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Abstract—The advent of participatory sensing markets and
spectrum markets based on the wireless networks have led to
a new kind of auction dealing with spatially reusable items,
which can be shared by multiple parties that are geographically
far apart enough from each other. Simply applying traditional
auctions to spatially reusable items is vulnerable to bid ma-
nipulation, and may lead to low allocation efficiency. In this
paper, we study the problem of auctioning spatially reusable
items. We first propose STAMP, which is a STrategy-proof
Approximation auction Mechanism for sPatially reusable items
in wireless networks. STAMP can be implemented with any
existing maximum independent set algorithm, and can guarantee
the allocation efficiency as high as the algorithm based on. We
next enhance STAMP to achieve semi-group-strategy-proofness.
Finally, we implement STAMP and extensively evaluate its
performance. Evaluation results show that STAMP achieves
much better performance than existing mechanisms, in terms
of allocation efficiency.

I. INTRODUCTION

Auction has been regarded as an efficient way to reallocate
resources for more than two thousand years. Recently, with
the rapid development of the Internet and wireless technology,
many practical applications have given rise to a new trend
of research, which focuses on auction mechanism design for
spatially reusable items. Participatory sensing market (e.g.,
Sensorly and Ear-Phone) [18], [15] and spectrum auction
market (e.g., FCC spectrum auctions) [12], [16] are good
examples. In the participatory sensing market, the information
sensed by multiple participants who are far away enough
from each other is valid to the service aggregator; while
in the spectrum auction market, multiple users who are not
within the interference range of each other can use the
same frequency band simultaneously. Unfortunately, simply
applying traditional auctions to spatially reusable items is
vulnerable to bid manipulation, and may lead to low allocation
efficiency [22]. Therefore, it is highly needed to design novel
auction mechanisms that can deal with spatially reusable items.

However, there are two major challenges when designing
auction mechanisms for spatially reusable items. One chal-
lenge, which is inherited from traditional auction design, is
strategy-proofness (please see Section Problem Formulation
for the definition), which intuitively means that a buyer cannot
get larger utility by submitting a bid other than her true
valuation. A strategy-proof auction mechanism is attractive,

because it can prevent the buyers from manipulating their bids,
and such protects truthful buyers benefit. The other challenge
is maximization of allocation efficiency (please see Section
Problem Formulation for the definition). Multiple buyers who
are far away enough from each other can share a spatially
reusable item without splitting the value of it. A critical
goal of the service aggregator who posts information sensing
tasks in the participatory sensing market is to maximize the
proportion of task completed in order to guarantee high quality
of serve to its customers; and a goal of the auctioneer in the
spectrum market is to maximize channel utilization due to
the scarcity of spectrum resource. However, the optimization
problem normally becomes computationally intractable when
considering spatially reusable items.

In this paper, we model the problem of spatially reusable
item allocation/assignment as a sealed-bid auction, and pro-
pose STAMP, which is a STrategy-proof Approximation auc-
tion Mechanism for sPatially reusable items in wireless net-
works. STAMP may achieve an allocation efficiency as high
as the best ever known maximum independent set algorithm.
Then, we enhance STAMP to resist collusion among buyers,
and achieve semi-group-strategy-proofness (please see Section
Semi-Group-Strategy-Proof Enhancement for the definition).
The detailed contributions of this paper are as follows.

• We design a sealed-bid auction mechanism for spatially
reusable items, namely STAMP, and theoretically prove
that STAMP is a strategy-proof auction mechanism. S-
TAMP can be implemented with any known maximum
independent set algorithm, and therefore can achieve an
allocation efficiency as high as the best ever known such
algorithm.

• We further consider the problem of buyers’ collusion.
Since full group-strategy-proofness is shown to be im-
possible to achieve in online marketing scenarios unless
the mechanism is posted price [8], we enhance STAMP
to achieve semi-group-strategy-proofness. The enhanced
STAMP maintains as good allocation efficiency as the
previous version.

• We implement STAMP and compare its performance with
related auction mechanisms. Our evaluation results show
that STAMP achieves much higher allocation efficiency



than existing auction mechanisms.

II. RELATED WORKS

To our best knowledge, there are only a few research studies
on the strategy-proof auction mechanism design for participa-
tory sensing markets. [5] designed an auction mechanism to
motivate user participation. [21] designed a platform-centric
model and a user-centric model for participatory sensing. Both
of them did not consider the spatial reusability of the tasks.
There are also a few mechanism design works for spectrum
markets. [22] proposed VERITAS to ensure truthfulness in
spectrum auction. However, the mechanism may suffer from
low allocation efficiency due to the greedy allocation algorith-
m. Later, [20] proposed SMALL to achieve strategy-proofness
by sacrificing a bounded number of buyers. Although S-
MALL shows better allocation efficiency than VERITAS, it
still cannot exploit the power of the best existing maximum
independent set algorithm. In contrast, our mechanism STAMP
not only guarantees strategy-proofness, but also can achieve
an allocation efficiency as high as the best ever known such
algorithm.

There also exists a number of works on designing collusion-
resistant mechanisms. [17] studied the bribe-proof auction
mechanism and proposed a bribe-proof auction mechanism
under general case. They also proved that if the set of
outcomes is finite, then a bribe-proof allocation rule should
be constant. [8] gave a characterization of the impossibility
result on designing full group-strategy-proof mechanism which
is not posted price and presented a mechanism which retains
the coalition of buyers from cheating with a high probability.
They also did not consider the spatial reusability aspect. [10]
investigated the buyers collusion problem in online markets
and designed incentive-compatible payment mechanisms that
are also resistant to collusion. [14] studied the problem of
scheduling unrelated machines and presented a mechanism
with verifications. However, buyers in markets of spatially
reusable items are related and verification is unrealistic in
auctions based on the Internet.

III. PROBLEM FORMULATION

We consider a spatially reusable items market (e.g., par-
ticipatory sensing market and secondary spectrum market),
and model it as a sealed-bid auction. There is a “seller” (e.g.,
service aggregator and spectrum owner), who has a spatially
reusable item (e.g., information sensing task or idle channel)
for sale. The item can be allocated to more than one buyer,
if they are out of the conflict distance (e.g., information
validation range and interference range). There is also a set of
“buyers” (e.g., mobile phone users and local wireless service
applications), who want to bid for the item and get profit (e.g.,
compensation from the service aggregator and revenue from
serving her own customers). The buyers submit their sealed
bids simultaneously at the beginning of the auction, such that
the buyers cannot know each other’s bid. We first consider a
collusion free environment, and then extend our solution to
resist a certain kind collusion.

In the auction, the seller has a spatially reusable item
with conflict distance d. Denote the set of buyers by N =
{1, 2, . . . , n}. Each buyer i ∈ N has a private valuation vi for
the item. This is commonly known as type in the literatures.
We denote the profile of buyer valuations by:

~v = (v1, v2, . . . , vn).

Each buyer i chooses her bid bi based on her type. Then, we
denote the profile of bids by:

~b = (b1, b2, . . . , bn).

For convenience, we let ~v−i denote the valuation profile of
buyers other than buyer i. Similarly, we can define ~b−i. We
also use ~v−M (~b−M) to represent the valuation (bid) profile
of buyers other than the set M⊆ N of buyers.

We use a graph G = (V,E) to represent the conflict among
buyers. Here, V is the set of vertices, and E is the set of
edges. Each buyer is represented by a vertex in the conflict
graph G, and there is an edge between a pair of buyers i and
j, if their geographic distance is no larger than d. Any pair of
buyers who are connected in G cannot both be the item. Here,
we denote the set of neighbors of i in G by Ni. We can use a
vector to represent the outcome of the item allocation, which
is a function of ~b and G:

~x(~b,G) =
(
x1, x2, . . . , xn

)
,

s.t., xi =

{
1, the item is allocated to i;
0, otherwise.

The auctioneer (or the seller, if the seller is trustworthy)
not only determines the item allocation, but also calculates
the payment profile:

~p(~b) = (p1, p2, . . . , pn).

We note that in the participatory sensing markets, the mobile
phone users consume their own resource to sense information
and receive compensations from the service aggregator, so the
valuations (i.e., the cost induced in the process of sensing), the
bids, and the payments are all negative; while in the spectrum
auction markets, the buyers can get profit through providing
service via the channel bought and need to pay the spectrum
seller, so the valuations, the bids and the payments are positive.

We can now define the utility of buyer i ∈ N as the
difference between her valuation and payment:

ui(~b) = xivi − pi(~b).

We consider that the buyers are rational and each buyer’s
goal is to maximize her own utility.

We now recall the definition of Dominant Strategy [13], [7],
Strategy-Proofness [11] and Allocation Efficiency, which will
be used in the following parts of this paper.

Definition 1 (Dominant Strategy). Strategy ai is a player i’s
dominant strategy, if for any a′i 6= ai and any strategy profile
of the other players a−i,

ui(ai, a−i) ≥ ui(a′i, a−i).



The concept of incentive-compatibility is based on dominant
strategy. It means that revealing truthful information is the
dominant strategy for every player. A company concept is
individual-rationality, which intuitively means that for every
player who truthfully participates the auction is expected to
gain non-negative utility. We now can introduce the definition
of Strategy-Proof Mechanism.

Definition 2 (Strategy-Proof Mechanism). A mechanism is
strategy-proof when it satisfies both incentive-compatibility
and individual-rationality.

Definition 3 (Allocation Efficiency). The allocation efficiency
of an auction mechanism is the total number of items the
buyers win.

The design goal of our auction mechanism is to achieve
strategy-proofness and allocation efficiency maximization. Al-
though the problem of allocation efficiency maximization can
be formulated as the following binary program:

Objective:

Maximize
n∑
k=1

xk

Subject to:

xi + xj ≤ 1, ∀(i, j) ∈ E;

xi ∈ {0, 1}, ∀i ∈ N ,

it is known that the problem is computationally in-
tractable [19]. Therefore, we should seek for an approximation
approach.

IV. DESIGN OF STAMP
In this section, we present the design of STAMP, and prove

its strategy-proofness and approximation ratio of allocation
efficiency. STAMP consists of an item allocation algorithm
and a payment scheme. The item allocation algorithm com-
prises initial item allocation and item reallocation algorithms,
STAMP can achieve an allocation efficiency as good as the
best known maximum independent set algorithm by allowing
to use any such algorithm. By performing the item reallocation
algorithm, the mechanism allocates items to buyers with higher
valuations. In the payment scheme, by charging the buyers the
minimum value by bidding which she can still win the item,
STAMP guarantees strategy-proofness.

A. Item Allocation
STAMP starts with the initial item allocation algorithm.

During the initial item allocation, STAMP allocates the item
using the best known maximum independent set approximation
algorithm for general bounded degree graphs [6], [3], so that
the buyers who are connected in G are not allocated the item
concurrently, i.e.:

xi + xj ≤ 1, ∀(i, j) ∈ E. (1)

STAMP then performs item reallocation algorithm. It visits
all the buyers iteratively, from the smallest index to the highest
index (i.e., from 1 to n).

Assume that STAMP is attempting to perform the item
reallocation for i( if i is allocated an item). STAMP finds
a set of buyers wi such that:

∀l ∈ wi :

1. l ∈ Ni. (2)
2. xl = 0. (3)
3. xk = 0,∀k ∈ Nl. (4)
4. l /∈ wj ,∀j ∈ {1, 2, . . . , i− 1}. (5)
5. l ≥ i. (6)

Here, constraint (2) guarantees that the buyers who are con-
nected are not allocated the item concurrently. Constraint (3)
and (4) jointly guarantee that the buyers selected in wi are all
able to be allocated the item. Constraint (5) and (6) jointly
guarantee that STAMP’s allocation is monotone [1].

If wi 6= ∅, for the buyers who bid higher than i in wi,
STAMP allocates the item to them instead of i. The allocation
outcome of the other buyers remains the same. STAMP then
visit the next buyer, i.e.:

xi = 0, xj = 1,∀j ∈ wi, bj > bi.

If wi = ∅, STAMP visits the next buyer.
The item reallocation algorithm runs until all the buyers are

visited exactly once.
The algorithm for item allocation is formally stated in

Algorithm 1. Function MIS(G) can be any existing maximum
independent set algorithm and it allocates the item to the
corresponding buyers. Algorithm 1 returns the allocation result
and ~w, which is used in the payment determination.

Algorithm 1 Item Allocation of STAMP

Input: A set of buyers N , a profile of bids ~b, a conflict graph
G.

Output: A vector of item allocation ~x and a vector of group
assignment ~w.

1: ~x, ~w ← 0;
2: ~x←MIS(G); i← 1.
3: repeat
4: wi = {l|l ∈ Ni∧xl = 0∧xk = 0∧ l /∈ wj ∧ l ≥ i,∀k ∈

Nl∀j ∈ {1, 2, . . . , i− 1}}.
5: if wi 6= ∅ then
6: for all k ∈ wi do
7: if ∃bk > bi then
8: xi ← 0.
9: end if

10: if bk > bi then
11: xk ← 1.
12: end if
13: end for
14: end if
15: i→ i+ 1
16: until i = n.
17: return ~x, ~w.



The computational complexity of the maximum independent
set algorithm is O(nκ) [6]. Notice that there is only one round
of reallocation, so there are at most n times of reallocations.
The computational complexity for reallocation is O(n2). The
mechanism takes a O(n2+κ) time to determine which buyers
are allocated the item.

B. Payment Determination

In this subsection, we present the payment scheme of S-
TAMP. For a winning buyer, STAMP charges her the minimum
price that she can still win by bidding this value (this is
commonly known as the critical value [22]) and the buyers
who are not allocated the price 0:

pi(~b) =

{
argmin

bi

(xi = 1), the item is allocated to i;

0, otherwise.

Combining the result of ~w of Algorithm 1, the value of
argmin

bi

(xi = 1) is computed as following:

argmin
bi

(xi = 1) = max(A,B),

Where A =

{
bj , if i ∈ wj for some j;
0, otherwise.

B = max
k∈wi

bk.

We can now draw the following lemmas and theorems:

Lemma 1. STAMP’s allocation algorithm satisfies monotonic-
ity.

Proof: For an arbitrary buyer i, we distinguish two cases:
• If i is allocated in the initial item allocation, she is not

contained in any wj , then if she bids higher than all the
buyers in wi, she wins the item; otherwise, she does not
win the item.

• If i is not allocated in the initial item allocation, she is
contained in exactly one wj . In order to win the item, she
first needs to bid higher than buyer j. What’s more, she
also needs to bid higher than all the buyers in wi, or she
still does not win the item. Therefore, if she bids higher
than the larger one of bj and the highest bid in wi, she
wins the item; otherwise, she does not win the item.

According to the above analysis, we can draw the conclusion
that the allocation algorithm of STAMP is monotone.

The monotonicity of STAMP’s allocation algorithm and
the critical payment scheme guarantee STAMP’s incentive
compatibility [1].

Lemma 2. STAMP achieves incentive-compatibility.

Proof: For a buyer i, we prove that she cannot increases
her utility by misreporting. We divide the proof into two cases:

1) If i’s valuation satisfies vi ≥ argmin
bi

(xfi = 1), then

i is allocated the item when bidding truthfully. We can
further distinguish two cases of misreporting:

• i misreports b′i (> vi), then i is still allocated the
item, her utility remains unchange:

ui(b
′
i,
~b−i)

=vixi − argmin
bi

(xi = 1)

=ui(~b).

• i bids b′i (< vi), then her utility remains unchange
or becomes 0:

ui(b
′
i,
~b−i) =

{
vixi − argmin

bi

(xi = 1), i wins;

0, otherwise.

2) If i’s valuation for winning the item is vi <
argmin

bi

(xi = 1), then i is not allocated the item when

bidding truthfully. We can further distinguish two cases
of misreporting:
• i misreports b′i (< vi), then i is still not allocated

the item, her utility remains unchange:

ui(b
′
i,
~b−i) = 0 = ui(~b).

• i bids b′i (> vi), then her utility remains unchange
or even negative:

ui(b
′
i,
~b−i) =

{
vixi − argmin

bi

(xi = 1), i wins;

0, otherwise.

Thus we can conclude that the buyers’ dominant strategy is
bidding truthfully and STAMP achieves incentive compatibil-
ity.

Lemma 3. STAMP achieves individual-rationality.

Proof: For a buyer i, assume that she bids truthfully by
bi = vi. We divide the proof into two cases:

1) If bi = vi ≥ argmin
bi

(xi = 1), then i is allocated the

item and her utility is non-negative:

ui(~b) = vixi − pi(~b)
= vi − argmin

bi

(xi = 1)

≥ 0.

2) If bi = vi < argmin
bi

(xi = 1), then i is not allocated

the item and her utility is zero:

ui(~b) = 0.

Since the utility of the buyers are non-negative when
they bids truthfully, we can conclude that STAMP achieves
individual rationality.

Theorem 1. STAMP achieves strategy-proofness.

Proof: This is clear from Lemma 2, Lemma 3 and the
definition of strategy-proof auction mechanism.

Theorem 2. STAMP achieves an asymptotic approximation
ratio of:

min{κ/µ, [κ′ log(log ∆)]/∆}



(where κ is a positive constant, κ′ is a constant depends on
κ, and ∆, µ are the maximum and the average degrees of the
G, respectively) in terms of allocation efficiency [6].

Proof: During the item reallocation procedure, there is no
decrease in the allocation efficiency, so the approximation ratio
of the allocation efficiency is solely determined by the initial
item allocation algorithm. Since the initial item allocation is
equivalent to the maximum independent set algorithm in G
and the asymptotic approximation ratio of the best ever known
algorithm [6] is:

min{κ/µ, [κ′ log(log ∆)]/∆}

(where κ is a positive constant, κ′ is a constant depends on
κ, and ∆, µ are the maximum and the average degrees of the
G, respectively), we can conclude this statement.

C. A Toy Example

Fig. 1. A Toy Example

We now give a toy example to illustrate how STAMP works.
Suppose that we have a set of n = 6 buyers and the profile
of the valuations and bids is:

~v = ~b = (3, 1, 4, 5, 3, 1).

The graph G is shown in Figure 1. Suppose that after the
initial item allocation, buyer 1, 3 and 6 is allocated the item:

~x = (1, 0, 1, 0, 0, 1).

Then STAMP performs the item reallocation:
1) For buyer 1, w1 = {2} and b2 ≤ b1, so she wins the

item with payment 1.
2) For buyer 2, she is not allocated the item so her payment

is 0.
3) For buyer 3, w3 = {4, 5}. The only reallocation is

between buyer 3 and buyer 4:

~x = (1, 0, 0, 1, 0, 1).

4) For buyer 4, w4 = ∅. She wins the item with payment
4.

5) For buyer 5, she is not allocated the item so her payment
is 0.

6) For buyer 6, w6 = ∅. She wins the item with payment
0.

The allocation and payment vectors are:

~x = (1, 0, 0, 1, 0, 1), ~p = (1, 0, 0, 4, 0, 0).

V. SEMI-GROUP-STRATEGY-PROOF ENHANCEMENT

One important threat of auction markets is that buyers
may form coalitions and gain extra profit through strategically
manipulating their bids. Due to the fact that buyers collusion
is hard to detect and it can severely hurt the truthfully bidding
buyers’ and the seller’s incentives, designing group-strategy-
proof auction mechanisms is of great importance. However,
it is shown that full group-strategy-proofness is impossible in
online marketing scenarios unless the mechanism is posted
price [8] and such mechanism may significantly lower the al-
location efficiency. Therefore, we enhance STAMP to achieve
semi-group-strategy-proofness, in which any buyer and any
coalition of buyers cannot gain extra profit by bidding lower
than their true valuations. The enhanced STAMP can achieve
as good allocation efficiency as the original one.

For simplicity, we only consider the case that all the
valuations, bids and payments are positive (for the case of
negative valuations, bids and payments, the mechanism can
be derived similarly). We assume that every buyer’s valuation
and bid is bounded:

vinf ≤ vi, bi ≤ vsup,∀i ∈ N .

In order to achieve semi-group-strategy-proofness, we de-
fine a monotone nondecreasing function [14], which is a
function m() that associates to the allocation outcome and
the buyers’ bids. If one buyer increases her bid and all the
others remain the same, the function does not decrease:

m(~x((b′i,
~b−i), G), (b′i,

~b−i)) ≥ m(~x(~b,G),~b)

∀b′i (> bi),~b−i.

We give the formal definition of semi-group-strategy-proof
mechanism [9] :

Definition 4 (Semi-Group-Strategy-Proof Mechanism). We
say a mechanism (~x(~b,G), ~p(~b)) is semi-group-strategy-proof
if every strategy for a single buyer or any coalition of buyers
that involves understating the value is dominated by a strategy
that does not understate the value and it achieves individual
rationality.

We enhance STAMP so that it can effectively solve the
problem. Enhanced STAMP still consists of an item allocation
algorithm and a payment scheme. The item allocation algorith-
m comprises initial allocation algorithm and item reallocation
algorithm. Enhanced STAMP adopts the initial algorithm of
STAMP and design a new item reallocation algorithm together
with a new payment scheme which associates the payment of
a buyer with the global bids to achieve semi-group-strategy-
proofness while preserving the same allocation efficiency as
STAMP.

A. Enhanced Item Allocation

Enhanced STAMP starts with the initial item allocation
algorithm. It allocates the item using the best known maxi-
mum independent set algorithm so that the buyers who are
connected in G are not allocated the item concurrently.



Next, enhanced STAMP performs the item reallocation.
Denote the buyers allocated in the initial allocation by:

Q = {i1, i2. . . . , iq}.

Where q is the number of allocated buyers. Starting from i1 to
iq, enhanced STAMP finds a path for each of them. For buyer
il ∈ Q, enhanced STAMP starts from it and adds buyers to
form a path (breaking ties randomly) in G iteratively so that
no buyer added to this path belongs to another selected path,
nor does any of them is connected with the buyers in another
selected path. This procedure runs until no new buyer can be
added. We denote the path by σil :

∀j ∈ σil :

1.j /∈ σk,∀k 6= il. (7)
2.j′ /∈ σk,∀j′ ∈ Nj∀k 6= il. (8)

Denote the set of paths by:

σ = {σi1 , σi2 , . . . , σiq}.

Enhanced STAMP then reallocates the item iteratively. For
σij , enhanced STAMP reallocates the item to the one who bids
the highest of this path and breaking ties randomly. Enhanced
STAMP performs the reallocation algorithm until all the paths
in σ are visited exactly once.

B. Enhanced Payment Determination

Denote the set of winning buyers by W :

W = {i|i ∈ N , xi = 1}.

Enhanced STAMP first defines the monotone nondecreasing
function (see Lemma 3 for the proof of the monotone nonde-
creasing of this function):

m(~x(~b,G),~b) =

∑
k∈W bk

k̂
, (9)

where k̂ is a bounded constant:

k̂ ≥ (vsup − vinf)
vinf

× q. (10)

Since the bids are bounded, so does the function m(~x(~b,G),~b).
Assume that the lower bound and upper bound are βinf and
βsup, respectively:
q × vinf

k̂
≤ βinf ≤ m(~x(~b,G),~b) ≤ βsup ≤

q × vsup
k̂

. (11)

Enhanced STAMP associates the payment of a winning
buyer to the bids of the other buyers and charges the buyers
who are not allocated 0:

pi(~b) =

{
ĥ−

∑
j∈(W\{i}) bj

k̂
the item is allocated to i;

0, otherwise.

Where ĥ is a constant and satisfies that: 1. Every buyer’s
payment is positive; 2. No buyer is charged higher than her
valuation:

βsup −
vinf

k̂
≤ ĥ ≤ βinf +

(k − 1)vinf

k̂
. (12)

By eqn. 10 and 11, inequality 12 is validate.
We can draw the following lemmas and theorems:

Lemma 4. The function m() defined in eqn. 9 is actually
monotone nondecreasing.

Proof: For buyer i and her bid bi. We divide the proof
into three cases:

1) If she is allocated the item by bidding bi, and misreports
her bid b′i (> bi). According to eqn. 7 and eqn. 8, i does
not change the item allocation outcome and the function
increases or remains the same:

m(~x((b′i,
~b−i), G), (b′i,

~b−i))

=

∑
j 6=i,j∈W bj + b′i

k̂

≥
∑
j∈W bj

k̂

=m(~x(~b,G),~b).

2) If she is not in any path in σ, she is not allocated and
not able to affect the allocation outcome. The function
remains the same.

3) If she is not allocated the item by bidding bi, but she is
in a σk. we can further distinguish two cases:
• If she bids b′i (> bi), but b′i < max{bj |j ∈ σk},

then she still does not win the item and the function
remains the same:

m(~x((b′i,
~b−i), G), (b′i,

~b−i))

=

∑
j∈W bj

k̂

=m(~x(~b,G),~b).

• If she bids b′i (≥ max{bj |j ∈ σk}), then according
to the reallocation rule, she is allocated the item and
i’s new bid does not affect the allocation outcome
for all the buyers except for herself and the one
who originally bids the highest in σk. The function
increases or remains the same:

m(~x((b′j ,
~b−i), G), (b′i,

~b−i))

=

∑
j 6=i,j∈W′ bj + b′i

k̂

≥

∑
j 6=i,j∈W′ bj + max

j∈σk\{i}
bj

k̂

=

∑
j∈W bj

k̂

=m(~x(~b,G),~b).

Where W ′ is the new set of winning buyers:

W ′ = (W
⋃
{i}) \ { argmax

j∈(σk\{i})
(bj)}.

From the above analysis, we finish the proof.



Lemma 5. For a buyer i and every ~b and ~b′ = (vi,~b−i) such
that bi ≤ vi and ~b−i = ~b′−i. We have:

ui(~b) ≤ ui(~b′).

Proof: According to Lemma 3, we distinguish two cases:

1) i is allocated when bidding bi and she does not affect
the allocation outcome by bidding b′i = vi (≥ bi). Her
utility remains the same:

ui(~b
′)

=vixi − pi(~b′)
=vixi − pi(~b)
=ui(~b).

2) i is not allocated when bidding bi. We further distinguish
two cases:

• i does not win by bidding vi. Her utility remains 0:

ui(~b
′) = 0 = ui(~b)

• i is allocated by bidding b′i = vi. By eqn. 12, we
have:

ui(~b
′)

=vixi − pi(~b′)

=m(~x(~b′, G),~b′) +
k − 1

k
vi − ĥ

≥βinf +
k − 1

k
vinf − ĥ

≥0

=ui(~b).

By the above analysis, we finish the proof.

Lemma 6. For a coalition of buyers C of any size and every ~b
and~b′ such that bi ≤ b′i ≤ vi,∀i ∈ C and bj = b′j ,∀j ∈ N\C.
We have: ∑

i∈C
ui(~b) ≤

∑
i∈C

ui(~b
′).

Proof: For a buyer j ∈ C We distinguish three cases:

1) If j is not in any element of σk, then her bid does not
affect the allocation outcome and the sum of utilities of
the coalition remains the same.

2) If j is allocated the item by bidding bj , then she does not
change the allocation result by bidding b′j = vj (≥ bj).
The sum of utilities of the coalition increases or remains

the same:

∑
i∈C

ui(~b)

=
∑
i∈C

(vi − pi(~b))

=
∑

i∈C
⋂
W

(vi − ĥ+

∑
l∈(W\{i}) bl

k̂
)

=
∑

i∈C
⋂
W

vi + |C
⋂
W − 1| · (m(~x(~b,G),~b)− ĥ)

− 1

k
· (

∑
i∈(W

⋂
C\{j})

bi)− ĥ+

∑
l∈(W\{j}) bl

k̂

≤ |C
⋂
W − 1| · (m(~x((vj ,~b−j), G), (vj ,~b−j))− ĥ)

+
∑

i∈C
⋂
W

vi −
1

k
· (

∑
i∈(W

⋂
C)\{j}

bi)− ĥ

+

∑
l∈(W\{j}) bl

k̂

=
∑

i∈C
⋂
W\{j}

(vi − ĥ+

∑
l∈(W\{i,j}) bl + vj

k̂
)

+ (vj − ĥ+

∑
l∈(W\{j}) bl

k̂
)

=
∑

i∈C\{j}

(vi − pi((vj ,~b−j)) + (vj − pj(vj ,~b−j))

=
∑
i∈C

ui(vj ,~b−j).

3) If j is not allocated the item and she is in σk, we denote
that:

a = argmax
l∈σk

(bl).

We can further distinguish two cases (here we assume
that a ∈ C and for the case a /∈ C, the proof is similar):

• If ba ≥ b′j = vj ≥ bj , j does not affect the allocation
outcome and the sum of utilities of the coalition
remains the same:

∑
i∈C

ui(~b) =
∑
i∈C

ui((vj ,~b−j)).

• If b′j = vj ≥ ba ≥ bj , then j gets the item by
bidding b′j = vj . The sum of utilities of the coalition
increases or remains the same if both j and a bid
their true values (due to the item allocation rule
of mechanismsemi, they do not affect the allocation



result of other buyers):∑
i∈C

ui(~b)

=
∑
i∈C

(vi − pi(~b))

=
∑

i∈C
⋂
W

(vi − ĥ+

∑
l∈(W\{i}) bl

k̂
)

=
∑

i∈C
⋂
W

vi + |C
⋂
W| · (m(~x(~b,G),~b)− ĥ)

− 1

k
· (

∑
i∈(W

⋂
C)

bi)− ĥ

= |C
⋂
W − 1| · (m(~x(~b,G),~b)− ĥ)

+
∑

i∈(C
⋂
W)\{a}

vi −
1

k
· (

∑
i∈(C

⋂
W)\{a}

bi)

+ va − ĥ+

∑
i∈(W\{a}) bi

k̂

≤ |C
⋂
W − 1| · (m(~x((vj , va,~b−{j,a}), G),

(vj , va,~b−{j,a}))− ĥ)

+
∑

i∈(C
⋂
W)\{a}

vi −
1

k
· (

∑
i∈C

⋂
W\{a}

bi)

+ max(vj , va)− ĥ+

∑
i∈(W\{j,a}) bi

k̂

=
∑

i∈C
⋂
W\{j,a}

(vi − ĥ+

∑
l∈(W\{i,j,a}) bl

k̂

+
max(vj , va)

k̂
) + max(vj , va)− ĥ

+

∑
i∈(W\{j,a}) bi

k̂

=
∑

i∈C
⋂
W\{j,a}

(vi − pi((vj , va,~b−{j,a})))

+ max(vj − pj((vj , va,~b−{j,a})),
va − pa((vj , va,~b−{j,a})))

=
∑
i∈C

ui((vj , va,~b−(j,a))).

In all above three cases, we can conclude that:∑
i∈C

ui(~b) ≤
∑
i∈C

ui((vj ,~b−j)),∀~b−j .

or ∑
i∈C

ui(~b) ≤
∑
i∈C

ui((vj , va,~b−{j,a})),∀~b−{j,a}.

Thus we fix j’s (and a’s) bid(s) to the true valuation(s) here,
and iteratively apply the above analysis to the other buyers in
C we have: ∑

i∈C
ui(~b) ≤

∑
i∈C

ui(~b
′).

By the above analysis, we prove the lemma.

Lemma 7. Enhanced STAMP achieves individual-rationality
and every buyer’s payment is non-negative.

Proof: For a buyer i, assume that she bids truthfully by
bi = vi. We divide the proof into two cases:

1) i is allocated the item, then her utility is non-negative:

ui(~b)

=vixi − pi(~b)

=m(~x(~b,G),~b) +
k − 1

k
vi − ĥ

≥βinf +
k − 1

k
vinf − ĥ

≥0.

Also, her payment is non-negative:

pi(~b)

=ĥ−
∑
j∈(W\{i}) bj

k̂

=ĥ−m(~x(~b,G),~b) +
bi

k̂

≥ĥ− βsup +
vinf

k̂
≥0.

2) i is not allocated the item, then her utility is 0:

ui(~b) = 0.

From the above analysis, we finish the proof.

Theorem 3. Enhanced STAMP achieves semi-group-strategy-
proofness.

Proof: This is clear from Lemma 5, Lemma 6 and the
definition of semi-group-strategy-proof mechanism.

Notice that enhanced STAMP runs the same maximum in-
dependent set algorithm for initial item allocation. It achieves
the same approximation ratio as STAMP in terms of allocation
efficiency.

Theorem 4. Enhanced STAMP achieves an asymptotic ap-
proximation ratio of:

min{κ/µ, [κ′ log(log ∆)]/∆}

(where κ is a positive constant, κ′ is a constant depends on
κ, and ∆, µ are the maximum and the average degrees of the
G, respectively) in terms of allocation efficiency [6].

Proof: The proof is the same as Theorem 2.
It is a common case the seller has a set of heterogeneous

spatially reusable items to sell (e.g., multiple tasks and spec-
trum) and a buyer have different valuations for each item. We
can apply STAMP for the items separately to compute the
allocation outcome.



VI. EVALUATION

In this section, we implement STAMP and evaluate its
performance in terms of allocation efficiency.

A. Methodology

We run the mechanism for over 1000 times to evaluate
its performance. There are four different kinds of settings
described later. In all these four settings, there is a single
spatially reusable item for sale and the buyers’ valuations lie
in the range of (0, 1].1 Here, we use a heuristic maximum
independent set algorithm [2] in the initial allocation.

We investigate the allocation efficiency to measure the
mechanism’s performance. We compare the performances of
STAMP with VERITAS and SMALL which are mechanisms
for homogeneous spatially reusable items.
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Fig. 2. Fixed Area and Varying Number of Buyers

First, we fix the terrain area to be 2000 meters × 2000
meters, and the buyers are randomly distributed in this area.
The number of buyers varies from 50 to 600 with step
of 50. We also fix d = 300 meters [4]. Figure 2 shows
the comparison results on allocation efficiency of STAMP,
VERITAS and SMALL. The results show that STAMP outper-
forms VERITAS and SMALL in terms of allocation efficiency
in any situation. When the number of buyers increases, all
mechanisms’ allocation efficiency increase and the advantage
of STAMP becomes more obvious, but the rate of increase
drops since the average degree of G also increases.
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Fig. 3. Varying Area and Fixed Number of Buyers

1The ranges of buyers’ valuations can be chosen differently from the ones
used here. However, the evaluation results of using different ranges are similar
to each other. As a result, we only show the results for the above ranges in
this paper.

Second, we fix the number of buyers to be 500 and the
terrain area varies from 1000 meters times 1000 meters to
2500 meters times 2500 meters with step of 1000 in side length
and d = 300 meters. Figure 3 shows the comparison results on
allocation efficiency of STAMP, VERITAS and SMALL. The
results show that STAMP outperforms VERITAS and SMALL
in terms of allocation efficiency in the four terrain areas.
When the area becomes larger, all mechanisms’ allocation
efficiency also increase and the differences between STAMP
and VERTIAS, STAMP and SMALL all increase.
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Fig. 4. Fixed Average Degree and Varying Number of Buyers

Third, we fix the average degree of the G to be 4, and
the number of buyers varies from 50 to 600 with step of 50.
Figure 4 shows the comparison results on allocation efficiency
of STAMP, VERITAS and SMALL for this setting. The results
show that STAMP outperforms VERITAS and SMALL in
terms of allocation efficiency. The difference of STAMP and
VERTIAS increases along with the number of buyers while
the difference of STAMP and SMALL remains the same all
the time.
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Fig. 5. Varying Average Degree and Fixed Number of Buyers

Finally, we fix the number of buyers to be 500 and the
average degree of the G varies from 2 to 20 with step of 2.
Figure 5 shows the comparison results on allocation efficiency
of STAMP, VERITAS and SMALL for the setting. The results
show that STAMP outperforms VERITAS and SMALL in
terms of allocation efficiency when the average degree of G
varies. The allocation efficiency of all mechanisms decrease
when the average degree of G increases. This is because when
the average degree of G increases, the size of the maximum
independent set of G becomes smaller and so does the number
of winners.



From the above results, we can draw the conclusion that
STAMP achieves superior performance in terms of allocation
efficiency.

VII. CONCLUSION

In this paper, we have introduced the problem of spatially
reusable items allocation in which there was a single seller
who wanted to sell spatially reusable items and performed an
auction to allocate the item to a group of buyers. We have
designed a strategy-proof approximation auction mechanism,
namely STAMP, to solve the problem. STAMP achieves an
allocation efficiency as high as the best ever known maximum
independent set algorithm. We have further enhanced STAMP
to achieve semi–group-strategy-proofness while preserving the
same allocation efficiency as its previous version. For future
work, we are going to consider auction mechanisms for some
more challenging settings like online auction markets.
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