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Abstract—Although data has become an important kind of commercial goods, there are few appropriate online platforms to facilitate
the trading of mobile crowd-sensed data so far. In this paper, we present the first architecture of mobile crowd-sensed data market, and
conduct an in-depth study of the design problem of online data pricing and reward sharing. To build a practical mobile crowd-sensed
data market, we have to consider four major design challenges: data uncertainty, economic-robustness (arbitrage-freeness in
particular), profit maximization, and fair reward sharing. By jointly considering the design challenges, we propose an online
query-bAsed cRowd-sensEd daTa pricing mEchanism, namely ARETE-PR, to determine the trading price of crowd-sensed data. Our
theoretical analysis shows that ARETE-PR guarantees both arbitrage-freeness and a constant competitive ratio in terms of profit
maximization. Based on some fairness criterions, we further design a reward sharing scheme, namely ARETE-SH, which is closely
coupled with ARETE-PR, to incentivize data providers to contribute data. We have evaluated ARETE on a real-world sensory data set
collected by Intel Berkeley lab. Evaluation results show that ARETE-PR outperforms the state-of-the-art pricing mechanisms, and
achieves around 90% of the optimal revenue. ARETE-SH distributes the reward among data providers in a fair way.

Index Terms—Data Marketplace, Online Pricing, Profit Maximization, Shapley Value.
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1 INTRODUCTION

As a significant business reality, data trading has attracted
increasing attentions and focuses. For example, Xignite [60]
sells financial data, Gnip [28] vends data from social net-
works, and Factual [27] trades geographic data. Potential
data consumers might be Nasdaq [45] for financial data,
Instagram [36] for social data, and Here [33] for location
trace data. To support these online data transactions, several
marketplace services have emerged, e.g., Azure Data Mar-
ketplace [4], Infochimps [35], and Dataexchange [22]. These
marketplace services offer centralized platforms, where data
vendors can upload and sell their data, and data consumers
can discover and purchase the data needed.

Although a few works have appeared to study the
trading of structured and relational data [6], [40], mo-
bile crowd-sensed data trading has not been fully explo-
red in either industry or academia. Ranging from wire-
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less sensor networks that monitor large wildlife environ-
ment [44] to vehicular networks for traffic monitoring and
prediction [65], these deployments generate tremendous vo-
lumes of valuable but uncertain numeric sensed data. Due to
lack of effective ways for data exchange, the mobile crowd-
sensed data is currently used only by their operators for
their own purposes. Such status has significantly suppres-
sed market demand for mobile crowd-sensed data [11]. On
one hand, data owners are willing to share their data for pro-
fits. On the other hand, data consumers, such as researchers,
analysts, and application developers, would like to pay
for data services built upon the acquired data. Therefore,
it is highly needed to build an open data marketplace to
enable mobile crowd-sensed data trading, and to boost data
economy underlying the ubiquitous mobile data. Several
open platforms, such as Thingspeak [55] and Thingful [54],
have recently emerged for mobile data sharing on the Web,
but none of them have deployed a practical data trading
platform.

To design a flexible and practical mobile crowd-sensed
data market, we have to cope with four major challenges.
The first major challenge comes from the uncertainty of
mobile crowd-sensed data, which makes it difficult to define
the trading format of crowd-sensed data. The mobile data
is normally noisy and imprecise [15], making it improper
to directly feed raw data into data market. Furthermore,
we can discover rich semantic information behind the raw
data by aggregating data from multiple dimensions and
domains [43]. Therefore, instead of directly selling raw data,
the data vendor should design a statistical model to describe
the raw data, and then provide semantically rich data ser-
vices [11]. Researchers have proposed several model-based
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methods to manage sensed data in the past decades [15],
[24], [52]. However, due to the various formats of mobile
sensed data and the complex correlation among data, it is
difficult to select a universal and concise statistical model
for all types of crowd-sensed data trading.

The second challenge is on designing flexible data pri-
cing mechanisms with economic robustness guarantee. The
pricing strategy currently used to sell data is simplistic, i.e.,
the data vendor sets fixed prices for the whole or parts of
the data set [4], [19]. This inflexible approach not only forces
the data vendor to anticipate possible data subsets that data
consumers might be interested in, but also drives the data
consumers to purchase a superset of the data in need. To
this end, a fine-grained data trading format, particularly,
query-based data pricing [6], [40], is more suitable for data
trading. In the data market with query-based data pricing
mechanisms, data consumers can purchase ad-hoc queries
over the whole data set, and thus have the flexibility to buy
the data they exactly need. While providing convenience
for data trading, this flexible data pricing mechanism can
expose obscure arbitrage problems, in which a cunning data
consumer may infer the answer of an expensive query from
a set of cheaper queries. Thus, the data pricing mechanism
should satisfy the property of arbitrage-freeness [40] to resist
such manipulation behaviour. This introduces heavy bur-
den on the design of data pricing mechanisms due to the
complex arbitrage behaviour.

The third challenge is on profit maximization with in-
complete information. The profit of a data vendor is the
difference between data trading revenue and data acqui-
sition cost. The problem of profit maximization can be
decomposed into revenue maximization and data acqui-
sition minimization. Data can be considered as one kind
of information goods, which have a substantial initial in-
vestment cost, but tend to induce negligible marginal cost
for reproduction. To minimize the data acquisition cost,
which can be considered as the initial investment cost, we
need to solve a submodular covering problem, which is
a NP hard problem in general [38], [59]. For the revenue
maximization, such a cost structure makes existing cost-
based pricing mechanisms unsuitable, and the value-based
pricing mechanisms are more attractable for data trading.
However, in online data markets, data consumers may have
diverse valuations even for the same data commodity. The
data vendor may not know the valuation (and the valuation
distribution) and the arrival sequences of data consumers.
Thus, the data vendor has to determine the price of data
with incomplete information. The optimization on profit
maximization needs to take both the new cost structure and
the lack of information into account, which inevitably dou-
bles the difficulty in the design of data pricing mechanisms.

The last but not least challenge is on designing efficient
reward sharing scheme aligned with fairness criterions. In
data markets, the data vendor would provide some rewards
for data providers to compensate their sensing costs, and to
incentivize them to contribute large amount of high quality
data [61]. In mobile crowdsensing system, the platform only
compensates data providers for their incurred sensing cost,
and hoards the revenue extracted from later data usage. In
data markets, this is unfair to data providers, as the data
commodities are generated based on the raw data contribu-

ted by data providers. We augment the basic reward with
a bonus reward, which is a portion of revenue from data
trading. Considering that the data providers may submit
data with heterogeneous quality, the bonus reward sharing
scheme design should be aligned with fairness criterions.
However, the traditional reward sharing scheme that si-
multaneously satisfies the basic fairness axioms: efficiency,
symmetry, dummy, and additivity (Please refer to Section 5.3
for definitions.), normally incurs high time and space com-
plexity [50].

In this paper, we conduct an in-depth study on the
problem of market design for mobile crowd-sensed data
trading. First, we adopt a powerful statistical model, i.e.,
Gaussian Process, to capture the uncertainty of numeric
mobile sense data, and regard the resulting aggregated dis-
tributions as trading commodities in the data market. Based
on this statistical model, we design a fine-grained query
interface, containing three basic types of query formats, such
that data consumers can obtain needed information through
issuing ad-hoc queries. Second, we propose a query-based
data pricing mechanism, namely ARETE-PR, to achieve
arbitrage-freeness and a constant competitive ratio. Speci-
fically, for each of data commodities, ARETE-PR generates
multiple versions with different accuracy levels to extract
revenue from data consumers in different market segments,
and determines the trading prices of the data commodities
by dynamically learning the valuations of data consumers.
Third, we further design a reward sharing scheme, ARETE-
SH, to efficiently calculate the Shapley value [50] for each
data provider with the guideline of the four fairness axioms.
To the best of our knowledge, we are the first to analyze the
market structure of mobile crowd-sensed data trading, and
propose an online pricing mechanism to facilitate this new
kind of data business.

We summarize our contributions as follows.
• First, we present a marketplace for mobile crowd-

sensed data trading, in which the data vendor can offer data
services upon acquired raw data to obtain profit, and data
consumers can purchase data services through issuing ad-
hoc queries. We conduct a thorough analysis on the market
structure of mobile crowd-sensed data trading, and examine
the problems of profit maximization.
• Second, we begin with considering a basic setting, in

which data consumers only ask single-data queries, and
design ARETE-PR, including a versioning mechanism and
an online pricing mechanism. We further extend ARETE-
PR to adapt to other data query scenarios. We prove that
ARETE-PR achieves both arbitrage-freeness and a constant
competitive ratio in terms of profit maximization.
• Third, we formulate the problem of reward sharing as

a coalitional game, and represent such reward sharing game
by a Marginal-Contribution-Networks scheme [34]. With
this concise representation scheme, we propose ARETE-SH
to compute the Shapley value of the game in polynomial
time, achieving the four fairness axioms.
• Finally, we evaluate the performance of ARETE with

a real-world sensory data set. The evaluation results show
that ARETE outperforms the state-of-the-art pricing me-
chanisms, and approaches the optimal fixed price revenue.
The evaluation results also demonstrate that ARETE-SH can
fairly distribute the rewards among data providers, and has
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Fig. 1. A Mobile Crowd-Sensed Data Market.

a profound impact on the revenue of data trading in a long
term.

The rest of this paper is organized as follows. In
Section 2, we present system model and problem formula-
tion. In Section 3, we propose a version-based online pricing
mechanism, namely ARETE-PR. We extend ARETE-PR to
support diverse query formats in Section 4. In Section 5, we
formulate the problem of reward sharing as a coalitional
game, and compute the Shapley value of the game. The
evaluation results are presented in Section 6. In Section 7,
we review related work. We conclude the paper in Section 8.

2 PRELIMINARIES

In this section, we describe system model for mobile crowd-
sensed data trading, and formally state the problems of
profit maximization and reward sharing.

2.1 System Model
As illustrated by Figure 1, we consider a mobile crowd-
sensed data marketplace with three major entities: a set
of data providers, a data vendor, and a set of data consu-
mers. In mobile crowd-sensing applications, the data vendor
acquires raw data by employing data providers, such as
sensor devices and mobile phone users, in a monitoring
region, and wants to make profits from providing data
services upon the collected data (Step ¬). The data vendor
would provide some rewards to incentivize data providers
to report data (Step ­). Since the raw data is normally in-
complete, imprecise, and erroneous, the data vendor needs
to build statistical models to filter the raw data, and present
a model-based query interface for data consumers (Step ®).
The data consumers arrive at the data market sequentially,
and request for data services through issuing ad-hoc queries
over the statistical models (Step ¯). The data vendor deter-
mines appropriate prices for data services in a principled
way (Step °). Upon receiving declared prices, the data
consumer makes a purchasing decision (Step ±). If the data
consumer accepts this price, she receives the answers of the

queries, and pays for the price (Step ²). We introduce a set
of major notations to define the crowd-sensed data market.

Data Providers: In a monitoring region Θ, the data
vendor employs a set of m data providers to collect mobile
data. Let A = {a1, a2, · · · , am} denote the locations of the
data providers, and vector xA = (x1, x2, · · · , xm) denote
the real-time observations collected by data providers. We
assume these observations are from authentic data sources,
and data providers would not maliciously generate fake
data from some distribution of data. As data providers
consume their physical resources to collect data, the data
vendor would like to distribute some monetary rewards to
compensate their efforts, and incentivize them to contribute
high quality data, which is similar to the incentive design in
mobile crowdsensing systems [32], [61]. Data is one kind of
digital goods, and can be repeatedly sold to a large number
of data consumers, producing high revenue of data trading.
As data commodities are generated based on the raw data
contributed by data providers, data providers also have
rights to share a portion of data trading revenue. Thus,
in crowd-sensed data markets, the reward for data provi-
ders comes from two components: basic reward and bonus
reward. The data provider ai ∈ A would receive a basic
reward φ̄, a fixed amount of money, if her observation xi is
used to generate data commodities. Based on the market
value of data commodities, each data provider ai ∈ A
could also obtain a bonus reward φi, a portion of revenue
from data trading. We assume the data vendor would share
τ percentage of total revenue with data providers after
negotiating with data providers.1

Statistical Model: Due to the unreliability of sensing
devices and the fragility of data communication links, the
mobile data is normally incomplete, imprecise, and erro-
neous. Furthermore, the sensed data is collected at some
selected locations, and cannot fully represent the continuous
feature of the physical environment. In addition, the sensed
data may be correlated in multiple dimensions, e.g., the tem-
peratures of geographically proximate locations are likely to
change synchronously. Such correlation information can be
leveraged to provide rich semantic data services. Therefore,
the data vendor needs to deploy a statistical model to filter
the noise and erroneousness of raw data, infer the data
at the locations where no data providers are employed,
and describe the correlation of sensed data in multiple
dimensions. In such cases, regression techniques can be used
to handle the noise in raw data and to perform inference2.
Although linear regression can draw good inferences, it
cannot quantify the uncertainty of these inferences, which is
critical to the price determination of data in markets. We use
a powerful regression technique Gaussian Process [18], [58],
which is a generalization of linear regression, and has been
widely used as to model numerical sensor data [24], [26], to
perform inferences, and to cope with the uncertainty quan-
tification in the process of inferences. Choosing Gaussian

1. The determination for the parameter τ is beyond the scope of this
paper, and such process can be modeled as a bargaining game [46]
between the data vendor and data providers.

2. We can also use classical data clearing schemes [16], [48] to detect
and correct the corrupt and inaccuracy raw data, which would reduce
the noise of input data to the statistical model and improve the accuracy
of inference.
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process as the statistical model for numerical crowd-sensed
data also provides several advantages for data trading. For
example, we can regard conditional Gaussian distributions
as data commodities, and generate different versions of the
data commodity by selecting different set of locations to ob-
serve. We can also define the accuracy of data commodities
as the posterior variance of conditional distribution. We will
show the details of these parts in the following discussion.

We associate a random variable Xy with each location
y ∈ Θ, and a set of random variables X Y with a set
of locations Y ⊆ Θ, representing the possible data at
the corresponding locations. We can specify the Gaussian
Process model with a mean functionµ, and a symmetric and
positive-definite covariance function Σ. Let µY and ΣY Y

denote the mean vector and the covariance matrix for a set
of random variables X Y ⊆ XΘ, respectively. In Gaussian
Process, the joint distribution over the corresponding set
of random variables X Y ⊆ XΘ is a multivariate Gaussian
distribution, and the probability density function is:

f(xY ) =
1

(2π)|Y |/2|ΣY Y |1/2
e−

1
2 (xY −µY )TΣ−1

Y Y (xY −µY ),

where xY is a vector of possible values of random variables
X Y , |Σ| is the determinant of matrix Σ, and Σ−1 is the
inverse matrix of Σ. Under Gaussian Process model, we
can infer the data at any location y ⊆ Θ (even there is no
sensor deployed at this location) based on the observations
xA. The resulting distribution fXy|XA(xy|xA) is a conditional
univariate Gaussian distribution, whose posterior mean µ̄y
and posterior variance σ̄2

y can be expressed as:

µ̄y = µy + ΣyAΣ−1
AA(xA − µA), (1)

σ̄2
y = σ2

y −ΣyAΣ−1
AAΣAy, (2)

In data market, the data vendor obtains revenue by provi-
ding data services based on the collected raw data xA. The
other information, such as the parameters of the statistical
model, is common knowledge. Thus, the posterior variance
σ̄2
y , which is independent on the actual observations xA, is

publicly known.
Data Commodity: In crowd-sensed data market, we

define data commodity for trading as conditional Gaussian
distributions fXY |XA(xY |xA), which can be considered as
a type of data service. In addition to the noise and erro-
neousness of raw data, the possible privacy leakage [62]
and the potential violation of data copyright [13] are other
two concerns to directly trade raw data in data markets.
We call the distribution fXy|XA(xy|xA) of a single random
variable Xy as a basic data commodity. Considering that the
possible locations of the monitoring region are infinite, the
data vendor would select a finite set of random variables
at several locations, known as Point of Interests (PoIs), to
approximately describe the environmental phenomenon of
the whole region Θ. We denote the set of these PoIs by
Y = {1, 2, · · · , l}. For notational convenience, we will use
Y ⊆ Y to index the data commodity fXY |XA(xY |xA) in the
following discussion.

The data vendor assigns a price py to each basic data
commodity y ∈ Y. We denote all the basic prices by a vector
p = (p1, p2, · · · , pl). We will discuss the determination
of the basic prices in Section 3. As mentioned above, the

variance information is public knowledge, so the valuable
information of a data commodity is its mean vector. Furt-
hermore, the mean of a data commodity fXY |XA(xY |xA) is
actually the vector of the means of the contained basic data
commodities fXy|XA(xy|xA), y ∈ Y . Based on this fact, we
set the price of a data commodity Y ⊆ Y as the sum of
the basic prices of the basic data commodities in Y , i.e.,
pY =

∑
y∈Y py .

Data Consumers: The n data consumers, denoted by
B = {b1, b2, · · · , bn}, arrive at the marketplace in a certain
sequence. Each data consumer bi issues a query about a data
commodity Yi ⊆ Y, and has a private valuation vi for the
query. For the convenience of analysis, we normalize the
valuations into the range [1, δ]. We denote the valuations of
all the data consumers by v = (v1, v2, · · · , vn). We consider
the following types of query in this paper:
• Single-Data Query: A data consumer bi is interested in

the (inferential) data at a single location yi ∈ Y, i.e., the
(posterior) mean µ̄yi of the basic data commodity yi.
• Multi-Data Query: A data consumer bi wants to know

the (inferential) data of a certain region Yi ⊆ Y, i.e., the
(posterior) mean vector µ̄Yi of the data commodity Yi. We
assume that the maximum dimension of all the queried data
commodities is a constant κ, i.e., κ = maxbi∈B |Yi|.
• Range Query: A data consumer bi asks for the proba-

bility that the data at the region Yi ⊆ Y belongs to a range
[ai,ai].

Data Accuracy: We define the accuracy of data com-
modity Y ∈ Y as the average posterior variance of the

contained basic data commodities, i.e.,
∑
y∈Y σ̄

2
y

|Y | , which has
been widely used to measure the performance of statisti-
cal inference over sensed data [30], [41]. Such criterion is
easy to explain to data consumers, and can be verified by
evaluating Equation (2) with the public knowledge of the
covariance function of Gaussian model and the locations of
data providers3. Furthermore, with this accuracy criterion,
the data vendor can measure the accuracy of data providers’
data by evaluating their location information, resisting their
manipulation on data accuracy. This is very important to
the reward sharing process, as the reward is related to
data provider’s contribution to the accuracy improvement
during data commodity generation. Due to diverse appli-
cations for the purchased data, data consumers may have
different accuracy requirements for data commodities. Each
data consumer bi ∈ B submits an accuracy threshold εi
for her queried data commodity Yi. The data commodity
Yi satisfies the accuracy requirement of data consumer bi if
the average posterior variance is less than the threshold εi,

i.e.,
∑
y∈Yi

σ̄2
y

|Yi| ≤ εi.
Data Charging: Considering that the data commodity

with different accuracy requirements should have different
prices, the data vendor offers a discount di ∈ (0, 1] for
the data consumer bi ∈ B with low accuracy requirement
(Please refer to Section 3 for the determination of the dis-
count factor.). Thus, the charge for the data consumer bi’s
query about the data commodity Yi is ci = pYi × di. If
data consumer bi’s valuation vi is higher than ci, she would

3. We can introduce privacy-preserving and verifiable mecha-
nisms [14] to evaluate the location information, and still protect the
privacy of data providers.
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TABLE 1
FREQUENTLY USED NOTATIONS

Notation Remark
A, xi Set of data providers and data observation.
φ̄, φ̄i Basic reward and bonus reward for data provider i.
Xy ,XY Random variable(s) with location(s) y or Y .

µy , µY , σ
2
y , ΣY Y Mean or mean vector and variance or covariance

matrix of random variable(s) Xy or XY .
µ̄y , σ̄2

y Posterior mean and posterior variance of random
variable Xy .

fXY |X A (xY |xA), Conditional Gaussian distributions.
Y Set of PoIs.
p, py Vector of basic prices, basic price.
B, bi Set of data consumers, data consumer.
v, vi Vector of data consumers’ valuations, valuation.
δ Upper bound of valuation.
κ Maximum dimension of data commodities.

εi, di, ci Data accuracy requirement, discount factor, charge.
Ψ, C Profit, revenue.
τ The portion of revenue for sharing.
Ai Set of data providers to generate the ith version.
V (A) Variance reduction.
∆j(A) Marginal variance reduction for data provider j.
α, β, γ Parameters of online mechanism.

purchase the query, and pay the charge; otherwise, she
leaves and pays nothing. We use vector c = (c1, c2, · · · , cn)
to denote the charges of all data consumers.

We list the frequently used notations in Table 1.

2.2 Problem Formulation

In this paper, we consider two closely related problems in
the mobile crowd-sensed data market: Profit Maximization
and Reward Sharing.

Profit Maximization: The goal of data vendor is to
maximize the profit from data trading, which is defined as
the difference between the revenue and the data acquisition
cost. The total revenue from data trading is the sum of the
charges for data customers that purchase data commodities,
i.e., C ,

∑
bi∈B:vi>ci

ci. The data acquisition cost is the
total rewards distributed to incentivize data providers, i.e.,
τ × C + φ̄ ×M , where M is the number of observed data.
Thus, the profit of the data vendor is Ψ , (1−τ)×C−φ̄×M .
As in previous papers [10], we will use competitive analysis
to investigate the performance of online pricing mechanism.
We here give the formal definition of (1 + ε)-competitive
online data pricing mechanism.

Definition 1 ((1+ ε)-Competitive Data Pricing Mechanism).
A data pricing mechanism is (1 + ε)-competitive if the ratio
between the profit of the optimal offline mechanism and the profit
of the online mechanism is (1 + ε).

The optimal offline mechanism selects a single fixed
price for each (basic) data commodity with the posterior
knowledge of the valuations of all data consumers. The
optimal revenue for each data commodity is given by
C∗ = p∗ × np∗ , where p∗ is the optimal price, and np is the
number of data consumers with values larger than p. This
optimal offline counterpart is widely used in performance
analysis of online learning algorithms [10], [12].

In contrast to the goal of the data vendor, the selfish
data consumers always tend to purchase their desired query
results with lower charges. For example, the data consumers
can indirectly infer the answer of an expensive query by

buying a set of cheaper queries. The data pricing mechanism
should be robust enough to resist such arbitrage behaviours.
We define an arbitrage-free data pricing mechanism as fol-
lows.

Definition 2 (Arbitrage-free Data Pricing Mechanism). Whe-
never a query q can be entirely answered by a query bundle
{q1, q2, · · · , qk}, an arbitrage-free data pricing mechanism must
satisfy that c(q) ≤

∑k
i=1 c(qk), where c(q) denotes the charge

for the query q.

We now formally present the problem of profit max-
imization in mobile crowd-sensed data markets: the data
vendor dynamically selects data providers to generate qua-
lified data commodities, and determines the charge c (by
calculating the basic prices p and discount factor d) for
data consumers B, such that the resulting data pricing
mechanism achieves a good approximation ratio in terms of
profit maximization and the property of arbitrage-freeness.

Reward Sharing: In data markets, the data commodities
are generated by aggregating the collected raw data from
data providers. As data can be copied with a negligible
marginal cost, the data can extract high revenue from the
market by repeatedly selling to a large number of data
consumers. Thus, in addition to the basic reward, the data
vendor should also share a portion of revenue with data pro-
viders to further incentivize them to contribute high quality
data. To determine the basic reward, the data vendor uses
the criterion of the number of data providers, as she wants to
minimize the total basic reward. Considering that the data
providers might submit data with heterogeneous qualities
and then have different contribution levels to generate data
commodities and the revenue of data trading, we should
use the criterion of contribution levels for reward sharing,
guaranteeing the fair axioms. In data markets, another im-
portant and critical issue for the data vendor is the incentive
design for data providers: how to generate the qualified data
commodities with the minimum basic reward, and fairly
distribute the total bonus reward τ × C among the data
providers A, given their heterogeneous contribution levels?

3 ONLINE DATA PRICING

In this section, we propose ARETE-PR, which is a version-
based online posted-pricing mechanism for mobile crowd-
sensed data market. ARETE-PR consists of two components:
a versioning mechanism and an online pricing mechanism.
The versioning mechanism efficiently selects a set of data
providers to generate a qualified version of data commodity
for data consumer, minimizing the data acquisition cost. The
online pricing mechanism dynamically determines the price
for each basic data commodity with the goal of revenue
maximization. The versioning mechanism and pricing me-
chanism jointly maximize the profit of data trading.

We begin with a simple but classical setting, in which
data consumers only issue single-data queries. In this case,
we can consider the price determination for each of basic
data commodities independently, and discuss the design
of ARETE-PR for one selected basic data commodity. We
further extend ARETE-PR to adapt to the other types of
query in Section 4.
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3.1 Design Rationale

Under the cost structure of information (a fixed cost of
production but negligible marginal costs of duplication), the
price of data should be linked to the valuations of data con-
sumers rather than data production costs. Furthermore, data
consumers have diverse accuracy requirements over data
commodities. Considering the new cost structure of data
and the diverse accuracy requirements of data consumers,
we propose a valuation-based data pricing mechanism cou-
pled with a versioning technique for mobile crowd-sensed
data trading. Specifically, we partition a data commodity
into multiple versions with different accuracies and prices,
and provide the qualified version and an appropriate price
for each arrived data consumer. The challenging problem
here is how to efficiently select data providers to generate
the qualified version with a minimum data acquisition
cost. We also need to determine the discount factor for
each version. Observing that the accuracy, i.e., the variance
reduction is a submodular function with respective to the
set of selected data providers, we can formulate the process
of versioning as a problem of submodular covering, and
propose a greedy selection algorithm with performance
guarantee. Furthermore, we set the price of each version as
the basic price of the full version multiplying a discounting
factor, which is proportional to the “distance” of the corre-
sponding version to the full version. We modify the concept
of relative entropy, a nature metric of distribution difference,
to measure this distance.

Yet, another critical problem of designing online data
pricing mechanism is the determination of basic prices.
The most challenging part is that both valuations and arri-
val sequence of data consumers are unknown to the data
vendor. The data vendor needs an online mechanism to
dynamically learn the valuation information of data con-
sumers, and sets a near-optimal basic price to maximize
the revenue. We determine the basic prices by making a
trade-off between “exploitation” and “exploration” to data
consumers’ valuations. On one hand, if the data vendor
exclusively chooses the candidate price that she believes is
the best (exploitation), she may fail to discover one of the
other candidate prices that actually has a higher revenue
in the long term. On the other hand, if she spends too
much time trying out all the candidate prices to learn the
valuations of data consumers (exploration), she may fail
to choose the price that is good enough to obtain a high
total revenue in time. Therefore, for each of the arrived data
consumers, we select a price following a mixed distribution,
which is a combination of an exploitation distribution and
an exploration distribution. Based on the response of the
data consumer to the chosen price, we update the mixed
distribution in a principle way, to guide the selection of
candidate prices in the following transactions.

3.2 Versioning

In ARETE-PR, we regard the conditional Gaussian distribu-
tion f(xy|xAi) generated by the observations xAi from the
selected data providersAi ⊆ A as a version of the basic data

commodity y ∈ Y,4 which satisfies the accuracy requirement
of the arrived data consumer bi if σ̄2

y ≤ εi. Here, we use
Ai to denote the data providers recruited to generate the
version for data consumer bi. Using the posterior covariance
in Equation (2), we can further express this constraint as

ΣyAiΣ
−1
AiAiΣAiy ≥ σ

2
y − εi. (3)

We call the left hand side of the above inequality as variance
reduction V (Ai) due to observing data from the selected data
providers Ai, i.e., V (Ai) , ΣyAiΣ

−1
AiAiΣAiy . We assume

the original variance σ2
y is a constant variance. As the data

vendor has to pay a fixed basic reward for each selected data
provider, she always wants to recruit less data providers
to achieve the accuracy requirements of data consumers,
minimizing the total basic reward. We now can formulate
the problem of basic reward minimization for the version
generation as follows

Problem: Basic Reward Minimization
Objective: Minimize φ̄× |Ai|
Subject to:

V (Ai) ≥ σ2
y − εi, Ai ⊆ A. (4)

It can be shown that the variance reduction function
V (A) is a monotonic submodular function with respective
to the set of selected data providers A [20], [41]. In addition,
the objective function is modular. Thus, the problem of basic
reward minimization is a submodular covering problem and
is NP-hard [38], [59]. Greedy algorithm has been recognized
as an efficient approximation approach for submodular op-
timization [41], [59]. We present a greedy algorithm for the
selection of data providers, and analyze the approximation
ratio for such greedy algorithm.

We now present the principle of greedy versioning me-
chanism in Algorithm 1 step by step. The versioning algo-
rithm greedily adds the most “informative” data provider
following a sequence, until the current posterior variance
satisfies the accuracy requirement of the data consumer.
Formally, our goal is to select the next data provider aj
that maximizes the marginal variance reduction ∆j(A) ,
V (A∪{aj})−V (A). where A is the set of currently selected
data providers. We break the tie following a random rule
(Lines 2 to 6). If the new posterior variance σ̄2

y is less than the
accuracy threshold εi, we setAi as the current data provider
set A (Line 7). From the result in [59], we have the following
performance guarantee for the greedy versioning algorithm.

Theorem 1. For the problem of basic reward minimization,
the greedy versioning algorithm can achieve the approximation
ratio of 1 + ln(∆max/∆min), where ∆max and ∆min are the
maximum marginal variance reduction and minimum marginal
variance reduction of only selecting one single data provider,
respectively, i.e., ∆max , maxai∈A ∆i(∅) and ∆min ,
minai∈A ∆i(∅).

The remaining issue is to determine discount factor
for the generated version. We set the discount factor of a
version proportional to its distance to the full version, i.e.,

4. For mobile crowd-sensed data, there are many possible versioning
strategies, e.g., aggregating different amounts of raw data to generate
versions, which is adopted in this paper, or artificially adding the noises
of different levels into an accurate data commodity.
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Algorithm 1: Versioning Mechanism
Input: The ith data consumer bi; The queried data

commodity y; The accuracy requirement εi; A
scale parameter λ.

Output: A set of selected data providers Ai; A
discount factor di.

1 A← ∅;
2 while V (A) < σ2

y − εi do
3 foreach aj ∈ A\A do
4 ∆j(A)← V (A ∪ {aj})− V (A) ;

5 a∗ ← arg maxaj∈A\A ∆j(A);
6 A← A

⋃
{a∗};

7 Ai ← A;
8 σ̄2

y|A ← σ2
y − ΣyAΣ−1

AAΣAy ;
9 σ̄2

y|At ← σ2
y − ΣyAiΣ

−1
AiAiΣAiy ;

10 f1(x) = fXy|XA(xy|xA); f2(x) = fXy|XAi (xy|xAi);

11 D̂ (f1||f2)← 1
2

(
log

σ̄2
y|Ai
σ̄2
y|A

+
σ̄2
y|A

σ̄2
y|Ai
− 1

)
;

12 di ← e−λD̂(f1||f2);
13 return Ai, di;

the distribution fXy|XA(xy|xA), and normalize the discount
factor for the full version as 1. The concept of relative entropy,
or Kullback-Leibler distance, is a measure of the distance bet-
ween two distributions [17]. Specifically, the relative entropy
between the full version f1(x) = fXy|XA(xy|xA) and the
generated version f2(x) = fXy|XAi (xy|xAi) is

D (f1||f2) ,
∫
f1(x) log

f1(x)

f2(x)
dx

=
1

2

(
log

σ2
2

σ2
1

+
σ2

1 + (µ1 − µ2)2

σ2
2

− 1

)
. (5)

The relative entropy is nonnegative and is equal to
zero if and only if f1 = f2. Intuitively, a version with a
lower accuracy should be “farther” from the full version.
However, the distance calculated by Equation (3) may not
reflect such property, because the relative entropy depends
on both the mean and variance. The accuracy of a data
commodity only rests on its variance. Inspired by this, we
modify the relative entropy by ignoring the mean terms, and
regard it as the distance between two versions

D̂ (f1||f2) =
1

2

(
log

σ2
2

σ2
1

+
σ2

1

σ2
2

− 1

)
. (6)

Considering that discount factor should lie in the range
[0, 1], we define the discount factor for the version as:

di , e−λD̂(f1||f2), (7)

where λ is a scale parameter.
We give the detailed steps to calculate the discount factor

for each version in Algorithm 1. We calculate the variance
σ̄2
y|A of the full version f(y|Ai) in Line 8. For the generated

version, we calculate its variance σ̄2
y|Ai in Line 9, and the

corresponding distance and discount factor according to
Equation (6) and Equation (7), respectively (Lines 11 to 12).

We use a simple example to illustrate the ideas of the
versioning mechanism in Figure 2. Suppose there are three
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Fig. 2. Versioning results of the data commodity at location (25, 10).

data consumers issuing data queries at the location (25, 10).
Their accuracy requirements are ε1 = 38.94, ε2 = 14.32 and
ε3 = 9.60, respectively. We show the set of data providers
selected by the versioning mechanism in Figure 2. From
this result, we observe that the data providers, neighboring
the queried point, have a high probability to be selected,
because they are more informative to the queried point.
At the same time, the versioning algorithm might ignore
some data providers, although they are in the vicinity of the
queried point, because their marginal entropy is relatively
small given the currently selected data providers. We set
the scale parameter λ in Equation (7) as 2.77 to adjust the
discount factors to appropriate values. Under this setting,
we calculate the corresponding discount factors for the three
versions as d = (0.36, 0.85, 1).

3.3 Online Pricing

We now describe the detailed principle of online pricing
mechanism in Algorithm 2. For each arrived data consumer,
we select the basic price from a vector of candidate discrete
prices p̂ = (p̂1, p̂2, · · · , p̂K), where p̂k = (1 + β)k−1 for any
1 ≤ k ≤ K and β > 0. Since the upper bound of valuation
is δ, we have K = blog1+β δc + 1. Let ci(k) be the revenue
attained by setting price p̂k for the ith data consumer bi. We
initially set c0(k) to be zero for any 1 ≤ k ≤ K. Given a
parameter α ∈ (0, 1], we define a weight wi(k) for the price
p̂k in the ith transaction as

wi(k) , (1 + α)
∑i
j=1 cj(k), (8)

which is an exponential weight function, denoting the per-
formances of the candidate prices in the previous tran-
sactions. The candidate price with a large weight should
have a high probability to be chosen as a basic price in
the following transactions. We denote the weight vector
for all candidate prices in the ith transaction by wi =
(wi(1), wi(2), · · · , wi(K)), and initially set w0 to be 1.

For the ith arrived data consumer bi ∈ B, Algorithm 2
selects a candidate price p̂k following the distribution f̂i(k),
which is a combination of an exploitation distribution and
an exploration distribution (Line 2). On one hand, we try
to exploit the currently expected best price to gain a high
revenue, and define the exploitation distribution as

fi(k) ,
wi−1(k)∑K
j=1 wi−1(j)

, ∀ 1 ≤ k ≤ K. (9)
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Algorithm 2: Online Pricing Mechanism
Input: Reals: α ∈ (0, 1], β > 0, γ ∈ (0, 1]; The ith data

consumer bi; A vector of discount factors d; The
highest valuation δ; The number of candidate
prices K; A vector of candidate prices p̂; A
weight vector wi−1.

Output: The charge ci for data consumer bi.
1 ci ← 0;
2 Select the candidate price as p̂k following the

probability: f̂i(k)← (1− γ)fi(k) + γg(k), where
fi(k) =

wi−1(k)∑K
j=1 wi−1(j)

and

g(k) = ∆
(1+β)K−k

, ∆ =
1− 1

1+β

1−
(

1
1+β

)K ;

3 Suppose the selected price is p̂ki ;
4 Choose the lowest version that satisfies the accuracy

requirement ηi of data consumer bi, and set her
discount factor d̂i ← dti ;

5 ci ← p̂ki × d̂i;
6 if Data consumer bi accepts the charge ci then
7 ci(ki)← ci;
8 else
9 ci(ki)← 0;

10 foreach k = 1 to K do
11 if k = ki then
12 ĉi(k)← γ∆

δ
ci(k)

f̂i(k)
;

wi(k)← wi−1(k)× (1 + α)ĉi(k);
13 else
14 ĉi(k)← 0; wi(k)← wi−1(k);

15 return ci;

On the other hand, since some candidate prices may obtain
a low revenue at first, but receive a high revenue later, we
also apply an exploration distribution to find the ultimate
optimal price in long terms. Thus, we further assign each
candidate price p̂k an exploration probability distribution.
A classical exploration distribution is uniform distribution,
which assigns each of the candidate prices the same pro-
bability [10]. However, considering that different candidate
prices can produce different amount of revenue, we adopt a
geometric distribution as the exploitation distribution, i.e.,

g(k) ,
1

1−
(

1
1+β

)K 1− 1
1+β

(1 + β)K−k
, ∀ 1 ≤ k ≤ K. (10)

To simplify notation, we set ∆ =
1− 1

1+β

1−( 1
1+β )

K . Since

the kth candidate price is p̂k = (1 + β)k−1,
such exploration distribution ensures that p̂k/g(k) =
O
(
(1 + β)k−1(1 + β)K−k

)
= O(δ), which is a useful pro-

perty for the competitive ratio analysis. Let p̂ki denote the
selected price for data consumer bi following the combined
distribution f̂i(k) (Line 3).

We efficiently select the smallest set of data providers
to generate the lowest version that satisfies the required
accuracy requirement of the data consumer bi.5 The discount

5. Although the data vendor can choose high versions for data
consumers to extract much revenue, this would incur market anarchy:
data consumers would strategically report low accuracy requirement
to seek less payments. The policy of selecting the lowest version en-
forces data consumers to truthfully report their required data accuracy
requirement.

factor d̂i to data consumer bi is the corresponding discount
factor dti for version ti returned by Algorithm 1 (Line 4).
The charge for data consumer bi then is ci = p̂ki×d̂i (Line 5).

According to the data consumer’s purchasing decision,
we receive a revenue ci(ki) ∈ {0, ci} of the chosen price p̂ki .
In the posted pricing setting, we cannot observe the revenue
generated by the other candidate prices. So we set ci(k) = 0
for any k 6= ki (Lines 6 to 9). Based on this revenue vector
ci = (ci(1), ci(2), · · · , ci(K)), we generate a virtual revenue
vector ĉi = (ĉi(1), ĉi(2), · · · , ĉi(K)), and use it to update
the weights of candidate prices. We calculate this virtual
revenue vector by distinguishing the two cases:

B For the chosen price p̂ki , we set the virtual revenue
ĉi(ki) to be γ∆

δ
ci(k)

f̂i(k)
.

B For the other prices p̂k, k 6= ki, we set ĉi(k) to be zero.
We update the weight vector wi using Equation (8) with

virtual revenue vector ĉi (Lines 10 to 14). We have the
following two properties for this virtual revenue vector ĉi,
which is heavily used in the analysis of competitive ratio in
next section.

I The expected virtual revenue (with respective to the
selection distribution f̂i(k)) for any candidate price p̂k is
proportional to the actual revenue of the price ci(k), i.e.,

E[ĉi(k)] = E
[
ĉi(k)|(p̂k1 , p̂k2 , · · · , p̂ki−1

)
]

= E
[
f̂i(k)× γ∆

δ

ci(k)

f̂i(k)
+ (1− f̂i(k))× 0

]
=

γ∆

δ
ci(k).

I The virtual revenue ĉi(k) is in the range [0, 1].

ĉi(k) =
γ∆

δ

ci(k)

f̂i(k)
≤ γ∆

δ

ci(k)× (1 + β)K−k

γ∆

=
(1 + β)k−1 × (1 + β)K−k

δ
≤ 1.

We remark that the data vendor can dynamically tune
the parameters α, β, γ in Algorithm 2 to adapt to different
market settings. Specifically, the parameter α represents the
weights of candidate prices in exploitation process (i.e., a
larger α indicates that we heavily exploit the candidate
prices with good performance in previous transactions.).
The parameter γ denotes the trade-off between the exploi-
tation and exploration (i.e., a smaller γ represents a higher
degree of exploitation.). For example, the data vendor can
set a large α and a small γ to actively exploit the collected
valuation knowledge, when the data providers’ valuations
follow a normal distribution. In contrast, when the data
providers’ valuations come from a uniform distribution, the
data vendor can set a low α and a high γ to achieve good
performance. The parameter β reflects the trade-off between
revenue maximization and computational complexity, i.e.,
a larger β, implying more candidate prices to choose, can
extract a larger revenue but incurs a higher computational
overhead. We design experiments to evaluate the effects of
these parameters in Section 6.

We finally illustrate this online pricing algorithm by an
example. For simplicity, suppose we only provide the full
version of the data commodity, and the parameters are
α = 1, β = 1 and γ = 2/3. We set the upper bound
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of valuation δ to be 2. According to these parameters, we
will only have K = 2 candidate prices with values 0
and 1 respectively. Recall that both prices have weight 1
initially. Therefore, they both have probability 1/2 in the first
exploration distribution f1. Furthermore, we can calculate
by Equation (10) that the first exploitation distribution is
g1(1) = 1/3 and g1(2) = 2/3. With γ = 2/3, our final
distribution f̂i will be 2

3fi + 1
3gi, which is f̂i(1) = 4/9

and f̂i(2) = 5/9. Now suppose for the first consumer, we
sampled k1 = 1 from this distribution. In this case, the
charge for the consumer will be p1 = 20 = 1. Assume that
the consumer accepts the charge. In this case, the revenues
for these two prices are c1(1) = 1 and c1(2) = 0. For p1, we
will update w2(1) = 20.4 = 1.3; but for p2, w2(2) will still
remain to be 1. As a result, the exploration distribution f2

will be biased towards 1 in the second round, i.e., we will
prefer choosing p1 for the second consumer.

3.4 Analysis

We analyze the competitive ratio of ARETE-PR in this sub-
section. We use Ψ∗ and Ψ̂ to denote the optimal profit and
approximate profit achieved by ARETE-PR, respectively.
Similarly,C∗ and Ĉ denote the optimal revenue and approx-
imate revenue, respectively. We have the similar meaning
for notations M∗ and M̂ . According to Theorem 1, we
have the following performance guarantee for the greedy
versioning algorithm

M∗

M̂
≥ 1 + ln

∆max

∆min
. (11)

We now analyze the competitive ratio of the online
pricing mechanism. In the online pricing mechanism, we
only consider a vector of discrete candidate prices p̂, while
ignoring the other possible values in [1, δ]. We show that the
attained revenue does not lose much under this restriction.

Lemma 1. The online pricing mechanism loses a (1 + β) factor
in rounding down the optimal price to one of the prices from p̂.

Proof. Let np denote the number of consumers whose va-
luations are greater than p, i.e., np = |{bi ∈ B|vi ≥ p}|. The
revenue of the optimal fixed price p∗ is C∗ = p∗ × np∗ .
For the optimal price p∗, there exists some index k ∈ [1,K]
such that (1 + β)k−1 ≤ p∗ ≤ (1 + β)k. Let C∗β represent
the revenue of the optimal fixed price mechanism, where
the candidate prices are restricted in the the discrete price
vector p̂. We can have:

C∗β ≥ (1 + β)k−1 × n(1+β)k−1 ≥ (1 + β)k−1 × np∗

≥ p∗

(1 + β)
× np∗ =

1

(1 + β)
× C∗.

The second inequality comes from the fact that decreasing
the fixed price from p∗ to (1 + β)k−1 does not reduce the
number of sales to data consumers.

We then show another useful lemma for the competitive
ratio analysis.

Lemma 2. For any parameter α > 0, any sequence of virtual
revenue vectors ĉ1, ĉ2, · · · , ĉn, and the exploitation distribution
vectors fi = (fi(1), fi(2), · · · , fi(K)), we have:

n∑
i=1

fi · ĉi ≥
∑n
i=1 ĉi(k) log (1 + α)− logK

α
, ∀1 ≤ k ≤ K.

Proof. Let Wi =
∑K
k=1 wi(k) for any 1 ≤ i ≤ n. Since the

virtual revenue ĉi(k) is in the range [0, 1], we can get the
following equations.

Wi

Wi−1
=

K∑
k=1

wi−1(k)(1 + α)ĉi(k)

Wi−1
≤

K∑
k=1

wi−1(k)(1 + αĉi(k))

Wi−1

= 1 + α

∑K
k=1 wi−1(k)ĉi(k)

Wi−1
,

where for the inequality we used the fact that for x ∈ [0, 1],
(1 + α)x ≤ 1 + αx. Thus,

log
Wn

W0
=

n∑
i=1

log
Wi

Wi−1
≤

n∑
i=1

(
1 + α

∑K
k=1 wi−1(k)ĉi(k)

Wi−1

)

≤
n∑
i=1

α

∑K
k=1 wi−1(k)ĉi(k)

Wi−1
= α

n∑
i=1

K∑
k=1

fi(k)ĉi(k)

= αfi · ĉi. (12)

Since Wn ≥ wn(k) = (1 + α)
∑n
i=1 ĉi(k) for any 1 ≤ k ≤ K,

and W0 = K, we have

log
Wn

W0
≥

n∑
i=1

ĉi(k) log (1 + α)− logK. (13)

Combining Equations (12) and (13), we get

fi · ĉi ≥
∑n
i=1 ĉi(k) log (1 + α)− logK

α
.

We have completed the proof.

By Lemma 1, Lemma 2 and an appropriate choice of
parameters α, β and γ, we can obtain the following com-
petitive ratio for the online pricing mechanism.

Theorem 2. Given a real value ε, there exists a constant θ, such
that for any valuation sequences v with optimal revenue C∗ ≥
θδ log log δ, the online pricing mechanism is (1 + ε)-competitive.

Proof. Using Lemma 2 and the properties of the online
pricing mechanism, we show the lower bound of revenue∑n
i=1 ci(ki) for any selected basic price sequence p̂ =

(p̂k1 , p̂k2 , · · · , p̂kn).

n∑
i=1

ci(ki) =
δ

γ∆

n∑
i=1

f̂i(ki)ĉi(ki)

=
δ

γ∆

n∑
i=1

[
(1− γ)fi(ki)ĉi(ki) + γ

∆

(1 + β)K−ki+1
ĉi(ki)

]

≥ (1− γ)δ

γ∆

n∑
i=1

fi(ki)ĉi(ki) =
(1− γ)δ

γ∆

n∑
i=1

fi · ĉi

≥ (1− γ)δ

γ∆α

(
n∑
i=1

ĉi(k) log (1 + α)− logK

)
.
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We next take the expectation of both sides of the above
equation with respect to distribution p̂. Having E[ĉi(k)] =
γ∆
δ ci(k) for each ĉi(k), we can get:

E

[
n∑
i=1

ci(ki)

]

≥ (1− γ)δ

γ∆α

[
γ∆

δ
×

n∑
i=1

ci(k) log (1 + α)− logK

]

=
(1− γ) log (1 + α)

α

n∑
i=1

ci(k)− (1− γ)δ logK

γ∆α

≥ (1− γ − α

2
)C∗β −

δ log log δ

γ∆α

≥
(1− γ − α

2 )

(1 + β)
C∗ − δ log log δ

γ∆α
.

In the third equality, we select the optimal fixed price from
p̂, and thus maxk{

∑n
i=1 ci(k)} = C∗β . The third equality

follows from that log (1 + α) ≥ α − α2

2 for any α > 0. By
Lemma 1, the last inequality holds. By choosing appropriate
parameters α, β and γ, we prove the theorem.

We have proven that the online pricing mechanism
achieves a constant competitive ratio when the optimal
revenue is larger than O(δ log log δ). The following theorem
shows that any online pricing algorithm that achieves a
constant ratio, must have an additive constant term Ω(δ).
Designing an online pricing algorithm with a tight lower
bound is our future work.

Theorem 3. There is no constant-competitive online pricing
algorithm for all valuation sequences with C∗ ≥ o(δ).

Proof. We can state the theorem in another way: suppose
APX is an online algorithm with a constant competitive ratio
c, i.e., for all valuation sequence v, APX(v) ≥ C∗(v)/c −
f(δ). Then, we must have f(δ) = Ω(δ). This statement
directly implies the claim we make in the theorem, and
we now prove that f(δ) ≥ δ/(ηη1), where η = 2c and
η1 = 2ηη−1.

We assume that the valuation sequence contains only
one valuation. Let Pr[a, b] denote the probability that me-
chanism APX sets the sales price in the range [a, b]. We prove
the result by distinguishing two cases.
• Suppose it is the case that Pr[1, δ/η1] ≤ 1/η. Then,

if the valuation is δ/η1, the online algorithm’s expected
revenue is at most APX(v) = δ/(η1η) while the opti-
mal result is C∗(v) = δ/η1. Therefore, we have: f(δ) ≥
C∗(v)/c−APX(v) ≥ δ/(η1c)− δ/(η1η) = δ/(η1η).
• In the case that Pr[1, δ/η1] > 1/η, we define the series

Lt as follows, L0 = 0 and Lt+1 = δ/η1 + Lt. We can get
Lt+1 = δ/η1 + δη/η1 + · · ·+ δηt/η1. By definition of η and
η1, we have Lk ≤ δ. Combining that Pr[0, δ/η1] > 1/η,
there must exist some interval (Lt, Lt+1] ⊆ [1, δ] such
that Pr(Lt, Lt+1] ≤ 1/η. Suppose the valuation is Lt+1.
In this case, the online algorithm’s expected revenue is at
most APX(v) = Lt + Lt+1/η, while the optimal result
is C∗(v) = Lt+1. Therefore, we have f(δ) ≥ C∗(v) −
APX(v) ≥ Lt+1/c−(Lt+Lt+1/η) = Lt+1/η−Lt. Plugging
in the definition of Lt+1, we can get that f(δ) ≥ δ/(ηη1).

From the above analysis of two cases, we can conclude
that f(δ) ≥ δ/(ηη1), and thus our claim holds.

From the above analysis, we have the following perfor-
mance guarantee for the online pricing mechanism under
the condition that C∗ ≥ θδ log log δ:

C∗

Ĉ
≤ 1 + ε. (14)

We now can prove the competitive ratio of ARETE-PR in
terms of profit maximization.

Theorem 4. For the problem of profit maximization in crowd-
sensed data markets, ARETE-PR can achieve the competitive ratio
of (1 + ε).

Proof. We can assume that the performance loss from reve-
nue maximization is less than the performance loss from
basic reward minimization, i.e., (1 + ε) ≤ 1 + ln ∆max

∆min
, as ε.

We also assume that both optimal profit and approximate
profit are non-negative, i.e., (1− τ)×C∗ − φ̄×M∗ ≥ 0 and
(1− τ)× Ĉ − φ̄× M̂ ≥ 0. From equations (11) and (14), we
then have

C∗

Ĉ
≤ (1 + ε) ≤ 1 + ln

∆max

∆min
≤ M∗

M̂
.

Furthermore, we can verify that for any positive numbers a,
b, c and d with a − c ≥ 0 and b − d ≥ 0, if a/b ≤ c/d, then
we have (a− c)/(b−d) ≤ a/b. Based on these observations,
the approximation ratio of ARETE-PR satisfies the following
relation:

Ψ∗

Ψ̂
=

(1− τ)× C∗ − φ̄×M∗

(1− τ)× Ĉ − φ̄× M̂

≤ C∗

Ĉ
≤ (1 + ε). (15)

Therefore, our theorem holds.

4 ADAPTION TO OTHER QUERY TYPES

In this section, we extend ARETE-PR to support multi-data
query and range query scenarios.

4.1 Multi-Data Query
We can formulate the pricing problem for multi-data query
as an unlimited-supply combinatorial posted-price auction
with single-minded data consumers. A single-minded data
consumer is interested in only a single data commodity, and
has no valuation for all the other data commodities6. As we
have discussed in Section 2.1, the price of a data commodity
Y ⊆ Y is the sum of the prices of the basic data commodity
in it, i.e., pY =

∑
y∈Y py .

The extended ARETE-PR also consists of two compo-
nents: versioning mechanism and pricing mechanism. We
show that the versioning mechanism in ARETE-PR can be
modified slightly to provide the version generation in the
multi-data query scenario. Based on the pricing algorithm

6. In contrast, a multi-minded data consumer requests for multiple
data commodities, and has different private valuations for different
commodities. The multi-minded data consumers have powerful strate-
gic behaviors to manipulate the online pricing mechanisms. The related
works about the multi-arm bandit problem in strategic setting [2], [5]
shed light on designing online pricing mechanism to resist the complex
strategic behaviors of multi-minded data consumers. We reserve the
detailed discussion to our future work.
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Algorithm 3: Pricing Mechanism for Multi-Data
Query

Input: A set of random basic data commodity Y1; A
data consumer bi; A data commodity Yi; A
discount factor vector dYi ; A weight vector
W.

Output: The charge ci for the data consumer bi.
1 ci ← 0;
2 if |Yi

⋂
Y1| = 1 then

3 y ← Yi
⋂

Y1;
4 ci ← OPMy(bi, dYi ,Wy);
5 else
6 Ignore the data consumer bi;

7 return ci

in original ARETE-PR, we design an online randomized
pricing mechanism for multi-data query, and analyze its
competitive ratio.

Versioning Mechanism In multi-data query scenario,
the accuracy of a data commodity Y ⊆ Y is its average

posterior variance
∑
y∈Y σ̄

2
y

|Y | after observing data from the
selected data providers Ai. The data commodity satisfies
the accuracy requirement of the data consumer bi ∈ B when∑
y∈Y σ̄

2
y

|Y | ≤ εi, which can be further expressed as∑
y∈Y

ΣyAiΣ
−1
AiAiΣAiy ≥

∑
y∈Y

σ2
y − |Y | × εi.

The sum of submodular functions is also a submodular
function. Similarly, we can formulate the process of data
provider selection as a submodular covering problem, and
the greedy versioning mechanism in ARETE-PR can be
applied to the scenario of multi-data query . To deter-
mine the discount factors of different versions in multi-
data query scenario, we extend relative entropy between
the full version f1(x) = fXY |XAT (xY |xAT ) and the tth
version f2(x) = fXY |XAt (xY |xAt) to multivariate Gaussian
distribution scenario, and define the revised relative entropy
as

D̂ (f1||f2) ,
1

2

(
log
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1)− |Y |

)
,

where tr(Σ) is the trace of matrix Σ. We use this relative
entropy to determine the discount factor for each version.
Using the new concepts of accuracy and relative entropy
D̂ (f1||f2), we can extend the versioning mechanism in
ARETE-PR to multi-data query scenario, achieving the same
performance guarantee.

Theorem 5. For the problem of basic reward minimization in
multi-data query scenario, the greedy versioning mechanism still
achieves the approximation ratio of 1 + ln ∆max

∆min
.

Online Pricing Mechanism Algorithm 3 presents the
pseudo-code of online pricing mechanism for multi-data
query. We reduce the online randomized pricing mechanism
for multi-data query into multiple pricing mechanisms for
single-data query in original ARETE-PR, i.e., Algorithm 2.
We describe this reduction in the following procedure.

Step 1: We first randomly partition the basic data com-
modities Y into two sets: Y1 and Y2, by placing each basic
data commodity into Y1 with probability 1

κ , where κ is
the maximum size of the required data commodities, i.e.,
κ = maxbi∈B |Yi|.

Step 2: We ignore data consumers, who want zero or
more than one basic data commodity in Y1, and only
consider the data consumers who want exactly one data
commodity in Y1. We denote this type of data consumers
by B1 =

{
bi ∈ B

∣∣|Yi⋂Y1| = 1
}

.
Step 3: We then set the prices of the basic data com-

modities in Y2 as zero, and effectively set the prices of
the basic data commodities in Y1 with respect to the data
consumers B1. Given a qualified data consumer bi with
Yi ∩ Y = y, a discount factor vector dYi , and a weight
vector Wy , the Online Pricing Mechanism (abbreviated as
OPMy) for single-data query can determine the price for
the basic data commodity y and the charge for the data
consumer bi (Line 3 to 4). The discount factor vector dYi
for Yi is calculated by versioning mechanism. All the other
parameters for the algorithm OPMy are the same for all the
basic data commodities, and we omit them here.

We show that this extended online pricing mechanism
also achieves sub-optimal revenue.

Theorem 6. Given a real value ε, there exists a constant θ such
that for any valuation sequences with optimal revenue C∗ ≥ l ×
θ×δ×log log δ, the extended online pricing mechanism is (1+ε)-
competitive.

Proof. We use p∗ = (p∗y1 , p
∗
y2 , · · · , p

∗
yl

) to denote the optimal
basic price vector for the basic data commodity Y in multi-
data query scenario, and C∗ to denote the optimal revenue
achieved by p∗. Let C∗i,j denote the revenue made by selling
data commodity yi to data consumer bj with price p∗yi , and
thus C∗i,j ∈

{
0, p∗yi × dj

}
and C∗ =

∑l
i=1

∑n
j=1 C

∗
i,j . Define

a indicator variable Xi,j = 1 if the data commodity yi ∈ Y1

and bj ∈ B1; otherwise Xi,j = 0. We have

E [Xi,j ] = Pr [yi ∈ Y1, bj ∈ B1] ≥ 1

κ

(
1− 1

κ

)κ−1

.

We first show the relation between C∗ and the quantity
E
[∑

yi∈Y1

∑
bj∈B1

C∗i,j

]
.

E

 ∑
yi∈Y1

∑
bj∈B1

C∗i,j

 = E

 l∑
i=1

n∑
j=1

Xi,jC
∗
i,j


=

l∑
i=1

n∑
j=1

E [Xi,j ]C
∗
i,j ≥

1

κ

(
1− 1

κ

)κ−1

C∗

≥ C∗

κe
.

We next analyze the expected revenue achieved by Al-
gorithm 3. We can view Algorithm 3 as performing |Y1|
separate online pricing algorithms for single-data query. Let
C∗i denote the optimal revenue using a fixed basic price for
yi ∈ Y1 We note that the revenue C∗i is at least

∑
bj∈B1

C∗i,j ,
because setting prices of the basic data commodities in Y2 to
be zero can increase the number of sales to data consumers
in B1. By Theorem 2, the expected revenue of the online
pricing mechanism OPMyi for a single data commodity
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yi ∈ Y1 will be at least (1 + ε)C∗i − O (θ × δ × log log δ).
Therefore, given a randomized set of basic data commodi-
ties Y1, the revenue achieved by Algorithm 3 is at least:∑

yi∈Y1

(
(1 + ε)C∗i −O(θ × δ × log log δ)

)
.

Taking the expectation of the above equation with re-
spect to the randomized generation of set Y1, we can get:

E

 ∑
yi∈Y1

(
(1 + ε)C∗i −O(θ × δ × log log δ)

)
≥ E

[
(1 + ε)

∑
yi∈Y1

∑
bj∈B1

C∗i,j

− |Y1|O (θ × δ × log log δ)

]

≥ 1 + ε

κe
C∗ −O

(
l

κ
× θ × δ log log δ

)
.

Similarly, by selecting appropriate parameters α, β and γ
and assuming that k is a constant, we can get the results.

Using the similar analytical technique in Theorem 4, we
can have the following result for the extended ARETE-PR
mechanism.

Theorem 7. For the problem of profit maximization in multi-data
query scenario, the extended ARETE-PR mechanism still achieves
the competitive ratio of 1 + ε.

4.2 Range Query

In the case of range query, a data consumer wants to know
the probability that a data commodity belongs to a specific
range. For example, data consumers may be interested
in whether monitoring environmental parameters, such as
temperature, concentration of carbon dioxide, exceed some
thresholds. The above mechanisms for single-data query
and multi-data query can be easily extended to support
range query. The versioning mechanisms remain the same,
while in the pricing mechanisms, i.e., Algorithm 2 and
Algorithm 3, we multiply the final price by another discount
factor dr = 1

2|Y | . This is because data consumers can
know the posterior mean µ̄Y of the data commodity Y
by performing 2|Y | range queries. More specifically, data
consumers can learn the mean of each basic data commodity
y ∈ Y by asking two range queries: F (Xy ∈ [−∞, a1])
and F (Xy ∈ [−∞, a2]). This can be done by looking up
the standardized normal distribution table. As the mean of
data commodity Y is the vector of the mean of the basic
data commodity in Y , data consumers only need to ask 2|Y |
similar queries to learn the mean of the data commodity Y .
We can show that this modified online pricing mechanism
for range query still achieves a constant approximation
ratio. The proofs are similar as that in Theorem 4 and
Theorem 7. In the interest of space, we omit the proof.

Finally, we show that ARETE-PR is arbitrage-free for
different types of queries.

Theorem 8. ARETE-PR is an arbitrage-free data pricing mecha-
nism.

Proof. We say a query q is “determined” by a query bundle
{q1, q2, · · · , qk} when the query q can be answered by the
query bundle. We prove that ARETE-PR can resist arbitrage
behaviours in both single-data query and multi-data query.

B In the single-data query case, the query q1 with a low
data accuracy is determined by the query q2 with a high data
accuracy. According to our versioning rule in Algorithm 2,
the version used to answer the query q1 is not higher than
that used to answer q2. Since the version with a lower
accuracy has a large discount factor, the discount offered
to the query q1 is not less than that offers to q2. Therefore,
the charge to q1 is always not less than the charge to q2.

B In the multi-data query case, the multi-data query q
over the data commodity Y is determined by the single-
data query bundle {q1, q2, · · · , q|Y |}, where qy is a single-
data query over a basic data commodity y in Y . In extended
ARETE-PR, we set the price of the data commodity Y as the
sum of the basic prices of the basic commodities in Y . Thus,
no arbitrage behaviours exist in this query scenario.

B In the range query case, the data query q over a data
commodity Y is determined by the 2 × |Y | different range
queries over Y . In ARETE-PR, we set the charge of each
range query as the charge of q multiplying a discount factor

1
2×|Y | . Therefore, the charge to q is equal to the sum of the
charges to the range queries. In this case, ARETE-PR also
satisfies the property of arbitrage-free.

5 REWARD SHARING

In this section, we design a reward sharing scheme, namely
ARETE-SH, to fairly distribute the total bonus rewards
among data providers. We start from formulating the pro-
blem of reward sharing as a coalitional game based on the
versioning mechanism in ARETE-PR, which significantly
reduces the space complexity of the classical representation
form of the game. We then use a concise scheme, marginal
contribution networks [34] to capture the substitutability
among coalitions, further reducing the complexity of game
representation. Finally, we design a computationally effi-
cient algorithm to exactly calculate the Shapley value [50]
of the reward sharing game, achieving four basic fairness
axioms.

Since the total bonus rewards for data providers are
simply the sum of rewards they obtain from different data
commodities, we examine the reward sharing design for a
specific data commodity in the following discussion.

5.1 Cooperative Game for Reward Sharing
Considering that data providers collaborate to generate
data commodities, we model the interaction among data
providers with the tool of cooperative game theory. In
data markets, data providers could be connected with each
other via certain kinds of networks, and are able to form
small group and deviate from the ground coalition if the
reward is not distributed in a fair way. For example, in
recently emerging blockchain-based IoT data markets [21],
[23], [37], [51], data providers are connected via a distributed
network. As all the data trading information, including the
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reward received by each data provider, are published on the
blockchain, data providers could be aware of the unfairness
if the rewards are not well divided. The success of data
market heavily relies on recruiting enough data providers to
contribute high quality data. Considering the large volume
of users and the quick speed of information spreading in
social network, the data vendor could launch data acquisi-
tion campaign over social network. Data providers in social
network can form a team to achieve competitive advantage
and complete complex data acquisition tasks efficiently [42],
[49]. Therefore, it is nature to adopt cooperative game theory
to describe the behaviors of these groups in social network.

We model the problem of reward sharing in a data
market as a coalitional game with m data providers A =
{a1, a2, · · · , am} and a reward vector r = (r1, r2, · · · , rn),
R ,

∑n
i=1 ri, where ri is the exclusive bonus reward for

the set of data providers, who could provide the qualified
version of data commodity for the data consumer bi ∈ B.
The reward ri is a certain percentage of the revenue ci
generated by ARETE-PR from data trading, i.e., ri , τ × ci,
where the specific value of τ can be determined by the
negotiation between the data vendor and data providers
in a bargaining game [46]. We call any nonempty subset
of data providers A ⊆ A a coalition. In general, there
are exponential number of coalitions that can generate the
qualified versions, which satisfies the accuracy requirement
of the data consumer bi. This will take space exponential
in the number of data providers to describe the reward
sharing game. We reduce the space complexity by using the
versioning algorithm (Algorithm 1) to define the qualified
coalitions for reward sharing. We call the coalitions that
are selected by the versioning algorithm as basic coalitions.
As the versioning mechanism randomly picks one data
provider when multiple candidate data providers have the
same marginal variance reduction, there may exist multiple
eligible basic coalitions that have the same cardinality and
satisfy the accuracy requirements of data consumers. We de-
note these ei “equivalent” basic coalitions for the ith version
by a collection Âi =

{
A1
i ,A2

i , · · · ,A
ei
i

}
, where |Aji | = |Aki |

and V (Aji ) ≥ σ2
y−εi, V (Aki ) ≥ σ2

y−εi, for any 1 ≤ j, k ≤ ei.
We represent the basic coalitions for all versions by vector
A = (Â1, Â2, · · · , Ân). The data consumers are reordered
such that ε1 > ε2 > · · · > εn. According to the greedy
selection rule of the versioning algorithm, we can observe
that for any basic coalition Ai1 ∈ Âi1 of version i1 and a
lower version i2, 1 ≤ i2 < i1, there always exists a basic
coalition Ai2 ∈ Âi2 for version i2 such that Ai2 ⊂ Ai1 . We
say a coalition A can generate the ith version and is eligible
for sharing the reward ri, only if the coalition A contains
one of the basic coalition Aji from Âi.

By these notations, we can formally define the coalitional
game for reward sharing.

Definition 3. The reward sharing game can be represented by
the pair (A, W ), where

I A is the set of data providers and
I W : 2A 7→ R is a worth function that maps each coalition

of data providers A ⊆ A to a real-valued reward, i.e., W (A) =∑i∗

i=1 ri, where i∗ is the highest version that the coalition A can
generate, i.e., i∗ = arg max1≤j≤nA ⊇ A

j
i .

We assume that the reward of a coalition can be freely
distributed among its members, which is known as the
transferable utility assumption. The space complexity is still
exponential in the number of data providers if we directly
express the above reward sharing game. Observing that
basic coalitions in collection Âi are substitutable, we can
use a compact representation scheme, marginal contribution
networks [34], to capture this feature and efficiently describe
the reward sharing game in next subsection.

5.2 Marginal Contribution Networks

The basic idea behind marginal contribution networks (MC-
Nets) is to represent coalitional games using a set of ru-
les, which have the following syntactic form: Pattern →
Reward. The Pattern is a conjunction of data providers,
including two types of literals: positive literals and negative
literals. We use the negative literals to represent the absence
of certain data providers, which are useful for expressing
substitutability. Formally, we express the Pattern with mp

positive literals and mn negative literals as

{a1 ∧ a2 ∧ · · · ∧ amp ∧ ¬ā1 ∧ ¬ā2 ∧ · · · ∧ ¬āmn}.

We say that a rule applies to a coalition A, if A meets the
requirement of the Pattern, i.e., {ai}

mp
i=1 ∈ A and {āi}mni=1 /∈

A. The reward of a coalition is defined to be the sum over
the reward of all the rules that apply to the coalition.

We now use MC-Nets to represent the reward sharing
game in Definition 3, and show the corresponding pseudo-
code in Algorithm 4 (Lines 2 to 9). As the reward ri will
be counted only once for the reward of the coalition that
contains multiple basic coalitions from Âi, we need to
capture the substitutability among the basic coalitions in
Âi. The coalitional game for sharing the reward ri of the
tth version can be represented as the following rules:{

A1
i

}
→ ri{

A2
i ∧ ¬Ā1

i

}
→ ri
...{

Aeii ∧ ¬Ā
ei−1
i ∧ ¬Āei−2

i ∧ · · · ∧ ¬Ā1
i

}
→ ri

In the jth rule, the positive literals are Aji , and the negative
literals are data providers in

⋃j−1
k=1 Āki , where Ākj = Aki

∖
Aji

(Lines 4 to 6). The entire game for reward sharing can then
be built up from the set of rules for all versions (Lines 7
to 9). This expressive representation scheme fully describes
the reward sharing game from Definition 3, and reduces
the space requirement to O(ne∗), where n is the number of
versions (also the number of data consumers) and e∗ is the
maximum equivalent basic coalitions for one version, i.e.,
e∗ = max1≤i≤nei.

5.3 Computing the Shapley Value

We first briefly introduce the concept of Shapley value,
which is a powerful result for cooperative game proven by
Shapley in 1953 [50]. We use φi to denote the Shapley value
for data provider i ∈ A. The Shapley value is the unique
way to distribute the grand reward among data providers
that satisfies four fairness axioms:
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Efficiency (EFF): The sum of the share of all data provi-
ders is the grand reward, i.e.,

∑
i∈A φi = W (A) = R.

Symmetry (SYM): If data providers i and j are inter-
changeable, i.e., W (A∪ {i}) = W (A∪ {j}),∀A ⊆ A\{i, j},
then their Shapley values are equal, i.e., φi = φj .

Dummy (DUM): If data provider i is a dummy data
provider, i.e., her marginal contributions to all coalition A
are the same, then φi = W ({i}).

Additivity (ADD): For any two coalitional games V and
W defined over the same set of data providers A, φi(V +
W ) = φi(V ) + φi(W ) for all i ∈ A, where the game V +W
is defined as (V +W )(A) = V (A) +W (A) for all A ⊆ A.

The Shapley value to data provider i is the average
marginal contribution of i over all possible permutations
of the data providers, and can be calculated by:

φi =
∑

A⊆A\{i}

|A|!(|A| − |A| − 1)!

|A|!
(W (A ∪ {i})−W (A)).

Given the MC-Nets of the reward sharing game, we
can design ARETE-SH, a simple and efficient algorithm to
compute the Shapley value of the game. Specifically, we first
compute the Shapley value of data providers in each rule by
considering each rule as a separate game. The final Shapley
value of each data provider is the sum of the Shapley values
she obtains in all rules. The following lemma from [34] de-
monstrates that this “divide and conquer” scheme correctly
computes the Shapley value of data providers in the reward
sharing coalition game.

Lemma 3. The Shapley value of a data provider in reward sharing
game is equal to the sum of the Shapley value over each rule in
MC-Nets.

We now compute the Shapley value of data providers
in each rule, and show the corresponding pseudo-code in
Algorithm 4 (Lines 10 to 19). We separate the analysis into
two scenarios: one for rules with only positive literals, and
the other for rules with both positive and negative literals.

In the rules with only positive literals, the positive li-
terals in the rule are indistinguishable from each other. By
the Efficiency axiom and Symmetry axiom, the Shapley value
of each positive literals in the rule is r/mp, where r is the
reward of the rule, and mp is the number of positive literals
in the rule (Lines 12 to 14).

For the rules that have mixed literals, we further consi-
der the positive literals (Lines 16 to 17) and negative literals
(Lines 18 to 19), separately. A positive literal ai has non-
zero marginal contribution only in the permutation that ai
appears after the rest of the positive literals but before any
of the negative literals. Therefore, the Shapley value for the
positive literal ai in the rule with mp positive literals and
mn negative literals is

φi =
(mp − 1)!mn!

(mp +mn)!
r =

r

mp

(mp+mn
mn

) . (16)

The negative literal aj has a non-zero marginal contribution,
if all positive literals come before the literal aj , and aj is the
first among the negative literals. Thus, we have

φj =
mp!(mn − 1)!

(mp +mn)!
(−r) =

−r
mn

(mp+mn
mp

) . (17)

Algorithm 4: Reward Sharing Mechanism
Input: A basic coalition vector A; Reward vector r.
Output: Reward vector for data providers Φ.

1 Rule← ∅; Φ← 0;
2 for t = 1 to T do
3 for i = 1 to et do
4 for j = i− 1 to 1 do
5 Ājt ← A

j
t

∖
Ait;

6 Pos← Ait;
Neg ←

{
¬Āi−1

t

∧
¬Āi−2

t

∧
· · ·
∧
¬Ā1

t

}
;

7 Pattern← Pos
∧
Neg;

8 Reward← rt;
9 Rule← Rule

⋃{
(Pattern→ Reward)

}
;

10 foreach (Patternk → Rewardk) ∈ Rule do
11 mp ← |Posk|; mn ← |Negk|;
12 if Patternk is positive then
13 foreach ai ∈ Patternk do
14 φi ← φi + rk

|mp+mn| ;

15 if Patternk is mixed then
16 foreach ai ∈ Posk do
17 φi ← φi + rk

mp(mp+mnmn
)

;

18 foreach ai ∈ Negk do
19 φi ← φi − rk

mn(mp+mnmp
)

;

20 return Φ;

According to Symmetry axiom, all positive literals have the
same value φi, and negative literals have the value of φj .

We can compute the Shapley value of a data provider
in a given rule within constant time. There are at most
n × e∗ rules in the game, and thus the time complexity of
Algorithm 4 is O(mne∗).

6 EVALUATION RESULTS

In this section, we evaluate ARETE on a public real-world
sensory data set.

Sensory Data Set. The data set we considered in our
evaluations is the Intel sensed data set collected by Intel
Berkeley lab between February 28th and April 5th, 2004. As
shown in Figure 3, 54 Mica2Dot sensor nodes were deployed
in the lab to collect multi-dimensional environment attri-
butes, including temperature, humidity, light, voltage, and
etc, in a real time manner. In our evaluations, we sample
temperature measurements at 30 seconds intervals on 11
consecutive days (Starting Feb. 28th, 2004) in the lab with
x-coordinate varying from 0m to 40.5m and y-coordinate
varying from 0m to 31m. We set the upper right corner
of the lab to be the origin with the coordinates (0, 0). We
collect 11 data sets, randomly choose one of them as the
data commodity, and use the remaining data sets to train
the parameters of Gaussian Process model.

For choosing Gaussian Process as the statistical mo-
del, we have to know the mean and kernel functions. In
our evaluations, we use regression techniques to estimate
the mean function. We assume that the kernel function is
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Fig. 3. Sensor network deployment with 54 nodes in one selected lab.

isotropic, which means that the covariance between two
locations only depends on their corresponding distance.
One canonical isotropic kernel function is Gaussian kernel
function: K(a1, a2) = σ2 exp

(
−d(a1,a2)2

2l2

)
, where d(a1, a2)

is the distance between locations a1 and a2. Using the
training data sets, we can learn the parameters σ and l
by cross-validation. In order to verify the efficient descrip-
tion of the isotropic kernel function for our data sets, we
compare the empirical data of each sensor node with the
readings inferred via the data from the other 53 sensors.
As Figure 4(a) shows, for most sensor nodes (around 85%),
the error of the inferential readings are within 10% of the
ground truth. We note that ARETE is independent of specific
kernel functions. For more complicated environment, we
can adopt some general anisotropic kernel functions [47].
After determining the mean and kernel functions, we can
plot the posterior mean and posterior variance of the lab in
Figure 4(b) and Figure 4(c), respectively, using Equation (1)
and Equation (2). Figure 4(b) shows the areas near the
windows (y-coordinates lie near 0.) have lower inferential
temperature. From Figure 4(c), we observe that area A and
areaB, located in the center of the lab, have higher posterior
variances, because in these areas with few sensor nodes
deployed, we lack enough relative data to confidently infer
their readings.

Evaluation Setup. We introduce the setting of our eva-
luations. We regard the 54 sensor nodes as data providers
in the context of data market. We create a finite mesh grid
with mesh width 1m in the lab region, and obtain 1312 grid
points, which are considered as basic data commodities. We
emulate a large scale data market, in which the number
of data consumers ranges from 105 to 106 with increment
of 105. We consider two classical valuation distributions:
Uniform distribution and Normal distribution, and set the
maximum valuation of data consumers as δ = 256. We
randomly generate an accuracy requirement ηi ∈ (0, 1]
for each data consumer bi. All the evaluation results are
averaged over 200 runs.

6.1 Performance of ARETE-PR
We implement ARETE-PR, and compare its performance
with three other pricing mechanisms: Optimal pricing me-
chanism (“OPT” for short), Random pricing mechanism
(“Random” for short), and ARETE-PR without versioning
(“No Version” for short). In “OPT” mechanism, the valua-
tion information and arrival sequence of all data consumers
are known in advance, and the data vendor can calculate
the off-line optimal revenue by setting a single fixed price.
We note that the “OPT” is impractical as it requires the

priori knowledge of data consumers’ valuations, but can be
served as a bench mark in our evaluations. In “Random”
mechanism, we randomly select a price in [1, δ] as the charge
for each data consumer’s query. In order to investigate
the impact of versioning mechanism on the data market’s
performance, we also consider the ARETE-PR without ver-
sioning, in which each data commodity only has the full
version. Considering the computational overhead, we set β
to be 0.1, which can capture at least 90% of optimal revenue
by Lemma 1. Since α and β jointly determine the trade-off
between exploration and exploitation, we fix α as 0.02, and
adjust γ to examine the role of exploration and exploitation
in different valuation distribution scenarios. When the valu-
ations are drawn from normal distribution, we set γ = 0.1,
and for uniform distribution, we set γ = 0.35. As we
determine the price for data commodities independently, we
only report the revenue of the data commodity at location
(25, 10) in this set of evaluations.

Figure 5 shows the revenue of different pricing mecha-
nisms, when the valuations follow two different distribu-
tions. Generally, in both normal distribution and uniform
distribution, ARETE-PR always outperforms the “Random”
and “No Version” mechanisms, and approaches the results
of “OPT”. The “Random” mechanism does not take any
advantage of the collected valuation information, and achie-
ves the worst performance. This performance degradation
is especially severe in normal distribution scenario, because
the “Random” mechanism does not adopt the exploitation
process, which can significantly improve the performance
when the valuations densely locate in a certain small range.
In “No Version” pricing mechanism, data consumers with
low accuracy requirements cannot afford the high price of
the full version, and the data vendor loses much revenue
from these data consumers. We observe that ARETE-PR
mechanism gains around 90% revenue of the “OPT” in both
uniform and normal distribution. This demonstrates that
ARETE-PR can adaptively learn the valuations of consu-
mers, and set an appropriate price to obtain high revenue.
From Figure 5, we can also see that the revenue increases
linearly with respect to the number of data consumers. This
is because data commodity is one kind of information goods
and is unlimitedly supplied, and thus the data vendor can
always gain revenue by selling more data commodities to
more data consumers.

6.2 Performance of ARETE-SH
We now report the evaluation results of ARETE-SH. For
each data commodity, we fix the number of corresponding
data consumers as 105, and choose normal distribution as
their valuation distributions. We first focus on sharing the
reward from selling a single data commodity at a fixed
location (25, 10). In practice, it is complicated to design each
version for each data consumer. Thus, the data vendor could
pre-define several standard versions, and selects the lowest
qualified version to the data consumer. As shown in Fi-
gure 2, we apply the versioning mechanism of ARETE to ge-
nerate three basic coalition A1, A2 and A3. We assume that
the reward for sharing is 80% of the revenue generated by
the online pricing mechanism of ARETE. Thus, we can cal-
culate the rewards for the three basic coalitions (A1,A2,A3)
as (r1, r2, r3) = (0.517× 106, 1.222× 106, 1.438× 106).
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Fig. 4. Posterior mean and posterior variance of the temperature Gaussian Process estimated using all sensors.
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Fig. 5. The revenue of ARETE under different valuation distributions.

We randomly select three data providers with ID 8 from
A1, ID 7 from A2\A1, and ID 11 from A3\A2. We plot their
corresponding rewards in Figure 6(a), where the separation
of the bars represents the source of the reward. Figure 6(a)
shows that the data providers from the same Ai obtain
the same reward from ri, e.g., data provider 8 and data
provider 7, belonging to A2, obtain the same reward from
r2. This is because according to the principle of ARETE-SH,
we equally share the reward ri among the data providers in
Ai. From Figure 6(a), we can also see that the data providers
from Ai obtain higher reward than the data providers from
Ai+1\Ai, e.g., data provider 8 receives more rewards than
data provider 7. The reason is that we have A1 ⊂ A2 ⊂ A3

from the versioning result, meaning that the data providers
in Ai can obtain rewards from rj , j ≥ i. Compared with
data providers in Ai+1\Ai, data providers in Ai can get
extra rewards from ri. Thus, we can conclude that ARETE-
SH equally distributes the reward ri among data providers
in Ai, and the data providers with high variance reduction
can receive more rewards, which demonstrates the fairness
of ARETE-SH.

We now investigate the effect of data market demand
on the reward sharing. We query on the data commodities
in the whole area, and calculate the accumulated reward of
each data provider. We first consider the unbiased demand
setting, in which each data commodity is queried by the
same number of data consumers. We further consider the
biased demand scenario, in which data commodities loca-
ted in the left side (x-coordinate lies in the range [0, 20])
receives more queries than those located in the right side.
In Figure 6(b) and Figure 6(c), the radius of each circle
represents the cumulative reward of data provider at the
corresponding location. As Figure 6(b) shows, in the unbi-
ased case, the data providers in the sparse area can attain
higher rewards than those in the dense area. The reason is

that ARETE-SH only shares the reward with the sets of data
providers selected by the versioning mechanism in ARETE-
PR. According to the selection criterion in greedy versioning
mechanism, the data providers in the sparse area have high
chances to be selected to generate the data commodities
around them, as they provide more informative information
to the generation of data commodities. From Figure 6(c),
we can see that the data providers in the dense area can
also obtain high reward if their located area (left side)
has popular queries. This is because the data vendor can
obtain large revenue from the data commodities with high
market demands, and the total bonus reward in ARETE-SH
is proportional to the revenue extracted from data trading.

The evaluation results of ARETE-SH have a profound
impact on the revenue of data trading in a long term: with
the discriminative reward provided by ARETE-SH, the data
acquisition scheme could automatically guide data provi-
ders to collect the data that is profitable in data markets.
This positive impact of ARETE-SH on revenue is due to two
critical design ideas in ARETE-SH: one is the criterion to
select the qualified coalitions of data providers for reward
sharing, and the other one is the proportion relation of
reward to the revenue. The result in Figure 6(b) implies
that the reward distributed by ARETE-SH would incentivize
data providers to collect data for the areas with few data
providers employed. This will improve the accuracies of
data commodities in the sparse areas and attract the data
consumers with high accuracy requirements, leading to high
revenue for the data market. Without ARETE-SH scheme,
the data commodities in these sparse areas cannot obtain
revenue as they do not satisfy the accuracy requirements
of these data consumers. Figure 6(c) indicates that ARETE-
SH would steer data providers to collect data for the areas
with high market demands, which would maintain the data
commodities in these areas at a high accuracy level, and
continuously extract revenue from the market.

7 RELATED WORK

We briefly review the related works in this section.
Data Marketplace In the seminal paper of data tra-

ding [6], Balazinska et al. visioned the implications of emer-
ging data markets, and discussed the potential research
opportunities in this direction. Later, Koutris et al. [40] poin-
ted out the inflexibility of current data pricing approa-
ches, and proposed a query-based data pricing framework,
which requires two important properties: arbitrage-free and
discount-free. Recently, Zheng et al. studied the problem of
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Fig. 6. Performance of ARETE-SH.

profit driven data acquisition in mobile crowd-sensed data
market [63]. However, these previous works did not answer
the fundamental question in data trading: how to determine
the price for data services? We tackle this open problem by
designing a online pricing mechanism.

Mobile Crowdsensing: The ubiquitous mobile devices
with powerful sensors have boosted the rapid growth of
diverse mobile sensing applications in numerous contexts.
For example, Gu et al. presented crowdsensing-based indoor
localization system [29]. Wang et al. designed CrowdAltas
to automatically update maps based on people’s GPS tra-
ces [56]. The success of these applications highly depends
on the supply of large amount of crowd-sensed data from
crowds. Thus, researchers have proposed pricing mecha-
nisms to incentivize workers to contribute their collected
data [32], [39], [61], [64]. Kai et al. extended the traditio-
nal single-minded setting to multi-minded user model, in
which users have different private costs for different tasks,
and only perform a subset of the tasks [32]. The authors
then designed an online pricing mechanism to incentive
multi-minded users under the adversarial scenario. Mobile
crowdsensing is a variance of crowdsourcing in mobile
environment, the problem of incentive design has also been
widely investigated for different types of crowdsourcing
services. For example, Wen and Lin designed an optimal
fee schedule to coordinate the incentive conflict between
a crowdsourcing website and contest sponsors [57]. Their
results imply that the widespread linear fee schedule is
not optimal. Alelyani et al. adopted the machine learning
techniques, such as topic modeling and NLP techniques,
for price estimation, and proposed Context-Centric Pricing
approach to support software crowdsourcing pricing [1].

The incentive design in mobile crowdsensing system is
different from that in data markets. Data providers in data
markets also incur sensing costs during data acquisition
process, and the data vendor compensates these costs with
a basic rewards, which is similar in mobile crwodsensing.
The difference part is that the data vendor has to share a
portion of revenue from data trading with data providers.
In data markets, we augment the basic reward with a bound
reward to offer incentive for data providers, and design an
efficient algorithm to calculate the Shapley value, achieving
the four fairness axioms. Currently, the operators collected
and analyzed crowd-sensed data for their own application
purposes. To break this barrier, we proposed a data market
to facilitate the exchange and trading of crowd-sensed data,
enabling the potential usage of mobile data in new sensing

applications.
Online Pricing Mechanism: In this paper, we built a

connection between data pricing design and online digital
auction design [9], [10], [31]. By exploiting the machine
learning techniques in multi-armed bandit problem [3],
Blum et al. [10] proposed an online posted-price digital
auction, achieving a constant competitive ratio with an
additional loss term O(δ log δ log log δ). Later, Blum and
Hartline [9] improved on the approximation results [10]
by reducing the additive loss term to O(δ log log δ). As for
online auctions with multiple unlimited items and single-
minded buyers, Balcan and Blum [7] proposed several ap-
proximation algorithms to achieve near-optimal revenue.
Balcan et al. [8] showed that single posted-price mechanisms
can achieve sub-optimal revenue for the unlimited supply
setting with multi-minded buyers. Without considering the
strategic behaviours of buyers, the digital auction design
can be reduced to algorithmic pricing problem, and several
approximation pricing algorithms have been proposed in
different scenarios [25], [53]. In mobile data markets, the
trading data should be further partitioned into multiple
versions to implement some levels of price discrimination,
extracting revenue from different market segments. The
major advantage of our work over the previous works is
to model digital goods as divisible items, producing new
challenges for online pricing mechanism design.

8 CONCLUSION

In this work, we have proposed the first data market pro-
totype to enable mobile crowd-sensed data trading on the
Web. We have built a Gaussian Process model to capture
the uncertainty of mobile data, and provided three basic
query interfaces for data consumers to extract their needed
information from the statistical model. We have considered
the problem of profit maximization, and proposed an online
query-based data pricing mechanism, namely ARETE-PR,
containing two major components: a versioning mecha-
nism and an online pricing mechanism. ARETE-PR satis-
fies arbitrage-freeness, and achieves a constant competitive
ratio. We have further designed a reward sharing scheme,
namely ARETE-SH, to calculate the Shapley value for data
providers. We have leveraged a real-world sensory data set
to evaluate ARETE. The evaluation results show that ARETE
outperforms the existing pricing mechanisms, and is almost
as effective as the optimal fixed price mechanism. ARETE-
SH can distribute the rewards in a fair manner.
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