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ABSTRACT

Although data has become an important kind of commercial goods,
there are few appropriate online platforms to facilitate the trading
of mobile crowd-sensed data so far. In this paper, we present the
first architecture of mobile crowd-sensed data market, and conduct
an in-depth study of the design problem of online data pricing.
To build a practical mobile crowd-sensed data market, we have to
consider three major design challenges: data uncertainty, economic-
robustness (arbitrage-freeness in particular), revenue maximization.
By jointly considering the design challenges, we propose a novel on-
line query-bAsed cRowd-sensEd daTa pricing mEchanism, namely
ARETE, to determine the trading price of crowd-sensed data. Our
theoretical analysis shows that ARETE guarantees both arbitrage-
freeness and a constant competitive ratio in terms of revenue maxi-
mization. We have evaluated ARETE on a real-world sensory data
set collected by Intel Berkeley lab. Evaluation results show that
ARETE outperforms the state-of-the-art pricing mechanisms, and
achieves around 90% of the optimal revenue.
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1 INTRODUCTION

As a significant business reality, data trading has attracted increas-
ing attentions and focuses. For example, Xignite [37] sells financial
data, Gnip [17] vends data from social networks, and Factual [16]
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trades geographic data. Potential data consumers might be Nas-
daq [28] for financial data, Instagram [22] for social data, and
Here [20] for location trace data. To support these online data trans-
actions, several marketplace services have emerged, e.g., Azure Data
Marketplace [3], Infochimps [21], and Dataexchange [13]. These
marketplace services offer centralized platforms, where data ven-
dors can upload and sell their data, and data consumers can discover
and purchase the data needed.

Although a few works have appeared to study the trading of
structured and relational data [4, 24], mobile crowd-sensed data
trading has not been fully explored in either industry or academia.
Ranging from wireless sensor networks that monitor large wildlife
environment [26] to vehicular networks for traffic monitoring and
prediction [41], these deployments generate tremendous volumes
of valuable but uncertain numeric sensing data. Due to lack of
effective ways for data exchange, the mobile crowd-sensed data
is currently used only by their operators for their own purposes.
Such status has significantly suppressed market demand for mobile
crowd-sensed data [8]. On one hand, data owners are willing to
share their data for profits. On the other hand, data consumers, such
as researchers, analysts, and application developers, would like to
pay for data services built upon the acquired raw data. Therefore,
it is highly needed to build an open data marketplace to enable
mobile crowd-sensed data trading, and to boost data economy un-
derlying the ubiquitous mobile data. Several open platforms, such
as Thingspeak [33] and Thingful [32], have recently emerged for
mobile data sharing on the Web, but none of them have deployed a
practical data trading platform.

To design a flexible and practical mobile crowd-sensed data mar-
ket, we have to cope with three major challenges. The first major
challenge comes from the uncertainty of mobile crowd-sensed data,
whichmakes it difficult to define the trading format of crowd-sensed
data. The mobile data is normally noisy and imprecise [9], making
it improper to directly feed raw data into data market. Furthermore,
we can discover rich semantic information behind the raw data
by aggregating data from multiple dimensions and domains [25].
Therefore, instead of directly selling raw data, the data vendor
should design a statistical model to describe the raw data, and then
provide semantically rich data services in the data market [8]. Re-
searchers have proposed several model-based methods to manage
sensing data in the past decades [9, 14, 31]. However, due to the
various formats of mobile sensing data and the complex correla-
tion among data, it is not possible to select a universal and concise
statistical model for all types of crowd-sensed data trading.

The second challenge is on designing flexible data pricing mech-
anisms with economic robustness guarantee. The pricing strategy
currently used to sell data is simplistic, i.e., the data vendor sets
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fixed prices for the whole or parts of the data set [3, 12]. This inflex-
ible approach not only forces the data vendor to anticipate possible
data subsets that data consumers might be interested in, but also
drives the data consumers to purchase a superset of the data in
need. To this end, a fine-grained data trading format, particularly,
query-based data pricing [4, 24], is more suitable for data trading.
In the data market with query-based data pricing mechanisms, data
consumers can purchase ad-hoc queries over the whole data set, and
thus have the flexibility to buy the data they exactly need. While
providing convenience for data trading, this flexible data pricing
mechanism can expose obscure arbitrage problems, in which a cun-
ning data consumer may infer the answer of an expensive query
from a set of cheaper queries. Thus, the data pricing mechanism
should satisfy the property of arbitrage-free [24] to resist such ma-
nipulation behaviour. This introduces heavy burden on the design
of data pricing mechanisms due to the complex arbitrage behaviour.

The third challenge is on revenue maximization with incomplete
information. Data can be considered as one kind of information
goods, which have a substantial initial investment cost, but tend
to induce negligible marginal cost for reproduction. Such a cost
structure makes existing cost-based pricing mechanisms unsuitable
for data trading. Thus, the value-based pricing mechanisms are
more attractable for data trading. However, in online marketing
system, the valuations and arrival sequences of data consumers are
unknown to the data vendor. Thus, the data vendor has to determine
the price of data with incomplete information. The optimization on
revenue maximization needs to take both the new cost structure
and the lack of information into account, which inevitably doubles
the difficulty in the design of data pricing mechanisms.

In this paper, we conduct an in-depth study on the problem
of market design for mobile crowd-sensed data trading. First, we
adopt a powerful statistical model, i.e., Gaussian Process, to capture
the uncertainty of numeric mobile data, and regard the resulting
aggregated distributions as trading commodities in the data market.
Based on this statistical model, we design a fine-grained query in-
terface, including three basic types of query formats, such that data
consumers can obtain needed information through issuing ad-hoc
queries. Second, we propose a query-based data pricing mechanism,
namely ARETE, to achieve arbitrage-freeness and a constant com-
petitive ratio. Specifically, for each of data commodities, ARETE
generates multiple versions with different accuracy levels to extract
revenue from data consumers in different market segments, and de-
termines the trading prices of the versions by dynamically learning
the valuations of data consumers. To the best of our knowledge, we
are the first to analyze the market structure of mobile crowd-sensed
data trading, and propose an online pricing mechanism to facilitate
this new kind of data business.

We summarize our contributions as follows.
• First, we present a marketplace for mobile crowd-sensed data

trading, in which the data vendor can offer data services upon
acquired raw data to obtain revenue, and data consumers can pur-
chase data services through issuing ad-hoc queries. We conduct a
thorough analysis on the market structure of mobile crowd-sensed
data trading, and examine the problems of revenue maximization.
• Second, we begin with considering a basic setting, in which

data consumers only ask single-data queries, and design ARETE, in-
cluding a versioning mechanism and an online pricing mechanism.
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Figure 1: A Mobile Crowd-Sensed Data Market.

We further extend ARETE to adapt to other data query scenar-
ios. We prove that ARETE achieves both arbitrage-freeness and a
constant competitive ratio in terms of revenue maximization.
• Finally, we evaluate the performance of ARETE with a real-

world sensory data set. The evaluation results show that ARETE out-
performs the state-of-the-art pricing mechanisms, and approaches
the optimal fixed price revenue.

The rest of this paper is organized as follows. In Section 2, we
present system model and problem formulation. In Section 3, we
propose a version-based online pricing mechanism, namely ARETE.
We extend ARETE to support diverse query formats in Section 4.
The evaluation results are presented in Section 5. In Section 6, we
review related work. We conclude the paper in Section 7.

2 PRELIMINARIES

In this section, we formally describe systemmodel for mobile crowd-
sensed data trading, and the problem of revenue maximization.

2.1 System Model

As illustrated by Figure 1, we consider a mobile crowd-sensed data
marketplace with three major entities: a set of data providers, a
data vendor, and a set of data consumers. In mobile crowd-sensing
applications, the data vendor acquires raw data by employing data
providers, such as sensor devices and mobile phone users, in a
monitoring region, and wants to make profits from providing data
services upon the collected data (Step �). The data vendor would
provide some rewards to incentivize data providers to report data
(Step �). Since the raw data is normally incomplete, imprecise,
and erroneous, the data vendor needs to build statistical models
to filter the raw data, and present a model-based query interface
for data consumers (Step �). The data consumers arrive at the data
market sequentially, and request for data services through issuing
ad-hoc queries over the statistical models (Step �). The data vendor
determines appropriate prices for data services in a principled way
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(Step �). Upon receiving declared prices, the data consumer makes
a purchasing decision (Step �). If the data consumer accepts this
price, she receives the answers of the queries, and pays for the
price (Step �). We introduce a set of major notations to define the
crowd-sensed data market.

Data Providers: In a monitoring region Θ, the data vendor
employs a set ofm data providers to collect mobile data. Let A =
{a1,a2, · · · ,am } denote the locations of the data providers, and
vector xA = (x1,x2, · · · ,xm ) denote the observations collected by
the data providers. For convenience of discussion, we assume that
each data provider only contributes one piece of data.

Statistical Model: Due to the unreliability of sensing devices
and the fragility of data communication links, the mobile data is
normally incomplete, imprecise, and erroneous. In addition, the
sensing data is collected at some selected locations, and cannot
fully represent the continuous feature of the physical environment.
Therefore, the data vendor needs to filter the noisy raw data, and to
infer the data at the locations where no data providers are employed.
In such cases, regression techniques can be used to handle the noise
in raw data and to perform inference. Although linear regression
can draw good inferences, it cannot quantify the uncertainty of
these inferences, which is critical to the price determination of data
in markets. We adopt a powerful regression technique Gaussian
Process [11, 36], which is a generalization of linear regression, and
has been widely used as to model numerical sensing data [14, 15], to
perform inferences, and to cope with the uncertainty quantification
in the process of inferences.1

We associate a random variable Xy with each location y ∈ Θ,
and a set of random variables XY with a set of locations Y ⊆ Θ,
representing the possible data at the corresponding locations. We
can specify the Gaussian Process model with a mean function μ,
and a symmetric and positive-definite covariance function Σ. Let
μY and ΣYY denote the mean vector and the covariance matrix
for a set of random variables XY ⊆ XΘ, respectively. In Gaussian
Process, the joint distribution over the corresponding set of random
variables XY ⊆ XΘ is a multivariate Gaussian distribution, and the
probability density function is:

f (xY ) =
1

(2π ) |Y |/2 |ΣYY |1/2
e− 1

2 (xY −μY )T Σ−1YY (xY −μY ) ,

where xY is a vector of possible values of random variablesXY , |Σ|
is the determinant of matrix Σ, and Σ−1 is the inverse matrix of Σ.
Under the Gaussian Process model, we can infer the data at any set
of locations Y ⊆ Θ (even there are no observations at these loca-
tions), condition on the observations xA. The resulting distribution
fXY |XA (xY |xA) is a conditional multivariate Gaussian distribution,
whose posterior mean vector μ̄Y and posterior covariance matrix

ΣYY can be expressed as:

μ̄Y = μY + ΣYAΣ
−1
AA

(xA − μA), (1)

ΣYY = ΣYY − ΣYAΣ
−1
AA

ΣAY , (2)

In data market, the data vendor obtains revenue by providing
data services based on the collected raw data xA. The other infor-
mation, such as the parameters of the statistical model, is public

1It is not possible to propose a universal statistical model to describe all types of
sensing data. In this work, we focus on numerical sensing data, such as temperature,
humidity, light, voltage, and etc.

knowledge. Thus, the posterior covariance matrix ΣYY , which is
independent on the actual observations xA, is publicly known.

Data Commodity: In crowd-sensed data market, we define the
data commodity for trading as the conditional Gaussian distribu-
tions fXY |XA (xY |xA).2 We call the distribution fXy |XA (xy |xA) of
a single random variableXy as a basic data commodity. Considering
that the possible locations of the monitoring region are infinite, the
data vendor selects a finite set of random variables at several loca-
tions, sometimes called as Point of Interests (PoIs), to approximately
describe the environmental phenomenon of the whole region Θ.
We denote the set of these PoIs by Y = {1, 2, · · · , l }. For notational
convenience, we will use Y ⊆ Y to index the data commodity
fXY |XA (xY |xA) in the following discussion.

The data vendor assigns a basic price py to each basic data
commodity y ∈ Y. We denote all the basic prices by a vector
p = (p1,p2, · · · ,pl ). We will discuss the determination of the basic
prices in Section 3. As mentioned above, the covariance matrices
are public knowledge, so the valuable information of a data com-
modity is its mean vector. Furthermore, by Equation (1), the mean
of a data commodity Y is actually the vector of the means of the
basic data commodities in it. Based on this fact, we set the price of
a data commodity Y ⊆ Y as the sum of the basic prices of the basic
data commodities in Y , i.e., pY =

∑
y∈Y py .

Data Consumers: The n data consumers, denoted by B = {b1,
b2, · · · ,bn }, arrive at the marketplace in a certain sequence. Each
data consumer bi issues a query about a data commodity Yi ⊆
Y, and has a private valuation vi for the query. For the conve-
nience of analysis, we normalize the valuations into the range
[1,δ]. We denote the valuations of all the data consumers by v =

(v1,v2, · · · ,vn ). We consider the following types of query in this
paper:
• Single-Data Query: A data consumer bi is interested in the

(inferential) data at a single location yi ∈ Y, i.e., the (posterior)
mean μ̄yi of the basic data commodity yi .
• Multi-Data Query: A data consumer bi wants to know the

(inferential) data of a certain regionYi ⊆ Y, i.e., the (posterior) mean
vector μ̄Yi of the data commodity Yi . We assume that the maximum
dimension of all the queried data commodities is a constant κ, i.e.,
κ = maxbi ∈B |Yi |.• Range Query: A data consumer bi asks for the probability that
the data at the region Yi ⊆ Y belongs to a range [ai , ai ].

Confidence Level: Each data consumer bi ∈ B reports an error
bound ϵi and a confidence level ηi , representing the acceptable
accuracy of the queried data commodity. The confidence level of
the data commodity Yi with an error bound ϵi is defined as:

CL(Yi , ϵi ) � F (xYi ∈ B(μ̄Yi , ϵi )), (3)

where B(μ̄Yi , ϵi ) represents the Euclidean ball with a center at

μ̄Yi and a radius ϵi . We note that confidence level CL(Yi , ϵi ) is
in direct proportion to the determinant of posterior covariance

matrices |ΣYiYi | [27]. We can obtain the approximation results
using numerical integration procedures. The data commodity Yi
satisfies the required confidence level of the data consumer bi if
CL(Yi , ϵi ) ≥ ηi .

2The possible privacy leakage of data providers and the potential violation of data
copyright can be some other reasons to trade data services rather than raw data in
data market.
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Data Charging: Considering that the data commodity with
different confidence levels should have different prices, the data
vendor offers a discount di ∈ (0, 1] for each data consumer bi ∈ B
according to her required confidence level (Please refer to Section 3
for the determination of the discount factor.). Thus, the charge
for the data consumer bi ’s query about the data commodity Yi is
ci = pYi × di . If data consumer bi ’s valuation vi is higher than
ci , she would purchase the query, and pay the charge; otherwise,
she leaves and pays nothing. We use vector c = (c1, c2, · · · , cn ) to
denote the charges of all data consumers.

2.2 Problem Formulation

In this paper, we consider one important problem in mobile crowd-
sensed data market: Revenue Maximization.

The goal of data vendor is to maximize obtained revenue, which
is defined as the sum of the charges for data customers that purchase
data commodities, i.e., C �

∑
bi ∈B:vi>ci ci . In contrast, the selfish

data consumers always tend to purchase their desired query results
with lower charges. For example, the data consumers can indirectly
infer the answer of an expensive query by buying a set of cheaper
queries. The data pricing mechanism should be robust enough to
resist such arbitrage behaviours. We define an arbitrage-free data
pricing mechanism as follows.

Definition 2.1 (Arbitrage-free Data PricingMechanism). Wh-enever
a queryq can be entirely answered by a query bundle {q1,q2, · · · ,qk },
an arbitrage-free data pricing mechanism must satisfy that c (q) ≤∑k
i=1 c (qk ), where c (q) denotes the charge for the query q.

We now formally present the problem of revenue maximization
in mobile crowd-sensed data market: The data vendor dynami-
cally determines the charge c (by calculating the basic prices p
and discount factor di ) for data consumers B, without knowing
the data consumers’ arrival sequence and private valuation vector
v, such that the resulting data pricing mechanism achieves good
competitive ratio and the property of arbitrage-freeness.

3 ONLINE DATA PRICING

In this section, we propose ARETE, which is a version-based online
posted-pricing mechanism for mobile crowd-sensed data market.
ARETE consists of two components: a versioning mechanism and
an online pricing mechanism. The versioning mechanism gener-
ates multiple versions for a data commodity to satisfy the diverse
confidence levels of data consumers. The online pricing mechanism
determines the basic price for each basic data commodity with the
goal of revenue maximization.

We begin with a simple but classical setting, in which data con-
sumers only issue single-data queries. In this case, we can consider
the price determination for each of basic data commodities inde-
pendently, and discuss the design of ARETE for one selected basic
data commodity. We further extend ARETE to adapt to the other
types of query in Section 4.

3.1 Versioning

In ARETE,we regard the conditional Gaussian distribution f (xy |xA )
generated by the observations xA from some data providersA ⊆ A

Algorithm 1: Versioning Mechanism

Input: The number of versions T ; An accuracy vector h; A scale

parameter λ.

Output: A vector of selected data providers A; A vector of discount

factors d.

1 t ← 0; A ← ∅; A← ∅;
2 while t ≤ T do

3 a∗ ← argminai ∈A\A H (Xy |XA ∪ Xai );
4 A← A

⋃{a∗ };
5 if H (Xy |XA ∪ Xai ) ≤ ht then
6 At ← A; A ← At ; t ← t + 1;

7 σy |AT ← σy − ΣyAT Σ−1ATAT ΣAT y ;
8 for t = 1 to T do

9 σy |At ← σy − ΣyAt Σ−1AtAt ΣAt y ;
10 f1 (x ) = fXy |XAT (xy |xAT );
11 f2 (x ) = fXy |XAt (xy |xAt );

12 D̂ (f1 | |f2) ← 1
2
��log

σ 2
y |At

σ 2
y |AT

+
σ 2
y |AT
σ 2
y |At

− 1��;
13 dt ← e−λD̂ (f1 | |f2 ) ;
14 return A, d;

as a version of the basic data commodityy ∈ Y,3 and use conditional
entropy to quantify the accuracy of the version. The conditional
entropy of the Gaussian distribution fXy |XA (xy |xA) is:

H (Xy |XA) � −
∫

f (xy ,xA ) log f (xy |xA ) dxy dxA

=
1

2
log
(
2πeσ̄ 2

y

)
, (4)

where σ̄ 2
y is the posterior variance of the distribution f (xy |xA ).

The conditional entropy can be calculated in a closed form using
Equation (2).

By using the standard market research techniques, such as sur-
veys, the data vendor can determine the number of versions T and
the corresponding accuracy vector h = (h1,h2, · · · ,hT ), meaning
that the conditional entropy of the t th version should be less than
ht .

4 In general, we assume that ht1 > ht2 , for 1 ≤ t1 < t2 ≤ T .
We use At ⊆ A to denote the data providers recruited to generate
the t th version. The data vendor always wants to employ less data
providers to achieve the accuracy requirements of the versions, due
to the high cost of recruiting large number of data providers.

We present the principle of greedy versioning mechanism in
Algorithm 1 step by step. The versioning algorithm greedily adds
the most “informative” data provider following a sequence, until the
current conditional entropy satisfies the accuracy requirement of
certain version. Formally, our goal is to select the next data provider
ai that minimizes H (Xy |XA ∪Xai ), where A is the set of currently
selected data providers. We break the tie following a random rule
(Lines 3 to 4). If the new conditional entropy H (Xy |XA ) is less
3For mobile crowd-sensed data, there are many possible versioning strategies, e.g.,
aggregating different amounts of raw data to generate versions, which is adopted in
this paper, or artificially adding the noises of different levels into a highly accurate
data commodity.
4Determining the number of versions and the accuracy vector is beyond the scope of
this paper, and will be discussed in our future work. Several previous works [30, 34]
shed light on possible solutions for this problem.
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than the accuracy of the tth version ht , we generate this version
by setting At as the current data provider set A (Lines 5 to 6).

The remaining issue is to determine discount factor for each
version. We set the discount factor of a version proportional to its
distance to the full version, i.e., the distribution fXy |XAT (xy |xAT

),

and fix the discount factor for the full version as 1. The concept
of relative entropy, or Kullback-Leibler distance, is a measure of the
distance between two distributions [10]. Specifically, the relative
entropy between the full version f1 (x ) = fXy |XAT (xy |xAT

) and

the t th version f2 (x ) = fXy |XAt (xy |xAt
) is

D ( f1 | | f2) �
∫

f1 (x ) log
f1 (x )

f2 (x )
dx

=
1

2
��log

σ 2
2

σ 2
1

+
σ 2
1 + (μ1 − μ2)2

σ 2
2

− 1�� . (5)

The relative entropy is nonnegative and is equal to zero if and
only if f1 = f2. Intuitively, a version with a lower accuracy should
be “farther” from the full version. However, the distance calculated
by Equation (5) may not reflect such property, because the relative
entropy depends on both the mean and variance. As shown in
Equation (4), the accuracy of a version only rests on its variance.
Inspired by this, we modify the relative entropy by ignoring the
mean terms, and regard it as the distance between two versions

D̂ ( f1 | | f2) = 1

2
��log

σ 2
2

σ 2
1

+
σ 2
1

σ 2
2

− 1�� . (6)

Considering that the discount factor should lie in the range [0, 1],
we define the discount factor for the t th version as:

dt � e−λD̂ (f1 | |f2 ) , (7)

where λ is a scale parameter.
We give the detailed steps to calculate the discount factor for

each version in Algorithm 1. We calculate the variance σy |AT
of

the full version f (y |At ) in Line 7. For the tth version, we calcu-
late its variance σy |At

in Line 9, and the corresponding distance
and discount factor according to Equation (6) and Equation (7),
respectively (Lines 12 to 13).

3.2 Online Pricing

We now describe the detailed principle of online pricing mechanism
in Algorithm 2. For each arrived data consumer, we select the basic
price from a vector of candidate discrete prices p̂ = (p̂1, p̂2, · · · , p̂K ),
where p̂k = (1 + β )k−1 for any 1 ≤ k ≤ K and β > 0. Since the
upper bound of valuation is δ , we have K = 	log1+β δ
 + 1. Let

ci (k ) be the revenue attained by setting price p̂k for the ith data
consumer bi . We initially set c0 (k ) to be zero for any 1 ≤ k ≤ K .
Given a parameter α ∈ (0, 1], we define a weightwi (k ) for the price
p̂k in the ith transaction as

wi (k ) � (1 + α )
∑i
j=1 c j (k ) , (8)

which is an exponential weight function, denoting the performances
of the candidate prices in the previous transactions. The candidate
price with a large weight should have a high probability to be
chosen as a basic price in the following transactions. We denote
the weight vector for all candidate prices in the ith transaction by
wi = (wi (1),wi (2), · · · ,wi (K )), and initially set w0 to be 1.

Algorithm 2: Online Pricing Mechanism

Input: Reals: α ∈ (0, 1], β > 0, γ ∈ (0, 1]; The ith data consumer bi ;

A vector of discount factors d; The highest valuation δ ; The

number of candidate prices K ; A vector of candidate prices p̂ ;
A weight vector wi−1.

Output: The charge ci for data consumer bi .

1 ci ← 0;

2 Select the candidate price as p̂k following the probability:

f̂i (k ) ← (1 − γ )fi (k ) + γд (k ), where fi (k ) = wi−1 (k )∑K
j=1wi−1 (j )

and

д (k ) = Δ
(1+β )K−k+1 , Δ =

1− 1
1+β

1−
(

1
1+β

)K ;

3 Suppose the selected price is p̂ki ;

4 Choose the lowest version ti that satisfies the required confidence

level ηi of data consumer bi , and set her discount factor d̂i ← dti ;

5 ci ← p̂ki × d̂i ;
6 if Data consumer bi accepts the charge ci then

7 ci (ki ) ← ci ;

8 else

9 ci (ki ) ← 0;

10 foreach k = 1 to K do

11 if k = ki then

12 ĉi (k ) ← γ Δ
δ

ci (k )

f̂i (k )
; wi (k ) ← wi−1 (k ) × (1 + α )ĉi (k ) ;

13 else

14 ĉi (k ) ← 0; wi (k ) ← wi−1 (k );

15 return ci ;

For the ith arrived data consumer bi ∈ B, Algorithm 2 selects

a candidate price p̂k following the distribution f̂i (k ), which is a
combination of an exploitation distribution and an exploration dis-
tribution (Line 2). On one hand, we try to exploit the currently
expected best price to gain a high revenue, and define the exploita-
tion distribution as

fi (k ) �
wi−1 (k )∑K
j=1wi−1 (j )

, ∀ 1 ≤ k ≤ K . (9)

On the other hand, since some candidate prices may obtain a low
revenue at first, but receive a high revenue later, we also apply an
exploration distribution to find the ultimate optimal price in long
terms. Thus, we further assign each candidate price p̂k an explo-
ration probability distribution. A classical exploration distribution
is uniform distribution, which assigns each of the candidate prices
the same probability [7]. However, considering that different candi-
date prices can produce different amount of revenue, we adopt a
geometric distribution as the exploitation distribution, i.e.,

д(k ) �
1

1 −
(

1
1+β

)K
1 − 1

1+β

(1 + β )K−k+1
, ∀ 1 ≤ k ≤ K . (10)

To simplify notation, we set Δ =
1− 1

1+β

1−
(

1
1+β

)K . Since the kth candidate

price is p̂k = (1 + β )k−1, such exploration distribution ensures

that p̂k/д(k ) = O
(
(1 + β )k−1 (1 + β )K−k+1

)
= O (δ ), which is a

useful property for the competitive ratio analysis. Let p̂ki denote
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the selected price for data consumer bi following the combined

distribution f̂i (k ) (Line 3).
After calculating the confidence level of each version using Equa-

tion (3), we can select the lowest version ti , that satisfies the required

confidence level of the data consumer bi .
5 The discount factor d̂i

to data consumer bi is the corresponding discount factor dti for
version ti returned by Algorithm 1 (Line 4). The charge for data

consumer bi then is ci = p̂ki × d̂i (Line 5).
According to the data consumer’s purchasing decision, we re-

ceive a revenue ci (ki ) ∈ {0, ci } of the chosen price p̂ki . In the posted
pricing setting, we cannot observe the revenue generated by the
other candidate prices. So we set ci (k ) = 0 for any k � ki (Lines 6
to 9). Based on this revenue vector ci = (ci (1), ci (2), · · · , ci (K )),
we generate a virtual revenue vector ĉi = (ĉi (1), ĉi (2), · · · , ĉi (K )),
and use it to update the weights of candidate prices. We calculate
this virtual revenue vector by distinguishing the two cases:
� For the chosen price p̂ki , we set the virtual revenue ĉi (ki ) to

be
γΔ
δ

ci (k )

f̂i (k )
.

� For the other prices p̂k , k � ki , we set ĉi (k ) to be zero.
We update the weight vector wi using Equation (8) with virtual

revenue vector ĉi (Lines 10 to 14). We have the following two
properties for this virtual revenue vector ĉi , which is heavily used
in the analysis of competitive ratio in next section.
� The expected virtual revenue (with respective to the selection

distribution f̂i (k )) for any candidate price p̂k is proportional to the
actual revenue of the price ci (k ), i.e.,

E[ĉi (k )] = E
[
ĉi (k ) |(p̂k1 , p̂k2 , · · · , p̂ki−1 )

]
= E

[
f̂i (k ) × γΔ

δ

ci (k )

f̂i (k )
+ (1 − f̂i (k )) × 0

]
=

γΔ

δ
ci (k ).

� The virtual revenue ĉi (k ) is in the range [0, 1].

ĉi (k ) =
γΔ

δ

ci (k )

f̂i (k )
≤ γΔ

δ

ci (k ) × (1 + β )K−k+1
γΔ

=
(1 + β )k−1 × (1 + β )K−k+1

δ
≤ 1.

We remark that the data vendor can dynamically tune the pa-
rameters α , β,γ in Algorithm 2 to adapt to different market settings.
Specifically, the parameter α represents the weights of candidate
prices in exploitation process (i.e., a larger α indicates that we heav-
ily exploit the candidate prices with good performance in previous
transactions.). The parameter γ denotes the trade-off between the
exploitation and exploration (i.e., a smaller γ represents a higher de-
gree of exploitation.). For example, the data vendor can set a large α
and a small γ to actively exploit the collected valuation knowledge,
when the data providers’ valuations follow a normal distribution. In
contrast, when the data providers’ valuations come from a uniform
distribution, the data vendor can set a low α and a high γ to achieve
good performance. The parameter β reflects the trade-off between
revenue maximization and computational complexity, i.e., a larger

5Although the data vendor can choose high versions for data consumers to extract
much revenue, this would incur market anarchy: data consumers would strategically
report low confidence levels to seek less payments. The policy of selecting the lowest
version enforces data consumers to truthfully report their required confidence levels.

β , implying more candidate prices to choose, can extract a larger
revenue but incurs a higher computational overhead. We design
experiments to evaluate the effects of these parameters in Section 5.

3.3 Analysis

We analyze the competitive ratio of ARETE in this subsection. In
ARETE, we only consider a vector of discrete candidate prices p̂,
while ignoring the other possible values in [1,δ]. We show that
the attained revenue does not lose much under this restriction. We
leave the detailed proof to our technical report [1].

Lemma 3.1. ARETE loses only a (1 + β ) factor in rounding down

the optimal price to one of the prices from p̂.

We then show another useful lemma for the competitive ratio
analysis.

Lemma 3.2. For any parameter α > 0, any sequence of virtual rev-
enue vectors ĉ1, ĉ2, · · · , ĉn , and the exploitation distribution vectors

fi = ( fi (1), fi (2), · · · , fi (K )), we have:

n∑
i=1

fi · ĉi ≥
∑n
i=1 ĉi (k ) log (1 + α ) − logK

α
, ∀1 ≤ k ≤ K .

Proof. Let Wi =
∑K
k=1

wi (k ) for any 1 ≤ i ≤ n. Since the

virtual revenue ĉi (k ) is in the range [0, 1], we can get the following
equations.

Wi

Wi−1
=

K∑
k=1

wi−1 (k ) (1 + α )ĉi (k )
Wi−1

≤
K∑
k=1

wi−1 (k ) (1 + αĉi (k ))
Wi−1

= 1 + α

∑K
k=1

wi−1 (k )ĉi (k )
Wi−1

,

where for the inequality we used the fact that for x ∈ [0, 1], (1 +
α )x ≤ 1 + αx . Thus,

log
Wn

W0
=

n∑
i=1

log
Wi

Wi−1
≤

n∑
i=1

��1 + α
∑K
k=1

wi−1 (k )ĉi (k )
Wi−1

��
≤

n∑
i=1

α

∑K
k=1

wi−1 (k )ĉi (k )
Wi−1

= α
n∑
i=1

K∑
k=1

fi (k )ĉi (k )

= αfi · ĉi . (11)

SinceWn ≥ wn (k ) = (1 + α )
∑n
i=1 ĉi (k ) for any 1 ≤ k ≤ K , and

W0 = K , we have

log
Wn

W0
≥

n∑
i=1

ĉi (k ) log (1 + α ) − logK . (12)

Combining Equations (11) and (12), we get

fi · ĉi ≥
∑n
i=1 ĉi (k ) log (1 + α ) − logK

α
.

We have completed the proof. �

By Lemma 3.1, Lemma 3.2 and an appropriate choice of parame-
ters α , β and γ , we can obtain the following competitive ratio for
ARETE.

Theorem 3.3. Given a real value ϵ , there exists a constant θ , such
that for any valuation sequences v with optimal revenue OPT ≥
θδ log logδ , ARETE is (1 + ϵ )-competitive.
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Proof. Using Lemma 3.2 and the properties of ARETE, we show
the lower bound of revenue

∑n
i=1 ci (ki ) for any selected basic price

sequence p̂ = (p̂k1 , p̂k2 , · · · , p̂kn ).
n∑
i=1

ci (ki ) =
δ

γΔ

n∑
i=1

f̂i (ki )ĉi (ki )

=
δ

γΔ

n∑
i=1

⎡⎢⎢⎢⎢⎣(1 − γ ) fi (ki )ĉi (ki ) + γ Δ

(1 + β )K−ki+1
ĉi (ki )

⎤⎥⎥⎥⎥⎦
≥ (1 − γ )δ

γΔ

n∑
i=1

fi (ki )ĉi (ki ) =
(1 − γ )δ
γΔ

n∑
i=1

fi · ĉi

≥ (1 − γ )δ
γΔα

��
n∑
i=1

ĉi (k ) log (1 + α ) − logK�� .
We next take the expectation of both sides of the above equation

with respect to distribution p̂. Having E[ĉi (k )] =
γΔ
δ
ci (k ) for each

ĉi (k ), we can get:

E

⎡⎢⎢⎢⎢⎣
n∑
i=1

ci (ki )
⎤⎥⎥⎥⎥⎦ ≥ (1 − γ )δ

γΔα

⎡⎢⎢⎢⎢⎣γΔδ ×
n∑
i=1

ci (k ) log (1 + α ) − logK
⎤⎥⎥⎥⎥⎦

=
(1 − γ ) log (1 + α )

α

n∑
i=1

ci (k ) − (1 − γ )δ logK

γΔα

≥ (1 − γ − α

2
)OPTβ − δ log log δ

γΔα

≥ (1 − γ − α
2 )

(1 + β )
OPT − δ log log δ

γΔα
.

In the third equality, we select the optimal fixed price from p̂, and
thus maxk {∑ni=1 ci (k )} = OPTβ . The third equality follows from

that log (1 + α ) ≥ α − α 2

2 for any α > 0. By Lemma 3.1, the last
inequality holds. By choosing appropriate parameters α , β and γ ,
we prove the theorem. �

We have proven that ARETE achieves a constant competitive
ratio when the optimal revenue is larger than O (δ log logδ ). The
following theorem shows that any online pricing algorithm that
achieves a constant ratio, must have an additive constant term Ω(δ ).
Designing an online pricing algorithm with a tight lower bound is
our future work.

Theorem 3.4. There is no constant-competitive online pricing

algorithm for all valuation sequences with OPT ≥ o(δ ).

Due to the limitation of space, we leave the proof of Theorem 3.4
to our technical report [1].

4 ADAPTION TO OTHER QUERY TYPES

In this section, we extend ARETE to support multi-data query
formats, and leave the extension to range query formats to our
technical report [1], due to space limitation.

We can formulate the pricing problem for multi-data query as an
unlimited-supply combinatorial posted-price auction with single-
minded data consumers. A single-minded data consumer is inter-
ested in only a single data commodity, and has no valuation for all
the other data commodities. As we have discussed in Section 2.1,
the price of a data commodity Y ⊆ Y is the sum of the prices of the
basic data commodity in it, i.e., pY =

∑
y∈Y py .

Algorithm 3: Pricing Mechanism for Multi-Data Query

Input: A set of random basic data commodity Y1; A data consumer

bi ; A data commodity Yi ; A discount factor vector dYi ; A

weight vectorW.

Output: The charge ci for the data consumer bi .

1 ci ← 0;

2 if |Yi ⋂Y1 | = 1 then

3 y ← Yi
⋂
Y1;

4 ci ← OPMy (bi , dYi , Wy );

5 else

6 Ignore the data consumer bi ;

7 return ci

The extended ARETE also consists of two components: version-
ing mechanism and pricing mechanism. We show that the ver-
sioning mechanism in ARETE can be modified slightly to provide
the version generation in the multi-data query scenario. Based on
the pricing algorithm in original ARETE, we design an online ran-
domized pricing mechanism for multi-data query, and analyze its
competitive ratio.

Versioning Mechanism In multi-data query scenario, we de-
fine the conditional entropy of a commodity Y ⊆ Y as:

H (XY |XA) � −
∫

f (xY ,xA ) log f (xY |xA ) dxY dxA

=
1

2
log
(
(2πe ) |Y | |ΣYY |

)
,

where |Σ| is the determinant of matrix Σ. We use this conditional en-
tropy as a criterion to generate versions. In this case, the revised rel-
ative entropy between the full version f1 (x ) = fXY |XAT (xY |xAT

)

and the t th version f2 (x ) = fXY |XAt (xY |xAt
) is also extended to

the multivariate Gaussian distribution scenario, and is defined as

D̂ ( f1 | | f2) � 1

2

(
log
|Σ2 |
|Σ1 | + tr (Σ

−1
2 Σ1) − |Y |

)
,

where tr (Σ) is the trace of matrix Σ. We use this relative entropy
to determine the discount factor for each version. Using the new

conditional entropy H (XY |XA) and relative entropy D̂ ( f1 | | f2), we
can extend the versioning mechanism in ARETE (Algorithm 1) to
the multi-data query scenario.

Online Pricing Mechanism Algorithm 3 presents the pseudo-
code of online pricing mechanism for multi-data query scenario.
We reduce the online randomized pricing mechanism for multi-data
query into multiple pricing mechanisms for single-data query in
original ARETE, i.e., Algorithm 2. We describe this reduction in the
following procedure.

Step 1:We first randomly partition the basic data commodities
Y into two sets: Y1 and Y2, by placing each basic data commodity

into Y1 with probability 1
κ , where κ is the maximum size of the

required data commodities, i.e., κ = maxbi ∈B |Yi |.
Step 2: We ignore data consumers, who want zero or more

than one basic data commodity in Y1, and only consider the data
consumers who want exactly one data commodity inY1. We denote

this type of data consumers by B1 =
{
bi ∈ B���|Yi ⋂Y1 | = 1

}
.

Step 3:We then set the prices of the basic data commodities inY2
as zero, and effectively set the prices of the basic data commodities
in Y1 with respect to the data consumers B1. Given a qualified data
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Figure 2: Posterior mean and posterior variance of the temperature Gaussian Process estimated using all sensors.

Figure 3: Sensor network deployment with 54 nodes in one

selected lab.

consumer bi with Yi ∩ Y = y, a discount factor vector dYi , and
a weight vectorWy , the Online Pricing Mechanism (abbreviated
as OPMy ) for single-data query can determine the price for the
basic data commodity y and the charge for the data consumer bi
(Line 3 to 4). The discount factor vector dYi for Yi is calculated by
versioning mechanism. All the other parameters for the algorithm
OPMy are the same for all the basic data commodities, and we omit
them here.

We show that the extended ARETE also achieves sub-optimal
revenue. Due to the limitation of space, we reserve the detailed
proof to our technical report [1].

Theorem 4.1. Given a real value ϵ , there exists a constant θ such

that for any valuation sequences with optimal revenueOPT ≥ l ×θ ×
δ × log logδ , the extended ARETE is (1 + ϵ )-competitive with respect

to the optimal fixed price revenue.

Finally, we show that ARETE is arbitrage-free for different types
of queries.

Theorem 4.2. ARETE is an arbitrage-free data pricing mechanism.

Proof. We say a query q is “determined” by a query bundle
{q1,q2, · · · ,qk } when the query q can be answered by the query
bundle. We prove that ARETE can resist arbitrage behaviours in
both single-data query and multi-data query.
� In the single-data query case, the query q1 with a low confi-

dence level is determined by the query q2 with a high confidence
level. According to our version selection rule in Algorithm 2, the
version used to answer the query q1 is not higher than that used to
answer q2. Since the lower version has a large discount factor, the
discount offered to the query q1 is not less than that offers to q2.
Therefore, the charge to q1 is always not less than the charge to q2.

� In the multi-data query case, the multi-data query q over the
data commodity Y is determined by the single-data query bundle
{q1,q2, · · · ,q |Y | }, where qy is a single-data query over a basic data
commodity y in Y . In extended ARETE, we set the price of the data
commodityY as the sum of the basic prices of the basic commodities
in Y . Thus, no arbitrage behaviours exist in this query scenario. �

5 EVALUATION RESULTS

In this section, we evaluate ARETE on a public real-world sensory
data set.

Sensory Data Set. The data set we considered in our evalua-
tions is the Intel sensed data set collected by Intel Berkeley lab
between February 28th and April 5th, 2004. As shown in Figure 3,
54 Mica2Dot sensor nodes were deployed in the lab to collect multi-
dimensional environment attributes, including temperature, humid-
ity, light, voltage, and etc, in a real time manner. In our evaluations,
we sample temperature measurements at 30 seconds intervals on
11 consecutive days (Starting Feb. 28th, 2004) in the lab with x-
coordinate varying from 0m to 40.5m and y-coordinate varying
from 0m to 31m. We set the upper right corner of the lab to be the
origin with the coordinates (0, 0). We collect 11 data sets, randomly
choose one of them as the data commodity, and use the remaining
data sets to train the parameters of Gaussian Process model.

For choosing Gaussian Process as the statistical model, we have
to know the mean and kernel functions. In our evaluations, we use
regression techniques to estimate the mean function. We assume
that the kernel function is isotropic, which means that the covari-
ance between two locations only depends on their corresponding
distance. One canonical isotropic kernel function is Gaussian kernel

function: K (a1,a2) = σ 2 exp
(
−d (a1,a2 )2

2l 2

)
, where d (a1,a2) is the

distance between locations a1 and a2. Using the training data sets,
we can learn the parameters σ and l by cross-validation. In order to
verify the efficient description of the isotropic kernel function for
our data sets, we compare the empirical data of each sensor node
with the readings inferred via the data from the other 53 sensors. As
Figure 2(a) shows, for most sensor nodes (around 85%), the error of
the inferential readings are within 10% of the ground truth. We note
that ARETE is independent of specific kernel functions. For more
complicated environment, we can adopt some general anisotropic
kernel functions [29]. After determining the mean and kernel func-
tions, we can plot the posterior mean and posterior variance of the
lab in Figure 2(b) and Figure 2(c), respectively, using Equation (1)
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Figure 4: Versioning results of the data commodity at loca-

tion (25, 10).

and Equation (2). Figure 2(b) shows the areas near the windows
(y-coordinates lie near 0.) have lower inferential temperature. From
Figure 2(c), we observe that area A and area B, located in the center
of the lab, have higher posterior variances, because in these areas
with few sensor nodes deployed, we lack enough relative data to
confidently infer their readings.

Evaluation Setup. We introduce the setting of our evaluations.
We regard the 54 sensor nodes as data providers in the context of
data market. We create a finite mesh grid with mesh width 1m in
the lab region, and obtain 1312 grid points, which are considered as
basic data commodities. We emulate a large scale data market, in
which the number of data consumers ranges from 105 to 106 with
increment of 105. We consider two classical valuation distributions:
Uniform distribution andNormal distribution, and set themaximum
valuation of data consumers as δ = 256. We randomly generate
an error bound ϵi ∈ (0, 10] and an acceptable confidence level
ηi ∈ (0, 1] for each data consumer bi ∈ B. All the evaluation results
are averaged over 200 runs.

5.1 Performance of ARETE

We implement ARETE, and compare its performance with three
other pricing mechanisms: Optimal pricing mechanism (“OPT”
for short), Random pricing mechanism (“Random” for short), and
ARETE without versioning (“No Version” for short). In “OPT” mech-
anism, the valuations of all data consumers are known in advance,
and thus we can calculate the off-line optimal revenue by setting
a single fixed price. We note that the “OPT” is impractical as it re-
quires the priori knowledge of data consumers’ valuations, but can
be served as a bench mark in our evaluations. In “Random” mecha-
nism, we randomly select a price in [1,δ ] as the charge for each data
consumer’s query. In order to investigate the impact of versioning
mechanism on the data market’s performance, we also consider the
ARETE without versioning, in which each data commodity only
has the full version. Considering the computational overhead, we
set β to be 0.1, which can capture at least 90% of optimal revenue by
Lemma 3.1. Since α and β jointly determine the trade-off between
exploration and exploitation, we fix α as 0.02, and adjust γ to exam-
ine the role of exploration and exploitation in different valuation
distribution scenarios. When the valuations are drawn from normal
distribution, we set γ = 0.1, and for uniform distribution, we set
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Figure 5: The revenue of ARETE under different valuation

distributions.

γ = 0.35. As we determine the price for data commodities indepen-
dently, we only report the revenue of the selected data commodity
at location (25, 10) in this set of evaluations.

Figure 4 shows the versioning result of the data commodity at
location (25, 10). The vector of conditional entropy for the three
versions is h = (3.25, 2.75, 2.55). We recall that At denotes the set
of data providers for the t th version, andAt+1\At denotes the data
providers that only stay in At+1. In Equation (7), we set the scale
parameter λ as 2.77 to adjust the discount factors to appropriate
values. Under this setting, we calculate the corresponding discount
factors for the three versions as d = (0.36, 0.85, 1). From Figure 4,
we observe that the data providers, neighboring the queried point,
have a high probability to be selected into versioning results, be-
cause they are more informative to the queried point. At the same
time, the versioning algorithm might ignore some data providers,
although they are in the vicinity of the queried point, because their
marginal entropy is relatively small given the currently selected
data providers.

Figure 5 shows the revenue of different pricing mechanisms,
when the valuations follow two different distributions. Generally,
in both normal distribution and uniform distribution, ARETE al-
ways outperforms the “Random” and “No Version” mechanisms,
and approaches the results of “OPT”. The “Random” mechanism
does not take any advantage of the collected valuation information,
and achieves the worst performance. This performance degrada-
tion is especially severe in normal distribution scenario, because
the “Random” mechanism does not adopt the exploitation process,
which can significantly improve the performance when the valua-
tions densely locate in a certain small range. In “No Version” pricing
mechanism, data consumers with low required confidence levels
cannot afford the high price of the full version, and the data vendor
loses much revenue from these data consumers. We observe that
ARETE mechanism gains around 90% revenue of the “OPT” in both
uniform and normal distribution. This demonstrates that ARETE
can adaptively learn the valuations of consumers, and set an ap-
propriate price to obtain high revenue. From Figure 5, we can also
see that the revenue increases linearly with respect to the number
of data consumers. This is because data commodity is one kind of
information goods and is unlimitedly supplied, and thus the data
vendor can always gain revenue by selling more data commodities
to more data consumers.

6 RELATEDWORK

We briefly review the related works in this section.
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Data Marketplace In the seminal paper of data trading [4],
Balazinska et al. visioned the implications of emerging data markets,
and discussed the potential research opportunities in this direction.
Later, Koutris et al. [24] poi-nted out the inflexibility of current
data pricing approaches, and proposed a query-based data pricing
framework, which requires two important properties: arbitrage-free
and discount-free. Recently, Zheng et al. studied the problem of profit
driven data acquisition in mobile crowd-sensed data market [39].
However, these previous works did not answer the fundamental
question in data trading: how to determine the price for data? We
tackle this open problem by designing a online pricing mechanism.

Mobile Crowdsensing: The ubiquitous mobile devices with
powerful sensors have boosted the rapid growth of diverse mobile
sensing applications in numerous contexts. For example, Gu et

al. presented crowdsensing-based indoor localization system [18].
Wang et al. designed CrowdAltas to automatically update maps
based on people’s GPS traces [35]. The success of these applications
highly depends on the supply of large amount of crowd-sensed data
from crowds. Thus, researchers have proposed pricing mechanisms
to incentivize workers to contribute their collected data [23, 38, 40].
However, currently, the operators collected and analyzed mobile
crowd-sensed data for their own application purposes. To break
this barrier, we proposed a data market to facilitate the exchange
and trading of crowd-sensed data, enabling the potential usage of
mobile data in new sensing applications.

Online Pricing Mechanism: In this paper, we built a con-
nection between data pricing design and online digital auction
design [6, 7, 19]. By exploiting the machine learning techniques in
multi-armed bandit problem [2], Blum et al. [7] proposed an online
posted-price digital auction, achieving a constant competitive ratio
with an additional loss term O (δ logδ log logδ ). Later, Blum and
Hartline [6] improved on the approximation results [7] by reducing
the additive loss term toO (δ log logδ ). As for online auctions with
multiple unlimited items and single-minded buyers, Balcan and
Blum [5] proposed several approximation algorithms to achieve
near-optimal revenue. In mobile crowd-sensed data markets, the
trading data should be further partitioned into multiple versions to
implement some levels of price discrimination, extracting revenue
from different market segments. The major advantage of our work
over the previous works is to model digital goods as divisible items,
producing new challenges for online pricing mechanism design.

7 CONCLUSION

In this work, we have proposed the first data market prototype to
enable mobile crowd-sensed data trading on the Web. We have built
a Gaussian Process model to capture the uncertainty of mobile data,
and provided three basic query interfaces for data consumers to
extract their needed information from the statistical model.We have
considered the problem of revenue maximization, and proposed
an online query-based data pricing mechanism, namely ARETE,
containing two major components: a versioning mechanism and an
online pricing mechanism. ARETE satisfies arbitrage-freeness, and
achieves a constant competitive ratio. We have leveraged a real-
world sensory data set to evaluate ARETE. The evaluation results
show that ARETE outperforms the existing pricing mechanisms,
and is almost as effective as the optimal fixed price mechanism.
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