such i exists, go to step 4

3. Work = Work + Allocation;
Finishli] = true

go to step 2
4. If Finish [i] == true for all j, then the system is in a safe state
Operating Systems 32 @l,&?ilz&?

Resource-Request Algorithm for Process P;

Request; = request vector for process P;. If Request;[j] = k then process P;
wants k instances of resource type R;

1. If Request; < Need, go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Request, < Available, go to step 3. Otherwise P, must wait, since
resources are not available

3. Pretend to allocate requested resources to P; by modifying the state as
follows:

Available = Available — Request;
Allocation;= Allocation; + Request;
Need; = Need;— Request;

o If safe = the resources are allocated to P;

o If unsafe = P; must wait, and the old resource-allocation state is
restored
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Example of Banker’s Algorithm

m 5 processes P, through P,;
3 resource types:
A (10 instances), B (5 instances), and C (7 instances)
Snapshot at time T:

[ x| Aocaton | Neea | wvaiave |

ABC ABC ABC ABC
P, 753 010 743 332
P, 322 200 122
P, 902 302 600
Py 222 211 011
P, 433 002 431

m |s the system in safe state?

@xszu;
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Applying Safety Algorithm

[T x| Atocaton | Neso | avatavie

ABC ABC ABC ABC
P, 753 010 743 532
@
P, 902 302 600
Py 222 211 011
P, 433 002 431

Safe sequence: P,
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Applying Safety Algorithm

ABC ABC ABC ABC
Py 753 010 743 743
P, 902 302 600

P, 433 002 431

Safe sequence: P, > P;
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Applying Safety Algorithm

[T x| Atocaton | Neso | avatavie

ABC ABC ABC ABC
753 (=
P, 902 302 600
P, 433 002 431

Safe sequence: P, > P; > P,
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Applying Safety Algorithm

[T x| Atocaton | Neso | vatavle

ABC ABC ABC ABC
1055

P, 433 002 431

Safe sequence: P, > P; > Py > P,
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Applying Safety Algorithm

[T x| Atocaton | Neso | avatavie

ABC ABC ABC ABC
1057

Safe sequence: P, > P; > Py > P, > P,
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Example: P, Request (1,0,2)

m Check that Request < Available (that is, (1,0,2) < (3,3,2) = true)

[ x| Atocaton | Neod | vaiabe ]

ABC ABC ABC ABC
P, 753 010 743 230
P, 322 302 020
P, 902 302 600
ENIZZZl T 011
P, 433 002 431

m  Executing safety algorithm shows that sequence < P;, P, Py, P, P,>
satisfies safety requirement
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Example: P, Request (0,2,0)

m  Check that Request < Available (that is, (0,2,0) < (2,3,0) = true)

[T x| Alocaton | Neod | Avaiabe ]

ABC ABC ABC ABC
P, 753 030 723 210
P, 322 302 020
P, 902 302 600
EN Izl 011
P, 433 002 431

m Does there a safe sequence exist?
e No
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Pop Quiz

m 5 processes P, through P,;
3 resource types:
A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T:

[ x| Alocaton | Neeo | vatavle

ABC ABC ABC ABC
P, 753 010 743 332
P, 322 200 122
P, 902 302 600
Py 222 211 011
P, 433 002 431

m Can P4’srequest (2, 1, 0) be granted?
m Can P4’srequest (2, 1, 2) be granted?
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Deadlock Detection

m  Allow system to enter deadlock state
m  Detection algorithm

m Recovery scheme

Single Instance of Each Resource Type

®  Maintain wait-for graph
e Nodes are processes
e P;— P; if P;is waiting for P;
m Periodically invoke an algorithm that searches for a cycle in the graph. If
there is a cycle, there exists a deadlock

Resource-Allocation Graph Corresponding wait-for graph

@xszu;
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Several Instances of a Resource Type

m Available: A vector of length m indicates the number of available resources
of each type.

m Allocation: An nx m matrix defines the number of resources of each type
currently allocated to each process.

m Request: An nx m matrix indicates the current request of each process. If
Request[il[j] = k, then process P; is requesting k more instances of resource
type R;.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, and initialize:
(a) Work = Available
(b) Fori=1,2, ..., n, if Allocation;+ 0, then Finish[i] = false; otherwise,
Finishli] = true
2. Find an index i such that both:
(a) Finish[i] == false
(b) Request;< Work
If no such i exists, go to step 4
3. Work = Work + Allocation;

Finishli] = true
go to step 2

4. If Finish[i] == false, for some j, 1 <i< n, then the system is in deadlock
state. Moreover, if Finishl[i] == false, then P, is deadlocked
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Example of Detection Algorithm

m  Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

®m Snapshot at time T;:

[ Alocaon | Request | Avaiabie
ABC ABC ABC

Py 010 000 000

P, 200 202

P, 303 000

Ps 211 100

P, 002 002

m Sequence <P, P,, P3, Py, P,> will result in Finish[i] = true for all i

@xszu;
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Example (Cont.)

® P, requests an additional instance of type C

[ bocaton | Request | Avatave

ABC ABC ABC
Py 010 000 000
P, 200 202
P, 303 001
P, 211 100
P, 002 002

m  State of system?

e Can reclaim resources held by process P, but insufficient
resources to fulfill other processes’ requests

e Deadlock exists, consisting of processes P;, P,, Ps;, and P,




Detection-Algorithm Usage

® When, and how often, to invoke depends on:
o How often a deadlock is likely to occur?
e How many processes will need to be rolled back?
» one for each disjoint cycle
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Recovery from Deadlock
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® Process Termination
e abort one or more processes to break the circular wait

m  Resource Preemption

e preempt some resources from one or more of the deadlocked
processes

Process Termination

m  Abort all deadlocked processes

m  Abort one process at a time until the deadlock cycle is eliminated

®  In which order should we choose to abort?

Priority of the process
e How long process has computed, and how much longer to completion

Resources the process has used

e Resources process needs to compete

e How many processes will need to be terminated
e |s process interactive or batch?
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Resource Preemption
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Homework

m Reading
e Chapter7

m Exercise
o See course website
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m  Selecting a victim — minimize cost
m Rollback — return to some safe state, restart process from that state

m Starvation — same process may always be picked as victim, include
number of rollback in cost factor




