
1

CS307 Operating Systems

Deadlocks

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

Bridge Crossing Example

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 A deadlock occurs when two cars get on the bridge from
different directions at the same time

3Operating Systems

The Problem of Deadlock

 Example

 System has 2 disk drives

 P1 and P2 each hold one disk drive and each needs another one

 Example

 semaphores S and Q, initialized to 1
P0 P1

① wait (S); ② wait (Q);

③ wait (Q); ④ wait (S);

 Deadlock: A set of blocked processes each holding some resources and
waiting to acquire the resources held by another process in the set

4Operating Systems

Deadlock Characterization

 Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion: only one process at a time can use a resource

 Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes

 No preemption: a resource can be released only voluntarily by the
process holding it, after that process has completed its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes
such that P0 is waiting for a resource that is held by P1, P1 is waiting for
a resource that is held by P2, …, Pn–1 is waiting for a resource that is
held by Pn, and Pn is waiting for a resource that is held by P0.

5Operating Systems

System Model

 Processes P1, P2, …, Pn

 Resource types R1, R2, ..., Rm

e.g., CPU, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request

 use

 release

6Operating Systems

Resource-Allocation Graph

 Deadlocks can be identified with system resource-
allocation graph.

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

 E has two types:

 request edge – directed edge Pi  Rj

 assignment edge – directed edge Rj  Pi

Pi

Pi

Rj

Pi

Rj

Rj

2

7Operating Systems

Example of a Resource Allocation Graph

 P = {P1, P2, P3}

 R = {R1, R2, R3, R4}

 Resource instances:

 W1=W3=1

 W2=2

 W4=3

 E = {P1R1, P2R3, R1P2,
R2P2, R2P1, R3P3}

8Operating Systems

Resource Allocation Graph With A Deadlock

 A circle

 P1R1P2R3P3
R2P1

9Operating Systems

Resource Allocation Graph With A Deadlock

 Two circles

 P1R1P2R3P3
R2P1

 P2R3P3R2P2

10Operating Systems

Graph With A Cycle But No Deadlock

11Operating Systems

Basic Facts

 If graph contains no circle  no deadlock

 If graph contains a circle 

 if only one instance per resource type, then deadlock

 if several instances per resource type, possibility of deadlock

 Question:

 Can you find a way to determine whether there is a deadlock, given a
resource allocation graph with several instances per resource type?

12Operating Systems

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock state

 Deadlock prevention

 Deadlock avoidance

 Allow the system to enter a deadlock state and then recover

 Deadlock detection

 Deadlock recovery

3

13Operating Systems

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources; must
hold for non-sharable resources

 Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources

 Require process to request and be allocated all its resources
before it begins execution

 Or allow process to request resources only when the process
has none (has released all its resources)

 Low resource utilization; starvation possible

Restrain the ways request can be made

14Operating Systems

Deadlock Prevention (Cont.)

 No Preemption

 If a process that is holding some resources requests another resource
that cannot be immediately allocated to it, then all resources currently
being held are preempted

 Preempted resources are added to the list of resources for which the
process is waiting

 Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and require
that each process requests resources in an increasing order of enumeration

15Operating Systems

Deadlock Avoidance

 Requires that each process declare the maximum number of
resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition

 Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a priori information
available

16Operating Systems

Safe State

 When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state

 System is in safe state if there exists a safe sequence <P1, P2, …, Pn> of
ALL the processes in the systems such that for each Pi, the resources that
Pi can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < i

 That is:

 If Pi’s resource needs are not immediately available, then Pi can wait
until all Pj have finished

 When all Pj are finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and so on

 Otherwise, system is in unsafe state

17Operating Systems

Safe, Unsafe, Deadlock State

 If a system is in safe state
 no deadlocks

 If a system is in unsafe state
 possibility of deadlock

 Avoidance
 ensure that a system will
never enter an unsafe state.

18Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Available

3

Safe sequence: ?

4

19Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 5 5

P1 4 4 0

P2 9 2 7

Available

1

Safe sequence: P1

20Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 5 5

P1 4 -- --

P2 9 2 7

Available

5

Safe sequence: P1

21Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 10 0

P1 4 -- --

P2 9 2 7

Available

0

Safe sequence: P1  P0

22Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 -- --

P1 4 -- --

P2 9 2 7

Available

10

Safe sequence: P1  P0

23Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 -- --

P1 4 -- --

P2 9 9 0

Available

3

Safe sequence: P1  P0  P2

24Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 -- --

P1 4 -- --

P2 9 -- --

Available

12

Safe sequence: P1  P0  P2

5

25Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 3 6

Available

2

Safe sequence: ?

26Operating Systems

Safe & Unsafe States

Maximum
Needs

Holds Needs

P0 10 5 5

P1 4 -- --

P2 9 3 6

Available

4

Safe sequence: P1  ?

27Operating Systems

Avoidance Algorithms

 Avoidance algorithms ensure that the system will never deadlock.

 Whenever a process requests a resource, the request is granted only if
the allocation leaves the system in a safe state.

 Two avoidance algorithms

 Single instance of a resource type

 Use a resource-allocation graph

 Multiple instances of a resource type

 Use the banker’s algorithm

28Operating Systems

Resource-Allocation-Graph Algorithm

 Claim edge Pi  Rj indicates that process Pj may request resource Rj;
represented by a directed dashed line

 Resources must be claimed a priori in the system

 Claim edge converts to request edge when a process requests a resource

 Request edge converts to an assignment edge when the resource is
allocated to the process

 When a resource is released by a process, assignment edge reconverts to
a claim edge (the edge is removed if the process finishes)

29Operating Systems

Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a circle in the resource
allocation graph

Can we grant P2’s request for R2?
Circle! Therefore, P2’s request cannot be
granted, and P2 needs to wait.

30Operating Systems

Banker’s Algorithm

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

 When a process gets all its resources it must return them in a finite
amount of time

6

31Operating Systems

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available[j] = k, there are k
instances of resource type Rj available

 Max: n x m matrix. If Max[i,j] = k, then process Pi may request at
most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need[i,j] = Max[i,j] – Allocation[i,j]

Let n = number of processes, and m = number of resources types.

32Operating Systems

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false, for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

33Operating Systems

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then process Pi
wants k instances of resource type Rj

1. If Requesti  Needi, go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as
follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state is
restored

34Operating Systems

Example of Banker’s Algorithm

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T0:

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 3 3 2

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

 Is the system in safe state?

35Operating Systems

Applying Safety Algorithm

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 3 3 2

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Safe sequence: P1

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 2 1 1

P1 3 2 2 3 2 2 0 0 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 5 3 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

36Operating Systems

Applying Safety Algorithm

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 5 3 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Safe sequence: P1  P3

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 5 2 1

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 2 2 0 0 0

P4 4 3 3 0 0 2 4 3 1

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 7 4 3

P2 9 0 2 3 0 2 6 0 0

P4 4 3 3 0 0 2 4 3 1

7

37Operating Systems

Applying Safety Algorithm

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 7 4 3

P2 9 0 2 3 0 2 6 0 0

P4 4 3 3 0 0 2 4 3 1

Safe sequence: P1  P3  P0

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 7 5 3 0 0 0 0 0 0

P2 9 0 2 3 0 2 6 0 0

P4 4 3 3 0 0 2 4 3 1

Max Allocation Need Available

A B C A B C A B C A B C

7 5 3

P2 9 0 2 3 0 2 6 0 0

P4 4 3 3 0 0 2 4 3 1

38Operating Systems

Applying Safety Algorithm

Max Allocation Need Available

A B C A B C A B C A B C

7 5 3

P2 9 0 2 3 0 2 6 0 0

P4 4 3 3 0 0 2 4 3 1

Safe sequence: P1  P3  P0  P2

Max Allocation Need Available

A B C A B C A B C A B C

1 5 3

P2 9 0 2 9 0 2 0 0 0

P4 4 3 3 0 0 2 4 3 1

Max Allocation Need Available

A B C A B C A B C A B C

10 5 5

P4 4 3 3 0 0 2 4 3 1

39Operating Systems

Applying Safety Algorithm

Max Allocation Need Available

A B C A B C A B C A B C

10 5 5

P4 4 3 3 0 0 2 4 3 1

Safe sequence: P1  P3  P0  P2  P4

Max Allocation Need Available

A B C A B C A B C A B C

6 2 4

P4 4 3 3 4 3 3 0 0 0

Max Allocation Need Available

A B C A B C A B C A B C

10 5 7

40Operating Systems

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 3 3 2

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Example: P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true)

 Executing safety algorithm shows that sequence < P1, P3, P0, P2, P4>
satisfies safety requirement

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 2 3 0

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

41Operating Systems

Example: P0 Request (0,2,0)

 Check that Request  Available (that is, (0,2,0)  (2,3,0)  true)

 Does there a safe sequence exist?

 No

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 2 3 0

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 3 0 7 2 3 2 1 0

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

42Operating Systems

Pop Quiz

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T0:

Max Allocation Need Available

A B C A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3 3 3 2

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

 Can P4’s request (2, 1, 0) be granted?

 Can P4’s request (2, 1, 2) be granted?

8

43Operating Systems

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

44Operating Systems

Single Instance of Each Resource Type
 Maintain wait-for graph

 Nodes are processes

 Pi  Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a cycle in the graph. If
there is a cycle, there exists a deadlock

Resource-Allocation Graph Corresponding wait-for graph

45Operating Systems

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of available resources
of each type.

 Allocation: An n x m matrix defines the number of resources of each type
currently allocated to each process.

 Request: An n x m matrix indicates the current request of each process. If
Request[i][j] = k, then process Pi is requesting k more instances of resource
type Rj.

46Operating Systems

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, and initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then Finish[i] = false; otherwise,
Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in deadlock
state. Moreover, if Finish[i] == false, then Pi is deadlocked

47Operating Systems

Example of Detection Algorithm

 Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

 Snapshot at time T0:

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

48Operating Systems

Example (Cont.)

 P2 requests an additional instance of type C

 State of system?

 Can reclaim resources held by process P0, but insufficient
resources to fulfill other processes’ requests

 Deadlock exists, consisting of processes P1, P2, P3, and P4

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

9

49Operating Systems

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 one for each disjoint cycle

50Operating Systems

Recovery from Deadlock

 Process Termination

 abort one or more processes to break the circular wait

 Resource Preemption

 preempt some resources from one or more of the deadlocked
processes

51Operating Systems

Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort?

 Priority of the process

 How long process has computed, and how much longer to completion

 Resources the process has used

 Resources process needs to compete

 How many processes will need to be terminated

 Is process interactive or batch?

52Operating Systems

Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process from that state

 Starvation – same process may always be picked as victim, include
number of rollback in cost factor

53Operating Systems

Homework

 Reading

 Chapter 7

 Exercise

 See course website

