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Abstract—The advent of participatory sensing markets and
spectrum markets based on the wireless networks have led to
a new kind of auction dealing with spatially reusable items,
which can be shared by multiple parties that are geographi-
cally far apart enough from each other. Simply applying tra-
ditional auctions to spatially reusable items is vulnerable to
bid manipulation, and may lead to low allocation efficiency.
In this paper, we study the problem of auctioning spatially
reusable items. We propose STAMP, which is a STrategy-proof
Approximation auction Mechanism for sPatially reusable items in
wireless networks. STAMP can be implemented with any existing
maximum independent set algorithm, and can guarantee the
allocation efficiency as high as the algorithm based on. Evaluation
results show that STAMP achieves much better performance than
existing mechanisms, in terms of allocation efficiency.

I. INTRODUCTION

Auction has been regarded as an efficient way to reallocate

resources for more than two thousand years. Recently, with

the rapid development of the Internet and wireless technology,

many practical applications have given rise to a new trend

of research, which focuses on auction mechanism design for

spatially reusable items. Participatory sensing market (e.g.,

Sensorly and Ear-Phone) [18], [16] and spectrum auction

market (e.g., FCC spectrum auctions) [13], [17] are good

examples. In the participatory sensing market, the information

sensed by multiple participants who are far away enough

from each other is valid to the service aggregator; while

in the spectrum auction market, multiple users who are not

within the interference range of each other can use the

same frequency band simultaneously. Unfortunately, simply

applying traditional auctions to spatially reusable items is

vulnerable to bid manipulation, and may lead to low allocation

efficiency [22]. Therefore, it is highly needed to design novel

auction mechanisms that can deal with spatially reusable items.

However, there are two major challenges when designing

auction mechanisms for spatially reusable items. One chal-

lenge, which is inherited from traditional auction design, is
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strategy-proofness (please see Section Problem Formulation

for the definition), which intuitively means that a buyer cannot

get larger utility by submitting a bid other than her true

valuation. A strategy-proof auction mechanism is attractive,

because it can prevent the buyers from manipulating their bids,

and such protects truthful buyers benefit. The other challenge

is maximization of allocation efficiency (please see Section

Problem Formulation for the definition). Multiple buyers who

are far away enough from each other can share a spatially

reusable item without splitting the value of it. A critical

goal of the service aggregator who posts information sensing

tasks in the participatory sensing market is to maximize the

proportion of task completed in order to guarantee high quality

of serve to its customers; and a goal of the auctioneer in the

spectrum market is to maximize channel utilization due to

the scarcity of spectrum resource. However, the optimization

problem normally becomes computationally intractable when

considering spatially reusable items.

In this paper, we model the problem of spatially reusable

item allocation/assignment as a sealed-bid auction, and pro-

pose STAMP, which is a STrategy-proof Approximation auc-

tion Mechanism for sPatially reusable items in wireless net-

works. STAMP may achieve an allocation efficiency as high

as the best ever known maximum independent set algorithm.

The detailed contributions of this paper are as follows.

• We design a sealed-bid auction mechanism for spatially

reusable items, namely STAMP, and theoretically prove

that STAMP is a strategy-proof auction mechanism. S-

TAMP can be implemented with any known maximum

independent set algorithm, and therefore can achieve an

allocation efficiency as high as the best ever known such

algorithm.

• We implement STAMP and compare its performance with

related auction mechanisms. Our evaluation results show

that STAMP achieves much higher allocation efficiency

than existing auction mechanisms.

The remaining parts of this paper are organized as follows.

In section II, we briefly review related works in participatory

sensing markets, spectrum markets and incentive mechanisms

design. In section III, we present the model and review

some related solution concepts. In Section IV, we present
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the detailed design of STAMP, and prove its properties. In

section V, we show the evaluation results of STAMP. Finally,

we conclude our work in Section VI.

II. RELATED WORKS

To our best knowledge, there are only a few research studies

on the strategy-proof auction mechanism design for participa-

tory sensing markets. [5] designed an auction mechanism to

motivate user participation. [21] designed a platform-centric

model and a user-centric model for participatory sensing. Both

of them did not consider the spatial reusability of the tasks.

There are also a few mechanism design works for spectrum

markets. [22] proposed VERITAS to ensure truthfulness in

spectrum auction. However, the mechanism may suffer from

low allocation efficiency due to the greedy allocation algorith-

m. Later, [20] proposed SMALL to achieve strategy-proofness

by sacrificing a bounded number of buyers. Although S-

MALL shows better allocation efficiency than VERITAS, it

still cannot exploit the power of the best existing maximum

independent set algorithm. In contrast, our mechanism STAMP

not only guarantees strategy-proofness, but also can achieve

an allocation efficiency as high as the best ever known such

algorithm.

There also exist many works on auction mechanism de-

sign [14], [9]. In [1], Archor and Tardos characterized the

relationship between monotonicity and truthfulness for single-

parameter agents. [11] shown how to deliver an approximation

mechanism given an approximation algorithm under certain

cases. [8] presented the design of two polynomially tractable,

universally incentive-compatible randomized mechanisms for

combinatorial auctions with general bidder preferences.[7]

proposed the first monotone randomized PTAS for minimizing

the cost of parallel related machines.

III. PROBLEM FORMULATION

We consider a spatially reusable items market (e.g., par-

ticipatory sensing market and secondary spectrum market),

and model it as a sealed-bid auction. There is a “seller” (e.g.,

service aggregator and spectrum owner), who has a spatially

reusable item (e.g., information sensing task or idle channel)

for sale. The item can be allocated to more than one buyer,

if they are out of the conflict distance (e.g., information

validation range and interference range). There is also a set of

“buyers” (e.g., mobile phone users and local wireless service

applications), who want to bid for the item and get profit (e.g.,

compensation from the service aggregator and revenue from

serving her own customers). The buyers submit their sealed

bids simultaneously at the beginning of the auction, such that

the buyers cannot know each other’s bid. Throughout the

paper, we consider a collusion free environment.

In the auction, the seller has a spatially reusable item

with conflict distance d. Denote the set of buyers by N =
{1, 2, . . . , n}. Each buyer i ∈ N has a private valuation vi for

the item. This is commonly known as type in the literatures.

We denote the profile of buyer valuations by:

~v = (v1, v2, . . . , vn).

Each buyer i chooses her bid bi based on her type. Then, we

denote the profile of bids by:

~b = (b1, b2, . . . , bn).

For convenience, we let ~v−i denote the valuation profile of

buyers other than buyer i. Similarly, we can define ~b−i. We

also use ~v−M (~b−M) to represent the valuation (bid) profile

of buyers other than the set M⊆ N of buyers.

We use a graph G = (V,E) to represent the conflict among

buyers. Here, V is the set of vertices, and E is the set of

edges. Each buyer is represented by a vertex in the conflict

graph G, and there is an edge between a pair of buyers i and

j, if their geographic distance is no larger than d. Any pair of

buyers who are connected in G cannot both be the item. Here,

we denote the set of neighbors of i in G by Ni. We can use a

vector to represent the outcome of the item allocation, which

is a function of ~b and G:

~x(~b,G) =
(

x1, x2, . . . , xn

)

,

s.t., xi =

{

1, the item is allocated to i;
0, otherwise.

The auctioneer (or the seller, if the seller is trustworthy)

not only determines the item allocation, but also calculates

the payment profile:

~p(~b) = (p1, p2, . . . , pn).

We note that in the participatory sensing markets, the mobile

phone users consume their own resource to sense information

and receive compensations from the service aggregator, so the

valuations (i.e., the cost induced in the process of sensing), the

bids, and the payments are all negative; while in the spectrum

auction markets, the buyers can get profit through providing

service via the channel bought and need to pay the spectrum

seller, so the valuations, the bids and the payments are positive.

We can now define the utility of buyer i ∈ N as the

difference between her valuation and payment:

ui(~b) = xivi − pi(~b).

We consider that the buyers are rational and each buyer’s

goal is to maximize her own utility.

We now recall the definition of Dominant Strategy [15],

[10], Strategy-Proofness [12] and Allocation Efficiency, which

will be used in the following parts of this paper.

Definition 1 (Dominant Strategy). Strategy ai is a player i’s
dominant strategy, if for any a′i 6= ai and any strategy profile

of the other players a−i,

ui(ai, a−i) ≥ ui(a
′
i, a−i).

The concept of incentive-compatibility is based on dominant

strategy. It means that revealing truthful information is the

dominant strategy for every player. A company concept is

individual-rationality, which intuitively means that for every

player who truthfully participates the auction is expected to

gain non-negative utility. We now can introduce the definition

of Strategy-Proof Mechanism.
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Definition 2 (Strategy-Proof Mechanism). A mechanism is

strategy-proof when it satisfies both incentive-compatibility

and individual-rationality.

Definition 3 (Allocation Efficiency). The allocation efficiency

of an auction mechanism is the total number of items the

buyers win.

The design goal of our auction mechanism is to achieve

strategy-proofness and allocation efficiency maximization. Al-

though the problem of allocation efficiency maximization can

be formulated as the following binary program:

Objective:

Maximize

n
∑

k=1

xk

Subject to:

xi + xj ≤ 1, ∀(i, j) ∈ E;

xi ∈ {0, 1}, ∀i ∈ N ,

it is known that the problem is computationally in-

tractable [19]. Therefore, we should seek for an approximation

approach.

IV. DESIGN OF STAMP

In this section, we present the design of STAMP, and prove

its strategy-proofness and approximation ratio of allocation

efficiency. STAMP consists of an item allocation algorithm

and a payment scheme. The item allocation algorithm com-

prises initial item allocation and item reallocation algorithms,

STAMP can achieve an allocation efficiency as good as the

best known maximum independent set algorithm by allowing

to use any such algorithm. By performing the item reallocation

algorithm, the mechanism allocates items to buyers with higher

valuations. In the payment scheme, by charging the buyers the

minimum value by bidding which she can still win the item,

STAMP guarantees strategy-proofness.

A. Item Allocation

STAMP starts with the initial item allocation algorithm.

During the initial item allocation, STAMP allocates the item

using the best known maximum independent set approximation

algorithm for general bounded degree graphs [6], [3], so that

the buyers who are connected in G are not allocated the item

concurrently, i.e.:

xi + xj ≤ 1, ∀(i, j) ∈ E. (1)

STAMP then performs item reallocation algorithm. It visits

all the buyers iteratively, from the smallest index to the highest

index (i.e., from 1 to n).

Assume that STAMP is attempting to perform the item

reallocation for i( if i is allocated an item). STAMP finds

a set of buyers wi such that:

∀l ∈ wi :

1. l ∈ Ni. (2)

2. xl = 0. (3)

3. xk = 0, ∀k ∈ Nl. (4)

4. l /∈ wj , ∀j ∈ {1, 2, . . . , i− 1}. (5)

5. l ≥ i. (6)

Here, constraint (2) guarantees that the buyers who are con-

nected are not allocated the item concurrently. Constraint (3)

and (4) jointly guarantee that the buyers selected in wi are all

able to be allocated the item. Constraint (5) and (6) jointly

guarantee that STAMP’s allocation is monotone [1].

If wi 6= ∅, for the buyers who bid higher than i in wi,
STAMP allocates the item to them instead of i. The allocation

outcome of the other buyers remains the same. STAMP then

visit the next buyer, i.e.:

xi = 0, xj = 1, ∀j ∈ wi, bj > bi.

If wi = ∅, STAMP visits the next buyer.

The item reallocation algorithm runs until all the buyers are

visited exactly once.

The algorithm for item allocation is formally stated in

Algorithm 1. Function MIS(G) can be any existing maximum

independent set algorithm and it allocates the item to the

corresponding buyers. Algorithm 1 returns the allocation result

and ~w, which is used in the payment determination.

Algorithm 1 Item Allocation of STAMP

Input: A set of buyers N , a profile of bids ~b, a conflict graph

G.
Output: A vector of item allocation ~x and a vector of group

assignment ~w.

1: ~x, ~w ← 0;

2: ~x←MIS(G); i← 1.

3: repeat

4: wi = {l|l ∈ Ni∧xl = 0∧xk = 0∧ l /∈ wj ∧ l ≥ i, ∀k ∈
Nl∀j ∈ {1, 2, . . . , i− 1}}.

5: if wi 6= ∅ then

6: for all k ∈ wi do

7: if ∃bk > bi then

8: xi ← 0.
9: end if

10: if bk > bi then

11: xk ← 1.
12: end if

13: end for

14: end if

15: i→ i+ 1
16: until i = n.

17: return ~x, ~w.

The computational complexity of the maximum independent

set algorithm is O(nκ) [6]. Notice that there is only one round
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of reallocation, so there are at most n times of reallocations.

The computational complexity for reallocation is O(n2). The

mechanism takes a O(n2+κ) time to determine which buyers

are allocated the item.

B. Payment Determination

In this subsection, we present the payment scheme of S-

TAMP. For a winning buyer, STAMP charges her the minimum

price that she can still win by bidding this value (this is

commonly known as the critical value [22]) and the buyers

who are not allocated the price 0:

pi(~b) =

{

argmin
bi

(xi = 1), the item is allocated to i;

0, otherwise.

Combining the result of ~w of Algorithm 1, the value of

argmin
bi

(xi = 1) is computed as following:

argmin
bi

(xi = 1) = max(A,B),

Where A =

{

bj , if i ∈ wj for some j;

0, otherwise.

B = max
k∈wi

bk.

We can now draw the following lemmas and theorems:

Lemma 1. STAMP’s allocation algorithm satisfies monotonic-

ity.

Proof: For an arbitrary buyer i, we distinguish two cases:

• If i is allocated in the initial item allocation, she is not

contained in any wj , then if she bids higher than all the

buyers in wi, she wins the item; otherwise, she does not

win the item.

• If i is not allocated in the initial item allocation, she is

contained in exactly one wj . In order to win the item, she

first needs to bid higher than buyer j. What’s more, she

also needs to bid higher than all the buyers in wi, or she

still does not win the item. Therefore, if she bids higher

than the larger one of bj and the highest bid in wi, she

wins the item; otherwise, she does not win the item.

According to the above analysis, we can draw the conclusion

that the allocation algorithm of STAMP is monotone.

The monotonicity of STAMP’s allocation algorithm and

the critical payment scheme guarantee STAMP’s incentive

compatibility [1].

Lemma 2. STAMP achieves incentive-compatibility.

Proof: For a buyer i, we prove that she cannot increases

her utility by misreporting. We divide the proof into two cases:

1) If i’s valuation satisfies vi ≥ argmin
bi

(xf
i = 1), then

i is allocated the item when bidding truthfully. We can

further distinguish two cases of misreporting:

• i misreports b′i (> vi), then i is still allocated the

item, her utility remains unchange:

ui(b
′
i,
~b−i)

=vixi − argmin
bi

(xi = 1)

=ui(~b).

• i bids b′i (< vi), then her utility remains unchange

or becomes 0:

ui(b
′
i,
~b−i) =

{

vixi − argmin
bi

(xi = 1), i wins;

0, otherwise.

2) If i’s valuation for winning the item is vi <
argmin

bi

(xi = 1), then i is not allocated the item when

bidding truthfully. We can further distinguish two cases

of misreporting:

• i misreports b′i (< vi), then i is still not allocated

the item, her utility remains unchange:

ui(b
′
i,
~b−i) = 0 = ui(~b).

• i bids b′i (> vi), then her utility remains unchange

or even negative:

ui(b
′
i,
~b−i) =

{

vixi − argmin
bi

(xi = 1), i wins;

0, otherwise.

Thus we can conclude that the buyers’ dominant strategy is

bidding truthfully and STAMP achieves incentive compatibil-

ity.

Lemma 3. STAMP achieves individual-rationality.

Proof: For a buyer i, assume that she bids truthfully by

bi = vi. We divide the proof into two cases:

1) If bi = vi ≥ argmin
bi

(xi = 1), then i is allocated the

item and her utility is non-negative:

ui(~b) = vixi − pi(~b)

= vi − argmin
bi

(xi = 1)

≥ 0.

2) If bi = vi < argmin
bi

(xi = 1), then i is not allocated

the item and her utility is zero:

ui(~b) = 0.

Since the utility of the buyers are non-negative when

they bids truthfully, we can conclude that STAMP achieves

individual rationality.

Theorem 1. STAMP achieves strategy-proofness.

Proof: This is clear from Lemma 2, Lemma 3 and the

definition of strategy-proof auction mechanism.

Theorem 2. STAMP achieves an asymptotic approximation

ratio of:

min{κ/µ, [κ′ log(log∆)]/∆}
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(where κ is a positive constant, κ′ is a constant depends on

κ, and ∆, µ are the maximum and the average degrees of the

G, respectively) in terms of allocation efficiency [6].

Proof: During the item reallocation procedure, there is no

decrease in the allocation efficiency, so the approximation ratio

of the allocation efficiency is solely determined by the initial

item allocation algorithm. Since the initial item allocation is

equivalent to the maximum independent set algorithm in G
and the asymptotic approximation ratio of the best ever known

algorithm [6] is:

min{κ/µ, [κ′ log(log∆)]/∆}

(where κ is a positive constant, κ′ is a constant depends on

κ, and ∆, µ are the maximum and the average degrees of the

G, respectively), we can conclude this statement.

C. A Toy Example

Fig. 1. A Toy Example

We now give a toy example to illustrate how STAMP works.

Suppose that we have a set of n = 6 buyers and the profile

of the valuations and bids is:

~v = ~b = (3, 1, 4, 5, 3, 1).

The graph G is shown in Figure 1. Suppose that after the

initial item allocation, buyer 1, 3 and 6 is allocated the item:

~x = (1, 0, 1, 0, 0, 1).

Then STAMP performs the item reallocation:

1) For buyer 1, w1 = {2} and b2 ≤ b1, so she wins the

item with payment 1.

2) For buyer 2, she is not allocated the item so her payment

is 0.

3) For buyer 3, w3 = {4, 5}. The only reallocation is

between buyer 3 and buyer 4:

~x = (1, 0, 0, 1, 0, 1).

4) For buyer 4, w4 = ∅. She wins the item with payment

4.
5) For buyer 5, she is not allocated the item so her payment

is 0.

6) For buyer 6, w6 = ∅. She wins the item with payment

0.

The allocation and payment vectors are:

~x = (1, 0, 0, 1, 0, 1), ~p = (1, 0, 0, 4, 0, 0).

V. EVALUATION

In this section, we implement STAMP and evaluate its

performance in terms of allocation efficiency.

A. Methodology

We run the mechanism for over 1000 times to evaluate

its performance. There are four different kinds of settings

described later. In all these four settings, there is a single

spatially reusable item for sale and the buyers’ valuations lie

in the range of (0, 1].1 Here, we use a heuristic maximum

independent set algorithm [2] in the initial allocation.

We investigate the allocation efficiency to measure the

mechanism’s performance. We compare the performances of

STAMP with VERITAS and SMALL which are mechanisms

for homogeneous spatially reusable items.
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Fig. 2. Fixed Area and Varying Number of Buyers

First, we fix the terrain area to be 2000 meters × 2000
meters, and the buyers are randomly distributed in this area.

The number of buyers varies from 50 to 600 with step

of 50. We also fix d = 300 meters [4]. Figure 2 shows

the comparison results on allocation efficiency of STAMP,

VERITAS and SMALL. The results show that STAMP outper-

forms VERITAS and SMALL in terms of allocation efficiency

in any situation. When the number of buyers increases, all

mechanisms’ allocation efficiency increase and the advantage

of STAMP becomes more obvious, but the rate of increase

drops since the average degree of G also increases.
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Fig. 3. Varying Area and Fixed Number of Buyers

1The ranges of buyers’ valuations can be chosen differently from the ones
used here. However, the evaluation results of using different ranges are similar
to each other. As a result, we only show the results for the above ranges in
this paper.
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Second, we fix the number of buyers to be 500 and the

terrain area varies from 1000 meters times 1000 meters to

2500 meters times 2500 meters with step of 1000 in side length

and d = 300 meters. Figure 3 shows the comparison results on

allocation efficiency of STAMP, VERITAS and SMALL. The

results show that STAMP outperforms VERITAS and SMALL

in terms of allocation efficiency in the four terrain areas.

When the area becomes larger, all mechanisms’ allocation

efficiency also increase and the differences between STAMP

and VERTIAS, STAMP and SMALL all increase.
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Fig. 4. Fixed Average Degree and Varying Number of Buyers

Third, we fix the average degree of the G to be 4, and

the number of buyers varies from 50 to 600 with step of 50.
Figure 4 shows the comparison results on allocation efficiency

of STAMP, VERITAS and SMALL for this setting. The results

show that STAMP outperforms VERITAS and SMALL in

terms of allocation efficiency. The difference of STAMP and

VERTIAS increases along with the number of buyers while

the difference of STAMP and SMALL remains the same all

the time.
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Fig. 5. Varying Average Degree and Fixed Number of Buyers

Finally, we fix the number of buyers to be 500 and the

average degree of the G varies from 2 to 20 with step of 2.

Figure 5 shows the comparison results on allocation efficiency

of STAMP, VERITAS and SMALL for the setting. The results

show that STAMP outperforms VERITAS and SMALL in

terms of allocation efficiency when the average degree of G
varies. The allocation efficiency of all mechanisms decrease

when the average degree of G increases. This is because when

the average degree of G increases, the size of the maximum

independent set of G becomes smaller and so does the number

of winners.

From the above results, we can draw the conclusion that

STAMP achieves superior performance in terms of allocation

efficiency.

VI. CONCLUSION

In this paper, we have introduced the problem of spatially

reusable items allocation in which there was a single seller

who wanted to sell spatially reusable items and performed an

auction to allocate the item to a group of buyers. We have

designed a strategy-proof approximation auction mechanism,

namely STAMP, to solve the problem. STAMP achieves an

allocation efficiency as high as the best ever known maximum

independent set algorithm. For future work, we are going

to consider auction mechanisms for some more challenging

settings like online auction markets.
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