CS307 Operating Systems

Deadlocks

Fan Wu
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Spring 2020

Bridge Crossing Example

S~ mm

S

m Traffic only in one direction
m Each section of a bridge can be viewed as a resource

m A deadlock occurs when two cars get on the bridge from
different directions at the same time

The Problem of Deadlock

= Example
e System has 2 disk drives
e P, and P, each hold one disk drive and each needs another one

= Example
e semaphores S and Q, initialized to 1
Po Py
@ wait (S); @ wait (Q);
@ wait (Q); @ wait (S);

m Deadlock: A set of blocked processes each holding some resources and
waiting to acquire the resources held by another process in the set

Deadlock Characterization

m Deadlock can arise if four conditions hold simultaneously.
e Mutual exclusion: only one process at a time can use a resource

e Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes

No preemption: a resource can be released only voluntarily by the
process holding it, after that process has completed its task

Circular wait: there exists a set {P,, P;, ..., P,} of waiting processes
such that P, is waiting for a resource that is held by P,, P, is waiting for
aresource that is held by P,, ..., P,_, is waiting for a resource that is
held by P,, and P, is waiting for a resource that is held by P,.

System Model

®m Processes P, P, ..., P,

® Resource types Ry, R, ..., R,
e.g., CPU, memory space, I/O devices

®m Each resource type R; has W, instances.

m Each process utilizes a resource as follows:
e request
® use

o release

Resource-Allocation Graph

m Deadlocks can be identified with system resource-
allocation graph.

o A setof vertices V and a set of edges E.

e Vis partitioned into two types:

» P={P;, P,, ..., P}, the set consisting of all the

processes in the system

» R={Ry, Ry, ..., Ry}, the set consisting of all lE‘

resource types in the system
R’
R/

@xszu;

e E has two types:
» request edge — directed edge P> R;

» assignment edge — directed edge R, — P;

Operating Systems 6

Example of a Resource Allocation Graph

m P={P, P, P3g
B R={Ry, Ry Ry Ry}
m Resource instances:
o W=Wy=1
o W,=2
o W,=3

B E={P;2R;, P,?R3 R/2P,,
Ry 2P, Ry 2Py, Ry 2P3}

Resource Allocation Graph With A Deadlock

H A circle
R, Ry

o P,OR,P,>RDOP,>
RSP, ENEN

@) P

R,

Resource Allocation Graph With A Deadlock

® Two circles
R, Ry

o P,OR,P,>RDOP,>
RSP, ENEN

e P,OR;>P, >RSP, & W

o

R,

Graph With A Cycle But No Deadlock

A

Operating Systems 10

@xszu;

Basic Facts

m If graph contains no circle = no deadlock

m If graph contains a circle =
o if only one instance per resource type, then deadlock
o if several instances per resource type, possibility of deadlock

B Question:

e Can you find a way to determine whether there is a deadlock, given a
resource allocation graph with several instances per resource type?

Operating Systems 1

@xszu;

Methods for Handling Deadlocks

m Ensure that the system will never enter a deadlock state
e Deadlock prevention
e Deadlock avoidance

m Allow the system to enter a deadlock state and then recover
o Deadlock detection
o Deadlock recovery

Operating Systems 12

@xszu;

Deadlock Prevention

Restrain the ways request can be made

® Mutual Exclusion — not required for sharable resources; must
hold for non-sharable resources

® Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

e Require process to request and be allocated all its resources
before it begins execution

e Or allow process to request resources only when the process
has none (has released all its resources)

e Low resource utilization; starvation possible

Deadlock Prevention (Cont.)

Operating Systems 13 YEidrE

m No Preemption

o [f a process that is holding some resources requests another resource
that cannot be immediately allocated to it, then all resources currently
being held are preempted

e Preempted resources are added to the list of resources for which the
process is waiting

o Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting

m Circular Wait — impose a total ordering of all resource types, and require
that each process requests resources in an increasing order of enumeration

Operating Systems 14 YERALE

Deadlock Avoidance

Requires that the system has some additional a priori information
available

m Requires that each process declare the maximum number of
resources of each type that it may need

® The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can neverbe a
circular-wait condition

m Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Operating Systems 15 YEidrE

Safe State

® When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state

m System is in safe state if there exists a safe sequence <P, P,, ..., P> of
ALL the processes in the systems such that for each P, the resources that
P, can still request can be satisfied by currently available resources +
resources held by all the P;, with j </

m Thatis:
If P/s resource needs are not immediately available, then P, can wait
until all P; have finished

When all P; are finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

e When P, terminates, P;,; can obtain its needed resources, and so on
m Otherwise, system is in unsafe state

Operating Systems 16 YERdrE

Safe, Unsafe, Deadlock State

m [f a system is in safe state unsafe
= no deadlocks
deadlock

m If a system is in unsafe state
= possibility of deadlock

safe

® Avoidance
= ensure that a system will
never enter an unsafe state.

Operating Systems 17 l,iilzt?

Safe & Unsafe States

Maximum Available
Needs 3
10 5 5

Po
P, 4 2 2
P, 9 2 7

Safe sequence: ?

Operating Systems 18 YERdrE

Safe & Unsafe States

Maximum
Needs
10 5 5

Po
P, 4 4 0o <=
P, 9 2 7

Safe sequence: P,

Operating Systems 19

Available

1

@x;ux;«'

Safe & Unsafe States

Maximum
Needs
10 5 5

Po
P, 4 = -
P, 9 2 7

Safe sequence: P,

Operating Systems 0

Available

5

@x;ux;«'

Safe & Unsafe States

Maximum
Needs
10 10 0 <=

Po
P, 4 = -
P, 9 2 7

Safe sequence: P; > P,

Operating Systems 2

Available

0

Bprrist

Safe & Unsafe States

Maximum
Needs
10 - -

Po
P, 4 = -
P, 9 2 7

Safe sequence: P; > P,

Operating Systems 22

Available

10

Bprrist

Safe & Unsafe States

Maximum
Needs
Py 10 - -

P, 4 - -

P, 9 9 0o &=

Safe sequence: P; > Py > P,

Operating Systems 23

Available

3

Bprrist

Safe & Unsafe States

Maximum
Needs
10 - -

Po
P, 4 = -
P, 9 = =

Safe sequence: P; > Py > P,

Operating Systems 2

Available

12

Bprrist

Safe & Unsafe States

Maximum Available
Needs 2
10 5 5

Po
P, 4 2 2
P, 9 3 6

Safe sequence: ?

@) rEiars

Operating Systems 25

Safe & Unsafe States

Maximum Available
Needs 4
10 5 5

Py
P, 4 - -
P, 9 3 6

Safe sequence: P; > ?

@) rEiars

Operating Systems 26

Avoidance Algorithms

m Avoidance algorithms ensure that the system will never deadlock.

e Whenever a process requests a resource, the request is granted only if
the allocation leaves the system in a safe state.

m Two avoidance algorithms
e Single instance of a resource type
» Use a resource-allocation graph

e Multiple instances of a resource type
» Use the banker’s algorithm

@) rEiars

Operating Systems 27

Resource-Allocation-Graph Algorithm

m Claim edge P, — R;indicates that process P; may request resource R;;
represented by a directed dashed line

m Resources must be claimed a priori in the system

m Claim edge converts to request edge when a process requests a resource

m Request edge converts to an assignment edge when the resource is
allocated to the process

m When a resource is released by a process, assignment edge reconverts to
a claim edge (the edge is removed if the process finishes)

Operating Systems 28

@) rEiars

Resource-Allocation Graph Algorithm

m Suppose that process P; requests a resource R;

m The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a circle in the resource
allocation graph

2
Circle! Therefore, P,’s request cannot be
granted, and P, needs to wait.

Can we grant P,’s request for R,?

@x;zu;

Operating Systems 29

Banker’s Algorithm

m Multiple instances
® Each process must a priori claim maximum use
® When a process requests a resource it may have to wait

® When a process gets all its resources it must return them in a finite
amount of time

Operating Systems 30

@) rEiars

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

® Available: Vector of length m. If available[j] = k, there are k
instances of resource type R; available

m Max:n x m matrix. If Max{i,j] = k, then process P, may request at
most k instances of resource type R;

m Allocation: nx m matrix. If Allocation[i] = k then P; is currently
allocated k instances of R;

m Need: nxm matrix. If Need[ij] = k, then P; may need k more
instances of R;to complete its task

Needli,j] = Max(i,j] — Allocationli,j]

Operating Systems 31

@xszu;

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false, fori=0,1, ..., n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Need; < Work
If no such i exists, go to step 4

3. Work = Work + Allocation;
Finishli] = true

go to step 2
4. If Finish [i] == true for all j, then the system is in a safe state
Operating Systems 32 @l,&?ilz&?

Resource-Request Algorithm for Process P;

Request; = request vector for process P;. If Request;[j] = k then process P;
wants k instances of resource type R;

1. If Request; < Need, go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Request, < Available, go to step 3. Otherwise P, must wait, since
resources are not available

3. Pretend to allocate requested resources to P; by modifying the state as
follows:

Available = Available — Request;
Allocation;= Allocation; + Request;
Need; = Need;— Request;

o If safe = the resources are allocated to P;

o If unsafe = P; must wait, and the old resource-allocation state is
restored

Operating Systems 33

Example of Banker’s Algorithm

m 5 processes P, through P,;
3 resource types:
A (10 instances), B (5 instances), and C (7 instances)
Snapshot at time T:

[x| Aocaton | Neea | wvaiave |

ABC ABC ABC ABC
P, 753 010 743 332
P, 322 200 122
P, 902 302 600
Py 222 211 011
P, 433 002 431

m |s the system in safe state?

@xszu;

Operating Systems 34

@xszu;

Applying Safety Algorithm

[T x| Atocaton | Neso | avatavie

ABC ABC ABC ABC
P, 753 010 743 532
@
P, 902 302 600
Py 222 211 011
P, 433 002 431

Safe sequence: P,

Operating Systems 35

@xszu;

Applying Safety Algorithm

ABC ABC ABC ABC
Py 753 010 743 743
P, 902 302 600

P, 433 002 431

Safe sequence: P, > P;

Operating Systems 36

@xszu;

Applying Safety Algorithm

[T x| Atocaton | Neso | avatavie

ABC ABC ABC ABC
753 (=
P, 902 302 600
P, 433 002 431

Safe sequence: P, > P; > P,

Operating Systems 37

@x;zzx;«'

Applying Safety Algorithm

[T x| Atocaton | Neso | vatavle

ABC ABC ABC ABC
1055

P, 433 002 431

Safe sequence: P, > P; > Py > P,

Operating Systems 38

@x;zzx;«'

Applying Safety Algorithm

[T x| Atocaton | Neso | avatavie

ABC ABC ABC ABC
1057

Safe sequence: P, > P; > Py > P, > P,

Operating Systems 39

Bprrist

Example: P, Request (1,0,2)

m Check that Request < Available (that is, (1,0,2) < (3,3,2) = true)

[x| Atocaton | Neod | vaiabe]

ABC ABC ABC ABC
P, 753 010 743 230
P, 322 302 020
P, 902 302 600
ENIZZZl T 011
P, 433 002 431

m Executing safety algorithm shows that sequence < P;, P, Py, P, P,>
satisfies safety requirement

Operating Systems 40

Bprrist

Example: P, Request (0,2,0)

m Check that Request < Available (that is, (0,2,0) < (2,3,0) = true)

[T x| Alocaton | Neod | Avaiabe]

ABC ABC ABC ABC
P, 753 030 723 210
P, 322 302 020
P, 902 302 600
EN Izl 011
P, 433 002 431

m Does there a safe sequence exist?
e No

Operating Systems M

@x;zzx;«'

Pop Quiz

m 5 processes P, through P,;
3 resource types:
A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T:

[x| Alocaton | Neeo | vatavle

ABC ABC ABC ABC
P, 753 010 743 332
P, 322 200 122
P, 902 302 600
Py 222 211 011
P, 433 002 431

m Can P4’srequest (2, 1, 0) be granted?
m Can P4’srequest (2, 1, 2) be granted?

Operating Systems 42

@x;zzx;«'

Deadlock Detection

m Allow system to enter deadlock state
m Detection algorithm

m Recovery scheme

Single Instance of Each Resource Type

® Maintain wait-for graph
e Nodes are processes
e P;— P; if P;is waiting for P;
m Periodically invoke an algorithm that searches for a cycle in the graph. If
there is a cycle, there exists a deadlock

Resource-Allocation Graph Corresponding wait-for graph

@xszu;

Operating Systems a4

Several Instances of a Resource Type

m Available: A vector of length m indicates the number of available resources
of each type.

m Allocation: An nx m matrix defines the number of resources of each type
currently allocated to each process.

m Request: An nx m matrix indicates the current request of each process. If
Request[il[j] = k, then process P; is requesting k more instances of resource
type R;.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, and initialize:
(a) Work = Available
(b) Fori=1,2, ..., n, if Allocation;+ 0, then Finish[i] = false; otherwise,
Finishli] = true
2. Find an index i such that both:
(a) Finish[i] == false
(b) Request;< Work
If no such i exists, go to step 4
3. Work = Work + Allocation;

Finishli] = true
go to step 2

4. If Finish[i] == false, for some j, 1 <i< n, then the system is in deadlock
state. Moreover, if Finishl[i] == false, then P, is deadlocked

Operating Systems 46

@xszu;

Example of Detection Algorithm

m Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

®m Snapshot at time T;:

[Alocaon | Request | Avaiabie
ABC ABC ABC

Py 010 000 000

P, 200 202

P, 303 000

Ps 211 100

P, 002 002

m Sequence <P, P,, P3, Py, P,> will result in Finish[i] = true for all i

@xszu;

Operating Systems a7

Example (Cont.)

® P, requests an additional instance of type C

[bocaton | Request | Avatave

ABC ABC ABC
Py 010 000 000
P, 200 202
P, 303 001
P, 211 100
P, 002 002

m State of system?

e Can reclaim resources held by process P, but insufficient
resources to fulfill other processes’ requests

e Deadlock exists, consisting of processes P;, P,, Ps;, and P,

Detection-Algorithm Usage

® When, and how often, to invoke depends on:
o How often a deadlock is likely to occur?
e How many processes will need to be rolled back?
» one for each disjoint cycle

Operating Systems 49

Recovery from Deadlock

Operating Systems 50

® Process Termination
e abort one or more processes to break the circular wait

m Resource Preemption

e preempt some resources from one or more of the deadlocked
processes

Process Termination

m Abort all deadlocked processes

m Abort one process at a time until the deadlock cycle is eliminated

® In which order should we choose to abort?

Priority of the process
e How long process has computed, and how much longer to completion

Resources the process has used

e Resources process needs to compete

e How many processes will need to be terminated
e |s process interactive or batch?

Operating Systems 51

Resource Preemption

Operating Systems 52

Homework

m Reading
e Chapter7

m Exercise
o See course website

Operating Systems 53 X

Rdrg

m Selecting a victim — minimize cost
m Rollback — return to some safe state, restart process from that state

m Starvation — same process may always be picked as victim, include
number of rollback in cost factor

