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Abstract

Online mechanism design has been widely applied to
various practical applications. However, designing a
strategy-proof online mechanism is much more chal-
lenging than that in a static scenario due to short of
knowledge of future information. In this paper, we in-
vestigate online auctions with time discounting values,
in contrast to the flat values studied in most of existing
work. We present a strategy-proof 2-competitive online
auction mechanism despite of time discounting values.
We also implement our design and compare it with off-
line optimal solution. Our numerical results show that
our design achieves good performance in terms of so-
cial welfare, revenue, average winning delay, and aver-
age valuation loss.

1 Introduction
Online mechanism design, which is an extension of classic
mechanism design to dynamic environments with multiple
agents and private information, has been widely applied to
various practical applications, e.g., pricing WiFi access at
Starbucks (Friedman and Parkes 2003), cloud resource allo-
cation (Lin, Lin, and Wei 2010), and online advertising (La-
haie, Parkes, and Pennock 2008; Muthukrishnan 2009). De-
signing a strategy-proof online mechanism is much more
challenging than that in a static scenario of classic mecha-
nism design, because decisions must be made as informa-
tion about types is revealed online and without knowledge
of future information (Nisan et al. 2007).

Most of existing work on online auction only considers
flat values, i.e., the agents have uniform valuations on the
item during their presences in the online auction. However,
in many time critical applications (e.g., real-time cloud ser-
vices and online advertising), the agents have time discount-
ing values. Therefore, in this paper, we consider an online
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auction, in which agents bid for multiple reusable/repro-
ducible and identical items over a sequence of time slots.
Each agent has her arrival and departure times, and a time
discounting value for receiving one of the items during
her interval of presence. The design objective is to achieve
strategy-proofness and maximize social efficiency with re-
spect to not only the time discounting values, but also the
arrival and departure times of the agents. Noting that it is
impossible to achieve a bounded competitive ratio on effi-
ciency without any restriction on the types of possible misre-
ports (Lavi and Nisan 2005), same as (Porter 2004) and (Ha-
jiaghayi et al. 2005), we assume that the agents cannot report
an arrival time earlier than their true arrival time or a depar-
ture time later than their true departure time. This assump-
tion is backed by the heart-beat scheme (Nisan et al. 2007).

On one hand, the celebrated Vickrey-Clarke-Groves
(VCG) mechanism (Vickrey 1961; Clarke 1971; Groves
1973) is not appropriate to be applied to online auctions,
because it is normally computationally intractable to com-
pute an optimal allocation. On the other hand, directly ap-
plying existing online mechanisms, by which each winner is
charged a uniform critical price, will leave the online auc-
tion considered in this paper not strategy-proof due to time
discounting values of the agents. This motives our work.

In this paper, we present a strategy-proof 2-competitive
online auction mechanism with time discounting values. We
incorporate a computationally and competitively efficient
greedy allocation algorithm with a novel payment determi-
nation scheme. The payment scheme can calculate a distin-
guished payment for each possible time slot, in which an
agent may win an item, and thus prevents the agent from ma-
nipulating her bid. The computation complexity of the allo-
cation and payment determination algorithms areO(n log n)
and O(n2T log n), respectively. Here, n is the number of
agents and T is the length of the online auction in terms of
slot. We also implement our design and compare it with off-
line optimal solution. Our numerical results show that our
design achieves good performance in terms of social wel-
fare, revenue, average winning delay, and average valuation
loss.

The rest of the paper is organized as follows. In Section 2,
we briefly review related work in the literature. In Section3,
we introduce the model of online auction with time discount-
ing values, and recall important solution concepts used in
this paper. In Section 4, we present our design of a strategy-
proof 2-competitive online auction mechanism and analyze
its computational and economic properties. In Section 5, we



show the evaluation results. Finally, we conclude the paper
in Section 6.

2 Related Works
Lavi and Nisan first introduced the problem of online auc-
tion within the literature of computer science (Lavi and
Nisan 2000). Later, Friedman and Parkes pointed out the
crucial challenges of online mechanism design (Friedman
and Parkes 2003). Ng et al. showed a fast and strategy-
proof online mechanism (Ng, Parkes, and Seltzer 2003).
Parkes and Singh analyzed VCG-based online mechanism
with Markov Decision Process (Parkes and Singh 2003;
Parkes, Singh, and Yanovsky 2004). Porter applied mecha-
nism design to online real-time scheduling of jobs (Porter
2004). The closely related problem of online bipartite
matching is studied in (Karp, Vazirani, and Vazirani 1990;
Karande, Mehta, and Tripathi 2011). However, these online
mechanisms do not take discounting values into considera-
tion.

Online mechanisms with expiring items were investigated
in (Hajiaghayi et al. 2005) and (Lavi and Nisan 2005). Ha-
jiaghayi et al. provided a strategy-proof and competitively
efficient online mechanism with reusable goods (Hajiaghayi
et al. 2005). Lavi and Nisan showed that it is impossible to
achieve a bounded competitive ratio on efficiency without
any restriction on the types of possible misreports (Lavi and
Nisan 2005). Babaioff et al. included weights and discounts
in secretary problem (Babaioff, Immorlica, and Kleinberg
2007; Babaioff et al. 2009). However, their mechanism can-
not guarantee strategy-proofness, when applied to online
auction with time discounting values.

Furthermore, there exist a number of loosely related work
on dynamic auctions, e.g., unlimited supply digital good
auctions (Bar-Yossef, Hildrum, and Wu 2002; Blum and
Hartline 2005), double side online auctions (Bredin and
Parkes 2005; Blum, Sandholm, and Zinkevich 2006), inter-
dependent value auction (Constantin, Ito, and Parkes 2007),
multi-dimensional online mechanism design (Gerding et al.
2011; Stein et al. 2012), false-name-proofness (Todo et al.
2012), and payment redistribution (Naroditskiy et al. 2013).

3 Preliminaries
In this section, we present the model of online auction with
time discounting values, and recall some related solution
concepts from algorithmic mechanism design.

3.1 Auction Model
We consider an online auction with a trusted auctioneer and
a set of agents N = {1, 2, 3, · · · , n}. Time is divided into
equal length slots and is numbered from 1 to T , i.e., T =
{1, 2, · · · , T}.

In each time slot t ∈ T, the auctioneer allocates g
reusable/reproducible and identical items to a set of winners
Wt ⊆ N. The auctioneer also determines the payment pi for
each agent i ∈ N.

Each agent i ∈ N wants at most one unit of the item. Her
type is denoted as θi = (ai, di, vi(t)), where ai ∈ T is her
arrival time, di ∈ T is her departure time, and vi(t) is her
time discounting valuation of a single item. We consider that
agent i’s valuation can be represented as

vi(t) =

{
max(viFi(t) +Di(t), 0), t ∈ [ai, di],

0, otherwise,
(1)

where vi is the intrinsic valuation, and Fi(t) and Di(t) are
exponential and linear discounting factors, respectively. This
is a general discounting model. Its representative examples
include but not limited to the following.

• Exponential Discounting: Fi(t) = η(t−ai), where η ∈
(0, 1), and Di(t) = 0.

• Linear Discounting: Fi(t) = 1, Di(t) = −δ(t − ai),
where δ > 0 is a constant.

• Joint Discounting: Fi(t) = η(t−ai), Di(t) = −δ(t− ai),
where η ∈ (0, 1) and δ > 0.

• No Discounting: Fi(t) = 1, Di(t) = 0.
We consider that the agents are rational and selfish. They

may cheat the arrival time, departure time, as well as the in-
trinsic valuation. Since early arrival and late departure can be
prevented by the heart-beat scheme (Nisan et al. 2007), we
focus on the scenario, in which the agents can only report
an arrival time later than their true arrival time or a depar-
ture time earlier than their true departure time, in this paper.
Hence, each agent i propose a bid bi = (a′i, d

′
i, v
′
i(t)), which

can be different from her type. We define ~bt as the bid pro-
file in time slot t. Same as (Babaioff et al. 2009), we assume
that the agents share a common discounting function. Once
an agent comes into the auction, she proposes her bid to the
auctioneer, and cannot change it later. The auctioneer will
calculate a discounted bid for the agent in each time slot,
and determines the allocation. Each agent i gets a utility of
ui = vi(t) − pi, if she wins in time slot t; or 0, if she loses
in the auction.

ui =

{
vi(t)− pi, i ∈Wt,

0, otherwise.
(2)

In contrast to the agents who always want to maximize
their own utilities, the auctioneer’s objective is to maximize
social welfare, which is defined as follows.
Definition 1 (Social Welfare). The social welfare in an on-
line auction is the sum of winners’ valuations on the allo-
cated items in their corresponding winning time slots.

SW =
∑
t∈T

∑
i∈Wt

vi(t). (3)

3.2 Solution Concepts
A strong solution concept from mechanism design is domi-
nant strategy.
Definition 2 (Dominant Strategy (Fudenberg and Tirole
1991; Osborne and Rubenstein 1994)). Strategy si is agent
i’s dominant strategy, if for any strategy s′i 6= si and any
other player’s strategy profile s−i, we have

ui(si, s−i) ≥ ui(s′i, s−i). (4)

Intuitively, a dominant strategy of a player is a strategy
that maximizes her utility, regardless of what strategy profile
the other players choose.

The solution to the afore mentioned online auction is a
kind of direct revelation mechanism, in which the strate-
gies of the agents are to propose bids based on their types.
The concept of dominant strategy is the basis of incentive-
compatible direct revelation mechanism, which means that



there is no incentive for any player to lie about her private in-
formation, and thus revealing truthful information is a dom-
inant strategy for every player. An accompanying concept is
individual-rationality, which means that every player partic-
ipating in the game expects to gain no less utility than stay-
ing outside. We now can introduce the definition of strategy-
proof direct revelation mechanism.
Definition 3 (Strategy-Proof Direct Revelation Mecha-
nism (Mas-Colell, Whinston, and Green 1995; Varian
1995)). A direct revelation mechanism is strategy-proof,
when it satisfies both incentive-compatibility and individual-
rationality.

The objective of this work is to design strategy-proof on-
line auction mechanisms despite of time discounting values.

4 Auction Design
In this section, we present our design of online auction with
time discounting values, and show its economic and compu-
tation properties, including strategy-proofness, computation
efficiency, and competitive efficiency. Our mechanism con-
sists of two parts: item allocation and payment determina-
tion.

4.1 Item Allocation
Noting the dynamic arrival and departure of the agents, the
auctioneer should employ an item allocation algorithm that
only depends on the currently known information without
any assumption on the bids of the future agents in the online
auction. The item allocation algorithm should be both com-
putationally efficient and competitively efficient. We design
a computationally efficient greedy algorithm for item allo-
cation to achieve 2-competitive efficiency.

In each time slot t, the auctioneer allocates the items to
up to g highest bidding agents from Nt. We note that Nt

used here is the set of currently available agents excluding
the winners in previous time slots. If there is a tie, the auc-
tioneer breaks it randomly. Algorithm 1 shows the pseudo-
codes of our item allocation algorithm. The complexity of
Algorithm 1 is O(n log n).

Algorithm 1 Item allocation algorithm: Alloc(t,Nt)

Input: Time slot t ∈ [1, T ], agents presented Nt and bid
profile~bt in slot t, number of items g;

Output: Set of winners Wt in slot t;
1: Wt ← ∅;
2: while g > 0 and Nt 6= ∅ do
3: i← argmax

i∈Nt

(v′i(t));

4: Wt ←Wt ∪ {i}, Nt ← Nt \ {i}, g ← g − 1;
5: end while
6: return Wt.

Theorem 1. Our design is a 2-competitive online auction
mechanism with time discounting values.

Proof. Let OPTt ⊆ N be the set of winners determined by
an off-line optimal solution. For the analysis of competitive
ratio, we use the true valuation vi and the proposed valuation
v′i of agent i interchangeably.

We consider a time slot t ∈ T. For each agent i ∈ OPTt,
if she does not win in a time slot before or equal t in our
mechanism, then there must be g winners with higher valu-
ations than vi(t) in time slot t given our mechanism due to
agent i’s presence, i.e.,

if i /∈
t−1⋃
k=1

Wk, then ∀j ∈Wt, vj(t) ≥ vi(t).

Thus, we have∑
j∈Wt

vj(t) ≥ g ·max

{
vj(t)

∣∣∣∣∣j ∈ OPTt \
t−1⋃
k=1

Wk

}
∑
t∈T

∑
j∈Wt

vj(t) ≥
∑
t∈T

(
g ·max

{
vj(t)

∣∣∣∣∣j ∈ OPTt \
t−1⋃
k=1

Wk

})
(5)

On the other hand, the agents who win earlier in our mech-
anism than in off-line optimal solution get higher valuations
on allocated items in our mechanism. Here, we temporarily
denote the sum of valuations on the allocated items of these
agents by σ.∑

t∈T

∑
j∈Wt

vj(t) ≥ σ ≥
∑
t∈T

∑
j∈OPTt∩

⋃t−1
k=1 Wk

vj(t) (6)

By combining inequations (5) and (6), we get

2
∑
t∈T

∑
j∈Wt

vj(t) ≥
∑
t∈T

∑
j∈OPTt∩

⋃t−1
k=1 Wk

vj(t)

+
∑
t∈T

(
g ·max

{
vj(t)

∣∣∣∣∣j ∈ OPTt \
t−1⋃
k=1

Wk

})
⇒ 2

∑
t∈T

∑
j∈Wt

vj(t) ≥
∑
t∈T

∑
j∈OPTt

vj(t)

⇒ 2SW ≥ SWOPT (7)
Therefore, the competitive ratio of our design is 2.

4.2 Payment Determination
The payment needs to be determined in an online fashion
in the sense that it can be calculated by the time an agent
leaves the auction and no future information after the agents
leaving is needed. Due to the discounting value/bid, an agent
can manage to win in several different time slots by adjust-
ing her proposed intrinsic valuation. Since the agent has dif-
ferent valuations in different time slots, charging a uniform
price by directly applying the traditional critical payment
will leave the online auction mechanism not strategy-proof.
To guarantee strategy-proofness despite of discounting val-
ues/bids, we carefully design a novel payment determination
algorithm.

Locating Candidate Winning Slots Before introducing
the payment determination algorithm, we have to first iden-
tify the set of candidate winning slots, in which an agent may
win an item by adjusting her proposed intrinsic valuation.

Given a winner i ∈ W, for each time slot t ∈ [a′i, d
′
i], we

calculate the critical price P t
i for agent i to win in the time

slot:
P t
i = min

{
v′j(t)|j ∈ Alloc(t,Nt

−i)
}
. (8)



We note that Nt
−i used here is slightly different from that

of Nt used in the previous section. Here, Nt
−i is the set of

currently available agents excluding the winners in previous
time slots, if agent i does not participate in the online auc-
tion.

Then, the proposed intrinsic valuation v̂ti that can result in
P t
i is:

v̂ti =
P t
i −Di(t)

Fi(t)
. (9)

Finally, the set of candidate winning slots Γi ⊆ [a′i, d
′
i] of

the winner i should satisfy the following constraint:

∀1 ≤ tj < |Γi|,
(
v̂
tj
i ≥ v̂

tj+1

i ∧ @tk ∈ (tj , tj+1), v̂tki ≤ v̂
tj
i

)
.

(10)
Algorithm 2 shows the pseudo-codes for locating the set

of candidate winning slots. Algorithm 2 calls Algorithm 1
at most T times, and thus results in a time complexity of
O(nT log n). We note that although Algorithm 2 is pre-
sented in the way of calling historical data to locate the
candidate winning slots for an agent, the candidate winning
slots can be determined on the go. Therefore, the payment
can be calculated immediately when the agent is leaving the
auction based on the previously determined set of candidate
winning slots.

Algorithm 2 Locating Candidate Winning Slots: Candi(i)
Input: A winner i, sets of available agents if i does not exist
{Nt
−i}t∈[a′i,d′i], bid profiles {~bt}t∈[a′i,d′i];

Output: A set of candidate winning slots Γi;
1: Γi ← ∅, v̂ ← +∞;
2: for t = a′i to d′i do
3: P t

i = min{v′j(t)|j ∈ Alloc(t,Nt
−i)};

4: v̂ti =
P t

i−Di(t)
Fi(t)

;
5: if v̂ti ≤ v̂ then
6: Γi ← Γi ∪ {t}, v̂ ← v̂ti ;
7: end if
8: end for
9: return Γi.

Payment Calculation To guarantee strategy-proofness,
the payment of a winner in the case of discounting val-
ues/bids should depend not only on the bids of the com-
peting agents, but also on the time the agent wins an item.
Therefore, we determine the payment in a recursive way
based on previously calculated set of candidate winning
slots.

We consider a winner i. Suppose that there are m ele-
ments in her set of candidate winning slots Γi, i.e., Γi =
{t1, t2, · · · , tm}, where ∀1 ≤ j < k ≤ m, tj < tk. If the
agent i wins an item in time slot tk ∈ Γi, her payment can
be calculated as follows:

pi =

m∑
j=k

P
tj
i −

m−1∑
j=k

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)
.

(11)
We note that (1) payment pi is always no more than win-

ner i’s valuation of an item in time slot tk; otherwise, agent

i cannot win in that slot; (2) to determine the payment for all
the winners, our mechanism takes O(n2T log n) time.

Given the above allocation and payment algorithms, we
next prove the strategy-proofness of our design.
Lemma 1. In our mechanism, given any agent i ∈ N,
proposing her true intrinsic valuation vi in the bid is a domi-
nate strategy, for any proposed presence interval [a′i, d

′
i] and

any bid profile of the other agents~b−i.

Proof. Given an agent i’s proposed presence interval [a′i, d
′
i]

and the bid profile of the other agents ~b−i, we can locate
the set of candidate winning slots Γi = {t1, t2, · · · , tm} by
invoking Algorithm 2. Let ui be the utility of the agent i,
when proposing her true intrinsic valuation vi in the bid.

We first consider the case, in which the agent wins an item
in time slot tk ∈ Γi, when proposing her true intrinsic valua-
tion vi in the bid. Suppose that the agent proposes a different
intrinsic valuation v′i 6= vi, and results in a utility of u′i. We
distinguish two cases:

• The agent proposes a higher intrinsic valuation, i.e., v′i >
vi. The agent must be able to win an item in a time slot
tk′ ∈ Γi no later than tk, i.e., tk′ ≤ tk. Then the utility
difference is:

ui − u′i
= vi(tk)− pi − (vi(tk′)− p′i)
= vi(tk)− vi(tk′) + (p′i − pi)

= vi(tk)− vi(tk′) +

(
m∑

j=k′

P
tj
i −

m∑
j=k

P
tj
i

−
m−1∑
j=k′

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)

+

m−1∑
j=k

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

))

= −
k−1∑
j=k′

(
vi(Fi(tj)− Fi(tj+1)) +Di(tj)−Di(tj+1)

)

+
k−1∑
j=k′

(
P

tj
i −

(P
tj
i −Di(tj))Fi(tj+1)

Fi(tj)
−Di(tj+1)

)
(12)

Since the agent should not win before time slot tk in the
truthful telling case, we have ∀j ∈ {k′, k′ + 1, · · · , k −
1}, vi × Fi(tj) +Dj(tj) ≤ P

tj
i . Then, we have

(12) ≥
k−1∑
j=k′

(
(P

tj
i −Di(tj))(Fi(tj+1)− Fi(tj))

Fi(tj)

+Di(tj+1) + P
tj
i −

(P
tj
i −Di(tj))Fi(tj+1)

Fi(tj)

−Di(tj+1)−Di(tj)

)
= 0 (13)



Therefore, the utility of the agent i is decreased.
• The agent proposes a lower intrinsic valuation, i.e., v′i <
vi. We further distinguish two cases:
– The agent wins an item in a time slot tk′ ∈ Γi no earlier

than tk, i.e., tk′ ≥ tk. Then the utility difference is:
ui − u′i

= vi(tk)− pi − (vi(tk′)− p′i)
= vi(tk)− vi(tk′) + (p′i − pi)

= vi(tk)− vi(tk′) +

(
m∑

j=k′

P
tj
i −

m∑
j=k

P
tj
i

−
m−1∑
j=k′

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)

+

m−1∑
j=k

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

))

=

k′−1∑
j=k

(
vi(Fi(tj)− Fi(tj+1)) +Di(tj)−Di(tj+1)

)

−
k′−1∑
j=k

(
P

tj
i −

(P
tj
i −Di(tj))Fi(tj+1)

Fi(tj)
−Di(tj+1)

)
(14)

Since the agent should win before time slot tk′ , we have
∀j ∈ {k, k+1, · · · , k′−1}, vi×Fi(tj)+Dj(tj) ≥ P

tj
i .

Then, we have

(14) ≥
k′−1∑
j=k

(
(P

tj
i −Di(tj))(Fi(tj)− Fi(tj+1))

Fi(tj)

+Di(tj)−Di(tj+1)− P tj
i

+
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)
= 0 (15)

Therefore, the utility of the agent i is decreased.
– The agent loses in the online auction. Then, her utility
u′i = 0 ≤ ui.

We next consider the case, in which the agent loses in the
online auction, when proposing her true intrinsic valuation
vi in the bid. Suppose that the agent proposes a different
intrinsic valuation v′i 6= vi, and results in a utility of u′i. We
distinguish two cases:

• The agent proposes a higher intrinsic valuation, i.e., v′i >
vi, and wins an item in a time slot tk′ ∈ Γi. Then, her
utility becomes
u′i = vi(tk′)− p′i

= vi(tk′)−
m∑

j=k′

P
tj
i

+

m−1∑
j=k′

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)

=

m−1∑
j=k′

(
vi(Fi(tj)− Fi(tj+1)) +Di(tj)−Di(tj+1)

)
+vi(tm)−

m∑
j=k′

P
tj
i

+

m−1∑
j=k′

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)

≤
m−1∑
j=k′

(
(P

tj
i −Di(tj))(Fi(tj)− Fi(tj+1))

Fi(tj)

+Di(tj)−Di(tj+1)

)
+ vi(tm)−

m∑
j=k′

P
tj
i

+

m−1∑
j=k′

(
(P

tj
i −Di(tj))Fi(tj+1)

Fi(tj)
+Di(tj+1)

)

= vi(tm)− P tm
i

≤ 0 (16)

Hence, it is better not to cheat the intrinsic valuation.
• The agent proposes a false intrinsic valuation, but still

does not win. Then, her utility remains to be 0.

From the above case by case analysis, we get that propos-
ing true intrinsic valuation vi in the bid is the agent i’s dom-
inate strategy.

Lemma 2. In our mechanism, given any agent i ∈ N,
proposing her true arrival and departure time [ai, di] is a
dominate strategy, for any bid profile of the other agents~b−i.

Due to limitations of space, we omit the proof here.
By combining Lemma 1 and Lemma 2, we get that

our mechanism is an incentive compatible direct revelation
mechanism. Noting that our mechanism also satisfies indi-
vidual rationality, since pi is always no more than vi(tk), if
the agent i truthfully participate in the online auction. There-
fore, we can draw the following conclusion.
Theorem 2. Our mechanism is a strategy-proof online auc-
tion mechanism with time discounting values.

5 Numerical Results
We have implemented our design of online auction with time
discounting values (named OASES in the evaluation), and
compare its performance with the off-line VCG mechanism
(named Off-line VCG in the evaluation), which achieves op-
timal social welfare.

In the evaluation setup, we vary the number of agents
from 50 to 1000 with a step of 50, uniformly distribute the
agents’ intrinsic valuations over (0, 1], and set the two dis-
counting factors of an agent i to be Fi(t) = 0.9t−ai and
Di(t) = −0.05 × (t − ai). We vary the number g of items
for sale in each time slot from 1 to 5 with a step of 2, and
set the number of time slots to 100. All the results are aver-
aged over 200 runs. Since calculating an optimal allocation
is extremely time consuming when g > 1, we only collect



the results of Off-line VCG when there is a single item for
sale.

We consider four metrics, including social welfare, rev-
enue, average winning delay, and average valuation loss.
Winning delay is the number of time slots from an agent’s ar-
rival to her winning of an item. Average winning delay cap-
tures how fast the mechanism allocates the items to newly
arrived agents. Valuation loss is an agents’ valuation decre-
ment by the time of winning. This metric captures value-
preservation of the winners. In practice, the auctioneer tends
maximize social welfare and revenue, while the agents nor-
mally prefer to auctions with shorter average winning delay
and less average valuation loss.
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Figure 1: Comparisons on social welfare.

Figure 1 shows the evaluation results on social welfare.
Generally, the social welfare increases with the number of
agents and the number of items for sale. When there is a
single item for sale in each time slot, OASES achieves a
social welfare very close to that of the optimal solution. This
shows that OASES can perform well except in some rarely
appeared extreme cases.
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Figure 2: Comparisons on revenue.

Figure 2 demonstrates the evaluation results on revenue
of the two mechanisms. Same as social welfare, the rev-
enue generated by OASES is very close to that of Off-line
VCG for auctioning a single item in each time slot. We can
observe that OASES with g = 3 achieves lower revenue
than OASES with g = 1 when the number of agents is less
than 250, and OASES with g = 5 gets lower revenue than
OASES with g = 3 when the number of agents is less than
750. This is because the competition is less intense when
there are more items for sale, and thus the payment for win-
ning is lower. However, when there are sufficiently large
number of agents, having more items sold can generate more

revenue. To deal with the problem of low revenue in case of
small number of agents and relatively high value of the pa-
rameter g, an intuitive way is to let the auctioneer dynami-
cally determine the number of items for sale. Specifically, in
the setting of our evaluations, the auctioneer can choose to
sell 1, 3, and 5 items, when the number of agents is in the
range of (0, 300), [300, 750), and [750,+∞), respectively.
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Figure 3: Comparisons on average winning delay.

Figure 3 presents the evaluation results on average win-
ning delay. We can see that OASES achieves much lower
average winning delay than Off-line VCG. In OASES, most
of winning agents immediately get the item at their arrival.
With the increment of number of items for sale, the average
winning delay of OASES approaches 0.
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Figure 4: Comparisons on average valuation loss.

Finally, figure 4 shows the evaluation results on average
valuation loss. We can see that OASES saves up to 63.8%
valuation on average compared with Off-line VCG, when
there is a single item for sale. When selling 3 and 5 items in
each time slot, OASES only loses up to 0.0048 and 0.0015
valuation on average, respectively.

6 Conclusions
In this paper, we have studied the problem of mechanism
design for online auctions with time discounting values, and
have proposed a strategy-proof 2-competitive online auction
mechanism. We have also implemented our design and com-
pare it with off-line optimal solution. Our numerical results
have shown that our design achieves good performance in
terms of social welfare, revenue, average winning delay, and
average valuation loss.
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