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Abstract—In mobile crowdsensing, finding the best match
between tasks and users is crucial to ensure both the quality and
effectiveness of a crowdsensing system. Existing works usually
assume a centralized task assignment by the platform, without
addressing the need of fine-grained personalized task matching.
In this paper, we argue that it is essential to match tasks to
users based on a careful characterization of both the users’
preferences and reliability levels. To that end, we propose a
personalized task recommender system for mobile crowdsensing,
which recommends tasks to users based on a recommendation
score that jointly takes each user’s preference and reliability into
consideration. We first present a simple but effective method to
profile the users’ preferences by exploiting the implicit feedback
from their historical performance. Then, to profile the users’
reliability levels, we formalize the problem as a semi-supervised
learning model, and propose an efficient block coordinate descent
algorithm to solve the problem. For some tasks that lack historical
information, we further propose a matrix factorization method
to infer the users’ reliability on those tasks. We conduct extensive
experiments to evaluate the performance of our system, and
the evaluation results demonstrate that our system can achieve
superior performance to our benchmarks in both user profiling
and personalized task matching.

I. INTRODUCTION

Due to the rapid development of smart devices and wireless
technology, mobile crowdsensing [1] has risen as an emerging
sensing paradigm. It can employ a large number of smart
devices to extract and share their local information using their
embedded sensors. A typical mobile crowdsensing system
usually consists of three major components: crowdsensing
platform, service requesters, and mobile device users. The
platform is responsible for handling information requests from
the service requesters and publishing sensing tasks to the users
through the interaction of their smartphone applications.

A critical problem in crowdsensing is to find the best match
between users and tasks. Most of the existing works adopt
a platform-centric model [2]–[7], which allows the platform
to make centralized decisions on which users are selected to
perform which sensing tasks. These works usually focus on the
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incentive problem, where a typical procedure goes like this:
each user submits a bid reflecting her willingness or cost in
participating in a task, and then the platform determines the set
of selected users and their payments, so as to optimize certain
utility metric and satisfy some game-theoretic properties. The
underlying assumption behind this type of model is that
the users are fully rational and are capable of determining
their optimal strategies. However, as pointed out in [8], this
assumption, as well as the setting that each user’s preference
can be abstracted as a single bidding parameter, could be an
oversimplification of the complicated user behaviors.

Another type of task matching systems, referred as user-
centric model, gives the users more freedom to choose their in-
terested tasks. It has been widely adopted in many commercial
crowdsensing systems, such as Waze [9], Field Agent [10], and
Gigwalk [11]. In these systems, the available tasks are shown
to the users via their smartphone applications. The users can
manually browse through the task corpus (often with simple
built-in filters, such as proximity filter and payment filter), and
choose their interested tasks to participate in. However, since
the number of tasks is often really large, it is inefficient for
the users to browse page by page searching for suitable tasks.
Without an efficient personalized task matching solution, the
users may end up selecting tasks that they are not familiar
with or not interested in, which may result in a decrement of
the quality of their collected sensing data.

Considering the limitations of existing task matching works,
we propose to design a personalized task recommender system
for crowdsensing, so as to facilitate the match of the users
with suitable tasks. We note that in traditional recommender
systems, such as movie recommendation, items are recom-
mended based only on customers’ preferences [12]. Whereas,
in mobile crowdsensing, besides the metric of the users’
preferences, we also need to take the users’ reliability/data
quality into consideration. That is because the users may
have heterogeneous sensing behaviors towards different tasks,
which could influence the quality of their collected data [13].
Achieving preference- and quality-aware task recommendation
can have a positive impact on both attracting the user’s
further participation and improving the crowdsensing system’s
effectiveness. However, such a personalized task recommender
system is missing in the current crowdsensing literature. Jin et
al. [7] and Wang et al. [14] studied the quality-aware incentive
mechanism design without addressing the need of personalized



task recommendation. Karaliopoulos et al. [8] proposed to
assign the tasks to the users based on the profile of each user’s
probability of accepting a task, but did not consider the users’
reliability information.

Central to the personalized task recommender system is
a careful characterization on each user’s preferences and
reliability towards different tasks. However, it is not a trivial
task, due to the unique nature of the crowdsensing scenarios.
One of the challenges is finding a good way to model the
users’ preferences over different tasks. In some traditional
recommender systems, customers’ preferences can be readily
obtained from their previous ratings [12]. However, the users
in mobile crowdsensing do not typically provide explicit
ratings on their preferences, s.t., we have to infer the users’
preferences from their implicit feedback, including the task
browsing history, task selection record, and so on.

The most challenging part is estimating the users’ reliability
levels. In particular, we have to learn the users’ reliability in-
formation for different tasks based on their submitted sensing
data, if any, so as to build each user a profile characterizing the
reliability levels of the users’ data for performing the tasks.
Although truth discovery algorithms [15] can be adopted to
jointly estimate the users’ data quality and the underlying
truths, they cannot fully address the need of user reliability
profiling in the context of task recommendation. We note that
truth discovery algorithms usually generate a single reliability
parameter for each user representing the overall trustworthi-
ness level of the user. However, to conduct personalized task
recommendation, the heterogeneity of a user’s reliability in
different tasks has to be reflected, and thus a more fine-
grained reliability profiling of the users should be considered.
A possible alternative is to independently generate each user a
reliability parameter for each task by applying truth discovery
algorithms to the data of each sensing task. Unfortunately, this
approach may suffer from scalability issue, and what’s worse,
a user’s reliability for a task cannot be estimated by truth
discovery algorithms, if the user did not contribute data to
that task. This could often be a problem in real crowdsensing
scenarios, especially when the users’ data are sparse, i.e., each
user only contributes data to only a small number of the tasks.
Besides, without the prior knowledge of truth and reliability
measures, typical truth discovery algorithms are likely to fail,
when the majority of data are inaccurate [16].

In this work, we jointly consider the problems of user
profiling and personalized task matching in mobile crowd-
sensing, and propose a personalized task recommender system
framework, which recommends tasks to users based on both
the users’ preferences and reliability. We propose approaches
to measure the users’ preferences and reliability, respectively.
First, in profiling the users’ preferences, we introduce a hybrid
preference metric that integrates the feedback against both the
users’ historical operations and the preference of their peers.
Then, to tackle the more challenging part of profiling the users’
reliability, we model the problem as a semi-unsupervised
learning problem, and propose an efficient block coordinate
descent algorithm to jointly estimate the users’ reliability and
the unknown ground truths. We surpass the existing truth

discovery methods by not only taking the information of failed
tasks into consideration but also using a small number of avail-
able truth data to facilitate the estimation accuracy. We further
propose a matrix factorization method to address the missing
entries in the users’ reliability estimation. We conduct a real-
world experiment and a large-scale crowdsensing simulation
to evaluate the performance of our methods. The evaluation
results show that our proposed methods can achieve superior
performance over existing works and our benchmarks.

The main contributions of this work are listed as follows.
• First, we design a personalized task recommender system

framework that matches tasks to users based on both the
users’ preferences and reliability levels of the tasks. We
propose a method to profile each user’s preferences over
the tasks based on the user’s implicit feedback.

• Second, we model the problem of user reliability pro-
filing as a semi-supervised learning model, and propose
an efficient algorithm to estimate the users’ reliability
and the unknown ground truths simultaneously. We also
propose a matrix factorization method to estimate the
users’ reliability levels in their uninvolved tasks.

• Third, we conduct a real-world crowdsensing experiment
and a large-scale simulation to evaluate the performance
of our methods. Both the experiment and simulation
results show that our proposed methods achieve dramatic
performance improvements to our benchmarks.

The rest of the paper is organized as follows. We first
present the system overview in Section II, and then introduce
the problem formulations in Section III. In Section IV, we
propose our reliability profiling algorithms. We evaluate our
proposed methods and present the evaluation results in Section
V. In Section VI, we review the related works. Finally, we
conclude this paper in Section VII.

II. SYSTEM OVERVIEW

In this section, we present an overview of our proposed
personalized task recommender system.

A. System Model
Suppose there are N users and M sensing tasks in the

system. The set of users and tasks are denoted by N and
S, respectively. We consider a user-centric model, where the
users can browse the tasks in their smartphone applications
and choose to participate in their interested tasks. If a user i
wants to participate in a task j, she can click on some button
to inform the platform her participation. After that, the user
will use her smartphone to collect and then submit sensing
data to the platform. Let xi,j denote the data submitted by the
user i to the task j. The ground truth of the task j is denoted
by x∗

j , which is usually unavailable to the platform.
We tend to build a personalized task recommender system,

where the tasks are recommended to the users based on a
joint consideration of the users’ preferences and reliability.
Specifically, for each task j, suppose each user i’s preference
and reliability regarding the task is denoted by pi,j and qi,j ,
respectively. We propose a recommendation score Score(i, j)
that takes both the user i’s preference and reliability for the



task j into account, i.e., Score(i, j) = f(pi,j , qi,j), where
the function f() outputs the recommendation score based on
the two input parameters. For simplicity, we use a linear
combination of the two parameters, i.e.,

Score(i, j) = γ pi,j + (1− γ)qi,j , (1)

where γ is a hyper parameter. Other instances of the function
f are possible, and the platform can determine the specific
instance of the function according to its actual needs. We note
that central to the system model is the users’ preference and
reliability measures. To that end, we need to carefully examine
the historical data of the crowdsensing system, in order to
acquire profiles of the users’ preferences and reliability.

B. User Preference Profiling
To characterize the users’ preferences on the tasks, the

users’ feedback information is needed. However, due to the
unavailability on the users’ explicit feedback (e.g., ratings, like
or dislike), implicit feedback has to be exploited. Fortunately,
the crowdsensing platform can have access to each user’s
performance records on the applications, including which tasks
the user has browsed, selected, or successfully completed.
This information can be used to infer the users’ preferences
from two different perspectives, i.e., either against the us-
er’s historical performance (content-based characteristics), or
against the preferences of other similar users (collaborative-
based characteristics) [12].

1) Content-Based Characteristic: Each task has many at-
tributes, including time, location, travel distance, payment, and
so on. Along with the users’ task selection choices (selected
or not), this information can be regarded as training examples.
By using classification methods, such as logistic regression or
Bayesian classifier, we can build a classifier to infer each user
probability of selecting each task [8]. We let P (i, j) denote
the probability of the user i selecting the task j.

2) Collaborative-Based Characteristic: In mobile crowd-
sensing, the platform usually does not have users’ ratings
on tasks. Thus, implicit feedback from the users has to be
exploited to infer the users’ preferences. We let U denote the
users’ task preference matrix, where the entry ui,j means the
user i’s preference over the task j. The value of each ui,j can
be calculated by mapping the user’s implicit feedback to a task
preference value, i.e.,

ui,j =

 N/A if i did not browse task j,
0.5 if i browsed but not selected task j,
1 if i browsed and selected task j.

(2)

The matrix U could be sparse, where many entries remain
unknown. In this case, state-of-the-art collaborative filtering
methods can be adopted to predict these missing entries [17].

To combine the two separate characteristics, we define each
user i’s preference for each task j as a linear combination
of the content-based characteristic and the collaborative-based
characteristic, i.e.,

qi,c = ηP (i, j) + (1− η)ui,j , (3)

where η ∈ [0, 1] is a constant parameter.

We note that many previous recommendation systems have
investigated the problem of exploiting customers’ implicit
feedback in other application contexts (e.g., [18], [19]), the
intuitions of them can be further incorporated to improve our
model of the users’ preferences.

C. User Reliability Profiling

In the rest of the paper, we tend to put our most efforts
on user reliability profiling, which is the most challenging
part of the system. Given the set of collected sensing data,
our objective is to jointly estimate the users’ heterogeneous
reliability levels for different tasks and the unknown ground
truth values. An intuitive approach is to treat each task j
independently and generate each user i a reliability measure
qi,j for each task j. However, estimating each user’s reliability
based only on her data to a single task may be susceptible to
noise, and thus cannot accurately reflect the user’s reliability
level. Besides, due to the large number of tasks, calculating a
reliability parameter per user per task may not be efficient.

To tackle this problem, we tend to take the similarities
among tasks into consideration by classifying the tasks into
different categories, where the tasks within the same category
focus on a similar sensing target. For example, some category
only focuses on noise monitoring tasks, and some only focuses
on traffic congestion monitoring. The classification of the tasks
is common in current crowdsensing applications, e.g., Waze
[9]. It can be done by the platform’s direct designation in the
task release phase, or by applying text classification techniques
[20] to automatically analyze the descriptions of the tasks.
Specifically, we categorize the M tasks into C categories
(C ≪ M ). For each category c ∈ {1, . . . , C}, the set of the
tasks belong to the category is denoted by Sc (Sc ⊆ S). We
assume that each task j ∈ S can only belong to one category,
thus the sets S1, . . . , SC are mutually disjoint. For each task
category c, let qi,c denote each user i’s reliability of the task
category. Now, the user reliability profiling problem becomes
to infer each user i’s reliability qi,c in each category.

We note that different tasks may have different data types.
For example, a task of weather report usually requires cate-
gorical data (e.g., sunny, rainy, or cloudy), while a noise mon-
itoring task may require continuous numerical data (i.e., the
noise levels of the users’ surrounding environment). Thus, the
reliability profiling algorithm needs to be carefully designed
to handle both categorical and continuous data types.

III. PROBLEM FORMULATION AND OUR CONTRIBUTIONS

In this section, we present the problem formulation of user
reliability profiling. We first present a preliminary version of
our problem model, and then propose two enhancements. One
enhancement is to incorporate the information of failed tasks,
and the other is to integrate a small portion of truth data to
improve the estimation accuracy.

A. Preliminary Problem Formulation

We assume that the tasks in different categories are inde-
pendent, s.t., we can estimate the users’ reliability for each
category separately. Let Nc denote the set of users who



contributed data to tasks in category c. To estimate users’
reliability, for each category c, we aim to solve the following
optimization problem.

min
{qi,c},{x̂∗

j }

∑
i∈Nc

∑
j∈Sc

yi,j qi,c L(xi,j , x̂
∗
j ),

s.t. δ({qi,c}) = 1 (4)

where yi,j indicates if the user i has contributed data to the
task j, x̂∗

j is our estimation for the task j’s ground truth,
and δ() is a regularization function. Following the convention
of truth discovery literature [21], we adopt the exponential
regularization function, i.e., δ({qi,c}) =

∑
i∈Nc

exp(−qi,c).
The loss function L() measures the distance between a user’s
data and the estimated truth. For continuous data, L() can be
defined as the squared distance, i.e., L(x, x̂∗) = (x − x̂∗)2,
while for categorial data, L() can be defined as the 0 − 1
distance, i.e., L(x, x̂∗) = 0 if x = x̂∗, and 1 otherwise. An
intuitive interpretation of the problem formulation is that the
ground truth should be close to the data contributed by reliable
users, and the users whose data are close to the ground truth
should be the reliable ones.

B. Contribution 1: Incorporating Information of Failed Tasks

We observe that in practice, the users may select certain
tasks, but did not successfully complete them (e.g., decide to
terminate the sensing procedure half way). This phenomenon,
referred as failed tasks, is likely to reflect the users’ unrelia-
bility in performing certain tasks. In this part, we improve the
above problem formalization by taking this issue into account.

We first introduce some notations. Among the set of tasks
in category c, we let Si,c denote the set of tasks the user i
selected, and Di,c the set of tasks the user i has successfully
completed, where Di,c ⊆ Si,c ⊆ Sc. For each category c,
we calculate each user i’s task completion ratio ri,c, which is
defined as the number of tasks the user i has finished over the
number of tasks the user i has selected, i.e., ri,c =

|Di,c|
|Si,c| . We

revise the original formulation by multiplying a penalty term
to qi,c. The revised problem is presented as follows.

min
{qi,c},{x̂∗

j }

∑
i∈Nc

∑
j∈Sc

yi,j qi,c g(ri,c)L(xi,j , x̂
∗
j ),

s.t.
∑
i∈Nc

exp(−qi,c g(ri,c)) = 1, (5)

where g(x) = 1 − log(x) is a function mapping each user’s
completion ratio to a penalty. We can see that the users who
have failed tasks will receive a completion ratio less than 1,
and thus their reliability outputs should be less than the ones
estimated by the previous method shown in Equation 4. An
extreme case is that some user i may select multiple tasks but
completed zero (i.e., Si,c > 0 and Di,c = 0). In this case, the
system cannot generate a reliability estimation for the user.
We will handle this problem in Section IV-B.

C. Contribution 2: Incorporating Available Ground Truths

The above formulation extends the basic truth discovery
problem, which is built upon an underlying assumption that

the majority of data are reliable. Unfortunately, it may suffer
from a reliability initialization problem, i.e., when most of
the data are unreliable, the above estimation procedure may
have bad performance [16]. To tackle this issue, we propose
a semi-supervised learning framework, which incorporates a
small number of ground truths to improve the estimation
accuracy. To this end, the platform may intentionally add a few
tasks with known ground truths into the task corpus to collect
additional information on the users’ reliability, whereas the
users have no idea which tasks are inserted by the platform.
The platform may also sample a few tasks, and employ some
trusted workers to obtain their ground truths.

We let S denote the set of tasks with unknown ground truths,
and O denote the set of tasks that are intentionally inserted by
the platform with known truth information. For each category
c of tasks, we let Sc and Oc denote the set of the tasks without
and with prior ground truths respectively.

Having the ground truths of some tasks in hand, we propose
to leverage those information to further enhance our estimation
accuracy. To distinguish the notations, we let x̂∗

j denote the
estimation of the ground truth (j ∈ S), and x∗

o denote the
known truth (o ∈ O). Then, for each category c, the modified
learning optimization problem is given by

min
{qi,c},{x̂∗

j }

∑
i∈Nc

qi,c g(ri,c)
( ∑

j∈Sc

yi,j L(xi,j , x̂
∗
j )

+ α
∑
o∈Oc

yi,o L(xi,o, x
∗
o)
)
,

s.t.
∑
i∈Nc

exp(−qi,c g(ri,c)) = 1, (6)

where α is a hyper parameter controlling the relative weight
of the second loss terms. We can see that the second loss term∑

o∈Oc
yi,o L(xi,o, x

∗
o) is constant for each user i in each task

category c. We let ϵi,c denote the term
∑

o∈Oc
yi,o L(xi,o, x

∗
o),

and the problem presentation can be simplified as follows.

min
{qi,c},{x̂∗

j }

∑
i∈Nc

qi,c g(ri,c)
( ∑

j∈Sc

yi,j L(xi,j , x̂
∗
j ) + αϵi,c

)
s.t.

∑
i∈Nc

exp(−qi,c g(ri,c)) = 1. (7)

IV. USER RELIABILITY PROFILING ALGORITHM

In this section, we first propose a block coordinate descent
algorithm to solve the user reliability profiling problem formu-
lated above. Then, we further propose a matrix factorization
method to estimate each user’s reliability for the task cate-
gories that lack the user’s historical performance.

A. Estimating Users’ Reliability for Involved Categories
In our problem formulated in Equation 7, two sets of

variables need to be estimated. We propose a block coordinate
descent algorithm to solve it. The core idea of the algorithm
is to fix one set of variables to solve the other, and repeat this
process until convergence. Since the estimation process for
each category can be done independently, parallel computing
can be adopted to speed up the entire calculation process. For
each task category c, we perform the following three steps.



0) Parameter Initialization: We first initialize the users’
reliability {qi,c}. Since a random or uniform initialization may
result in poor estimation performance, which is especially true
when most data are inaccurate, we propose to enhance the
initialization stage by incorporation available ground truths.
For each category c, let No

c denote the set of users who
contributed data to tasks in Oc. For the users in No

c , their
reliability can be initialized by solving the following problem.

argmin
{qi,c},i∈No

c

∑
i∈No

c

∑
o∈Oc

yi,o qi,c g(ri,c)L(xi,o, x
∗
o),

s.t.
∑
i∈No

c

exp(−qi,c g(ri,c)) =
|No

c |
|Nc|

. (8)

As for the remaining users in Nc \No
c , their reliability param-

eters are uniformly initialized such that∑
i∈Nc\No

c

exp(−qi,c g(ri,c)) = 1− |N
o
c |
|Nc|

. (9)

Solving Equation 8 and Equation 9, we have the initialization
of the users’ reliability parameters, i.e.,

qi,c =


log

(
|Nc|

∑
i∈Noc

∑
o∈Oc

yi,oL(xi,o,x∗
o)

|Noc |
∑

o∈Oc
yi,oL(xi,o,x∗

o)

)
g(ri,c)

if i ∈ No
c ,

log(|Nc|)
g(ri,c)

if i ∈ Nc \ No
c .
(10)

Due to limitation of space, we put the details of solving the
initialization problem into our technical report [22].

1) Truth Update: After obtaining an initial estimation of
the users’ reliability, we can update the estimation of truths
by treating the estimated reliability parameters {qi,c} as fixed
values. Then, the truth of each task j ∈ Sc can be updated
using the following rule.

{x̂∗
j} ← argmin

{x̂∗
j },j∈Sc

∑
i∈Nc

qi,c g(ri,c)
( ∑

j∈Sc

yi,j L(xi,j , x̂
∗
j )+αϵi,c

)
(11)

Theorem 1. Given the users’ reliability parameters, the opti-
mization problem in Equation 11 can be optimally solved. For
continuous data type, the optimal solution is given by

x̂∗
j =

∑
i∈Nc

qi,c yi,j xi,j g(ri,c)∑
i∈Nc

qi,c yi,j g(ri,c)
. (12)

As for categorial data type, the solution is

x̂∗
j = argmax

x′
j∈{xi,j}

∑
i∈Nc

qi,c yi,j g(ri,c)1(xi,j , x
′
j), (13)

where 1(x, y) = 1 if x = y, and 0 otherwise.

Proof. (Sketch) For either data type, we take partial derivative
of the objective function with respect to x∗

j and set it to zero.
Solving the equation, we can get the solution. Please refer to
our technical report [22] for details.

2) Reliability Estimation: After updating the estimation of
the ground truth, we now fix the values of {x̂∗

j}, and calculate
the users’ data qualities {qi,c} by solving the following

Algorithm 1: User Reliability Estimation for Category c

Input: Tasks Sc and Oc, users Nc, and data {xi,j}
Output: Reliability {qi,c}, and truth estimation {x̂∗

j}
1 if i ∈ Nc then
2 if i ∈ No

c then

3 qi,c ← 1
g(ri,c)

log
( |Nc|

∑
i∈Noc

∑
o∈Oc

yi,oL(xi,o,x
∗
o)

|No
c |

∑
o∈Oc

yi,oL(xi,o,x∗
o)

)
;

4 else qi,c ← log(|Nc|)
g(ri,c)

;

5 else qi,c ← N/A;
6 while not converged do
7 foreach task j ∈ Sc do
8 if the task j is of continuous data type then
9 x̂∗

j ←
∑

i∈Nc qi,c yi,j xi,j g(ri,c)∑
i∈Nc qi,c yi,j g(ri,c)

;

10 if the task j is of categorical data type then
11 x̂∗

j ← argmax
x′
j∈{xi,j}

∑
i∈Nc

qi,c yi,j g(ri,c)1(xi,j , x
′
j);

12 foreach user i ∈ Nc do

13 qi,c ← 1
g(ri,c)

log
(∑

i∈Nc

(∑
j∈Sc yi,jL(xi,j ,x̂

∗
j )+αϵi,c

)
∑

j∈Sc yi,jL(xi,j ,x̂
∗
j )+αϵi,c

)
;

14 return {qi,c} and {x̂∗
j}

optimization function. Intuitively, the users whose data are
close to the ground truth estimations will have high reliability
estimations, and vice versa.

{qi,c} ← argmin
{qi,c}

∑
i∈Nc

qi,c g(ri,c)
( ∑

j∈Sc

yi,j L(xi,j , x̂
∗
j ) + αϵi,c

)
s.t.

∑
i∈Nc

exp(−qi,c g(ri,c)) = 1. (14)

Theorem 2. Given fixed truth estimation {x̂∗
j}, the problem

in Equation 14 can be optimally solved. The optimal value of
each qi,c, i ∈ Nc is given by

qi,c =
1

g(ri,c)
log

(∑
i∈Nc

(∑
j∈Sc yi,jL(xi,j , x̂

∗
j ) + αϵi,c

)∑
j∈Sc yi,jL(xi,j , x̂∗

j ) + αϵi,c

)
.

(15)

Proof. (Sketch) We can see that the problem is convex. There-
fore, we can apply the Lagrangian multiplier method to solve
it. Due to limitation of space, we leave the details into our
technical report [22].

The pseudo-code of the algorithm is presented in Algorithm
1. We first initialize the users’ reliability parameters, and
then keep iterating the steps of truth update and reliability
estimation until convergence. Due to the convexity of our
problem and the ability to achieve the optimal solution for
each step (Theorem 1 and Theorem 2), our algorithm is
guaranteed to converge to some local optimum, according to
the proposition of the block coordinate descent [23]. Further
improvements can be made to find a 2-approximation of the
global optimum within nearly linear time [24].

B. Estimating Missing Entries: A Latent Factor Model

So far, we have obtained each user’s reliability information
over the task categories that she has contributed data to.



However, we observe that if a user i did not contribute data to
some category c (i.e., i /∈ Nc), then Algorithm 1 is not able to
estimate the user i’s reliability over c. In this part, we propose
a matrix factorization method to address this problem.

We use Q to denote the users’ reliability matrix, where each
entry qi,c is the user i’s reliability for task category c. We map
both users and task categories to a joint latent factor space of
dimensionality k. Specifically, we assume that each user i is
associated with a vector wi ∈ Rk, and each category is asso-
ciated with θc ∈ Rk. The vector wi = [wi,1, wi,2, . . . , wi,k]

T

can be interpreted as the user i’s capabilities in k different
dimensions, and the vector θc = [θc,1, θc,2, . . . , θc,k]

T can be
seen as the weight of each capability needed by the category
c. Then, each user i’s reliability for each category c can be
calculated as qi,c = wT

i θc.
To estimate the missing entries in matrix Q, we tend to

calculate each user i’s latent vector wi and each category’s
latent vector θc. Let W and Θ denote the sets of users’
and categories’ latent vectors, respectively. Then, the objective
function can be formalized as follows.

min
W,Θ

1

2

C∑
c=1

N∑
i=1

zi,c(qi,c −wT
i θc)

2 (16)

where zi,c indicates if user i has contributed data to category
c (1 means yes, and 0 otherwise). To prevent over-fitting, we
add regularization terms in Equation 16.

min
W,Θ

1

2

C∑
c=1

N∑
i=1

ai,c(qi,c−wT
i θc)

2+
λ1

2

N∑
i=1

∥wi∥2+
λ2

2

C∑
c=1

∥θc∥2,

(17)
where ∥wi∥2 =

∑k
t=1 w

2
i,t and ∥θc∥2 =

∑k
t=1 θ

2
c,t. λ1 and λ2

are parameters controlling the weights of regularization terms.
We propose to use a simple gradient descent method to solve

the above problem. The pseudo-code is presented in Algorithm
2. We first initialize {wi,t} and {θc,t} to small random values.
After that, we apply gradient descent algorithm, i.e., for every
i and t, we update {wi,t} and {θc,t} using the following rules

wi,t ← wi,t − β
( C∑

c=1

zi,c(qi,c −wT
i θc) + λ1wi,t

)
, (18)

θc,t ← θc,t − β
( N∑

i=1

zi,c(qi,c −wT
i θc) + λ2θc,t

)
, (19)

where β is the learning rate. Finally, we can predict a user
i’s reliability for a task category c even if the user i did not
provide any data to c, i.e., for i /∈ Nc, qi,c ← wT

i θc.

V. EVALUATION

In this section, we implement and evaluate the performance
of our proposed methods. We first conduct a real-world crowd-
sensing experiment, and then simulate a large-scale scenario
to further examine the performance of our methods.

A. Experiment Setup
We recruit 10 users (8 males and 2 females) to participate

in our experiment. In the experiment, we manually create
123 sensing tasks for 9 different categories. The tasks within

Algorithm 2: Unknown Reliability Estimation
Input: Users reliability matrix Q
Output: Unknown reliability parameters {qi,c|zi,c = 0}

1 Initialize {wi} and {θc} to small random values;
2 while not converged do
3 foreach i=1,. . . ,N, c=1,. . . ,C do
4 wi,t ← wi,t − β

(∑C
c=1 zi,c(qi,c −wT

i θc) + λ1wi,t

)
,

θc,t ← θc,t − β
(∑N

i=1 zi,c(qi,c −wT
i θc) + λ2θc,t

)
;

5 foreach qi,c = N/A do
6 qi,c ← wT

i · θc

7 return {qi,c|zi,c = 0}

the same category focus on the same sensing target (such
as noise, traffic, or weather), but with different attributes,
including time, locations, and payments. Each task category
has a data type requirement. For instance, noise monitoring
requires continuous data type, while weather monitoring re-
quires categorical data type. The entire task corpus is shown
to the users through the browsers on the users’ smartphones.
Each user can browse through these tasks, and choose their
interested tasks to work on. The ground truth of each task
is monitored by the authors themselves, and unavailable to
the users. We collect the users’ sensing data, as well as their
operation records, including each user’s task browsing history,
task selection history, and task completion history.

According to our collected data, each user contributes data
to about 60% of the tasks in average. The parameter α used in
our semi-supervised learning model is set to 1. And for each
task category, we use the ground truths of 10% of the tasks.
The parameters k, λ1 and λ2 used in our matrix factorization
method are set to 3, 5 and 5, respectively.

B. Experiment Results on User Reliability Profiling
In the experiment, we evaluate the performance of our pro-

posed user profiling algorithm. To differentiate the notations,
we use “URP-BA” to denote the basic version shown in III-A,
and “URP-E1” and “URP-E2” to denote the first enhancement
and the second enhancement, respectively. We compare our
algorithms with two benchmarks. One is a heuristic method
that treats each user’s data equally, i.e., simple average (“Avg.”)
for continuous data and majority voting (“Voting”) for cate-
gorical data. The other benchmark is a general truth discovery
framework, called “CRH” [21], which uses a single parameter
to model each user’s reliability level. We adopt the following
two metrics to measure the performance of the algorithms.

• RMSE: For continuous data, we use Root Mean Square
Error (RMSE) to measure the distance between the esti-
mation result and the ground truth. Mathematically, the
RMSE is defined as

√∑
j∈S(x

∗
j − x̂∗

j )
2/|M |.

• Error Rate: For categorical data, we use Error Rate to
quantify the performance of an algorithm. The Error Rate
of an algorithm is defined as the percentage of the tasks
to which the algorithm’s estimations are different from
the ground truth, i.e., 1−

∑
j∈S 1(x

∗
j ,x̂

∗
j )

M .
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Fig. 2. User Profiling

Fig. 1 presents the performance comparison between our
algorithms and the benchmarks. We can see that for either data
type, the truth discovery-based algorithms can achieve higher
estimation accuracy than the simple average or majority vot-
ing, indicating the effectiveness of truth discovery algorithms.
However, the performance of Avg./Voting, CRH, URP-BA,
and URP-E1 tends to be similar. The main reason is that under
the crowdsensing scenarios, these usually exist many tasks
to which the majority of the users’ data are inaccurate, thus
the traditional unsupervised learning models may have trouble
identifying the users’ true reliability levels. In this case, as we
can see that URP-E2 has superior performance to the other
four algorithms, incorporating even a small number of ground
truths can dramatically improve the estimation accuracy.

C. Experiment Results on Personalized Task Matching

Besides profiling the users’ reliability, we also profile each
user’s preference towards each task using the methods pro-
posed in Section II-B. In Fig. 2(a) and Fig. 2(b), we present the
reliability profiles and preference profiles of two representative
users respectively, where the user’s preference towards a task
category is calculated as the user’s average preference score of
the tasks in the category. We normalize the users’ preferences
to [0,5] for better graphical presentation.

To evaluate the performance of our personalized task recom-
mender system, we provide each user a list of 20 recommended
tasks, and ask each user to choose their interested tasks. Recall
that our personalized task recommender system recommends
tasks to the users based on both the users’ reliability and
preference. Specifically, for each user and task pair (i, j), we
calculate a recommendation score Score(i, j) = γpi,j + (1−
γ)qi,j . Suppose task j belongs to category c, then we set pi,j
to pi,c. We use γ = 0.4 and η = 0.5 in our experiment.
After that, our system recommends each user 20 tasks with
the highest recommendation scores. Three benchmarks are
adopted, including random recommendation, preference-only
recommendation, and reliability-only recommendation. Ran-
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Fig. 3. Comparison on Different Task Matching Strategies

dom task recommendation strategy provides each user a list of
20 randomly chosen tasks, while the preference- or reliability-
only recommendation strategies provide each user 20 tasks
with highest preference or reliability scores, respectively.

The performance of task matching strategies is measured
on two different perspectives, i.e., task acceptance ratio and
estimation accuracy. The task acceptance ratio is defined
as the percentage of the recommended tasks that the users
have selected, and the estimation accuracy is measured using
RMSE or Error Rate depending on the data types of the
tasks. The performance comparison of different task matching
strategies is presented in Fig. 3. We can see that the preference-
only strategy has the highest task acceptance ratio, while the
reliability-only strategy outputs the most accurate estimation
results. That is because these two strategies match tasks to the
users with the tendency of facilitating the match of one certain
perspective. Comparing with other task matching strategies,
we can see that our proposed hybrid recommendation strategy
can achieve a good balance between the acceptance ratio and
the estimation accuracy.

D. Evaluations on A Large-Scale Scenario

In this subsection, we examine the performance of our user
profiling algorithm on a large-scale crowdsensing scenario.

In our simulation, there are 100 users and 1000 tasks.
These tasks are randomly distributed among 20 categories.
Each user’s task selection rate is set to 10%, i.e., each user
contributes data to each task with 10% probability. The ground
truth of each task is randomly distributed within [30,100]. For
each user i, if she contributes data to the task j of category c,
then her data xi,j is generated based on a Gaussian distribution
with the mean x∗

j and variance 2
qi,c

, i.e., xi,j ∼ N (x∗
j ,

2
qi,c

).
In URP-E2, we randomly choose 1% of tasks, and incorporate
their ground truths in the user reliability profiling process. All
the results are averaged over 1000 rounds.

We classify the users into three groups: reliable users,
normal users, and unreliable users, where the users’ relia-
bility parameter in these three groups are assumed to follow
N (0.75, 0.1), N (0.5, 0.1), and N (0.25, 0.1), respectively. We
consider three different settings. In the first setting, the users
are classified into the three groups randomly. In the second
setting, each user has 60% probability of being classified into
reliable users, 30% normal users, and 10% unreliable users,
while in the third setting, each user has 10% being reliable,
30% being normal, and 60% being unreliable. We assume that
for each user, if her reliability for certain task is below 0.2,
then the user will have 50% probability of failing the task.
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Fig. 4 presents the estimation accuracy of different algo-
rithms with a varying number of the users. The number of
users varies from 10 to 100 with the increment of 10. We can
see that the simple average has the worst estimation accuracy,
while URP-E2 achieves the lowest RMSE in all the three
settings. In 4(c), we observe that the RMSE first grows as
the number of users increases, and then decrease when the
number of users is getting larger. This is because that when
the number of users is small, slightly increasing the number
of users, especially unreliable users, may bring extra errors to
the estimation results. As the number of users increases, the
platform can access to more information, and thus can reduce
the estimation errors.

Fig. 5 shows the estimation accuracy of different algorithms
with varying task selection rate. We increase the task selection
rate from 0.1 to 1 with the increment of 0.1. It can be seen
that our proposed user profiling algorithm achieves the lowest
RMSE, indicating the effectiveness of our algorithm. Besides,
we can observe that the RMSE decreases as the task selection
rate increases. This is because that increasing the task selection
rate usually means having more data, s.t., the platform can
identify the users’ reliability levels more accurately. A similar
phenomenon was also observed in [25].

We also examine the effect of the number of incorporated
ground truths on the estimation accuracy. The results are
shown in Fig. 6. We can see that having more truth can im-
prove our estimation results. Besides, comparing the different
settings, we can see that Setting 2 achieves the best estimation
accuracy, since most users in Setting 2 are reliable.

VI. RELATED WORK

Many researchers have studied the user selection problem
in mobile crowdsensing from the game-theoretic perspective.
Yang et al. [2] proposed incentive mechanisms for both
platform-centric model and user-centric model. Zhao et al.
[3] considered the problem of budget feasible mechanism
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design for crowdsensing, and proposed mechanisms for both
offline and online scenarios. He et al. [26] studied the optimal
task allocation problem for location-dependent crowdsensing.
Karaliopoulos et al. [8] adopted logistic regression techniques
to estimate a user’s probability of accepting a task, and tend to
match tasks to users based on the information. However, none
of these work considered the users’ data quality or reliability
in performing the sensing tasks. Although Jin et al. [7] and
Han et al. [27] considered the problem of quality-aware task
matching, they were based on the platform-centric model, and
were unable to recommend personalized tasks for the users.

The problem of truth discovery has been widely studied to
handle the situation where data collected from multiple sources
tend to be conflicting and the ground truths are unknown [15].
Wang et al. [28] considered the problem of truth detection
in social sensing based on EM algorithm. Wang et al. [29]
proposed a truth discovery algorithm to handle streaming data.
Ouyang et al. [30] proposed a truth discovery method to
detect spatial events based on a graphical model. Su et al.
[31] designed a generalized decision aggregation framework
for distributed sensing scenarios. Wang et al. [32] studied the
truth discovery problem in cyber-physical systems. Wang et
al. [33] further exploited the problem of truth discovery for
interdependent phenomena in social sensing. Meng et al. [34]
exploited the spatial correlations to improve the estimation
accuracy. CRH [21] is a general truth discovery framework



that can handle both continuous and categorical data. Li et
al. [25] considered truth discovery problem for long-tail data,
and proposed a confidence-aware approach. Ma et al. [35]
proposed a probabilistic method to tackle the scenarios where
sources’ reliability vary among different topics. Yang et al.
[36] studied the problem of data quality estimation and quality-
based payment determination. Peng et al. [37] propose an
EM algorithm to quantity the users’ data qualities in mobile
crowdsensing. However, all of these works are based on
unsupervised learning models, and thus may suffer from the
reliability initialization problem when most data are inaccurate
[16]. Yin and Tan et al. [38] proposed a semi-supervised
learning model to identify true facts from false ones. However,
their work tended to focus on the truth estimation part, but did
not output the reliability levels of the data sources, thus cannot
address the need of user reliability profiling.

VII. CONCLUSION

In this paper, we have studied the problem of personalized
task matching in mobile crowdsensing. We have proposed a
personalized task recommender framework that can recom-
mend tasks to users based on a fine-grained characterization
on both the users’ preference and reliability. We have proposed
methods to measure each user’s preferences and reliability of
different tasks, respectively. In particular, the proposed user
reliability profiling algorithm originates from truth discovery
problem, but surpasses existing truth discovery algorithms in
two ways, i.e., by exploiting the information of failed tasks
and also by incorporating a small number of ground truths to
improve the estimation accuracy. Further more, we proposed
a matrix factorization method to address a critical limitation
of the existing truth discovery algorithms in estimating the
users’ reliability for the uninvolved tasks. Both a real-world
experiment and a large-scale simulation have been conducted
to evaluate our proposed methods. The evaluation results have
demonstrated the good performance of our methods.
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