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Abstract—Channel assignment is a very important topic in
wireless networks. In this paper, we study FDMA channel
assignment in a non-cooperative wireless network, where devices
are selfish. Existing work on this problem has considered Nash
Equilibrium (NE), which is not a very strong solution concept and
may not guarantee a good system-wide performance. In contrast,
in this work we introduce a payment formula to ensure the
existence of a Strongly Dominant Strategy Equilibrium (SDSE), a
much stronger solution concept. We show that, when the system
converges to a SDSE, it also achieves global optimality in terms
of effective system-wide throughput. Furthermore, we extend our
work to the case in which some radios have limited tunability.
We show that, in this case, it is generally impossible to have a
similar SDSE solution; but, with additional assumptions on the
numbers of radios and the types of channels, etc., we can again
achieve a SDSE solution that guarantees globally optimal effective
system throughput in the entire system. Besides this extension,
we also consider another extension of our strategic game, which
is a repeated game that provides fairness. Finally, we evaluate
our design in experiments. Our evaluations verify that the system
does converge to the globally optimal channel assignment with
our designed payment formula, and that the effective system-
wide throughput is significantly higher than that of anarchy and
Nash Equilibrium (NE).

I. INTRODUCTION

The radio spectrum is a scarce resource in this age of fast
growing wireless communications. To better utilize the radio
spectrum, Frequency Division Multiplexing Access (FDMA)
is introduced to divide the carrier bandwidth into channels
of different frequency, each carrying a signal at the same
time. Some wireless systems also use Time Division Multiple
Access (TDMA) or Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA) to make it possible that multiple
radio transceivers can access the same channel. With the
emergence of software-defined radios, the problem of FDMA
channel assignment has gained increasing importance. Here by
channel assignment we mean the problem of assigning radio
transceivers to available channels. Due to the limitation on the
number of channels available, careful channel assignment is
needed to mitigate the performance degradation of wireless
networks because of interference.

In recent years, a large number of channel assignment
schemes for wireless networks (e.g., [1]–[9]) have been pro-
posed. In general, they assumed that all the nodes are “well
behaved” or “cooperative”. However, this assumption may not
be valid in the current wireless networks [10]. In practice, a
node can easily deviate from the protocol to seek for more
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benefit for itself. So it is crucial to study how to provide
incentives for the selfish nodes to behave cooperatively. In
a recent work, Felegyhazi et al. [11] studied Nash Equilibria
(NEs) in a non-cooperative multi-radio multi-channel alloca-
tion game. Here Nash Equilibrium (NE) is a standard solution
concept from game theory. While their work is elegant and
intriguing, NE as a solution concept does not provide an ideal
solution in the problem of FDMA channel assignment. There
are two reasons: (1) NE is not a very strong solution concept.
When in a NE, a player of the game has incentives to keep its
equilibrium strategy only under the assumption that all other
players are also keeping their equilibrium strategies. When this
assumption is not valid, NE does not provide incentives for
the game player. (2) More important, NE is usually not social
efficient, which means that the system-wide performance is
not maximized. Therefore, when the system converges to one
of the NEs, it could be the case that some of the selfish nodes
benefit at the cost of system-wide performance degradation.

The objective of this paper is to use a much stronger solution
concept —- Strongly Dominant Strategy Equilibrium (SDSE),
to guarantee that the system must converge to a state in which
the effective system-wide throughput is optimized. By its
definition (see Section III-B), SDSE ensures that, regardless of
other nodes’ behavior, a pair of communicating nodes always
have incentives to use the strategy that maximizes the system-
wide throughput. Hence the solution we provide is much
stronger than any NE-based solution. The major contributions
of this paper are as follows:

• First, we model the channel assignment problem as a
strategic game. Our game model applies to the general
scenario, where both single-radio devices and multi-radio
devices can exist. By introducing a carefully designed
payment formula (for using channels), we ensure the
existence of a SDSE. Furthermore, we show that the
SDSE achieves the global optimality in terms of effective
system-wide throughput.

• Second, we extend our game model to a limited tunability
system model and prove that one cannot find a similar
SDSE. To deal with limited tunability, we introduce some
practical assumptions, on the numbers of radios and on
the types of channels, etc. With these assumptions, using
another carefully designed payment formula, we can
again have a SDSE that achieves the global optimality.

• Third, we study the fairness issue. We extend the strategic
game to a repeated game. In our repeated game of chan-
nel assignment, not only the globally optimal effective
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throughput is preserved, but also the throughput shared
among players are balanced in the long run.

• Finally, we evaluate our solutions using extensive experi-
ments. Our experiments show that, with our designed pay-
ment formula, the system does converge to the globally
optimal channel assignment. Compared with anarchy and
NE, the effective system-wide throughput is significantly
higher.

The rest of the paper is organized as follows. We briefly
review the related works in Section II and present the tech-
nical preliminaries in Section III. In Section IV, we describe
our strategic game model of channel assignment, prove the
existence of SDSE, and propose the algorithm for computing
globally optimal channel assignment. We consider the limited
tunability system model in Section V. In Section VI, we show
a scheme to achieve fairness. And we present the evaluation
results in Section VII. Finally, we conclude the paper and point
out potential future works in Section VIII.

II. RELATED WORKS

In this section, we review the related works in this area.
We first review the channel assignment works that assume
cooperation of participants, and then review the works with
selfish participants.

A. Cooperated Channel Assignment Works

Channel assignment problem was first studied in cellular
networks. We refer to [1] for a comprehensive survey.

Due to explosive growth of wireless LANs (WLANs) in
recent years, how to efficiently manage the channels becomes
an important problem. For instance, Mishra et al. [2] utilize
weighted graph coloring to address channel allocation for
WLANs. Mishra et al. [3] use client-driven mechanisms to
address the joint problem of channel assignment and load
balancing in centrally managed WLANs.

As multi-radio devices are becoming more and more useful
in wireless mesh networks (WMNs), many researchers de-
vote themselves to studying channel assignment problems in
WMNs. For example, Alicherry et al. [4], Raniwala et al. [5],
and Kodialam et al. [6] consider channel assignment together
with routing or scheduling in order to maximize network
throughput. While the above works consider omnidirectional
antennae, authors like in [7] consider the channel allocation
problem in rural mesh networks that are built using directional
antenna.

Channel assignment problem is also studied in other wire-
less networks, such as ad-hoc networks (e.g., [8]) and software
defined radio networks (e.g., [9]).

B. Channel Assignment Works with Selfish Participants

The related works described in II-A require that all nodes
in the network must be cooperative. However, this assumption
is not valid when the network consists of selfish nodes. With
the existence of selfish nodes, assigning radios to channels
becomes a game.

In an existing work, Felegyhazi et al. [11] have studied Nash
equilibria in a static multi-radio multi-channel allocation game.
Their work is restricted to the scenario in which each device is
equipped with the same number (> 1) of radios. In this paper,
we seek for the existence of a much stronger solution concept
called SDSE and give a scheme to achieve it. Further, our

work is applicable to the general case, in which each wireless
device can be equipped with an arbitrary number (possibly
one) of radios.

Another important related work on channel assignment
game is [12], in which the authors elegantly propose a graph
coloring game model and discuss the price of anarchy under
various topology conditions such as different channel numbers
and bargaining strategies. Nevertheless, their work is restricted
to the networks of base stations and requires the assumption
that each base station has to choose a channel that has not
been used by any other existing base stations. In contrast, our
work does not have such assumptions.

In wireless networks, game theoretic approaches are also
used to study media access problems. For example, MacKenzie
et al. [13] study the selfish behavior of nodes in Aloha
networks. Later, Cagalj et al. [14] and Konorski [15] use game-
theoretic approach to investigate the media access problem
of selfish nodes in CSMA/CA networks. In cognitive radio
networks, Nie and Comaniciu [16] propose a game theoretic
framework to analyze the behavior of cognitive radios for
distributed adaptive spectrum allocation, but their main results
are for cooperative users only.

There are also other works on incentive stimulation in
wireless networks. Examples include those works on packet
routing and forwarding in ad hoc networks [17]–[25].

III. TECHNICAL PRELIMINARIES

A. System Model

We consider a wireless network, where nodes are equipped
with one or more radios. Each radio has both a transmitter and
a receiver which are combined in a single package, where the
transmitter and the receiver may or may not be able to work
simultaneously. We assume that the wireless network, whether
it is infrastructure-based or infrastructure-less, has a common
signal channel to facilitate the coordination among the nodes
[8], [11]. We ignore the issue of coordination signal in the rest
of this paper.

In the wireless network, there is a number of pairs of nodes
who need to communicate with each other over single hop
links. As in paper [11], we assume that each node participates
in only one of the communication sessions at a time. To
communicate, a pair of nodes allocate one or multiple radios.
We assume that the transmission must be between two radios,
where one acts as transmitter, and the other acts as receiver.
So we only consider the case in which each node of the pair
allocates the same number of radios in the same channel(s) .
A pair of nodes can have parallel transmissions between them,
if they both have multiple radios and allocate multiple radios.

The available frequency band is divided into orthogonal
channels (e.g., IEEE 802.11a protocol [26] has 12 orthogonal
channels). We denote the set of available orthogonal channels
by C. We denote the effective aggregate throughput of a
channel c ∈ C by Rc(n), where n is the number of pairs
of radio transmitter and receiver allocated to the channel
c. Rc(n) can be either a constant independent of n or a
decreasing function of n, corresponding to fixed-rate channels
Cf and varying-rate channels Cv , respectively. We note that
C = Cf ∪ Cv . For instance, Rc(n) is independent of n if
TDMA based scheduling scheme is used; and Rc(n) is a
decreasing function when using CSMA/CA based protocol
(e.g., IEEE 802.11 standards). As in paper [11], we assume
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that the effective aggregate throughput Rc(n) of a channel c
is shared evenly among the radios using the channel. So each
radio pair gets throughput Rc(n)/n, when n > 0. (See [11]
for why this assumption is valid in practice.)

In this paper, we only consider a single collision domain.
This means that all users of a channel can hear each other’s
transmission on this channel. Extending our work to multiple
collision domains requires consideration of the hidden terminal
problem, which we leave for future study.

B. Notations and Concepts from Game Theory

Before introducing our game-theoretic model, we need to
recall some notations from game theory. In the classic model
of strategic game, there are a finite set of players N =
{1, 2, . . . , n} and, for each player i ∈ N , a nonempty set Σi

of all possible (mixed) strategies. The set of strategy profiles
is Σ = ×i∈NΣi. Each player i chooses a strategy si ∈ Σi.
As a notational convention, s−i represents the strategies of all
players except player i. Note that s = (si, s−i) is a strategy
profile, in which player i takes strategy si and the other players
take strategies s−i. A player i’s preferences can be determined
by a utility function ui(s). Player i prefers strategy si to s′i
when the other players take s−i, if ui(si, s−i) > ui(s′i, s−i).

The most commonly used solution concept in game theory
is Nash Equilibrium (NE) [27]:

Definition 1 (Nash Equilibrium): A Nash Equilibrium of a
strategic game is a profile s∗ ∈ Σ of strategies with the
property that for every player i ∈ N we have

ui(s∗i , s
∗
−i) ≥ ui(si, s

∗
−i), (1)

for all si ∈ Σi.
Although the Nash Equilibrium gives a fundamental solu-

tion concept to game theory, it relies on knowing all the other
players’ strategies and beliefs on the other players, and also
loses power in the games where multiple NEs exist. A stronger
solution concept is Strongly Dominant Strategy Equilibrium
(SDSE)1:

Definition 2 (Strongly Dominant Strategy Equilibrium): A
Strongly Dominant Strategy Equilibrium of a strategic game
is a profile s∗ ∈ Σ of strategies with the property that for
every player i ∈ N ,{ ∀s−i ∈ Σi,∀si �= s∗i , ui(s∗i , s−i) ≥ ui(si, s−i)

∃s−i ∈ Σi,∀si �= s∗i , ui(s∗i , s−i) > ui(si, s−i).
(2)

IV. STRATEGIC GAME OF CHANNEL ASSIGNMENT

We model the channel assignment problem as a strategic
game G. We call it strategic game of channel assignment, in
which a player is a pair of nodes having packets to exchange.

A. Strategic Game Model

In this paper, we consider a set N of players, where each
player i knows her identity. In reality, a player’s identity can
be a quite long bit-string, like a MAC address. Nevertheless,
for simplicity of presentation, in this paper we assume the
players’ identities are 1 through n. Note that our results are
independent of this simplifying assumption. That is, all our
results are still valid if the identities are not 1 through n. Each

1SDSE is related to, but different from, the well known concept of dominant
strategy equilibrium (DSE). The major difference is that SDSE requires that,
compared with any other strategy, the equilibrium strategy is strictly better in
some cases.

player i ∈ N has wi radio pairs. The radio pair distribution
vector is denoted as W = {w1, w2, . . . , wn}.

In this game, the strategy of a player i ∈ N is just her
channel assignment vector si = {si,1, si,2, ..., si,c, ..., si,|C|},
where si,c is the number of radio pairs that player i assigns
to channel c. The strategy profile s is a matrix composed of
all the players’ strategies: s = (s1, s2, ..., sn)T .

Given a strategy profile s, it is easy to see the total number
of radio pairs used by a player i is mi(s) =

∑
c∈C si,c ≤

wi. Here, the inequality indicates that it is not necessary to
use up all one’s available radios. Similarly, it is also easy
to see the total number of radios assigned to a channel c is
nc(s) =

∑
i∈N si,c. Hence, the throughput a player i gets

from a channel c is

ri,c(s) =
si,c

nc
Rc(nc), (3)

and the total throughput a player i gets is

ri(s) =
∑
c∈C

ri,c. (4)

Finally, the system-wide throughput is:

T (s) =
∑
c∈C

Rc(nc). (5)

In reality, any practical solution to the channel assignment
game should satisfy some additional requirements. First of
all, there should not be any starvation. Second, we need
social efficiency, which means that the effective system-wide
throughput should be maximized. We combine these two
requirements to define the concept of global optimality of a
solution 2:

Definition 3: (Global Optimality) In a strategic game of
channel assignment, suppose that s∗ is a strategy profile or
say a channel assignment. We say s∗ is globally optimal if
the following two requirements are met:

1) No starvation. ∀i ∈ N, ri > 0.
2) Social efficiency. ∀s ∈ A, s �= s∗, if s satisfies

requirement (1), then T (s) ≤ T (s∗).
We note that the globally optimal channel assignment might

not be unique. But all globally optimal channel assignments
have the same overall throughput in the system.

B. Method to Achieve Global Optimality

It is ideal to have a globally optimal channel assignment.
However, achieving the globally optimal channel assignment
is a highly challenging task. If we allow the players to choose
the channels without giving them any influence, most likely
the system would either not converge at all, or converge to
an assignment that is not globally optimal. Therefore, we
need to introduce a method to influence the strategies of the
players. Here the method we use is to require players to make
payments.

Just as in [19]–[25], we assume that there is some kind
of virtual currency in the system. Each player has to pay
some virtual money to the system administrator based on the
outcome of the strategy profile. We regard this payment as the

2Our definition of global optimality is thus slightly different from a
traditional definition, which usually considers the optimization of a single
metric (e.g., throughput).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2218



fee for using the channels. Note that the system administrator
need not to be an online authority. It is just a server connected
to the Internet. So the players can pay or receive credit from
the system administrator when they have connections to the
Internet.

Now let’s assume we have a globally optimal strategy profile
s∗ (We will explain how to compute s∗ in Section IV-C.). We
define the payment of player i as follows:

pi = αri + β


D(si, s

∗
i ) −

1
n − 1

∑
j∈N,j �=i

D(sj , s
∗
j )


 , (6)

where D(si, s
∗
i ) is the Manhattan distance (also known as

the L1-distance) between strategies si and s∗i ; α > 0 and
β > 0 are parameters used for converting throughput and the
Manhattan distance into virtual currency values, respectively.
Intuitively, the payment is the charge for the player’s overall
throughput plus a penalty (bonus) for more (less) deviation
from the globally optimal strategy than other players. We note
that the total payments to the system administrator is:

P =
∑
i∈N

pi = α
∑
i∈N

ri,

which is the value of total throughput shared by the players.
We further note that if all the channels are used,

P = α
∑
i∈N

ri = α
∑
c∈C

Rc(nc),

which is the value of effective system-wide throughput.
We define the utility of player i as the value of throughput

she obtains minus her payment to the SA:

ui = αri − pi. (7)

Since each player is selfish and rational, she always wants to
maximize her utility.

Theorem 4: It is a SDSE when each player i takes strategy
s∗i . Furthermore, if s∗ is a globally optimal channel assign-
ment, then the SDSE achieved is also globally optimal.

Proof: Combining Equation (6) and (7), we can get:

ui = −β


D(si, s

∗
i ) −

1
n − 1

∑
j∈N,j �=i

D(sj , s
∗
j )


 . (8)

Then the utility difference of taking strategy s∗i and si �= s∗i
is:

u∗
i − ui = −β


D(s∗i , s

∗
i ) −

1
n − 1

∑
j∈N,j �=i

D(sj , s
∗
j )




+β


D(si, s

∗
i ) −

1
n − 1

∑
j∈N,j �=i

D(sj , s
∗
j )




= β(D(si, s
∗
i ) − D(s∗i , s

∗
i ))

= βD(si, s
∗
i )

> 0.

So strategy profile s∗ is a SDSE.

C. Algorithm for Computing Globally Optimal Channel As-
signment

To implement the SDSE, each player must have an algorithm
for computing the globally optimal assignment s∗. In this
subsection, we give an algorithm that computes a globally
optimal channel assignment s∗, if there exists one. The input
of this algorithm is the set of channels C, the set of players
N , and the radio distribution vector W .

Algorithm 1 Algorithm for Computing Globally Optimal
Channel Assignment

Input: Set of channels C = Cf ∪Cv , set of players N , radio
distribution vector W .

Output: Globally optimal channel assignment s∗.
1: Initialize s∗.
2: i ⇐ 1; c ⇐ 1.
3: while i ≤ n and c ≤ |C| do
4: s∗i,c ⇐ 1; wi ⇐ wi − 1.
5: i ⇐ i + 1; c ⇐ c + 1.
6: end while
7: if n < |C| then
8: i ⇐ 1.
9: while c ≤ |C| and i ≤ n do

10: if wi > 0 then
11: s∗i,c ⇐ 1; wi ⇐ wi − 1; c ⇐ c + 1.
12: else
13: i ⇐ i + 1.
14: end if
15: end while
16: else if n > |C| then
17: while i ≤ n do

18: c ⇐ argmin
c∈C

(
Rc

(∑
j

s∗j,c
)
− Rc

(∑
j

s∗j,c + 1
))

.

19: s∗i,c ⇐ 1.
20: i ⇐ i + 1.
21: end while
22: end if
23: return s∗.

Algorithm 1 shows the pseudo-code of our algorithm. Intu-
itively, the algorithm considers three cases: (1) The number of
players is less than that of channels. (2) The number of players
is more than that of channels. (3) The number of players and
that of channels are equal. For all the cases, the algorithm first
assigns each player with a single channel. Next, in case (1),
the algorithm tries to assign each unoccupied channel with a
player who still has unused radio pair, until all the channels
are occupied or all the radios of players are used. In case (2),
for each unassigned player i, the algorithm finds a channel c
on which adding a radio pair will cause the least throughput
degradation. Then it assigns player i with channel c. In case
(3), we are done with channel assignment and the algorithm
terminates.

V. LIMITED TUNABILITY

In previous sections, we have considered the case in which
all radios have unlimited tunability and thus have full access
to all channels. In reality, since the wireless networks usually
consist of various devices (e.g., laptop/desktop PC, PDA, IP
phone), the radios of the devices may not have the tunability
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to access all the channels. In this section, we extend our work
to the case in which some players have limited tunability.
Here we say a player can be tuned to, or can access, a
channel if both nodes of the player can send/receive signals
in that channel. (Recall that the two nodes of each player
must assign the same number of radios to each channel.)
Note that the problem in limited tunability model is much
more challenging than the one in unlimited tunability model.
For example, selfish players may not willing to reveal their
real tunability information, which complicates the problem a
lot. So, it is not surprising that our first result in the limited
tunability model is a result of non-existence of SDSE solution.

A. Non-existence of SDSE Solution

With limited tunability of radios, the first result we obtain
is that we can no longer have a SDSE solution as in the case
of unlimited tunability.

Theorem 5: Even if there is only a single player who can
not access all the channels (and can claim arbitrarily which
channels it can access), there is always a scenario in which
no SDSE satisfies the requirements below:

1) Each player claims her tunability honestly.
2) The assignment of channels in the equilibrium is glob-

ally optimal.
Proof: We prove by contradiction. Assume this is not true.

Then, we consider a game of two players (1 and 2) and two
channels (c1 and c2). We study two scenarios S1 and S2 as
follows.

In scenario S1, both players can access both channels. As we
have assumed, there must be a SDSE s∗ satisfying the above
two requirements. Clearly, s∗ must assign each of the two
channels to each of the two players. Without loss of generality,
suppose that s∗ assigns channel c1 to player 1 and channel c2

to player 2.
Now we construct a different scenario S2 based on the

above assignment of s∗. In S2, player 2 can access channel
c1 only, while player 1 can still access both channels. By our
assumption, in this scenario we also have a SDSE s′ satisfying
the two requirements. Note that s′ must assign c1 to player 2
since otherwise player 2 would starve. Then, it is easy to see
that s′ assigns c2 to player 1. Clearly, we can see s′ �= s∗.

Next, recall that the utility of a player only depends on the
strategy profile. So, denote by u2(s) the utility of player 2
when the strategy profile is s. Since s∗ is a SDSE in scenario
S1, there exists s1 such that

u2(s1, s
∗
2) > u2(s1, s

′
2). (9)

On the other hand, since s′ is a SDSE in scenario S2, we
always have

u2(s1, s
∗
2) ≤ u2(s1, s

′
2). (10)

We get a contradiction from Equations (9) and (10).

B. Simplified Model and Solution

Given Theorem 5, to achieve a SDSE solution, we have
to simplify our model to make the problem more tractable.
Consequently, we assume that each player has only one pair
of radios; all the channels are fixed-rate channels; and the
majority of players can access all channels. If a number of
players detect that a player is cheating about her tunability,

1) Each player i ∈ N sends test signals in each
channel it claims to be able to access. We denote
the accessible channel set of player i as Ti.

2) After receiving all the test signals, the players with
full accessibility compute the globally optimal
channel assignment s∗ and broadcast it in all
channels.

3) Each player i takes strategy si and pays two
payments:

p1
i = αri + β

(
D(si, s

∗
i )

− 1
n − 1

∑
j∈N,j �=i

D(sj , s
∗
j )
)
, (11)

p2
i = γ(|C| − |Ti|), (12)

here γ is a charge for inaccessibility to a channel
and γ > 4β.

Fig. 1. Scheme for achieving SDSE in the simplified limited tunability model.

then the latter player will be punished by an overwhelming
penalty.

In this simplified model, again, we assume that we have
an algorithm for computing the globally optimal channel
assignment. (Note that such an algorithm is different from
the one in Section IV-C, since the model is now different. We
will discuss this new algorithm in Section V-C.) We design a
scheme (see Figure 1) that ensures the existance of a SDSE
that achieves global optimality. In our scheme, to claim the
accessibility to a channel, a player needs to send a test signal
in that channel 3, so that other players can verify her claim. In
this way, a player has no way to exaggerate her accessible
channels. So a player can only claim a subset of her real
accessible channels. Recall that the majority of the players
have unlimited tunability. Consequently, the above test signal
can be verified by most players. The following lemma shows
that by claiming a proper subset of one’s accessible channels,
a player will lose her utility. In other words, a player maximize
her expected utility only by revealing the true tunability.

Lemma 6: Other things being equal, if our scheme is used,
for every player, revealing the true tunability is always better
than claiming a proper subset of accessible channels.

Proof: Suppose a player i claims her accessible channel
set T ′

i ⊂ Ti and gets utility u′
i. We show that u′

i is always less
than ui, which is the utility when claiming the true accessible
channel set Ti.

ui − u′
i = αri − p1

i − p2
i − (αr′i − p′1i − p′2i )

= −β
(
D(si, s

∗
i ) −

1
n − 1

∑
j �=i

D(sj , s
∗
j )
)

+β
(
D(s′i, s

′∗
i ) − 1

n − 1

∑
j �=i

D(s′j , s
′∗
j )
)

−γ(|C| − |Ti|) + γ(|C| − |T ′
i |) (13)

3Here the test signal we mentioned is actually a pair of signals sent by the
pair of radios of the player.
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Since each player only has one radio pair,

0 ≤ D(sx, sy) ≤ 2, (14)

for all sx, sy .
Combine Equation (13) and (14), we get

ui − u′
i ≥ γ(|Ti| − |T ′

i |) − 4β

≥ γ − 4β

Since γ > 4β,
ui − u′

i > 0

Now it is not hard to show that we have a SDSE in which
each player claims her true tunability and uses the (computed)
strategy for globally optimal assignment.

Theorem 7: There exists a SDSE in the simplified model
of limited tunability such that each player claims the true
tunability and that the channel assignment is globally optimal.

C. Algorithm for Computing the Globally Optimal Channel
Assignment in the Simplified Model of Limited Tunability

To implement the scheme in Section V-B, we need an
algorithm for computing the globally optimal channel assign-
ment in our simplified model of limited tunability. Just as
Algorithm 1, this algorithm also has the player set N and the
channel set C as the input. It does not need the radio distribu-
tion vector because the radio distribution vector is a constant in
our simplified model. In addition, the algorithm takes as input
of an accessability vector (X = (X1,X2, . . . , Xi, . . . , Xn),
where Xi ⊆ C) that indicates which player can access which
channel(s). Based on this information, the algorithm needs to
compute a globally optimal channel assignment.

We convert the problem to a graph theoretic problem.
Construct a vertex set V1 by having a vertex for each player.
Construct another vertex set V2 by having a vertex for each
channel. If a player can access a channel, then these two
vertices are connected together by an edge — let E be the
set of such edges. In this way, we get a bipartite graph
G = (V1 ∪ V2, E). A channel assignment corresponds to a
subset of edges such that each player is associated with only
one channel through this subset. We note that we can map each
channel assignment to a matching in the graph: in the subset
of edges corresponding to the assignment, for each channel
assigned to more than one players, we keep one edge and
delete the others; in this way, we get a subset of edges that
is a matching, and this matching’s aggregate throughput is
the same as the original assignment. (However, we note that
more than one assignments may map to the same matching.)
Therefore, a globally optimal channel assignment is mapped to
a maximum bipartite matching in the bipartite graph. Assume
MBM(V1, V2, E) is a deterministic algorithm for maximum
bipartite matching 4. We let all players must use the same
MBM algorithm to find a maximum matching. When there
is more than one maximum matching, the MBM algorithm
should choose to output one of them. Clearly, all players will
get the same maximum matching because they are using the
same algorithm and the algorithm is deterministic.

Algorithm 2 shows the pseudo-code of our algorithm in
the simplified limited tunability model. First, the algorithm

4See [28] for examples of such algorithms.

Algorithm 2 Algorithm for Computing Globally Optimal
Channel Assignment in the Simplified Model of Limited
Tunability
Input: Set of players N , set of channels C, accessibility

vector X .
Output: Globally optimal channel assignment s∗.

1: Initialize s∗ and G = (V1 ∪ V2, E).
2: for all i ∈ N do
3: V1 ⇐ V1 ∪ {i}.
4: end for
5: for all c ∈ C do
6: V2 ⇐ V2 ∪ {c}.
7: end for
8: for all i ∈ N do
9: for all c ∈ Xi do

10: E ⇐ E ∪ {(i, c)}.
11: end for
12: end for
13: M ⇐ MBM(V1, V2, E).
14: for all (i, c) ∈ M do
15: s∗i,c ⇐ 1.
16: N ⇐ N − {i}.
17: end for
18: for all i ∈ N do
19: c ⇐ Random(channels that i can access).
20: s∗i,c ⇐ 1.
21: end for
22: return s∗.

transforms the channel assignment problem on N and C
to a maximum bipartite matching problem on graph G =
(V1 ∪ V2, E). Then the algorithm calls a existing algorithm
for finding the maximum matching. Next, it computes the
channel assignment based on the maximum matching. Finally,
to ensure there is no starvation, for each player that has not
been assigned a channel in the matching, the algorithm assign
an arbitrary channel to her.

VI. FAIRNESS THROUGH REPEATED GAME

In the previous sections, we have studied globally optimal
channel assignment in strategic games, which guarantees no
starvation and the highest effective system throughput. How-
ever, in some applications, fairness may be more crucial than
effective system throughput. Therefore, we extend our work
to a different game theoretic model, so that we can obtain the
maximum amount of fairness.

In this section, we consider channel assignment as a
repeated game5. Essentially, this repeated game models a
situation in which players repeatedly engage in the strategic
game G as defined in Section IV. There is no limitation on
the number of times that G is played; and in each round
the players take their strategies simultaneously. Using the
terminology of repeated game, each round of strategic game
here is called a stage. All the stages have the same length of

5Note that our model of repeated game is slightly different from the standard
model of repeated game from game theory. In the standard model, the utility
function is fixed in each stage of the game. However, in our model, the
definition of payment is based on the globally optimal channel assignment.
Consequently, the payment formula changes along with the globally optimal
channel assignment in each stage of the game. So does the utility function.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2221



time. We treat each stage as a strategic game. Furthermore,
we define the cumulative utility of player i ∈ N from the
beginning of the game to stage t as:

ûi(t) =
t∑

j=0

ui(j). (15)

Let us assume, as in Section IV, that all radios have unlimited
tunability. We further assume that each player has the same
number of radios in the repeated game. Then, we can get a
completely fair channel assignment as follows.

In stage t, we define a channel assignment matrix s∗(t),
which will be used to compute the payments to the system
administrator.

s∗(t) =




s∗ if t = 0




s∗2(t − 1)
...

s∗n(t − 1)
s∗1(t − 1)


 if t > 0,

(16)

where s∗ is a SDSE we defined in Section IV.
Since each player’s utility and the system-wide throughput

in a stage are always independent from other stages, we can
easily obtain the following theorem:

Theorem 8: Each player i gets its cumulative utility max-
imized when taking the strongly dominant strategy s∗i (t) in
each stage t.

Finally, we show that we can achieve complete fairness in
the repeated game.

Theorem 9: In our repeated game of channel assignment,
if every player takes the dominant strategy in each stage, then
each player gets the same throughput in the long run.

Proof: In the repeated game, suppose player i takes the
dominant strategy s∗i (t) in each stage. The average throughput
that player i gets from the beginning of the game to stage t
is:

r̄i(t) =
1
t

t∑
j=0

ri(j)

=
1
t

t∑
j=0

r(i+j) mod n(0). (17)

Consider the infinity of the repeated game:

lim
t→+∞ r̄i(t) = lim

t→+∞
1
t

t∑
j=0

r(i+j) mod n(0)

= lim
t→+∞

1
t
· t

n

n−1∑
j=0

ri+j(0)

=
1
n

n∑
j=1

rj(0). (18)

This completes the proof.

VII. EVALUATIONS

In this section, we evaluate our schemes using MATLAB.
We assume that the available frequency band is divided into
12 orthogonal channels, which consist of fixed-rate channels

and varying-rate channels. In the evaluations, basic CSMA/CA
protocol with binary slotted exponential backoff is used for
varying-rate channels. We use the same system parameters as
in paper [29]. We assume that the channel bit rate is 1 Mbit/s.
Besides, we set α = β = 1 and γ = 5.

A. Evaluations in the Unlimited Tunability Model

We have two sets of simulations done in the unlimited
tunability model. The first one is to compare the effective
system throughput of SDSE achieved by using our scheme
with anarchy and NE. Here anarchy and NE do not charge
the players for using the channels. The difference between
anarchy and NE is: anarchy is a state where players arbitrarily
assign their radio(s) to the channels; while NE is a relatively
stable state, in which no player can increase her throughput
by reassigning her radio(s). The second one is to show that
if our scheme is used, deviating from the computed channel
assignment can not increase one’s utility.

In the first set of simulations, we consider three different
deployments of channels: (1) no varying-rate channel, (2) 8
fixed-rate channels and 4 varying-rate channels, and (3) no
fixed-rate channel. We vary the number of players from 2 to
40 with interval 2. The number of radio pairs each player has
is uniformly distributed in [1, 5]. We repeat the simulation 100
times, and average the results.
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Fig. 2. Effective system throughput of the SDSE achieved by using our
scheme and anarchy.

Figure 2 shows the result of the comparison between the
SDSE achieved by using our scheme and anarchy. Generally,
the SDSE reaches the maximum effective system throughput
as long as there are only a few players. As Figure 2 shows,
in all the three cases, the SDSE reaches effective system
throughput 12Mbit/s with only 8 players. But when there
exist varying-rate channels, the effective system throughput
of anarchy will never reach 12Mbit/s. Even without varying-
rate channel, the anarchy can get 12Mbit/s only when there
are at least 28 players in the system. Another advantage of
the SDSE is that it causes much less system degradation than
the case of anarchy, when there exist varying-rate channels. In
case (2), the SDSE achieves 0.68Mbit/s more effective system
throughput than anarchy in most cases, while in case (3),
the difference of effective system throughput is as high as
1.76Mbit/s or even more.

Figure 3 demonstrates the comparison result between the
SDSE achieved by using our scheme and a NE. Since there
is no system degradation when no varying-rate channel exists,
we only show the later two cases here. When the resource
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Fig. 3. Effective system throughput of SDSE achieved by using our scheme
and NE.

(channels) is abundant (less or equal to 4 players with average
of 3 radio pairs), the NE gets almost the same effective system
throughput as the SDSE. But when the resource is scarce,
the greedy nature of the players will make the contention
for the channels hotter and hotter with the growth of players,
regardless of system degradation. So the SDSE performs much
better than the NE, when the resource is scarce. When there
are 40 players, the effective system throughput of our SDSE
is 0.68 Mbit/s higher than that of the NE for case (2), and
1.89 Mbit/s higher for case (3).

Our second set of simulations demonstrates the effect of
deviating from our scheme. In this set of simulations, we
assume there are 40 players in the system, and 50% of them
deviate from our scheme by arbitrarily assigning their radios
to the channels. The other setups are the same as the first set
of simulations. The simulation is also repeated 100 times. We
keep track of a player and record her utility in the two cases:
following our scheme or deviating from it.
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Fig. 4. Utility of following our scheme and deviating.

Figure 4 illustrates the utility of the tracked player. It
is shown that, when following our scheme, the player can
always gets non-negative utility in any run. Furthermore, the
utility curve of following the scheme is always above that
of deviating. So following our scheme is clearly better than
deviating from it.

B. Evaluations in the Limited Tunability Model

We also do two sets of simulations in the limited tunability
model. The first one compares the effective system throughput
of SDSE achieved by using our scheme with anarchy, while the

second one studies the effect of cheating about one’s tunability
and deviating from the computed channel assignment.

In the first set of simulations, we consider two different
ratios of players who have limited tunability: 20% and 40%.
For the players with limited tunability, we restrict her number
of accessible channels uniformly between 1 and 11. We vary
the number of players from 2 to 40 with interval 2, and repeat
each simulation 100 times.
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Fig. 5. Effective system throughput of the SDSE achieved by using our
scheme and anarchy in the limited tunability model.

Figure 5 illustrates the comparison on effective system
throughput between the SDSE achieved by using our scheme
and anarchy. The effective system throughput of our SDSE
grows almost linearly when no more than 12 players in the
network, and remains at maximum after that. Compared with
anarchy, which never reaches 12 Mbit/s, our SDSE obviously
has better effective system throughput.

In the second set of simulations, we observe the effect of
cheating about tunability and deviating from the computed
channel assignment. We calculate the utility of following our
scheme minus the utility of cheating and deviating
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Fig. 6. Utility difference between following our scheme and cheating &
deviating in the limited tunability model.

In Figure 6, we can see that the utility difference is
always higher than zero in 50 iterations. And we observe
that compared with deviating, cheating is clearly the dominant
source of utility loss. So it is always better for the players to
claim their true tunability and follow the computed channel
assignment.

C. Evaluations on the Repeated Game
In this set of evaluations, we assume there are 8 fixed-rate

channels and 4 varying-rate channels. The number of players
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is set to 40. Each player has 2 radio pairs. We let the repeated
game go 4000 stages and record the standard deviation of
players’ average throughput in each stage.
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Fig. 7. Standard deviation of players’ average throughput with growth of
the stage.

From Figure 7, we observe that there is a cycle of 40 stages.
At the end of each cycle, the standard deviation gets zero. Each
cycle has a peak, which goes down towards zero with progress
of the repeated game.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we study the channel assignment problem
in non-cooperative wireless networks. We model the channel
assignment problem as a strategic game and guarantee the
existence of a SDSE by introducing a payment formula.
Furthermore, the SDSE achieves the global optimality in terms
of effective system-wide throughput. Next, we prove that the
above result does not hold in the general limited tunability
model. But, when we make additional practical assumptions
on the numbers of radios and the types of channels, etc., we
can achieve a SDSE solution that guarantees globally optimal
effective system throughput again. To get better fairness, we
extend the strategic game to a repeated game, which preserve
the global optimality in each stage and achieves fairness in
the long run.

There are several potential ways to extend our work. One
possibility is to study the tradeoff among effective system-wide
throughput, fairness among the players, and load-balance on
the channels. Another possibility is to consider strategic game
of channel assignment in multiple collision domain. However,
we leave these topics to future study.
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