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Abstract—Auction is believed to be an effective way to solve or relieve the problem of radio spectrum shortage, by dynamically
redistributing idle wireless channels of primary users to secondary users. However, to design a practical channel auction
mechanism, we have to consider five challenges, including strategy-proofness, channel spatial reusability, channel heterogeneity,
bid diversity, and social welfare maximization. Unfortunately, none of the existing works fully considered the five design
challenges. In this paper, we present the first in-depth study on the problem of dynamic channel redistribution jointly considering
the five design challenges, and present SMASHER, which is a family of Strategy-proof coMbinatorial Auction mechaniSms for
HEterogeneous channel Redistribution. SMASHER contains two strategy-proof auction mechanisms, namely SMASHER-AP
and SMASHER-GR. SMASHER-AP is a strategy-proof, approximately efficient combinatorial auction mechanism for indivisible
channel redistribution. We further consider the case, in which channels can be shared by the users in a paradigm of time-division
multiplexing and propose SMASHER-GR, which is a strategy-proof channel allocation and scheduling mechanism. We have
extensively evaluated our designs. The evaluation results show that our designs achieve much better performance than existing
works.
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1 INTRODUCTION

THE last two decades have witnessed a rapid
development of wireless communication technol-

ogy. Unfortunately, naturally limited radio spectrum
is becoming a more and more serious bottleneck of the
ongoing growth of wireless applications and services.
Most of the countries have specific departments to
regulate spectrum usage, e.g., Federal Communica-
tions Commission (FCC) [1] in the US and Radio
Administration Bureau (RAB) in China [2]. They stati-
cally allocate spectrum to wireless application service
providers on a long term basis for large geographical
regions. Such static management leads to low spec-
trum utilization in the spatial and temporal dimen-
sions. Large chunks of radio spectrum are left idle
most of the time at a lot of places, while new wire-
less applications are starving for the radio spectrum.
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Therefore, an open and market-based framework is
highly needed to dynamically redistribute the radio
spectrum, and thus improve the utilization of the
radio spectrum [3].

Auctions are the most well-known market-based
mechanisms to redistribute resources [4], [5]. Since
1994, FCC has conducted a series of auctions for the
licenses of radio spectrum. While FCC auctions target
only at large wireless service providers, our focus is
on small wireless applications, such as community
wireless networks or home wireless networks.

There exist many challenges in designing a practical
channel auction mechanism [11], [12]. We list five
major challenges:
• Strategy-Proofness: In strategy-proof auction

mechanisms (please refer to Section 2.1 for
the definition), simply submitting truthful
channel demands (e.g., valuation of the channels)
maximizes each participant’s utility. Since the
participants are normally rational and selfish,
they always tend to strategically manipulate the
auction, if doing so can increase their utilities.
Such selfish behavior inevitably hurts the other
participants’ utilities. Therefore, it discourages
truthfully behaving participants from joining the
auction, if strategy-proofness is not guaranteed.

• Spatial Reusability: Spatial reusability differenti-
ates the wireless channels from conventional
goods. Two wireless users can use the same
wireless channel simultaneously, if they are well-
separated (i.e., out of the interference range of
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TABLE 1
Comparison with Existing Channel Auction Mechanisms.

Existing Works Strategy-
Proofness

Spatial
Reusability

Channel
Heterogeneity

Bid Diversity Social Welfare

VERITAS [6] ! ! % ! No Guarantee
TRUST [7] ! ! % % No Guarantee
SMALL [8] ! ! % ! No Guarantee
TAHES [9] ! ! ! % No Guarantee
CRWDP [10] ! % ! % Approximately Efficient
SMASHER-AP ! ! ! ! Approximately Efficient
SMASHER-GR ! ! ! ! No Guarantee

each other). Exploiting spatial reusability can
highly improve spectrum utilization.

• Channel Heterogeneity: The nature of wireless
channels makes the goods in the channel auc-
tion heterogeneous. The channel heterogeneity
comes from both spatial heterogeneity and frequency
heterogeneity. On one hand, the availability and
quality of a channel vary at different locations.
On the other hand, channels with different central
frequency may have different propagation and
penetration characteristics.

• Bid Diversity: Wireless devices may be equipped
with multiple radios, each of which can work
on a different channel at the same time. Con-
sequently, a wireless user may request multiple
channels, according to her quality of service re-
quirement. Buyers have higher opportunities to
obtain channels by submitting multiple channel
bundles, which makes the channel redistribution
more flexible. Therefore, it is necessary to allow
users to express diverse demands for channels.

• Social Welfare: The basic and common objective of
auctions is to maximize social welfare, which is
the sum of the auction winners’ valuations of the
allocated goods (please refer to Section 2.1 for the
definition).

A number of related works (e.g., [6]–[10]) exist in
the literature. Unfortunately, none of these works fully
consider the five design challenges (as shown in Ta-
ble 1). Some of strategy-proof channel auction mech-
anisms (e.g., VERITAS [6], TRUST [7], SMALL [8])
consider channel spatial reusability, but only work
when the trading channels are homogenous. Two
recent works TAHES [9] and CRWDP [10] consider
the heterogeneity of channels, but TAHES restricts
each buyer to bid for a single channel while CRWDP
ignores the spatial reusability of channels.

In this paper, we conduct an in-depth study
on the problem of dynamic channel redistribution
jointly considering the five design challenges, and
present SMASHER, which is a family of Strategy-
proof coMbinatorial Auction mechaniSms for
HEterogeneous channel Redistribution. SMASHER
contains two distinct auction mechanisms, namely
SMASHER-AP and SMASHER-GR. Specifically,

SMASHER-AP is a novel combinatorial auction
mechanism for indivisible heterogeneous channel
redistribution, and achieves both strategy-proofness
and approximately efficient social welfare.
SMASHER-GR jointly considers channel allocation
and scheduling when channels can be shared in
a paradigm of time-division multiplexing. We use
Table 1 to show the comparison of our designs with
closely related works.

We make the following contributions in this paper:
• First, we present a general model of combinato-

rial auction for heterogeneous channel redistri-
bution. The auction model is powerful enough
to express channel spatial reusability and hetero-
geneity, as well as bid diversity.

• Second, we introduce the concept of virtual chan-
nel to capture the conflicts of channel usage
among different auction participants. By using
virtual channels, we transform the problem of
heterogeneous channel allocation to a classic
combinatorial auction.

• Third, we propose SMASHER-AP, which is a
combinatorial auction mechanism for hetero-
geneous channel redistribution, achieving both
strategy-proofness and approximately efficient
social welfare.

• Fourth, we further consider the case, in which
channels can be shared in a paradigm of time-
division multiplexing, and propose SMASHER-
GR, which is a strategy-proof combinatorial
auction mechanism for channel allocation and
scheduling.

• Finally, we evaluate the performance of our
designs. Our simulation results show that our
designs achieve much better performance than
closely related works, in terms of social welfare,
buyer satisfaction ratio, and channel utilization.

The rest of this paper is organized as follows. In
Section 2, we present the model of combinatorial
auction for heterogeneous channel redistribution. In
Section 3, we introduce the concept of virtual channel
and convert the problem of heterogeneous channel
allocation to a classic combinatorial auction. In Sec-
tion 4, we present the design of SMASHER-AP. In
section 5, we propose SMASHER-GR. In Section 6,
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we report evaluation results. In Section 7, we review
related works. In Section 8, we conclude the paper
and discuss future works.

2 PRELIMINARIES AND PROBLEM FORMU-
LATION

In this section, we present the auction model for
the problem of heterogeneous channel allocation, and
review some important solution concepts.

2.1 Auction Model
We consider a static scenario, in which there is a
primary spectrum user, called “seller”, who wants to
lease out her temporarily unused wireless channels,
and some secondary users (e.g., WiFi access points),
called “buyers”, who want to lease channels to pro-
vide services to their customers at certain quality
of service (QoS). We consider that the channels for
leasing are heterogeneous, and thus the buyers have
their own preference over the channels due to spatial
variance (e.g., background noise, temperature, and
landform). Since wireless devices can be equipped
with multiple radios, the buyers may request more
than one channel according to their requirements of
QoS. Considering the diversity of QoS demand and
the heterogeneity of channels, we allow the buyers
to submit multiple channel requests, among which
one of the requests can be granted.1 We assume that
buyer have uniform valuation over any of her channel
requests, because the buyer’s requirement of QoS
can be satisfied if one of her requested bundles is
allocated. Different from the allocation of traditional
goods, wireless channels can be spatially reused,
meaning that well-separated buyers can work on the
same channel simultaneously, if they do not have
interference between each other.

We model the process of heterogeneous channel re-
distribution as a sealed-bid combinatorial auction, in
which buyers simultaneously submit their demands
for channels to a trustworthy auctioneer, such that no
buyer can know other participants’ information. The
auctioneer makes the decision on channel allocation
and the charge to each winner. We denote the set
of orthogonal and heterogeneous channels for leasing
by C , {c1, c2, . . . , cm}, and the set of buyers by
N , {1, 2, . . . , n}. We list useful notations in our model
of combinatorial channel auction as follows:

Channel Request Ri: Each buyer i ∈ N submits a
vector of requested channel bundles

Ri ,
(
S1
i , S

2
i , . . . , S

φi

i

)
to the auctioneer. Any channel bundle Sli ⊆ C, 1 ≤ l ≤
φi can satisfy her QoS. We assume that the request

1. We discuss this model in Section 4 and extend to the scenario,
in which each buyer can be allocated multiple bundles to reach her
QoS in Section 5.

is strict, meaning that the buyer is only interested
in winning a whole bundle Sli in her request vector.
Although the buyer i can submit a request vector
Ri with more than one channel bundle, only one
channel bundle can be granted by the auctioneer.
We call buyer i, who submits a request vector of φi
channel bundles, and is interested in winning one of
the bundles, as φi-minded buyer. If φi = 1, then the
buyer i is single-minded. Note that our auction model
is a generalization of existing models with single-
minded buyers (e.g., [9], [10]). The maximum number
of submitted channel bundles among all buyers is
denoted by Φ , maxi∈N φi. We denote the channel
request vector ~R of all the buyers as

~R , (R1, R2, . . . , Rn) .

Valuation vi: Each buyer i ∈ N has a uniform
valuation vi over any requested channel bundles in
Ri. Here, vi is the private information of the buyer i.
This is also known as type in mechanism design. The
buyer valuation has two properties: Free Disposal and
Normalization. Free disposal means that for any two
subsets of channels S and T , if S ⊆ T , then vi(S) ≤
vi(T ); while normalization means that vi(∅) = 0. We
denote the valuation vector ~V of all the buyers as

~V , (v1, v2, . . . , vn).

Bid bi: Each buyer i ∈ N submits a bid bi to the
auctioneer, meaning that if she wins any channel
bundle Sli , she would like to pay no more than bi for
it. Here, the bid bi may not necessarily be equal to her
valuation vi. Let vector ~B represent the bids of all the
buyers

~B , (b1, b2, . . . , bn).

Clearing price pi: The auctioneer charges each win-
ning buyer i ∈ N a clearing price pi. The loser in the
auction is free of any charge. We use vector

~P , (p1, p2, . . . , pn)

to represent the clearing prices of all the buyers.
Utility ui: The utility of a buyer i ∈ N is defined as

the difference between her valuation on the bundle of
winning channels and her clearing price pi

ui , vi − pi. (1)

We consider that the buyers are rational and selfish,
thus their goals are to maximize their own utilities. In
contrast to the buyers, the auctioneer’s objective is to
maximize social welfare. Here social welfare is defined
as follows.

Definition 1 (Social Welfare): The social welfare in a
channel auction is the sum of winning buyers’ valu-
ations on their allocated bundles of channels.

SW ,
∑
i∈W

vi, (2)

where W is the set of winners.
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In this paper, we assume that buyers do not collude
with each other and do not cheat about their channel
bundles,2 while leaving these problems to our future
works.

2.2 Solution Concepts

We briefly review the solution concepts used in this
paper.

A strong solution concept from game theory is
dominant strategy.

Definition 2 (Dominant Strategy [20] [21]): Strategy
si is player i’s dominant strategy, if for any strategy
s′i 6= si and any other player’s strategy profile s−i:

ui(si, s−i) ≥ ui(s′i, s−i).

Intuitively, a dominant strategy of a player is a
strategy that maximizes her utility, regardless of what
strategy profile the other players choose.

The concept of dominant strategy is the basis of
incentive-compatibility, which means that there is no
incentive for any player to lie about her private in-
formation, and thus revealing truthful information is
the dominant strategy for every player. An accom-
panying concept is individual-rationality, which means
that every player participating in the game expects to
gain no less utility than staying outside. We now can
introduce the definition of Strategy-Proof Mechanism.

Definition 3 (Strategy-Proof Mechanism [22] [23]): A
mechanism is strategy-proof when it satisfies both
incentive-compatibility and individual-rationality.

The objective of this work is to design strategy-
proof combinatorial auction mechanisms for hetero-
geneous channel redistribution.

3 COMBINATORIAL CHANNEL AUCTION

Different from existing works on strategy-proof chan-
nel allocation, we introduce a novel concept of virtual
channel to represent the conflicts of channel usage
among the buyers. By introducing virtual channels,
we transform the problem of heterogeneous channel
allocation to a classic combinatorial auction, which
is computationally intractable. Therefore, we propose
strategy-proof and approximately efficient combina-
torial auction mechanisms for heterogeneous channel
redistribution in the following sections.

2. When both valuations and channel bundles are private infor-
mation, buyers will have more power to manipulate the auction
market, i.e., they can further improve their utilities by cheating
on channel bundles, and our auction model falls into the general
combinatorial auctions with multi-parameter domain, which is still
an open problem in algorithmic mechanism design [13]. Papers [14],
[15] have characterized the truthfulness for mechanisms in mul-
tiple parameter domain, and some negative results are demon-
strated [16]–[19].

3.1 Virtual Channel

We introduce virtual channel to capture the interference
among the buyers on different channels. Specifically,
a virtual channel vcki,j denotes that the buyer i and
the buyer j may cause interference between each
other on channel ck, and thus they cannot work on
channel ck simultaneously. Since virtual channel vcki,j
represents the exclusive usage of channel ck between
the buyer i and j, its quantity is set to 1. When virtual
channel vcki,j is added to the requested bundle(s) that
contains channel ck from the buyer i and j, at most
one of the requests containing channel ck from the two
buyers can be granted. Consequently, the exclusive
usage of channel ck between the buyer i and j is
guaranteed. The heterogeneous channel redistribution
problem can be converted to the problem of exclusive
virtual channels allocation. We present the definition
of virtual channel as follows.

Definition 4 (Virtual Channel): There is a virtual
channel vcki,j , if the buyer i and buyer j are within
the interference range of each other on channel ck.

In most of existing works on channel auction, a sin-
gle conflict graph is used to represent the interference
among buyers [6], [7]. However, in case of heteroge-
neous channels, each channel may have a distinctive
conflict graph. Let Gk , (Ok, Ek) denote the conflict
graph on channel ck, where Ok ⊆ N is the set of buyers
who can access channel ck, and each edge (i, j) ∈ Ek
represents the interference between the buyer i and
j on channel ck. Let G , {Gk|ck ∈ C} denote the
set of conflict graphs. We also denote the maximum
degree of all the conflict graphs as δ. These conflict
graphs can be built by the auctioneer through some
measurement methods, e.g., measurement calibrated
method [24]. We note that the conflict graphs used
in this paper belong to binary interference model,
such as the protocol model. The problem of channel
redistribution under physical interference model is
totally different, and please refer to papers [25], [26]
for more discussion.

Since the conflict graph is commonly assumed to
be available in wireless networks, we construct the
virtual channel from the conflict graph. The process of
converting the edges in the conflict graphs to virtual
channels with unit quantity is shown by Algorithm 1.
We create a virtual channel vcki,j (Line 4), if there
is an edge between the buyer i and j in conflict
graph Gk, and append vcki,j to the requested bundle(s)
containing channel ck from the buyer i and j, while
remaining the corresponding bid(s) unchanged (Lines
6-11). After adding virtual channels into the channel
bundles, we remove the original channels from all
updated channel bundles (Line 14). Let VC be the set
of virtual channels (Line 5). Let S′li be the lth updated
channel bundle of buyer i. Since the maximum degree
of conflict graphs is δ and there are at most m trading
channels, we have |S′li | ≤ δ ×m, ∀i ∈ N, 1 ≤ l ≤ φi.
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Algorithm 1: Virtual Channel Generation
Input: A set of conflict graph G, a vector of

channel requests ~R.
Output: A set of virtual channels VC, a vector of

updated requests ~R′.
1 VC← ∅; ~R′ ← ~R;
2 foreach Gk = (Ok, Ek) ∈ G do
3 foreach (i, j) ∈ Ek do
4 Create virtual channel vcki,j ;
5 VC← VC

⋃{
vcki,j

}
;

6 foreach S′li ∈ R′i
s.t. ck ∈ S′li ∧

(
∃S′tj ∈ R′j , ck ∈ S′tj

)
do

7 S′li ← S′li
⋃{

vcki,j
}

;
8 end
9 foreach S′lj ∈ R′j

s.t. ck ∈ S′lj ∧ (∃S′ti ∈ R′i, ck ∈ S′ti ) do
10 S′lj ← S′lj

⋃{
vcki,j

}
;

11 end
12 end
13 end
14 Remove the original channels C from updated

channel bundles ~R′;
15 return VC and ~R′;

We use a simple example in Figure 1 to explain the
concept of virtual channel. In Figure 1, there are 2
channels and 4 buyers. The two conflict graphs show
the interference among buyers on two heterogeneous
channels c1 and c2. The upper right table shows the
buyers’ channel demands. Both single-minded and
multi-minded buyers exist in this example. Here, the
buyer 2 is a single-minded buyer, and only bids a
bundle of channels ({c1, c2}) for 15; the buyer 3 is a
multi-minded buyer, and submits three requests, i.e.,
({c1}, {c2}, {c1, c2}), and a uniform valuation 13. After
running Algorithm 1, the updated request vectors
with virtual channels are shown in the lower right
table. Let’s see buyer 2’s updated request as an exam-
ple. Since both buyer 1 and buyer 2 bid for channel
c1 and they interfere with each other on this channel,
we add a virtual channel vc11,2 with unit quantity to
buyer 2’s requested bundle.

3.2 Problem Formulation
Given the virtual channel introduced in the last sec-
tion, we are ready to transform the problem of het-
erogenous channel allocation to a classic combinato-
rial auction. The outcome of the auction is the set of
winning buyers and their assigned channel bundles.

The goods in the combinatorial channel auction
are the virtual channels. The quantity of each virtual
channel vcki,j ∈ VC is 1. Given the vector of requests
with virtual channels ~R′ and the bid vector ~B, the
auctioneer determines the winners and which channel
bundles to grant. Let x

(
i, S′li

)
= 1 denote that the

1

32

32

1Conflict Graph on c

2Conflict Graph on c

Virtual Channels

Buyers (Channel Requests, Bid)

1 ({ },7)

2 ({ , },15)

3 (({ },{ }, { , }),13)

4 ({ },10)

Buyers (Updated Channel Requests, Bid)

1 ({ , },7)

2 ({ , , },15)

3 (({ },{ },{ , }),13)

4 ({ },10)

4

Fig. 1. An example showing the generation of virtual
channels.

channel set S′li is granted to the buyer i; otherwise,
x
(
i, S′li

)
= 0. The process of winner determination

can be modeled as a binary program. The objective is
to maximize the social welfare. We use bi, instead of
vi, because the strategy-proof mechanisms shown in
later sections will guarantee that bidding truthfully is
the dominant strategy of each buyer i ∈ N.
Objective:

Maximize
∑
i∈N

φi∑
l=1

x(i, S′li )× bi

Subject to:∑
i∈N

∑
S′l
i ∈R′

i,S
′l
i 3vck

x
(
i, S′li

)
≤ 1 ∀vck ∈ VC (3)

φi∑
l=1

x
(
i, S′li

)
≤ 1 ∀i ∈ N (4)

x
(
i, S′li

)
∈ {0, 1} ∀i ∈ N, 1 ≤ l ≤ φi

(5)

Here constraint (3) indicates the quantity limitation
of virtual channel. As the original channels have been
removed from the updated channel bundles, we do
not have quantity constraints on the original channels.
Constraint (4) indicates that each buyer can win at
most one bundle of channels out of her submitted
requests. Constraint (5) indicates the binary value of
the auctioneer’s decision of allocation.

If the optimal social welfare can be achieved by
solving the above binary program, then the celebrated
VCG mechanism (named after Vickrey [27], Clark [28],
and Groves [29]) can be applied to calculate clearing
prices that can ensure the strategy-proofness of the
auction mechanism. Unfortunately, the above winner
determination problem can be proven to NP-hard by
reducing from the exact cover problem [30] in polyno-
mial time. Considering the computational intractabil-
ity of the winner determination problem, we present
an alternative solution with greedy channel allocation
to achieve approximately efficient social welfare in
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next section. Furthermore, we integrate the greedy al-
location algorithm with a novel pricing mechanism to
provide a strategy-proof and approximately efficient
combinatorial auction mechanism for heterogeneous
channel redistribution.

4 EXCLUSIVE CHANNEL REDISTRIBUTION

We consider the case of indivisible channels, which
can only be allocated exclusively to non-interfering
buyers, in this section. As shown in Section 3.2,
finding the optimal auction decision is computation-
ally intractable. Furthermore, existing works [17], [18]
show that it is impossible to design a strategy-proof
approximation combinatorial auction mechanism in
the general case, even if the goods are not spatially
reusable. We assume that buyers have uniform valu-
ation on their multiple channel requests, and present
SMASHER-AP, which is a strategy-proof and approx-
imately efficient combinatorial auction mechanism for
heterogeneous channel redistribution.

4.1 Design of SMASHER-AP

SMASHER-AP consists of the following three major
components: virtual channel generation, winner de-
termination, and clearing price calculation. We briefly
describe the design rationale of SMASHER-AP. We
first generate virtual channels to capture the interfer-
ence of channel usage among buyers, and transform
the problem of channel redistribution into the exclu-
sive virtual channel allocation. After that, we propose
a greedy channel allocation algorithm to determine
winning buyers, which leads to a good approxima-
tion ratio. Finally, a clearing price calculation scheme
based on critical virtual bid is designed to guarantee
the economic properties of SMASHER-AP.

4.1.1 Virtual Channel Generation

The process of virtual channel generation is the same
as that of Algorithm 1 shown in Section 3.1, except
that we add one more virtual channel vci with unit
quantity to each requested bundle of buyer i ∈ N.
Virtual channel vci is used to ensure that at most
one of the requested bundles from the buyer i can
be granted.

S′li = S′li
⋃
{vci}, i ∈ N, 1 ≤ l ≤ φi,

where S′li is updated bundle with virtual channels.
The set of virtual channels is also updated

VC = VC
⋃
{vci|i ∈ N} .

4.1.2 Winner Determination

Before presenting the approximation algorithm for
winner determination, we introduce virtual bid. The

Algorithm 2: Approximation Algorithm for Win-
ner Determination
Input: Vector of updated channel requests ~R′,

vector of bids ~B.
Output: A pair of sets of winning buyers and

allocated bundles of channels (W,S).
1 (W,S)← (∅,∅); V ← ∅;
2 foreach i ∈ N do

3 b̃i ← bi/max1≤l≤φi

(√∣∣S′li ∣∣);
4 end
5 Sort b̃i in non-increasing order:
L1 : b̃1 ≥ b̃2 ≥ . . . ≥ b̃n;

6 for i = 1 to n do
7 Sort S′li in non-decreasing order of bundle

size: L2 :
∣∣S′1i ∣∣ ≤ ∣∣S′2i ∣∣ ≤ . . . ≤ ∣∣∣S′φi

i

∣∣∣;
8 for l = 1 to φi do
9 if S′li ∩ V = ∅ then

10 V ← V
⋃
S′li ;

11 (W,S)←
(
W
⋃
{i},S

⋃{
S′li
})

;
12 break;
13 end
14 end
15 end
16 return (W,S);

uniform virtual bid b̃i over any of requested bundles
from the buyer i is defined as

b̃i ,
bi

max
1≤l≤φi

(√∣∣S′li ∣∣) . (6)

SMASHER-AP sorts all the buyers according to
their virtual bids in non-increasing order:

L1 : b̃1 ≥ b̃2 ≥ . . . ≥ b̃n.

In case of a tie, SMASHER-AP breaks the tie following
a bid-independent rule, such as lexicographic order of
buyers’ IDs or channel number. Following the order in
L1, SMASHER-AP greedily grants the smallest chan-
nel bundle, in which no virtual channel has already
been allocated, to each buyer.3

Algorithm 2 shows the pseudo-code of above win-
ner determination process. In practice, the number
of buyers n is much larger than Φ, thus the time
complexity of Algorithm 2 is O(n log n).

4.1.3 Clearing Price Calculation
The clearing price is calculated based on critical virtual
bid.

Definition 5 (Critical Virtual Bid): The critical virtual
bid cr(i) ∈ L1 of buyer i ∈ N is the minimum virtual

3. Actually, we allocate the original channel bundle Sl
i to the

winning buyer i, when she is granted the updated channel bundle
S′l
i in Algorithm 2.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMC.2014.2343624

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

bid that the buyer i must exceed to be allocated one of
her channel bundles, i.e., if the virtual bid of the buyer
i is higher than cr(i), she wins the auction; otherwise,
she loses.

We note that according to the definition of critical
virtual bid, no matter which channel bundles of buyer
i is granted in the auction, the critical virtual bid cr(i)
is always the same.

The critical virtual bid of buyer i ∈ N can be
calculated by the following procedure. Given other
buyers’ requests and bids

(
~R′−i, ~B−i

)
, we greedily se-

lect virtual bids by rerunning Algorithm 2 until none
of buyer i’s requests can be satisfied. The threshold
virtual bid cr(i) we select finally is regarded as the
critical virtual bid of the buyer i. We now show the
method of calculating the clearing price of the buyer
i by distinguishing two cases:

1) If the buyer i loses in the auction or cr(i) does
not exist (denoted by cr(i) = 0), then her clearing
price is 0.

2) If the buyer i is granted channel bundle S′li and
there exists a critical virtual bid cr(i), the clearing
price pi of buyer i is set to

pi , cr(i)× max
1≤l≤φi

(√∣∣S′li ∣∣) . (7)

4.2 Analysis
We prove the strategy-proofness and analyze the ap-
proximation ratio of SMASHER-AP in this section.

4.2.1 Strategy-Proofness
Theorem 1: SMASHER-AP is a strategy-proof com-

binatorial auction mechanism for heterogeneous indi-
visible channel redistribution.

Proof: We first show that buyer i ∈ N cannot
obtain higher utility by bidding untruthfully.

We discuss the problem in the following two cases:
• The buyer i wins bundle Ŝ′li and gets utility ui ≥

0 when bidding truthfully, i.e., bi = vi. Let Ŝ′ti 6=
Ŝ′li be the bundle won by the buyer i, when she
cheats the bid, i.e., b′i 6= vi. The utility of the buyer
i remains the same:

u′i = vi − p′i

= vi − cr(i)× max
1≤l≤φi

(√∣∣S′li ∣∣)
= ui.

If the buyer i loses the auction when she cheats
the bid, her utility is 0, which is not better than
that gained when bidding truthfully.

• The buyer i loses in the auction when bidding
truthfully. Then, her utility ui = 0. If she still loses
when bidding untruthfully, her utility cannot be
changed. We consider the case, in which she
cheats the bid b′i 6= vi and wins a bundle Ŝ′ti 6= ∅.
We denote virtual bid b̃i and b̃′i for channel bundle

Ŝ′ti when the buyer i bids truthfully and untruth-
fully, respectively. Then, we have b̃′i ≥ cr(i) ≥ b̃i,
because otherwise, she still cannot win any bun-
dle. Her utility now becomes non-positive:

u′i = vi − p′i

= vi − cr(i)× max
1≤l≤φi

(√∣∣S′li ∣∣)
≤ vi − b̃i × max

1≤l≤φi

(√∣∣S′li ∣∣)
= vi −

vi

max
1≤l≤φi

(√∣∣S′li ∣∣) × max
1≤l≤φi

(√∣∣S′li ∣∣)
= vi − vi
= 0.

From the above analysis of two cases, we can see
that the buyer i cannot increase her utility by bidding
any other value than vi, and thus bidding truthfully
is a dominant strategy for each buyer. Therefore,
SMASHER-AP satisfies incentive compatibility.

We now prove that SMASHER-AP also satisfies
individual rationality. On one hand, buyer i’s utility
is zero if she loses in the auction. On the other hand,
winning buyer i gets utility:

ui = vi − pi

= vi − cr(i)× max
1≤l≤φi

(√∣∣Sli∣∣)

=

 vi

max
1≤l≤φi

(√∣∣Sli∣∣) − cr(i)
× max

1≤l≤φi

(√∣∣Sli∣∣)

=
(
b̃i − cr(i)

)
× max

1≤l≤φi

(√∣∣Sli∣∣) ,
where b̃i is the virtual bid of buyer i, Since the buyer
i is a winner, we have b̃i ≥ cr(i), and thus ui ≥ 0.
Buyer utility is always non-negative, which is not
worse than staying outside the auction (i.e., the utility
is 0). Therefore, SMASHER-AP satisfies individual
rationality.

Since SMASHER-AP satisfies both incentive com-
patibility and individual rationality, according to Def-
inition 3, SMASHER-AP is a strategy-proof mecha-
nism. Our claim holds. Since our mechanism belongs
to single-parameter mechanism, we can also obtain
the property of strategy-proofness by using Myerson’s
well known characterization [31].

4.2.2 Approximation Ratio
We now present the approximation ratio of
SMASHER-AP.

Theorem 2: The approximation ratio of SMASHER-
AP is O(δm), where δ is the maximum degree of
conflict graphs and m is the number of channels.

Proof: Let (WOPT ,SOPT ) be the optimal chan-
nel allocation, and (WAPP ,SAPP ) be the allocation
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achieved by SMASHER-AP. The social welfare of the
optimal solution and SMASHER-AP is

∑
i∈WOPT

vi
and

∑
i∈WAPP

vi, respectively.
For each buyer i ∈WAPP , we define

Wi
OPT

,

{
j ∈WOPT

∣∣∣∣∣ bj

max
1≤l≤φj

(√∣∣S′lj ∣∣) ≤
bi

max
1≤l≤φi

(√∣∣S′li ∣∣) ,(
SjOPT ∩ SiAPP ∩ VC 6= ∅

)}
to represent the buyers in WOPT , whose bundles in
SOPT cannot be granted in SMASHER-AP because of
the existence of i.

Since every j ∈Wi
OPT appears after i in the ordered

list L1, we have

vj ≤
vi × max

1≤l≤φj

(√∣∣S′lj ∣∣)
max

1≤l≤φi

(√∣∣S′li ∣∣) .

Summing over all j ∈Wi
OPT , we can get∑

j∈Wi
OPT

vj ≤
vi

max
1≤l≤φi

(√∣∣S′li ∣∣)
∑

j∈Wi
OPT

max
1≤l≤φj

(√∣∣S′lj ∣∣) .
(8)

Using the Cauchy-Schwarz inequality, we can
bound ∑

j∈Wi
OPT

max
1≤l≤φj

(√∣∣S′lj ∣∣)

≤
√∣∣Wi

OPT

∣∣√ ∑
j∈Wi

OPT

max
1≤l≤φj

(∣∣S′lj ∣∣). (9)

By integrating inequations (8) and (9), we get

∑
j∈Wi

OPT

vj ≤
vi

√∣∣Wi
OPT

∣∣√∑
j∈Wi

OPT
max

1≤l≤φj

(∣∣S′lj ∣∣)
max

1≤l≤φi

(√∣∣S′li ∣∣) .

(10)
Since (WOPT ,SOPT ) is the optimal channel allo-

cation, the channel bundles allocated to any pair of
buyers i, j ∈ WOPT cannot overlap on any virtual
channel: SiOPT ∩ SjOPT ∩ VC = ∅. Every bundle allo-
cated to j ∈Wi

OPT in the optimal allocation intersects
with SiAPP at least one virtual channel. Consequently,
there are at most max

1≤l≤φi

(∣∣S′li ∣∣) buyers in Wi
OPT

|Wi
OPT | ≤ max

1≤l≤φi

(∣∣S′li ∣∣)
⇒

√
|Wi

OPT | ≤ max
1≤l≤φi

(√∣∣S′li ∣∣) (11)

Since max
1≤l≤φj

(∣∣S′lj ∣∣) ≤ δm+ 1, we also have∑
j∈Wi

OPT

max
1≤l≤φj

(∣∣S′lj ∣∣) ≤ δm(δm+ 1). (12)

By integrating inequations (10), (11) and (12), we
get ∑

j∈Wi
OPT

vj ≤
√
δm(δm+ 1)vi. (13)

Since WOPT =
⋃
i∈WAPP

Wi
OPT , we finally get∑

i∈WOPT

vi ≤
∑

i∈WAPP

∑
j∈Wi

OPT

vj

≤
√
δm(δm+ 1)

∑
i∈WAPP

vi. (14)

Therefore, the approximation ratio of SMASHER-
AP is O(δm).

5 CHANNEL REDISTRIBUTION WITH TIME
SCHEDULING
In this section, we consider the scenario, in which the
clocks of buyers are synchronized [32] and the radios
on buyers’ devices can switch among different chan-
nels within very short time [33]. Therefore, a channel
can be shared by wireless devices in a paradigm of
time-division multiplexing, which is similar to the
time-frequency model in [10]. We extend SMASHER-
AP to the channel redistribution with time flexibility,
and design SMASHER-GR, which is a strategy-proof
combinatorial auction mechanism for heterogeneous
channel redistribution, jointly considering spatial and
temporal channel reusability.

SMASHER-GR divides the time into a series of slots
with a fixed length of duration τ . A time slot of a
channel can be scheduled to multiple buyers using
time-division multiplexing, by which each buyer uses
a certain fraction of the slot. In other words, the
channel is considered as a kind of divisible goods.
During a time slot, buyer i ∈ N has a requested
data throughput Qi, which can be derived from her
subscribers’ QoS. We use vector ~Q to denote the data
throughput of all the buyers

~Q , (Q1, Q2, . . . , Qn) .

Due to the heterogeneity of channels, different chan-
nel bundles may provide different data rates to dif-
ferent buyers. The channel requests from the buyer i
can now be expressed as

Ri ,
((
S1
i , d

1
i

)
,
(
S2
i , d

2
i

)
, . . . , (Sφi

i , d
φi

i )
)
,

where dli denotes the data rate achieved by the buyer
i if she operates on the channel bundle Sli . In this
model, a multi-minded buyer can work on multi-
ple channel bundles sequentially to reach her data
throughput requirement Qi in each time slot. Here, we
assume that buyers do not cheat on data throughput
and data rate, and we will relax these assumptions in
our future works.4

4. Similarly, if we relax this assumption, the auction model will
fall into the general combinatorial auction with multiple parameter
domain, and the deterministic strategy-proof combinatorial auction
mechanisms are still unknown for multiple parameters scenarios.
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Let binary variable xi = 1 denote that buyer i can
obtain throughput Qi by working on required channel
bundles in time duration τ ; otherwise, xi = 0. We
use hli and tli to denote the starting time and lasting
time of channel bundle Sli from buyer i, respectively.
Buyer i can get throughput dli × tli if she operates on
bundle Sli for tli time. We jointly consider allocation
and scheduling algorithm to determine which channel
bundles to grant, and when and how long winning
buyers can access allocated channel bundles. Let R′i
be the updated channel requests with virtual channels
for buyer i. We denote the updated request vector ~R′
of all the buyers as

~R′ = (R′1, R
′
2, . . . , R

′
n) .

We formalize the process of channel allocation and
scheduling as the following mixed-integer nonlinear
program (MINLP).
Objective:

Maximize
∑
i∈N

(xi × bi)

Subject to:

(hli − hl
′

i′)× (hli + xi × xi′ × tli − hl
′

i′) > 0,

∀S′li , S′l
′

i′ ∈ ~R′, S′li ∩ S′l
′

i′ ∩ VC 6= ∅ (15)

(hl
′

i′ − hli)× (hl
′

i′ + xi × xi′ × tl
′

i′ − hli) > 0,

∀S′li , S′l
′

i′ ∈ ~R′, S′li ∩ S′l
′

i′ ∩ VC 6= ∅ (16)

φi∑
l=1

(
dli × tli

)
= xi ×Qi ∀i ∈ N (17)

hli ≥ 0 ∀i ∈ N, 1 ≤ l ≤ φi (18)

hli + xi × tli ≤ τ ∀i ∈ N, 1 ≤ l ≤ φi (19)
xi ∈ {0, 1} ∀i ∈ N (20)

Same as before, the objective is to maximize the
social welfare. Constraints (15) and (16) indicate that
any two winning channel bundles containing the
same virtual channel should be carefully scheduled to
avoid interference in the time dimension. Specifically,
we use intervals [hli, h

l
i+t

l
i] and [hl

′

i′ , h
l′

i′ +tl
′

i′ ] to denote
the working time duration of two allocated chan-
nel bundles Sli and Sl

′

i′ , respectively. Constraints (15)
and (16) guarantee that these two intervals are non-
overlapping. Constraint (17) indicates that the sum of
throughput obtained from multiple channel bundles
should be equal to the requested throughput of each
winning buyer. Constraints (18) and (19) guarantee
that the starting time should be larger than 0, and
the ending time should be less than τ . Constraint (20)
shows the binary value of xi.

The above allocation and scheduling problem is
NP-hard [34], and thus is computational intractable.
So we follow the design rationale of SMASHER-AP,
and design SMASHER-GR, including greedy chan-
nel allocation, scheduling and pricing calculation, to
adapt to channel redistribution with time flexibility.

Algorithm 3: Greedy Algorithm for Winner Deter-
mination and Scheduling.

Input: Vector of updated channel requests ~R′,
vector of data throughput ~Q, vector of
bids ~B, < virtual channel, time > space F .

Output: Sets of winning buyers W, allocated
bundle of channels S, scheduling matrix
(H,T).

1 W← ∅; S← ∅; (H,T)← (0n,Φ, 0n,Φ);
2 foreach i ∈ N do

3 b̃i ← bi/max1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli);
4 end
5 Sort b̃i in non-increasing order:
L3 : b̃1 ≥ b̃2 ≥ . . . ≥ b̃n;

6 for i = 1 to n do
7 if Satisfiable(Qi, R′i,F) is true then
8 W←W ∪ {i};
9 l← 1; Q′i ← Qi;

10 while Q′i > 0 do
11 (Schedulable,H(i, l),T(i, l))←

Scheduling(S′li ,F);
12 if Schedulable is true then
13 S← S ∪

{
S′li
}

;
14 Q′i ←

(
Q′i − dli × T(i, l)

)
;

15 end
16 l← l + 1;
17 end
18 end
19 end
20 return W, S, (H,T);

5.1 Design of SMASHER-GR

The design rationale of SMASHER-GR is briefly de-
scribed as follows. SMASHER-GR first generates vir-
tual channels according to the conflict graphs to
represent the spatial interference of heterogeneous
channels. Then it greedily selects the available and
non-overlapping time intervals for winning buyers,
considering the channel interference in the time di-
mension. Finally, SMASHER-GR applies a pricing
mechanism to guarantee economic properties.

SMASHER-GR consists of three parts: virtual chan-
nel generation, winner determination and clearing
price calculation.

5.1.1 Virtual Channel Generation

SMASHER-GR generates the virtual channels by run-
ning Algorithm 1, described in Section 3.1. Different
from SMASHER-AP, SMASHER-GR does not generate
virtual channel vci for each buyer i ∈ N, because
buyer i may be allocated multiple channel bundles
to achieve her throughput during a time slot.
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5.1.2 Winner Determination
The winner determination algorithm consists of two
parts, i.e., channel allocation and channel bundle
scheduling. Before presenting the algorithm, we re-
define the virtual bid, considering the different data
rates of channel bundles. The virtual bid of the buyer
i is

b̃i ,
bi

max
1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli) . (21)

Intuitively, a channel bundle with larger size (|S′li |)
and longer occupation time (Qi/dli), has lower priority
to be granted, because it may lead to more spatial and
temporal conflicts with other requests.

SMASHER-GR sorts all the buyers by their virtual
bids in non-increasing order:

L3 : b̃1 ≥ b̃2 ≥ . . . ≥ b̃n,

and breaks the tie by using a bid-independent rule.
We use F to denote the < virtual channel, time >

dimensional space, which records the available work-
ing time intervals of virtual channels. Following the
order in list L3, SMASHER-GR first checks whether
the buyer i can fulfill her claimed throughput Qi by
being allocated the remaining time of virtual channels
in F . If the buyer i is a winner, SMASHER-GR then
greedily selects the available and non-overlapping
time intervals for channel bundle S′li , and “packs”
these intervals into space F . SMASHER-GR iteratively
allocates time intervals to each bundle S′li of buyer i
until achieving her requested data throughput Qi.

Algorithm 3 shows the pseudo-code of greedy
algorithm for winner determination, including
channel allocation and scheduling. The function
Satisfiable(Qi, R

′
i,F) checks whether the buyer i

can satisfy her data throughput Qi by being allocated
the non-overlapping time intervals in current space
F . Function Scheduling(S′li ,F) returns triple tuple
(Schedulable,H(i, l),T(i, l)), in which the binary
variable Schedulable indicates whether there exist
non-overlapping time intervals in F for bundle S′li .
If the variable Schedulable is true, Scheduling also
returns the starting time H(i, l) and lasting time T(i, l)
for bundle S′li .5 Function Scheduling finally “packs”
the time interval [H(i, l),H(i, l) + T(i, l)] into space F .
The process of scheduling can be done linearly, then
the complexity of Algorithm 3 is O(n log n).

5.1.3 Clearing Price Calculation
The pricing mechanism is also based on critical virtual
bid.

Definition 6 (Critical Virtual Bid): The critical virtual
bid cr(i) ∈ L3 of winning buyer i ∈W is the minimum
virtual bid that buyer i must exceed in order to fulfil

5. Similar to Algorithm 2, the updated channel bundle S′l
i is

schedulable means that the corresponding original channel bundle
Sl
i is also schedulable in Algorithm 3.

her requested data throughput, i.e., if the virtual bid
of the buyer i is higher than cr(i), her requested data
throughput would be satisfied; otherwise, she would
lose the auction.

The critical virtual bid cr(i) of buyer i can be
obtained by the following steps. Given the other buy-
ers’ channel demands

(
~R′−i, ~Q−i, ~B−i

)
, we greedily

select the virtual bid from L3 by running Algorithm 3
until buyer i’s requested data throughput cannot be
fulfilled. The last virtual bid we selected is considered
as the critical virtual bid of buyer i. Now we can cal-
culate the clearing price of buyer i by distinguishing
the following two cases:
• If the buyer i loses in the auction or there exist

no critical virtual bids for her, then her clearing
price is 0.

• If the buyer i is a winner and her critical bid is
cr(i), we can calculate her clearing price pi:

pi , cr(i)× max
1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli) . (22)

5.2 Analysis

By combining the channel allocation, scheduling and
pricing mechanisms together, SMASHER-GR achieves
the following property.

Theorem 3: SMASHER-GR is a joint allocation
and scheduling strategy-proof combinatorial auction
mechanism for heterogeneous channel redistribution
with time flexibility.

Proof: We first prove that buyer i ∈ N cannot
increase her utility by bidding untruthfully, i.e., re-
porting true valuation is a dominant strategy for the
buyer i.

We distinguish two cases:
• Buyer i achieves her throughput Qi and gets

her utility ui ≥ 0 when bidding truthfully, i.e.,
bi = vi. She gains channel bundle set Si ⊆ S
and scheduling matrix (Hi,Ti) ⊆ (H,T). Buyer i
wins another channel bundle set S′i 6= Si,S′i ⊆ S
and scheduling matrix (H′i,T′i) ⊆ (H,T) when
she reports another bid b′i 6= vi. Her utility is not
changed:

u′i = vi − p′i

= vi − cr(i)× max
1≤l≤φi

(√∣∣Sli∣∣×Qi/dli)
= ui.

If buyer i loses in the auction when she cheats
the bid, her utility is 0, which is no more than
when buyer i bids truthfully.

• We consider the other case, in which the buyer
i cannot fulfill her throughput Qi when bidding
truthfully. Then her utility ui = 0. The only way
to improve her utility is to cheat the bid b′i 6= vi
and become a winner. We denote the buyer i’s
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winning channel bundle set S′i ⊆ S and the cor-
responding scheduling matrix (H′i,T′i) ⊆ (H,T)
when she cheats on bid. Let b̃i and b̃′i denote the
virtual bid of buyer i when she bids truthfully
and untruthfully, respectively. Then, we have b̃′i ≥
cr(i) ≥ b̃i, because otherwise, she still cannot
fulfil her throughput. Her utility now becomes
non-positive:

u′i = vi − p′i

= vi − cr(i)× max
1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli)
≤ vi − b̃i × max

1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli)

= vi −
vi × max

1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli)
max

1≤l≤φi

(√∣∣S′li ∣∣×Qi/dli)
= vi − vi
= 0.

Therefore, bidding the true valuation is a domi-
nant strategy for each buyer. We can conclude that
SMASHER-GR satisfies incentive compatibility.

We now prove that SMASHER-GR also satisfies
individual rationality. On one hand, the buyers losing
in the auction get zero utility. On the other hand, the
winning buyer i’s utility:

ui = vi − pi

= vi − cr(i)× max
1≤l≤φi

(√∣∣Sli∣∣×Qi/dli)

=

 vi

max
1≤l≤φi

(√∣∣Sli∣∣×Qi/dli) − cr(i)
×

× max
1≤l≤φi

(√∣∣Sli∣∣×Qi/dli)
=

(
b̃i − cr(i)

)
× max

1≤l≤φi

(√∣∣Sli∣∣×Qi/dli)
where b̃i is the virtual bid of buyer i. From the defini-
tion of critical virtual bid, we have b̃i ≥ cr(i) for win-
ning buyer i. Then, winning buyer i gets non-negative
utility. Buyer utility is always non-negative, which is
not worse than staying outside the auction (i.e., utility
is equal to zero). Therefore, we can conclude that
SMASHER-GR satisfies individual rationality.

Since SMASHER-GR satisfies both incentive com-
patibility and individual rationality, SMASHER-GR
is a strategy-proof mechanism, and then our claim
holds. Similar to SMASHER-AP, the property of
strategy-proofness can also be analyzed by applying
Myerson’s well known characterization [31].

We note that the performance of SMASHER-GR
can be arbitrarily bad in some special cases. But the
evaluation results show that SMASHER-GR performs
quite well in most of cases.

6 EVALUATION RESULTS

In this section, we show our evaluation results.

6.1 Methodology

We implement SMASHER-AP and compare its per-
formance with TAHES [9] and CRWDP [10]. We also
show the performance of SMASHER-GR. Buyers are
randomly distributed in a terrain area of 2000 meters
× 2000 meters. The number of buyers varies from 20
to 400 with increment of 20. The number of leasing
channels can be one of the three values: 6, 12 and 24.
The heterogeneous channels have different interfer-
ence ranges, spanning from 250 meters to 450 meters.
We allow buyers to be equipped with different num-
ber of radios in our auctions, but limit the maximum
size of requested channel bundle to 3. We assume that
the buyers’ valuations are randomly distributed over
(0, 1]. We consider the case of single-minded buyers
(i.e., Φ = 1), and the case of multi-minded buyers who
can submit up to 3 channel bundles (i.e., Φ = 3). In
SMASHER-GR, we normalize the length of time slot
to 1. We assume the throughput of buyers and data
rate of channel bundle are uniformly distributed in
the interval (0, 1]. All the results of performance are
averaged over 200 runs.6

Metrics: We evaluate three metrics:
• Social Welfare: Social welfare is the sum of win-

ning buyers’ valuations on their allocated bun-
dles of channels.

• Satisfactory Ratio: Satisfactory ratio is the percent-
age of buyers who obtain one of their demanded
channel bundles in SMASHER-AP or achieve
their throughput in SMASHER-GR.

• Channel Utilization: Channel utilization is the av-
erage number of radios allocated to each channel.

6.2 Performance of SMASHER-AP

We compare the performance of SMASHER-AP with
two strategy-proof heterogeneous channel auction
mechanisms, TAHES and CRWDP. We evaluate the
outcome of SMASHER-AP when the buyers are
single-minded (Φ = 1) and multi-minded (Φ = 3).
We also show the optimal results with tolerance 10−4,
denoted by IP-OPT, computed by solving the binary
integer program in Section 3.2, as references of upper
bound.

Figure 2 shows the evaluation results when there
are 12 channels and different number of buyers. We
can see that SMASHER-AP always outperforms the
other two auction mechanisms, and its performance
approaches the optimum, especially when Φ = 1.
When the number of nodes is smaller than 60, TAHES

6. All parameters can be different from the ones used here.
However, the evaluation results of using different parameters are
identical. Therefore, we only show the results for these parameters
in this paper.
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Fig. 2. Performance of SMASHER-AP, TAHES, CRWDP and IP-OPT, when there are 12 channels.
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Fig. 3. Performance of SMASHER-AP, TAHES, CRWDP and IP-OPT, when there are 200 buyers.

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350  400

So
ci

al
 W

el
fa

re

Number of Buyers

SMASHER-GR Φ=3 m=24
SMASHER-GR Φ=1 m=24
SMASHER-GR Φ=3 m=12
SMASHER-GR Φ=1 m=12

(a) Social Welfare

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

Sa
tis

fa
ct

io
n 

R
at

io

Number of Buyers

SMASHER-GR Φ=3 m=24
SMASHER-GR Φ=1 m=24
SMASHER-GR Φ=3 m=12
SMASHER-GR Φ=1 m=12

(b) Satisfaction Ratio

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300  350  400

C
ha

ne
l U

til
iz

at
io

n

Number of Buyers

SMASHER-GR Φ=3 m=24
SMASHER-GR Φ=1 m=24
SMASHER-GR Φ=3 m=12
SMASHER-GR Φ=1 m=12

(c) Channel Utilization

Fig. 4. Performance of SMASHER-GR in different network scenarios.

cannot form sufficient buyer groups with a large
number of bids, and thus does not perform well
in this case. When the number of buyer is larger
than 60, CRWDP’s performance is not good because
CRWDP does not consider channel spatial reusability
(i.e., the channel utilization of CRWDP is equal to 1
in all cases). Figure 2 also shows that when the buyer
number increases, the social welfare and channel uti-
lization increase, but the satisfaction ratio decreases.
On one hand, the larger number of buyers leads to
more intense competition on limited channels, thus
decreasing the satisfaction ratio. On the other hand,
SMASHER-AP can allocate channels more efficiently
among more buyers, hence the social welfare and
channel utilization increase.

Figure 3 shows the evaluation results when there
are 200 buyers and the number of channels is 6,
12, 24. Again, SMASHER-AP always achieves better
performance than TAHES and CRWDP, whenever
Φ = 1 or Φ = 3. Figure 3 also shows that when the

number of channels increases, the social welfare and
satisfaction ratio increase and the channel utilization
decreases. The reason is that larger supply of leasing
channels leads to more trades in the auction, thus
the social welfare and satisfaction ratio increase when
there exists a fixed number of buyers. The channel
utilization decreases because buyers’ radios can be
allocated to more channels when the number of chan-
nels increases.

From Figure 2 and Figure 3, we can see that
SMASHER-AP sacrifices limited system performance
to achieve economic robustness. Although IP-OPT
achieves near optimal social welfare, we cannot apply
it to channel redistribution problem, because IP-OPT
has not any guarantee on economic properties. We ob-
serve that SMASHER-AP with multi-minded buyers
(i.e., Φ = 3) always performs better than SMASHER-
AP with single-minded buyers (i.e., Φ = 1), on all the
three metrics. This is because multi-minded buyers
have higher chance to obtain channel bundles than
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single-minded buyers. This leads to more trades in the
auction. Therefore, allowing buyers to submit multi-
ple spectrum requests indeed improves the auction
performance.

6.3 Performance of SMASHER-GR

Solving the mixed integer nonlinear program, shown
in Section 5, is computational intractable even in
small scale network scenarios. CRWDP only allocates
time-frequency blocks, without considering the chan-
nel scheduling problem while TAHES doest not take
time multiplexing of channels into account, regarding
channels as indivisible goods. Therefore, we only
show the performance results of SMASHER-GR in
Figure 4.

Similarly, when the buyer number increases, the
social welfare and channel utilization increase and
the satisfaction ratio decreases. We can also observe
that when the number of leasing channels increases
from 12 to 24, the social welfare and satisfaction ratio
increase while the channel utilization decreases. The
reasons of the relation between system performance
and the number of buyers or the number of channels
is similar to those analyzed in SMASHER-AP. Figure 4
also shows that SMASHER-GR with multi-minded
buyers (i.e., Φ = 3) always outperforms SMASHER-
GR with single-minded buyers (i.e., Φ = 1), on all the
three metrics. This result verifies that diverse spec-
trum requests lead to higher auction performance. We
can draw a conclusion that bid diversity is an effec-
tive strategy to improve the performance of channel
redistribution system.

Compared with SMASHER-AP, SMASHER-GR per-
forms better on all the three metrics. This is because
channels can be shared among buyers in a paradigm
of time-division multiplexing in SMASHER-GR.
SMASHER-GR is an effective auction mechanism to
channel redistribution, considering both spatial and
temporal channel reusability.

7 RELATED WORKS

In this section, we briefly review related works on
channel auction and auction mechanism design.

7.1 Channel Allocation With Selfish Participants

A number of works model the problem of channel al-
location by game theory. Felegyhazi et al. [35] studied
Nash Equilibria in a static multi-radio multi-channel
allocation game. Later, Wu et al. [36] designed an
incentive scheme for the multi-radio multi-channel
allocation game, making the system converge to a
much stronger equilibrium state. Gao et al. studied
the multi-radio channel allocation problem in multi-
hop wireless networks, and proposed the min-max
coalition-proof Nash Equilibrium channel allocation

scheme in the cooperative game [37]. Yang et al. con-
sidered the channel allocation in multi-radio multi-
channel wireless networks with multiple collision do-
mains [38]. Chen et al. proposed distributed spectrum
sharing schemes to coverage Nash equilibrium in
spectrum access game [39], [40]. In cognitive radio
networks, Kasbekar et al. analyzed spectrum pricing
game and computed Nash Equilibrium in different
scenarios [41]–[43]. Byun et al., computed a market
equilibrium, which is defined in context of extended
Fisher model, for spectrum sharing in cognitive radio
networks [44]. The paper [45] proposed a Quality
of Experience driven channel allocation scheme for
secondary users in cognitive radio networks. Resource
allocation among selfish participants has been studied
in different network scenarios, such as wireless mesh
networks [46], OFDMA femtocell networks [47], and
LTE networks [48].

The most closely related works are VERITAS [6],
TRUST [7], and SMALL [8], all of which are auction-
based strategy-proof channel allocation mechanisms.
VERITAS and SMALL are single-sided auctions both
supporting multiple channel requests. In contrast,
TRUST elegantly extends double auction to consider
both channel sellers and buyers’ incentives. Recently,
TAHES [9] was proposed to solve the problem of
heterogeneous channel allocation. Besides, there are
some other related works on channel auction, such as
online channel auctions [49]–[51], collusion-resistant
channel auction [52], revenue generation for spectrum
auction [53], and approximate algorithms for different
models of interference and different formats of valu-
ations [25], [26].

7.2 Mechanism Design
A large number of works on combinatorial auctions
have been proposed during the last decades. Dobzin-
ski [17], Buchfuhrer et al. [54], and Papadimitriou
et al. [16] proved that getting optimal social welfare
and ensuring strategy-proofness cannot be achieved
simultaneously in general combinatorial auctions.
Lehmann et al. [18] even asserted that there is no
payment scheme to make greedy allocation algorithm
strategy-proof in general combinatorial auctions with
multi-mined buyers. Considering the intractability of
combinatorial auction, a number of strategy-proof
auction mechanisms with well bounded approxima-
tion ratios were proposed [55]–[58]. In [10], the author
modeled the time-frequency allocation problem as a
combinatorial auction with single-minded buyers, and
proposed a greedy allocation algorithm to achieve ap-
proximately efficient social welfare in a single collision
domain. However, none of the above combinatorial
auction considers the spectrum spatial reusability.

Auction mechanisms have been proposed to ad-
dress different kinds of resource allocation prob-
lems, such as resource management in cloud com-
puting [59], [60], sensing tasks distribution in mobile
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crowdsensing [61], [62], and cooperation dynamics on
collaborative social networks [63].

Scheduling theory has received a growing inter-
est since its origins, and there are various types of
scheduling problems [64]. Recently, some works have
studied the scheduling problems in the mechanism
design context. Nisan and Ronen [65] were the first
to consider makespan-minimization on unrelated ma-
chines. Later, Archer and Tardos [66] considered the
related-machine problem and gave a 3-approximation
truthful-in-expectation mechanism. However, the ob-
jective of these works is to minimize the makespan,
while our objective is to maximize social welfare
and the scheduling model we considered is more
complicated.

8 CONCLUSION AND FUTURE WORKS

In this paper, we have made an in-depth study on
channel redistribution problem by jointly considering
the five design challenges. We have presented two
closely related strategy-proof combinatorial auction
mechanisms for dynamic heterogeneous channel re-
distribution, namely SMASHER-AP and SMASHER-
GR. SMASHER-AP is a combinatorial auction mecha-
nism for indivisible channel redistribution, achieving
strategy-proofness and approximately efficient social
welfare. SMASHER-GR is a strategy-proof combinato-
rial auction for joint channel allocation and scheduling
for the scenarios, in which channels can be shared in
a time-multiplexing way. We have also evaluated the
performance of our designs. The simulation results
have shown that our designs achieve good perfor-
mance, in terms of social welfare, buyer satisfaction
ratio, and channel utilization.

As for future works, we are interested in designing
combinatorial channel auction mechanisms that can
prevent collusion among multiple buyers. Design-
ing a strategy-proof combinatorial channel auction
mechanism to prevent buyers from cheating on chan-
nel bundle is also an interesting problem. Finally,
there are additional economic properties that could be
considered, such as fairness and false-name bidding
resistent, in combinatorial auction mechanism design.
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[35] M. Félegyházi, M. Čagalj, S. S. Bidokhti, and J.-P. Hubaux,
“Non-cooperative multi-radio channel allocation in wireless
networks,” in Proceedings of 26th Annual IEEE Conference on
Computer Communications (INFOCOM), Anchorage, Alaska,
USA, May 2007.

[36] F. Wu, S. Zhong, and C. Qiao, “Globally optimal channel
assignment for non-cooperative wireless networks,” in Pro-
ceedings of 27th Annual IEEE Conference on Computer Commu-
nications (INFOCOM), Phoenix, AZ, USA, Apr. 2008.

[37] L. Gao and X. Wang, “A game approach for multi-channel
allocation in multi-hop wireless networks,” in Proceedings of
The 9th ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Hong Kong, China, Sep. 2008.

[38] D. Yang, X. Fang, and G. Xue, “Channel allocation in non-
cooperative multi-radio multi-channel wireless networks,” in
Proceedings of 31st Annual IEEE International Conference on Com-
puter Communications (INFOCOM), Orlando, FL, USA, Mar.
2012.

[39] X. Chen and J. Huang, “Game theoretic analysis of dis-
tributed spectrum sharing with database,” in Proceedings of The
33rd International Conference on Distributed Computing Systems
(ICDCS), Philadelphia, USA, Jul. 2012.

[40] ——, “Spatial spectrum access game: nash equilibria and dis-
tributed learning,” in Proceedings of the 13th ACM Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), Hilton
Head, USA, June 2012.

[41] G. Kasbekar and S. Sarkar, “Spectrum pricing games with ran-
dom valuations of secondary users,” IEEE Journal on Selected
Areas in Communications, vol. 30, no. 11, pp. 2262–2273, 2012.

[42] ——, “Spectrum pricing games with spatial reuse in cognitive
radio networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 30, no. 1, pp. 153 –164, 2012.

[43] G. S. Kasbekar and S. Sarkar, “Spectrum pricing games with
bandwidth uncertainty and spatial reuse in cognitive radio
networks,” in Proceedings of The 11th ACM Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), Chicago, IL,
USA, Sep. 2010.

[44] S.-S. Byun, I. Balashingham, A. Vasilakos, and H.-N. Lee,
“Computation of an equilibrium in spectrum markets for
cognitive radio networks,” IEEE Transactions on Computers,
vol. 63, no. 2, pp. 304–316, Feb 2014.

[45] T. Jiang, H. Wang, and A. Vasilakos, “Qoe-driven channel
allocation schemes for multimedia transmission of priority-
based secondary users over cognitive radio networks,” Selected
Areas in Communications, IEEE Journal on, vol. 30, no. 7, pp.
1215–1224, August 2012.

[46] P. Duarte, Z. Fadlullah, A. Vasilakos, and N. Kato, “On the
partially overlapped channel assignment on wireless mesh
network backbone: A game theoretic approach,” Selected Areas
in Communications, IEEE Journal on, vol. 30, no. 1, pp. 119–127,
January 2012.

[47] D. Lopez-Perez, X. Chu, A. Vasilakos, and H. Claussen,
“Power minimization based resource allocation for interfer-
ence mitigation in ofdma femtocell networks,” IEEE Journal

on Selected Areas in Communications, vol. 32, no. 2, pp. 333–344,
February 2014.

[48] ——, “On distributed and coordinated resource allocation
for interference mitigation in self-organizing lte networks,”
IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1145–
1158, Aug 2013.

[49] L. Deek, X. Zhou, K. Almeroth, and H. Zheng, “To preempt or
not: Tackling bid and time-based cheating in online spectrum
auctions,” in Proceedings of 30th Annual IEEE Conference on
Computer Communications (INFOCOM), Shanghai, China, Apr.
2011.

[50] Y. Chen, P. Lin, and Q. Zhang, “LOTUS: Location-aware online
truthful double auction for dynamic spectrum access,” in Pro-
ceedings of the 8th IEEE International Symposium on New Frontiers
in Dynamic Spectrum Access Networks (DySPAN), McLean, VA,
USA, Apr 2014.

[51] P. Xu, S. Wang, and X.-Y. Li, “SALSA: Strategyproof online
spectrum admissions for wireless networks,” IEEE Transactions
on Computers, vol. 59, no. 12, pp. 1691 –1702, 2010.

[52] X. Zhou and H. Zheng, “Breaking bidder collusion in large-
scale spectrum auctions,” in Proceedings of The 11th ACM Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Chicago, IL, USA, Sep. 2010.

[53] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue generation
for truthful spectrum auction in dynamic spectrum access,”
in Proceedings of The 10th ACM Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), New Orleans, LA, USA,
Sep. 2009.

[54] D. Buchfuhrer, S. Dughmi, H. Fu, R. Kleinberg, E. Mossel,
C. Papadimitriou, M. Schapira, Y. Singer, and C. Umans,
“Inapproximability for VCG-based combinatorial auctions,”
in Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), Austin, Texas, USA, Jan. 2010.

[55] Y. Bartal, R. Gonen, and N. Nisan, “Incentive compatible
multi unit combinatorial auctions,” in Proceedings of the 9th
Conference on Theoretical Aspects of Rationality and Knowledge
(TARK), Bloomington, Indiana, USA, June 2003.

[56] A. Mu’alem and N. Nisan, “Truthful approximation mecha-
nisms for restricted combinatorial auctions,” Games and Eco-
nomic Behavior, vol. 64, no. 2, pp. 612 – 631, 2008.
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