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Abstract— Exploring the utilization of white spaces (vacant
VHF and UHF TV channels) is a promising way to satisfy
the rapidly growing radio frequency (RF) demand. Although
a few white space exploration methods have been proposed in
the past few years, they mainly focused on outdoor scenarios.
In this paper, we propose a novel cost-efficient indoor white space
exploration method by exploiting the location dependence and
channel dependence of TV spectrum in indoor environments.
We first measure the UHF TV channels in a building, and study
the spatial and spectral features of indoor white spaces. Then, we
design a cost-eFficient Indoor White space EXploration (FIWEX)
mechanism based on the extracted features. Furthermore,
we build a prototype of FIWEX and extensively evaluate its
performance in real-world environments. The evaluation results
show that FIWEX can identify 30.0% more indoor white spaces
with 51.2% less false alarms compared with the best known
existing solution.

Index Terms— White space, indoor, compressive sensing.

I. INTRODUCTION

THE growth of wireless networks is currently facing an
increasing shortage of available radio frequency spec-

trum, since the number of mobile devices and their related
applications is raising rapidly. However, the amount of unli-
censed spectrum that is free to use is very limited. To deal with
this problem, the concept of Dynamic Spectrum Access (DSA)
aiming at exploring the opportunity of sharing licensed spec-
trum among both licensed and unlicensed users has been
proposed and applied to several applications [5], [39].

In 2008, FCC (Federal Communications Commission)
issued a historic ruling that allowed unlicensed devices to
use the TV spectrum that is not locally occupied by licensed
devices. The unoccupied TV spectrum is often referred to as
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TV white space or simply white space. After that, the TV white
space received more and more attention from DSA developers.
Although white spaces have been open for unlicensed use
now, FCC also required that unlicensed white space devices
should not interfere with the licensed devices (TV broadcasts).
Therefore, it is essential for all user devices (especially the
unlicensed ones) to find out whether a spectrum band is
available before using it for communications.

To explore white spaces, there are mainly two approaches:
spectrum sensing approach and geo-location database
approach. The spectrum sensing approach, which is less
widely used, relies on the user devices to perform spectrum
sensing. Thus, it requires the devices to be equipped with
proper sensing hardware and to have enough power for sensing
and signal analysis. On the contrary, the commonly-used geo-
location database approach does not need the user devices to
sense and thus saves their power. A user device gets to know
the availability of white spaces by querying an online geo-
location database that stores a “white space availability map,”
which indicates spectrum’s availability information at different
locations.

For the geo-location database approach, the white space
availability map is vital. In this paper, we study how to
efficiently construct the “white space availability map,” which
is used by the geo-location database approach in indoor
environments. Most prior works [4], [7], [19], [27], [40], [43]
on white space exploration only focused on outdoor scenarios.
Since there are relatively few obstructions in outdoor environ-
ments, existing works applied the signal propagation model to
infer whether a spectrum band at a specific location is available
or not. However, due to the existence of the indoor man-made
obstacles (e.g., walls), if we directly apply these approaches
in indoor environments, it is likely that we would get results
that are overly conservative.

Existing works [12], [21] have shown that people stay
indoor most of the time, which makes 70% of the spectrum
demands coming from the indoor environments. Hence, it is
highly necessary to explore the indoor white spaces. To solve
the problem of indoor white space exploration, we propose
a cost-eFficient Indoor White space EXploration mechanism,
called FIWEX. Intuitively, one can always solve the problem
by deploying a large number of RF-sensors that cover the
entire building. However, this is very expensive. By strate-
gically deploying only a limited number of sensors, FIWEX
is able to reconstruct the indoor white space availability map
with high accuracy, based on a small number of RF-sensors.
Due to the innovative utilizations of 1) the existence of strong
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channels, whose signal strength is at least 5dB greater than the
white space threshold, 2) the location dependence as well as
channel dependence of channels’ signal strengths in indoor
environments, 3) the compressive sensing technique, and
4) a well designed k-medoids based sensor deployment
method, FIWEX features a promising efficiency on the total
number of sensors and reconstruction accuracy.

The main contributions of this paper are as follows.
• We perform indoor white space measurements in a build-

ing for two weeks. The measurement results confirm that
(1) there exist strong channels, (2) indoor white spaces’
signal strengths have both location dependence and chan-
nel dependence. These two key characteristics allow us
to efficiently explore indoor white spaces without making
a very dense deployment of RF-sensors in the entire
building.

• We propose FIWEX, a cost-efficient indoor white space
exploration mechanism that does not require user devices
to sense the spectrum by themselves. By taking strong
channels, location dependence, and channel dependence
into consideration, we propose a compressive sensing
based data reconstruction algorithm to reduce the number
of sensors needed for detection. In addition, we design
an innovative sensor deployment method to improve the
reconstruction accuracy.

• We have built a prototype of FIWEX, and evaluated its
performance. We evaluate FIWEX’s performance com-
pared to WISER, the state-of-the-art indoor white space
identification system. On an average, FIWEX can identify
30.0% more indoor white spaces with 51.2% less false
alarms.

The remainder of the paper is organized as follows.
We introduce our indoor white space measurement experi-
ments in Section II. Section III describes the system model
of FIWEX. In Section IV, we provide the detailed system
design. Section V shows the evaluation results. The related
works are discussed in Section VI. At last, we conclude the
paper in Section VII.

II. INDOOR WHITE SPACE AVAILABILITY MEASUREMENT

In this section, we introduce our indoor white space mea-
surement. The measurement gives us a deep understanding
about the characteristics of indoor white spaces, which can be
utilized in designing FIWEX.

A. Measurement Setup

The measurement device we used consists of a USRP
N210 [1], an log periodic PCB antenna (400-1000 MHz)
and a laptop. The daughterboard of our USRP is SBX with
5-10 dBm noise figure. We calibrate the device using a
RF signal generator to get the accurate signal strength.

A number of different methods were proposed for iden-
tifying the presence of signal transmissions, such as energy
detection, waveform-based sensing, and matched-filtering [42].
Here, we choose energy detection, since it is the most common
way with low computation and implementation complexities.
In our measurements, we judge whether a TV channel is vacant

by comparing the channel’s signal strength with a threshold,
which depends on the noise floor [34]. If the signal strength
of a TV channel is greater than the threshold, we label this
channel as locally occupied, otherwise the channel is labeled
as vacant. We measure the digital TV channels between
470 MHz - 566 MHZ and 606 MHz - 870 MHz with
8 MHz channel bandwidth, and use the same threshold
−84.5 dBm/8 MHz as [41]. Due to the hardware limitations,
the vacant channels determined using the above mentioned
threshold may be not safe to use, but the observations drawn
from the measurement are general, and our mechanism is not
limited to any specific threshold. We believe that if the sensi-
tivity of the measurement hardware (e.g., WSA 5000 [2]) can
support a threshold of −114 dBm as suggested by FCC [3],
our mechanism can be safely used in practice.

We implement the energy detector based on a GNU Radio
FFT program with a bin size of 1024 and sampling rate 4 MHz.
We calculate the power of a channel using the average value of
all corresponding bins. In the indoor white space measurement
experiment, we measure 45 channels in total.

Our measurement is divided into two parts, namely long-
time sensing and short-time sensing.

B. Long-Time Sensing

In long-time sensing, we randomly choose 20 rooms and
deploy a USRP coupled with a laptop in every room. The
absolute signal strengths for all 45 TV channels are measured
for contiguous 87.5 hours (20:30, July 7, 2014 - 12:00,
July 11, 2014). For the convenience of comparisons, we
convert absolute signal strengths to the relative ones by
subtracting the white space threshold from them. Devices in
different rooms are synchronized using “crontab” command
of Ubuntu 12.04. The system time of all laptops are synchro-
nized with the same time server. Then the spectrum sensing
programs on our laptops run simultaneously every half an hour.

We have the following observations from long-time sens-
ing results. First, as shown in Fig. 1(a), there exist strong
channels whose relative signal strengths are obviously greater
than 0 during most of the time. For example, we observe
3 channels with >5dB relative signal strengths during the
whole 87.5 hours interval. This means that these three chan-
nels are long time occupied in room 11. Actually, these long
time occupied channels may be utilized by the licensed signal
transmissions with high power.

Second, we observe that a channel may have different signal
strengths at different locations. As shown in Fig. 1(b), the
relative signal strength of channel 13 in room 11 is greater than
5 dB during the whole measurement period; in room 9, the
channel’s relative signal strength moves up and down around
5 dB; in room 1 it is always below 5 dB.

Finally, short term occupied channels exist. We refer to
a channel, which is occupied for some periods of time and
vacant for the rest of time, as a short term occupied channel.
Fig. 1(c) shows two short term occupied channels (channel 2
in room 13 and channel 27 in room 11) whose relative signal
strengths move up and down around 0. The short term occu-
pied channels are actually occupied by some licensed users.
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Fig. 1. Results of indoor white space measurement: long-time sensing and short-time sensing. (a) Relative signal strengths for 45 TV channels of room 11
in a 87.5-hour window. (b) TV channel 13 in room (1, 9 ,11). (c) Two short term occupied channels. (d) Indoor white space availability map. (e) Location
dependence. (f) Channel dependence.

But the base stations, which utilize these channels, are far
away from the building we perform the measurement. Due to
the attenuation caused by the indoor and outdoor obstacles, the
signal strengths of the short term occupied channels are near
to the white space threshold, and vary up and down around the
threshold due to signal fluctuation. Hence, short term occupied
channels can be safely accessed by unlicensed users when they
are vacant.

Long-time sensing experiment results show the existence
of strong channels and short term occupied channels. If we
find strong channels and consider them always strong in the
future, then we can pay our attention to the short term occupied
channels. In this way, the resources (e.g., RF-sensors, energy)
can be more efficiently utilized. Actually, there exist weak
channels whose signal strengths are lower than the white
space threshold in our measurement experiments, but we don’t
consider them as always weak in order to protect the licensed
users.

C. Short-Time Sensing

Indoor short-time sensing experiments collect the spatial-
channel features of indoor white space. Our indoor white space
exploration mechanism is designed based on the data collected
during this process.

The short-time sensing is performed on the third floor of
the SEIEE building at Shanghai Jiao Tong University, as
shown in Fig. 2. We choose 67 typical locations labeled as
location 1 to location 67 (red dots in Fig. 2), and measure all
45 TV channels at each location. We mount the measurement

Fig. 2. The map showing the 67 measurement locations on the 3rd floor of
the SEIEE building.

device on a movable cart, and use the uninterrupted power
supply (UPS) to provide power. The movable measurement
device is shown in Fig. 3. In each day, we measure the
signal strengths at the 67 locations one by one, and get
a Measurement Matrix (MM), which is a 67 × 45 matrix
denoted by M . The measurement process needs about one
and a half hours. M contains the absolute signal strengths
for 45 channels at 67 locations, each row/column of which
represents a location/channel. The measurement lasts for a
period of two weeks (April 14, 2014 - April 27, 2014).
Accordingly, we get 14 measurement matrices. From the short-
time sensing, we have the following observations.

First, Fig. 1(d) shows the indoor white space availability
map, where white blocks represent white spaces and black
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Fig. 3. The measurement device.

blocks represent occupied channels. We observe that many
channels are vacant. On average, 63.9% of channels are
vacant according to the short-time sensing results. This means
that there are considerable spectrum not being fully utilized.
Hence, efficiently utilizing the vacant TV channels is helpful to
increase available wireless spectrum. Additionally, we observe
that the signal strengths of a channel at different locations
could be different (a channel could be occupied at some
locations while be vacant at others). This is mainly caused
by the complex indoor signal attenuation patterns due to the
indoor obstacles (e.g., walls). The outdoor geo-location data-
base based white space exploration mechanisms calculate the
signal strengths of TV channels at different outdoor locations
through the signal propagation model. If we directly apply
these approaches to indoor scenarios, we will lose a lot of
white spaces.

Second, in Fig. 1(e), the relative signal strengths of all
channels are similar at four different locations (1, 26, 28, 31).
Prior work [41] described this kind of correlation between
different locations according to locations’ similarity. They
treated the correlated locations as a group and represented
the white space availability of all locations in this group using
only one of them. It is indeed a creative way to utilize the
similarity between locations. However, in our mechanism, we
consider not only the similarity but also the linear dependence
between locations. Location dependence represents the linear
dependence between different locations, which means any
row of M can be approximately represented as a linear
combination of some other rows. Assume that Mi is the
ith row of M (Mi is a 1×45 row vector containing the signal
strengths of 45 channels at location i), we can approximate
Mi as

Mi ≈ a0M0 + a1Mi1 + a2Mi2 + . . . + akMik
,

where M0 is a 1 × 45 row vector equals to (1, 1, . . . , 1) and
Mi1 , Mi2 , . . . , Mik

(i1, i2, . . . , ik �= i) are the i1th, i2th, …,
ikth rows of M , and a0, . . . , ak are the weight parameters.
Similar to location dependence, we define channel dependence
as the linear dependence of channels. As shown in Fig. 1(f),
although the similarity criterion is not suitable to describe
the correlation between channel 13 and 37, as their signal
strengths are not close, our linear dependence criterion works

Fig. 4. System architecture of FIWEX.

well since the differences of them are almost fixed at different
locations. According to the definition of relative location-
channel matrix X (Section III-A), we got that location-channel
dependence also exists in X , since M − X is a constant
matrix. In Section IV-C, we introduce a novel way to draw
the location-channel dependence.

D. Summary

The indoor white space measurements give us a better
understanding about the characteristics of indoor white spaces.
Below we summarize guidelines for designing FIWEX.

• Strong channels are occupied for most of time, thus we
can neglect these channels once we spot them.

• Location dependence and channel dependence allow us to
infer a channel’s signal strength or status at some location
based on its correlated channels or locations.

In the following sections, we will show how to use these
guidelines to make FIWEX accurate and cost-efficient.

III. SYSTEM MODEL

FIWEX aims to accurately identify indoor white spaces
with a small number of RF-sensors. As shown in Fig. 4,
FIWEX is mainly composed of two parts: a central server and
a real time sensing module. We first select a set of profiled
locations, which cover a number of rooms and corridors of
the target building. Just like [41], we assume that white space
availability at any indoor location is almost the same as that
at its nearest profiled location. Hence, our mechanism mainly
focuses on how to get the white space availabilities at all
profiled locations from a part of them. In order to make
the mechanism efficient in terms of sensor cost and energy
consumption, we only deploy sensors at a part of the profiled
locations, and recover the complete information based on the
correlations among indoor white spaces. The central server
receives the partial sensing results reported by the indoor
sensors, and then calculates the indoor white space availability
map using a reconstruction algorithm. Upon receiving a query
for availability of the white spaces at a certain location from
a user, the central server makes a response according to the
up-to-date indoor white space availability map.

A. Real Time Sensing Module

We describe the real time sensing module using our test
building with 67 locations as an example. Although the
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67 locations we select cannot cover every room and corridor
of the building due to the limitations of room accessibility, we
just use them to describe how the real sensing module works.
In practice, if the profiled locations are correctly selected, our
mechanism can achieve good performance.

The real time sensing module’s job is choosing a part of
these 67 locations, placing a sensor at each chosen location,
performing a “partial sensing” (since not all 67 locations have
sensors deployed), and sending the data to the central server.

If the real time sensing module deploys sensors at all
67 locations, clearly the central server can get complete short-
time sensing data. However, due to the cost considerations,
real time sensing module aims to use less number of sensors
to get complete sensing data.

In order to facilitate presentation, we define the following
matrices:

• Relative Location-Channel Matrix (RLCM): is a
67 × 45 matrix recording channels’ relative signal
strengths. RLCM is denoted by X , where X(i, j) refers
to the relative signal strength of channel j at location i,

X(i, j) = M(i, j)− TH,

where TH is the white space threshold. If X(i, j) < 0,
then channel j is vacant at location i, otherwise occupied.

• Binary Index Matrix (BM): is a 67× 45 matrix, which
indicates where the sensors are deployed. BM is denoted
by B. For any channel j

B(i, j) =

{
0 if no sensor deployed at location i,

1 otherwise.

When we deploy a sensor at location i, all the
TV channels at location i can be scanned. This means
that B(i, j) = 1 for j = 1, 2, . . . , 45.

• Direct Sensory Matrix (DM): is a 67 × 45 matrix,
which records the relative signal strengths at locations
with sensors deployed. For locations without a sensor, the
corresponding rows in DM contain 45 0s. DM is denoted
by D:

D(i, j) =

{
X(i, j) if B(i, j) = 1,

0 if B(i, j) = 0.

This means D = B ◦X , where ◦ denotes the Hadamard
product. (D = B ◦X means D(i, j) = B(i, j)X(i, j)).

Given a specific number of sensors, different deployments
of these sensors lead to different performance of FIWEX.
(We will discuss our indoor sensor deployment method
in Section IV-E). Once the sensor deployment is determined,
then B is fixed. Sensors deployed at different locations collect
absolute signal strengths in real time and the corresponding
relative ones are recorded in D. After that, real time sensing
module submits matrix D to the central server at regular time
intervals.

B. Central Server

The central server of FIWEX consists of two parts: data
reconstruction and white space database.

In data reconstruction part, a complete relative location-
channel matrix is reconstructed based on the direct sensory
matrix (D). We define the reconstructed matrix as follows:

• Reconstructed Matrix (RM) : is a 67 × 45 matrix
generated by interpolating the missing values in D.
RM is denoted by X̃ .

Data reconstruction part aims to find X̃ that approximates X
as accurate as possible.

Strong channels can be utilized to improve the accuracy of
data reconstruction. In contrast to existing works, observations
in Section II-B (Fig. 1(b)) show that different locations may
have different strong channels. Based on this observation, we
define the strong channel matrix as:

• Strong Channel Matrix (SCM) : is a 67 × 45 matrix
that indicates strong channels at different locations. SCM
is denoted by

S(i, j) =

{
1 j is a strong channel at location i,

0 otherwise.

Given D, B and S as inputs, the central server per-
forms compressive sensing based data reconstruction. We will
present the details of this process in Section IV.

White space database receives the result of data recon-
struction X̃ , and calculates the up-to-date indoor white space
availability map based on X̃ . Intuitively, we should compare
X̃(i, j) with 0 to decide whether channel j is vacant at
location i. However, FCC requires that the unlicensed access to
TV channels should not interfere with the licensed signal trans-
missions. This means that a white space exploration system
should avoid misidentifying an occupied TV channel as vacant.
Hence, we compare X̃(i, j) with the protection range PR,
which is less than 0, when calculating the indoor white space
availability map. In this way, the licensed signal transmissions
are largely protected. We define the reconstructed indoor white
space availability map as

MAP (i, j) =

{
1 if X̃(i, j) < PR,

0 if X̃(i, j) ≥ PR

where MAP (i, j) = 1 means that channel j is vacant at
location i and MAP (i, j) = 0 otherwise.

Users submit their indoor positions to the central server
through an indoor localization system [23], [35]. Given the
indoor position of a user, the database first finds one of the
profiled locations which is the nearest to the user, and then
returns the white space list of this profiled location to the
user after considering the interference with neighbors. Here
for simplicity, FIWEX assumes the white space availability
of a non-profiled location is the same as the availability of
the nearest profiled one. We leave the case where these two
availability results are not equal to our future work. We have
to note that our approach proposed in the paper is to efficiently
identify indoor white spaces. A closely related problem on how
to utilize the identified indoor white spaces without interfering
is another future work.

Before introducing the detailed system design, we summa-
rize notations we employ in TABLE I.
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TABLE I

NOTATIONS USED IN THIS PAPER

IV. DATA RECONSTRUCTION AND SENSOR DEPLOYMENT

In this section, we present our compressive sensing based
indoor white space reconstruction algorithm, and propose a
cost-efficient sensor deployment method.

Compressive sensing is a generic data reconstruction tech-
nique based on the structure and redundancy of real-world
signals or datasets [9], [11], [13], [16], [30]. So far, com-
pressive sensing has been widely applied to different realms
[22], [29], [37], [44], [45]. The traditional compressive sensing
based matrix completion techniques consider the general low
rank feature of the matrices, and do not need any prior
knowledge. However, we do have prior knowledge about the
strong channels and location-channel dependence. Considering
the extra knowledge in the compressive sensing based matrix
completion will lead to a better performance. Hence, we
introduce strong channels and location-channel dependence to
compressive sensing, and solve the problem using the alter-
native steepest descent method. Compressive sensing based
data reconstruction algorithms perform very differently given
different data loss patterns [22], and thus different sensor
deployments may lead to different performance of FIWEX.
In order to find appropriate locations to deploy sensors, we
propose a k-medoids [28] based sensor deployment method.

A. Compressive Sensing

Given D, B and S, compressive sensing based matrix com-
pletion can help us to approximately reconstruct X . According
to the theory of compressive sensing, matrices with low rank
feature can be reconstructed with a high accuracy. When the
vector containing all singular values of a matrix is sparse, the
matrix is low rank. In Fig. 5, we illustrate the distribution
of singular values in 7 of the 14 relative location-channel
matrices we got in the short time sensing experiments. The
X-axis presents the index of singular values, while the Y-axis
presents the normalized values of them. This figure shows that
the energy is always contributed by the top several singular
values in X . On an average, the top 25% singular values
contribute most of the energy in this graph. This phenomenon
reveals that X exhibits approximately a low rank structure.
The followings are the details about our compressive sensing
algorithm.

Fig. 5. Low rank feature of X.

We begin with the Singular Value Decomposition (SVD)
using the similar methodology as [44]. SVD is a kind of
factorization of a matrix, which is usually used for creating low
rank matrix approximation. Here, we generalize the discussion
of the relative location-channel matrix (X) to an m×n matrix.
For the m × n matrix X , there exists a factorization of the
form

X = UΣV T =
min(m,n)∑

i=1

σiuivT
i , (1)

where U is an m×m unitary matrix (i.e., UUT = UT U = I),
V T is the transpose of an n×n unitary matrix, Σ is an m×n
diagonal matrix with the singular value σi of X on the main
diagonal, where σi ≥ σi+1. Here ui and vi are the ith columns
of U and V , respectively. As we mentioned before, the top
25% singular values of X contribute most of the sum of all
singular values, and this means that

r∑
i=1

σi ≈
min(m,n)∑

i=1

σi (2)

and
r∑

i=1

σiuivT
i ≈

min(m,n)∑
i=1

σiuivT
i , (3)

where r � min(m, n). Hence we can approximately represent
X as

X̃ =
r∑

i=1

σiuivT
i , (4)

where r is the rank of X̃ . Actually, X̃ is the best r-rank
approximation that minimizes the Frobenius norm ‖ · ‖F
between X and X̃ . That is, X̃ is the solution to:

Minimize ‖X − X̃‖F ,

Subject to rank(X̃) ≤ r, (5)

where the Frobenius norm ‖X‖F =
√∑

i,j X2
ij .

In the indoor white space exploration, we are given D
and required to estimate X . Then, we can judge whether a
channel is busy or not at a given location. It is impossible to
directly solve (5), since we do not know the value of original
matrix and the proper rank. Instead, we use B ◦ X = D as
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the constraint. Considering the low rank property of X , we can
alternatively solve the following rank minimization problem:

Minimize rank(X̃),
Subject to B ◦ X̃ = D. (6)

However, it is also difficult to solve this rank minimization
problem as it is non-convex. So, we transform it to the
nuclear norm minimization problem in help of the SVD-like
factorization of X̃:

X̃ = Ũ Σ̃Ṽ T = LRT , (7)

where Σ̃ is an r × r diagonal matrix containing the maxi-
mum r singular values σi, i = 1, 2 . . . , r, and L = Ũ Σ̃1/2,
R = Ṽ Σ̃1/2.

According to the compressive sensing theory [16], [30], we
can perform the rank minimization by solving the nuclear
norm minimization problem [10], [31] for the low rank
matrix LRT , if the isometry property [30] holds on binary
index matrix B. Therefore, we just need to minimize the sum
of L’s and R’s Frobenius norms:

Minimize ‖L‖2F + ‖R‖2F ,

Subject to B ◦ (LRT ) = D. (8)

It is usually difficult to find L and R that strictly satisfy (8),
because (i) the direct sensory matrix D contains noise,
(ii) X is just approximately low rank in the real world, and
the rank of X may be largely different in different indoor
environments. Thus, we use Lagrange multiplier method to
solve (8):

Minimize ‖B ◦ (LRT )−D‖2F + λ1(‖L‖2F + ‖R‖2F ).
(9)

In this way, the constraint B ◦ (LRT ) = D is not strictly
enforced, and we use the Lagrange multiplier λ1 to control
the tradeoff between the precise fit to the measurement and
the rank minimization.

The compressive sensing approach (9) finds the global
low rank structure in matrix X . We can further improve
the accuracy in two ways: strong channel improvement and
location-channel dependence improvement.

B. Introducing Strong Channel

Performance of the compressive sensing based indoor white
space reconstruction can be improved by taking strong chan-
nels into consideration. In contrast to most prior works, which
just define a single set of strong channels shared by all indoor
locations, we argue that different locations have different
strong channels as shown in Section II. Based on this obser-
vation, we define strong channel matrix S in Section III-B to
describe the spatial variance of strong channels.

In short-time sensing experiment, we obtain 14 short-time
sensing data (M ) in total. We use 7 of them as the training
set while the other 7 are used for evaluation. If the signal
strength of channel j at location i is at least 5dB higher
than the white space threshold, then channel j is consid-
ered as a strong channel at location i and S(i, j) = 1;

otherwise, S(i, j) = 0. We simply consider strong channels
as always busy because channels that carry strong signals are
normally used for TV broadcast, which is stable in long term
(e.g., years). Hence, S can be used in FIWEX.

To combine compressive sensing and strong channels’ fea-
ture, we define new Binary Index Matrix Bs and Direct
Sensory Matrix Ds after considering the influence of S:

Bs(i, j) =

{
1 if S(i, j) = 1,

B(i, j) otherwise.

Ds(i, j) =

{
aveij if S(i, j) = 1,

D(i, j) otherwise.

Here aveij is the average relative signal strength of channel j
at location i in the training set. In this way, formula (9) can
be rewritten as

Minimize ‖Bs ◦ (LRT )−Ds‖2F + λ1(‖L‖2F + ‖R‖2F ).
(10)

C. Introducing Location-Channel Dependence

The location dependence and channel dependence
(Section II) represent the location/channel structure of
indoor white spaces, and can be utilized to improve the
performance of FIWEX. Taking compressive sensing, strong
channels, location dependence and channel dependence into
consideration, we expand (10) as follows:

Minimize ‖Bs ◦ (LRT )−Ds‖2F + λ1(‖L‖2F + ‖R‖2F )
+ λ2‖P (LRT )−P0‖2F + λ3‖(LRT )C − C0‖2F ,

(11)

where P and P0 are the location dependence constraint
matrices, C and C0 represent the channel dependence con-
straint matrices. Lagrange multipliers λ2 and λ3 are used
as the scaling of ‖P (LRT ) − P0‖2F and ‖(LRT )C − C0‖2F ,
respectively. Since different choices of P , P0, C, and C0 yield
different performance of FIWEX, we discuss how to choose
these matrices in the following section.

1) Choice of Location-Channel Dependence Constraint
Matrices: Choice of P(67×67) and P0(67×45):
Matrix P and P0 represent the location dependence in
relative location-channel matrix (X) and express the linear
relationship between different rows of X(67×45). We propose
an innovative way to find appropriate P and P0. For each
row Xi of X , location dependence means that we can
approximate Xi as a linear function of other K most
correlated rows Xik

(k = 1, 2, . . . , K and ik �= i) of Xi.
We will discuss the proper value of K in Section IV-C.2.
The correlation between different rows is measured by the
sum of Pearson product-moment correlation coefficient [24].
Then we perform multivariate linear regression to find a set
of weights wik

, such that Xi can be best approximated by a
linear combination of Xik

:

Xi ≈ wi0X0 +
K∑

k=1

wik
Xik

, (12)
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where X0 is a row vector (1×45) equaling to (1, 1, 1, . . . , 1).
Initially, every element of P is set to be 0. For the i-th row
of P , we set P (i, i) = 1, P (i, ik) = −wik

, for k =
1, 2, . . . , K . We also set P0(i, j) = wi0 for j = 1, 2, . . . , 45.
In this way,

P (LRT )− P0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1 −
∑K

k=1
w1k

X1k
− w10X0

X2 −
∑K

k=1
w2k

X2k
− w20X0

. . .

. . .

X67 −
∑K

k=1
w67k

X67k
− w670X0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and it describes the difference between each row and its linear
representation. Since Xi ≈ wi0X0 +

∑K
k=1 wik

Xik
, the value

of ‖P (LRT ) − P0‖2F is expected to be small. Therefore, the
existence of ‖P (LRT )−P0‖2F in minimizing (11) guarantees
the location dependence in X̃ and this really improves the
reconstruction accuracy.

Choice of C(45×45) and C0(67×45): Matrix C and C0

represent the channel dependence in relative location-channel
matrix (X), and express the linear relationship between differ-
ent columns of X(67×45). Actually, the way to find C and C0

is almost the same as that of finding P and P0, except
that C and C0 consider the columns of X instead of rows.
In this way, the channel dependence in X̃ is guaranteed by
‖(LRT )C − C0‖2F in (11).

2) Stability of Location-Channel Dependence: In this part,
we study the stability of the location-channel dependence
based on the short-time indoor sensing results, and then
find the proper value of K . In Section II-C, a total of 14
short-time sensing data sets were collected and we can get
14 relative location-channel matrices (RLCM) X(1), X(2),
…, X(14). We calculate P , P0, C, and C0 based on one
of these 14 RLCMs. If the location dependence and channel
dependence are stable over time, then P , P0, C, and C0 we
get can approximately represent the location dependence and
channel dependence of other 13 RLCMs.

We calculate P , P0, C, and C0 based on X(1) in the way
described in Section IV-C.1. As we mentioned before, the
values of ‖PX(1) − P0‖2F and ‖X(1)C − C0‖2F are expected
to be small. If the value of ‖PX(i)−P0‖2F (‖X(i)C −C0‖2F )
(i = 2, 3, . . . , 14) is close to ‖PX(1) − P0‖2F (‖X(1)C −
C0‖2F ), then the four matrices (P , P0, C, C0) can approx-
imately represent the location-channel dependence in X(i)

(i = 2, 3, . . . , 14). As a result, the location dependence and
channel dependence are stable over time.

We compare ‖PX(1)−P0‖2F and the average of ‖PX(i)−
P0‖2F (i = 2, 3, . . . , 14), and set

DIFFP =
[ 1
13

∑14
i=2 ‖PX(i) − P0‖2F ]− ‖PX(1) − P0‖2F

‖PX(1) − P0‖2F
,

where DIFFP stands for the relative difference between
‖PX(1) − P0‖2F and the average of ‖PX(i) − P0‖2F (i =
2, 3, . . . , 14). Similarly, we use DIFFC to represent the
relative difference between ‖X(1)C − C0‖2F and the average

Fig. 6. Stability of location-channel dependence. (a) Location dependence.
(b) Channel dependence.

of ‖X(i)C − C0‖2F (i = 2, 3, . . . , 14),

DIFFC =
[ 1
13

∑14
i=2 ‖X(i)C − C0‖2F ]− ‖X(1)C − C0‖2F

‖X(1)C − C0‖2F
.

If the values of DIFFP and DIFFC are small, then
the location dependence and channel dependence are stable.
Fig. 6 shows the values of DIFFP and DIFFC , when K
varies from 1 to 30. DIFFP gets its minimum value (1.54)
when K = 1 and DIFFC gets its minimum value (1.28)
when K = 2. It means that we would obtain very similar P ,
P0, C, and C0 using different X(i) as input, indicating that
the location-channel dependence is consistent across different
days. Since DIFFP and DIFFC get their minimum values
when K = 1 and K = 2, respectively, we set K = 1 when
calculating P and P0 and K = 2 when calculating C and C0.
This means that when calculating P and P0, we just consider
each row’s most correlated row. When calculating C and C0,
we consider each column’s top 2 correlated columns.

D. Data Reconstruction Algorithm

In this part, we present the design of the data reconstruction
algorithm. The aim of the data reconstruction algorithm is to
find X̃ = LRT that optimizes (11). We let

f(L, R) = ‖Bs ◦ (LRT )−Ds‖2F + λ1(‖L‖2F + ‖R‖2F )
+ λ2‖P (LRT )− P0‖2F + λ3‖(LRT )C − C0‖2F ,

(13)

as the objective function. It is clear that f(L, R) is not a
convex function. However, if we fix L or R, the function on
the other variable is convex. Hence, we use the alternating
steepest descent algorithm [32], which is commonly utilized
in the low rank matrix completion, to do the minimization.

In order to minimize f(L, R), we alternatively apply steep-
est gradient descent to f(L, R) with respect to L and R.
As shown in Algorithm 1, L and R are randomly initialized.
We first fix L, and update the value of R using a single step of
simple line search along gradient descent direction. Then, we
fix R, and update L in a similar way. We repeat this process
until convergence. Here, we consider that the minimization
process is convergent when the relative change of the function
value is less than a threshold, which is denoted by

vbe − vaf

vbe
< ratio,
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Algorithm 1 Alternating Steepest Descent: ASD()

Input : Bs, Ds, P, P0, C, C0, λ1, λ2, λ3, r: Parameters in
function f(L, R),
ratio: Ratio threshold.

Output: X̃: Reconstructed Matrix

1 [m, n]← size(Bs);
2 L← random_matrix(m, r);
3 R← random_matrix(n, r);
4 repeat
5 vbe ← f(L, R);
6 R← GDR(Bs, Ds, P, P0, C, C0, λ1, λ2, λ3, L, R);
7 L← GDL(Bs, Ds, P, P0, C, C0, λ1, λ2, λ3, L, R);
8 vaf ← f(L, R);
9 until vbe−vaf

vbe
< ratio;

10 X̃ ← LRT ;
11 return X̃;

where vbe is the function value before updating L and R in
each iteration, vaf is the function value after that, and ratio
is the threshold we set.

We now explain the line search along the gradient descent
direction in detail. We denote

f(L, R) = f1(L, R) + f2(L, R) + f3(L, R) + f4(L, R),
(14)

where

f1(L, R) = ‖Bs ◦ (LRT )−Ds‖2F ,

f2(L, R) = λ1(‖L‖2F + ‖R‖2F ),
f3(L, R) = λ2‖P (LRT )− P0‖2F ,

f4(L, R) = λ3‖(LRT )C − C0‖2F ,

and let

∇i
l =

∂fi(L, R)
∂L

, ∇i
r =

∂fi(L, R)
∂R

, for i = 1, 2, 3, 4.

Then, the directions of gradient ascent are

∇l =
∂f(L, R)

∂L
= ∇1

l +∇2
l +∇3

l +∇4
l ,

∇r =
∂f(L, R)

∂R
= ∇1

r +∇2
r +∇3

r +∇4
r ,

where

∇1
l = 2(B ◦ (LRT )−D)R,

∇2
l = 2λ1L,

∇3
l = 2λ2(PT PLRT R− PT P0R),
∇4

l = 2λ3(LRT CCT R− C0C
T R),

∇1
r = 2(BT ◦ (RLT )−DT )L,

∇2
r = 2λ1R,

∇3
r = 2λ2(RLT PT PL− PT

0 PL),
∇4

r = 2λ3(CCT RLT L− CCT
0 L).

To minimize f(L, R), we update L and R along the gradient
descent directions −∇l and −∇r, respectively. If we denote

Algorithm 2 Gradient Descent: GDR()

Input : Bs, Ds, P, P0, C, C0, λ1, λ2, λ3: Parameters in
function f(L, R),
L, R: Inputs of f(L, R).

Output: R: The value of R is updated.

1 ∇1
r ← 2(BT ◦ (RLT )−DT )L;

2 ∇2
r ← 2λ1R;

3 ∇3
r ← 2λ2(RLT PT PL− PT

0 PL);
4 ∇4

r ← 2λ3(CCT RLT L− CCT
0 L);

5 ∇r ← ∇1
r +∇2

r +∇3
r +∇4

r;

6 tr ← tr(∇1
r∇T

r +∇2
r∇T

r +∇3
r∇T

r +2λ3(LRT C−C0)
T L∇T

r C)

2(‖B◦(L∇T
r )‖2

F +λ1‖∇r‖2
F +λ2‖PL∇T

r ‖2
F +λ3‖L∇T

r C‖2
F )

;

R← R− tr∇r;
7 return R;

Algorithm 3 Gradient Descent: GDL()

Input : Bs, Ds, P, P0, C, C0, λ1, λ2, λ3: Parameters in
function f(L, R),
L, R: Inputs of f(L, R).

Output: L: The value of L is updated.

1 ∇1
l ← 2(B ◦ (LRT )−D)R;

2 ∇2
l ← 2λ1L;

3 ∇3
l ← 2λ2(PT PLRT R− PT P0R);

4 ∇4
l ← 2λ3(LRT CCT R− C0C

T R);
5 ∇l ← ∇1

l +∇2
l +∇3

l +∇4
l ;

6 tl ←
tr

(
∇1

l ∇T
l +∇2

l ∇T
l +2λ2(PLRT −P0)R∇T

l P T +∇4
l ∇T

l

)
2(‖B◦(∇lRT )‖2

F +λ1‖∇l‖2
F +λ2‖P∇lRT ‖2

F +λ3‖∇lRT C‖2
F )

;

L← L− tl∇l;
7 return L;

tl and tr to be the steepest descent stepsize along the gradient
descent directions −∇l and −∇r, then the values of L and R
are updated as:

R ← R− tr∇r,

L ← L− tl∇l.

tl and tr are selected to minimize the function value at
directions −∇l and −∇r, which means that

tl = arg min
t

gL(t), where gL(t) = f(L− t∇l, R),

tr = arg min
t

gR(t), where gR(t) = f(L, R− t∇r).

We differentiate gL(t), gR(t), and set g′L(t) = g′R(t) = 0.
Then, we get tl and tr, as shown at the bottom of the next
page, where tr() refers to the trace of a matrix.

Functions GDR() (Algorithm 2) and GDL (Algorithm 3)
show the process of updating R and L, respectively.

Just as shown in [32], the alternating steepest descent
method can converge to a stationary point. Yet, considering
that f(L, R) is not a convex function, our algorithm may
converge to a local optimal point. In practice, we can repeat
Algorithm 1 for several times, and find the best result. More-
over, our alternating steepest descent method only contains
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the addition, multiplication, and Frobenius norm operations of
matrix, which leads to a low time complexity. Hence, it is also
feasible, when we meet very large matrices.

E. Sensor Deployment
As mentioned before, different deployments of sensors lead

to different performance of FIWEX. Although brute-force
enumeration of indoor locations can find the best deployment
solution, the computation overhead is unacceptable (CN

67 − 1
comparisons are needed given N sensors). In this section, we
propose a novel sensor deployment method based on location
dependence and the clustering technique.

According to the low rank matrix completion the-
ory [10], [30], when the matrix corresponding to the sensor
deployment satisfies the restricted isometry property (RIP), the
low rank matrix X can be recovered with a high accuracy.
Usually, some random matrices are used. Considering the truth
that deploying one sensor means that we can get one row’s
data of X , it is not possible for us to construct a random
sampling matrix B. However, the reconstruction algorithm is
general. We propose a heuristic sensor deployment method,
which is shown to be effective in the evaluation part.

We have shown that there exists linear dependence between
different locations, which means that the signal strengths at
one location can be approximated by the linear combination of
those at other locations. Given N sensors, FIWEX can collect
the signal strengths of TV channels at N indoor locations,
and reconstruct the signal strengths of the whole indoor
environment based on them. We hope that the redundancy
among the information collected by the sensors should be
as little as possible. Hence, we try to deploy sensors at
“independent” locations as every one of them can represents
a set of correlated locations. And we can maximize the
information we get in this way.

Since the brute-force enumeration is unacceptable here, we
propose a heuristic method based on the clustering technique.
Our sensor deployment algorithm can be briefly divided into
two steps: (i) Cluster all locations into N groups (N is
the number of sensors here). (ii) Deploy one sensor at
each center of these N groups. Algorithm 4 shows the
detailed sensor deployment process. We deploy sensors based
on a training set with ts relative location-channel matrices
(X(1), X(2), . . . , X(ts)). Since we try to deploy sensors at
“independent” locations, we treat every location (row) as
a variable and use the sum of Pearson product-moment
correlation coefficients in the training set as the similarity
metric. In Algorithm 4, lines 1-6 show the process of Pearson
product-moment correlation coefficients calculation. Matrix
PEA stores the Pearson product-moment correlation coeffi-
cients among different pairs of locations. The value of Pearson
product-moment correlation coefficients are between -1 and 1,

Algorithm 4 Sensor Deployment

Function: X(1), X(2), . . . , X(ts): relative
location-channel matrices used for training,
ts: size of training set,
N : the number of given sensors,
vopt: initially a sufficiently large number.

Output : SLopt: a sensor locations list.

1 [m, n] = size(X(1)); PEA = 0m×m;
2 for i = 1 to m do
3 for j = 1 to m do
4 for k = 1 to ts do

5 PEA(i, j) = PEA(i, j) +
Cov(X

(k)
i ,X

(k)
j )

σ
X

(k)
i

σ
X

(k)
j

;

6 PEA(i, j) = |PEA(i, j)|;
7 PEA = −PEA;
8 for 1 to 100 do
9 [SL, v] = kmedoids(PEA, N );

10 if v < vopt then
11 SLopt = SL; vopt = v;

12 return SLopt;

where positive value means positive correlation and negative
value means negative correlation. In line 6, we calculate the
absolute values of Pearson correlation coefficients, since we do
not care whether the correlation is positive or not. Different
from the Euclidean distance, where a smaller value means
two variables are closer, a larger value in PEA means the
corresponding two locations are more dependent. Hence, we
use −PEA as the distance metric in the clustering algorithm
(line 7).

We choose k-mediod [28] technology to do the clustering.
In Algorithm 4 line 9, kmedoids(PEA, N ) divides the m
locations into N clusters, the centers of which are stored
in SL. v stores the sum of all distances between every
row and the center of the cluster it belongs to. A smaller
v means a better clustering result. Considering the truth
that k-medoids clustering algorithm may find the local opti-
mization, we run kmedoids for 100 times and select the
best result. Then we deploy N sensors in the N cluster
centers.

We also consider the stability of the clustering results.
In Section IV-C.2, we show that the location dependence is
stable over time, as a result, the clustering algorithm based on
location dependence is also stable. That means, if we deploy
sensors according to some training data, these sensors will also
perform well in the future.

tl =
tr

(∇1
l∇T

l +∇2
l∇T

l + 2λ2(PLRT − P0)R∇T
l PT +∇4

l∇T
l

)
2(‖B ◦ (∇lRT )‖2F + λ1‖∇l‖2F + λ2‖P∇lRT ‖2F + λ3‖∇lRT C‖2F )

tr =
tr(∇1

r∇T
r +∇2

r∇T
r +∇3

r∇T
r + 2λ3(LRT C − C0)T L∇T

r C)
2(‖B ◦ (L∇T

r )‖2F + λ1‖∇r‖2F + λ2‖PL∇T
r ‖2F + λ3‖L∇T

r C‖2F )
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At last, we study the problem of choosing the proper
value of N . It is clear that there is a tradeoff between the
number of sensors and the system performance. Deploying
more sensors gives less reconstruction errors, but leads to
a higher cost. We determine the value of N based on the
measurement data we get. We first vary the number of sensors
from 1 to 67, and get the locations of sensors using the above
mentioned sensor deployment method. Then, we calculate
the reconstruction errors at different sensors based on the
measurement data. Finally, we determine the proper number
of sensors according to our reconstruction error threshold.
We choose the smallest N , which yields a reconstruction
error less than the threshold. Actually, there are also other
approaches to determine a proper N . For example, we can
choose N by determining the proper number of clusters [33].
In this paper, we mainly focus on the relation between the
system performance and the number of sensors. Hence, we
only study the approach based on the measurement data in the
evaluation.

V. PERFORMANCE EVALUATION

In this section, we perform experiments to evaluate the
performance of FIWEX. We first evaluate the cost-efficiency
of FIWEX by comparing it to the state-of-the-art indoor
white space exploration system, WISER. Then, we study the
performance of the data reconstruction method. Next, we show
the feasibility of our sensor deployment method. At last, we
evaluate the method of determining the proper number of
sensors.

A. Methodology

The evaluation is based on the data collected in the short-
time sensing. Although due to limitations of room accessi-
bility, we can only consider 67 locations in the experiment,
which may not cover all the rooms and corridors in our the
measurement building, the evaluation results can still give a
good indication of FIWEX’s performance. In practice, if a
sufficient number of profiled locations are considered, FIWEX
is expected to have satisfactory performance. Furthermore,
FIWEX is not limited to any specific indoor environment,
because it utilizes the general correlations of indoor white
spaces [41].

For real applications, every time before deploying FIWEX
to a new building, we need to perform the training process
in order to find the values of Bs, Ds, P , P0, C, C0

and to deploy sensors. We use the measurement results in
the short-time sensing to perform the evaluation. In the
short-time sensing, we collect a total of 14 data sets
(April 14, 2014 - April 27, 2014). We divide them into two
parts: the first week’s data is used as training set while the data
of the second week is used for testing the performance. From
the training set, we get 7 relative location-channel matrices,
and use the average of them to train WISER and FIWEX.
We set ratio = 0.001, λ1 = 10, λ2 = 1, λ3 = 0.01, r = 10.

We choose FA Rate, WS Loss Rate, and Reconstruction
Error as the metrics of system performance. Their definitions
are as follows.

Fig. 7. Average FA rate, WS Loss Rate. (a) 10 Sensors. (b) 30 Sensors.

• False Alarm Rate (FA Rate): the ratio between the
number of channels that a system mis-identifies as vacant
and the total number of vacant channels identified by the
system.

• White Space Loss Rate (WS Loss Rate): the ratio
between the number of channels that a system mis-
identifies as occupied and the total number of actually-
vacant channels.

• Reconstruction Error:

‖X̃ −X‖2/‖X‖2
where X is the real relative location-channel matrix and
X̃ is the reconstructed one.

The protection range, PR, controls the tradeoff between
FA Rate and WS Loss Rate. Users can choose a proper value
of PR according to their needs. Here, we set PR = −0.7.
We use 7 datasets to do the evaluation. For each dataset, we
run FIWEX for 500 times, and calculate the average result.
Then, we average the results of the 7 datasets as the final
result.

B. Performance Comparison With WISER

We first run FIWEX and WISER using two different num-
bers of sensors: 10 and 30, and compare their FA Rates
and WS Loss Rates. As shown in Fig. 7(a), when there are
10 sensors, the FA Rate and WS Loss Rate of FIWEX are
1.2% and 28.6% while WISER performs an FA rate 3.6% and
a WS Loss Rate 31.3%. The result shows that FIWEX has
lower or better FA Rate and WS Loss Rate compared with
WISER when 10 sensors are used. Fig. 7(b) illustrates that
FIWEX also performs better than WISER when 30 sensors
are used.

In these two scenarios, FIWEX performs better than
WISER. This is because although WISER and FIWEX con-
sider the correlations among channels and locations, WISER
just clusters channels and locations into groups and considers
the white space availabilities of the same group are also
the same while FIWEX further considers the general linear
dependence among channels and locations, which contains
more information.

We also study the FA Rates and WS Loss Rates at different
locations. We calculate the FA Rates and WS Loss Rates at
different locations, and draw their Cumulative Distribution
Function (CDF) curves. In the CDF curves, we include the
locations that we have already deployed sensors. Since the
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Fig. 8. CDF curves of FA Rate and WS Loss Rate. (a) 10 Sensors.
(b) 30 Sensors. (c) 10 Sensors. (d) 30 Sensors.

FA Rates are much smaller than the WS Loss Rates, we change
the range of axis to [0:0.2] and [0.6:1], when drawing the CDF
curves of FA Rate (Fig. 8(a) and Fig. 8(b)). Fig. 8(a) shows the
CDF curves of FA Rate with 10 sensors. It is shown that the
CDF curve of FIWEX is “higher” than that of WISER. This
means that in FIWEX, less locations suffer the high FA Rates.
For example, in FIWEX, only 8.1% locations suffer an
FA Rate that is higher than 6%, while the percentage is 29.4%
in WISER. When there are 30 sensors, we get similar results
about the CDF curves of FA Rate. The details are shown
in Fig. 8(b).

The CDF curves of WS Loss Rate are shown in Fig. 8(c)
and Fig. 8(d). We observe that FIWEX also performs better
than WISER in terms of WS Loss Rate.

C. Performance on the Number of Indoor Sensors

In a general indoor scenario, there exists a tradeoff between
system performance and the number of indoor sensors that
are deployed. To understand this tradeoff, we vary the num-
ber of sensors from 1 to 66 (when there are 67 sensors,
FA Rate and WS Loss Rate of FIWEX and WISER are
both 0), and evaluate the performance of FIWEX and WISER.
In this experiment, we define the following four metrics to
describe the FIWEX’s performance improvement compared to
WISER.

• Absolute FA improvement: the difference between
FA Rates of WISER and FIWEX.

• Relative FA improvement: the ratio between absolute
FA improvement and the corresponding FA rate of
WISER. (If the FA Rate of WISER is 0 while the
absolute FA improvement is not 0, we set the relative
FA improvement to be -1.)

• Absolute WS improvement: the difference between WS
Loss Rates of WISER and FIWEX.

TABLE II

CONVERGENCE ITERATIONS AND TIMES

• Relative WS improvement: the ratio between absolute
WS improvement and the corresponding WS Loss Rate
of WISER. (If the WS Loss Rate of WISER is 0 while
the absolute WS improvement is not 0, we set the relative
WS improvement to be -1.)

In Fig. 9(a), we compare the FA Rates. When the number
of sensors is less than 30, the FA Rates of FIWEX are
obviously smaller than those of WISER. When the num-
ber of sensors is larger than 30, FIWEX and WISER give
comparative FA Rates. Actually, the average FA rate (from
1 sensor to 66 sensors) of WISER is 1.25%, while this number
is 0.61% for FIWEX. FIWEX has an average absolute FA
improvement of 0.64% and an average relative FA improve-
ment of 51.2% compared with WISER. We also observe that
the FA Rate of FIWEX changes slowly as the number of
sensors increases, this is consistent to the evaluation results
in Fig. 8(a) and Fig. 8(b).

Fig. 9(b) shows the WS Loss Rate of FIWEX and WISER
with different number of indoor sensors. The average WS
Loss Rate (from 1 sensor to 66 sensors) of WISER is 20.3%
and for FIWEX, this number is 14.2%. FIWEX has an
average absolute WS improvement of 6.1% and an average
relative WS improvement of 30.0% compared to WISER.
Fig. 9(c) and Fig. 9(d) show the absolute and relative WS
improvement under different number of indoor sensors. They
demonstrate the amount of extra white spaces FIWEX can
identify compared with WISER.

We depict the CDF curves of FIWEX regarding to the
FA Rates and WS Loss Rates of all locations. Fig. 9(e) shows
the 6 CDF curves (10, 20, …, 60 sensors) about FA rate.
Similar to Fig. 8(a) and Fig. 8(b), we change the range of axis
to [0:0.2] and [0.7:1]. The CDF curve is “higher” when more
sensors are used. This means that the number of locations with
high FA Rates decreases as the number of sensors increases.
The CDF curves of WS Loss Rate of different number of
sensors shown in Fig. 9(f) illustrate similar result.

D. Performance of Data Reconstruction Method

In this part, we study the performance of our data recon-
struction method. We first verify the convergence of the
alternating steepest descent algorithm (Algorithm 1). Then,
we study the way to find the proper value of r. At last, we
study the influence of strong channels and location-channel
dependence.

We study the convergence of Algorithm 1 with 6 different
numbers of sensors: 10, 20, …, 60. In Algorithm 1, the steepest
descent method stops when the relative change of the function
value is less than ratio ( vbe−vaf

vbe
< ratio). Since we repeat

the evaluation for 500 times, the number of iterations needed
for convergence may be different. Hence, for the ease of
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Fig. 9. Evaluation results on the number of sensors. (a) FA Rate.
(b) WS Loss Rate. (c) Absolute WS improvement. (d) Relative WS improve-
ment. (e) FA Rate CDF. (f) WS Loss Rate CDF.

Fig. 10. Convergence of alternating steepest descent.

drawing figures, we perform the descent process (lines 5-8) for
60 iterations, which is enough for convergence, in each run
of the evaluation. The results are shown in Fig. 10. We can
observe that the function values decrease quickly in the first
10 iterations, and then gradually converge.

We also evaluate the average convergence iterations and
times on different number of sensors. We run the code on
a PC with an Intel Core i5 CPU and 4 GB RAM. TABLE II
illustrates the results. For example, when 10 sensors are used,
the steepest descent algorithm should run 57.8 iterations on
average before convergence. This process needs an average of

Fig. 11. Influence of r. (a) Different r. (b) Different number of sensors.

0.156 seconds. The above results demonstrate that our data
reconstruction algorithm converges quickly.

We now focus on the influence of the variable r. r refers
to the size of L and R (L : m × r, R : n × r). A larger r
leads to less reconstruction errors, but a higher computational
cost. A proper r should be as small as possible, while giving a
satisfactory reconstruction error. In order to study the relation
between r and the reconstruction error, we vary the number
of sensors from 1 to 67, and calculate the reconstruction
errors at four different values of r: 1, 3, 10, and 20. The
results are shown in Fig. 11(a). The reconstruction errors
of r = 1 are obviously larger than the others. When r
becomes larger, the difference of reconstruction errors between
different r becomes smaller. For example, r = 10 and r = 20
almost share the same reconstruction errors. In Fig. 11(b),
we vary the value of r from 1 to 45, and calculate the
reconstruction errors with 6 numbers of sensors: 10, 20, …, 60.
We observe that when r is small, the reconstruction error
decreases as r increases. Then, when the value of r is large,
the reconstruction errors are almost stable at different r.

According to the definition of r in equation (3), r denotes
the rank of the matrix X̃ = LRT after reconstruction. Since
matrix X is low rank, X̃ = LRT can approximates X with
high accuracy, when r is larger than the rank of X . Hence, as
shown in Fig. 11(b), as the increment of r, the reconstruction
errors first decrease, and then become stable. We can choose
the proper value of r as a small value, where the reconstruction
error is stable. In this work, we use r = 10.

At last, we study the efficiency of our strong channels
and location-channel dependence aware compressive sensing
based matrix completion algorithm. We first run the data
reconstruction algorithm using only the compressive sens-
ing based matrix completion. Then, we separately consider
the improvements with extra strong channels or location-
channel dependence. Next, we add the improvements with
strong channels and location-channel dependence at the same
time. The objective functions in these four cases are as
follows:

• Compressive sensing based matrix completion (CS):

‖B ◦ (LRT )−D‖2F + λ1(‖L‖2F + ‖R‖2F ).

• With strong channels (CS+S):

‖Bs ◦ (LRT )−Ds‖2F + λ1(‖L‖2F + ‖R‖2F ).
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Fig. 12. Influence of strong channels and location-channel dependence.

• With location-channel dependence (CS+LC):

‖B ◦ (LRT )−D‖2F + λ1(‖L‖2F + ‖R‖2F )
+ λ2‖P (LRT )− P0‖2F + λ3‖(LRT )C − C0‖2F .

• With both strong channels and location-channel
dependence (CS+S+LC):

‖Bs ◦ (LRT )−Ds‖2F + λ1(‖L‖2F + ‖R‖2F )
+ λ2‖P (LRT )− P0‖2F + λ3‖(LRT )C − C0‖2F .

We run the data reconstruction algorithm based on the above
four objective functions, and calculate the corresponding
reconstruction errors with different numbers of sensors. The
results are shown in Fig. 12. We observe that the reconstruction
errors are the largest, when we only use the compressive
sensing based matrix completion method. After considering
the extra strong channels or location-channel dependence, the
reconstruction errors become smaller. When we consider both
of the strong channels and location-channel dependence, the
reconstruction errors get the smallest values.

E. Performance of Sensor Deployment Method

In this part, we study the performance of our sensor
deployment method. We first evaluate the feasibility of our
sensor deployment algorithm. Then, we evaluate the method
of determining the proper number of sensors.

As we mentioned in Section IV-E, the location dependence
of indoor white spaces is considered when deploying indoor
sensors. During the deployment process, we place sensors at
“independent” locations so as to maximize the white space
information we get. To show the efficiency of our sensor
deployment method, we run a basic random sensor deployment
method from 1 to 67 sensors, and compare their reconstruction
errors.

Fig. 13 shows the comparison results. We observe that the
reconstruction errors of the random sensor deployment are
larger than those of our deployment method. On average, our
sensor deployment method gives 15.6% lower reconstruction
error compared to the random deployment.

An important problem in indoor white space exploration is
determining the proper number of indoor sensors (N ). In real
world, there is a tradeoff between the number of indoor sensors
and the system performance. A large number of sensors means
that we can explore indoor white spaces with a high accuracy,

Fig. 13. Comparison with random sensor deployment.

Fig. 14. Reconstruction error and the number of sensors. (a) Reconstruction
error. (b) Number of sensors.

while a small number of sensors leads to a low system cost.
Hence it is an essential work to determine a proper N .

In our work, we propose a method to determine the proper
number of indoor sensors based on the reconstruction error.
We run FWIEX based on the training set for 500 times, and
calculate the maximum, average, and minimum reconstruction
errors, which are shown in Fig. 14(a). With the increment of
the indoor sensors, the reconstruction error decreases. Users
can determine the proper number of sensors based on the aver-
age reconstruction error they can suffer. Given a reconstruction
error threshold, we find the smallest number of sensors N ,
which gives an average reconstruction error less than the
threshold, and then deploy N sensors using Algorithm 4.
Fig. 14(b) shows the relation between the reconstruction error
threshold and the number of needed indoor sensors. If we want
to get a smaller reconstruction error, we should deploy more
indoor sensors.

VI. RELATED WORK

Most of the existing works on TV white space focused on
outdoor scenarios. For example, in [6], Bahl et al. studied the
white space characteristics (e.g., spatial variation, spectrum
fragmentation, and temporal variation), and proposed the first
white space Wi-Fi like wireless network, called WhiteFi.
In [15], the challenges of designing short range unlicensed
access systems are studied, and the authors proposed effi-
cient algorithms for a dynamic spectrum allocation. A lot
of outdoor white space measurements have also been made
in Singapore [19], Chicago [27], and Guangzhou [40]. Please
see [8] for a survey of both indoor and outdoor white space
measurement.

FCC proposed two ways to explore white spaces [3]:
spectrum sensing and geo-location database, which have been
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widely studied in the past few years. In [17], Ghasemi
and Sousa studied the regulatory requirements and major
challenges of spectrum sensing in cognitive radio systems.
A TV white space spectrum sensing prototype was proposed
in [7]. Gurney et al. [18] discussed the use of geo-location
databases for efficient white space spectrum utilization, and
described a detailed geo-location database application for
TV band incumbents. In 2014, Zhang et al. [43] proposed
a measurement framework for TV white spaces leveraging
spectrum sensors deployed on public vehicles. This really
improves the efficiency of geo-location database in exploring
outdoor white spaces.

The outdoor white space exploration methods cannot be
directly applied to indoor scenarios because of the complicated
indoor environment. In [41], Ying et al. performed the white
space measurement in both indoor and outdoor environments,
and studied the strong channel, channel correlation, and loca-
tion correlation of indoor white spaces characteristics. Based
on these characteristics, they proposed the first indoor white
space identification system, called WISER. WISER utilizes the
channel-location clustering based algorithm to explore indoor
white spaces, and obtains great improvement compared to
the baseline approach. However, the property that different
locations have different strong channels and the linear depen-
dence of locations and channels are not considered by the
authors. Based on these observations, we present FIWEX,
a compressive sensing based cost-efficient indoor white space
exploration mechanism.

Compressive sensing is a generic data reconstruction tech-
nique based on the structure and redundancy of real-world
signals or datasets. In recent years, compressive sensing
theory has been widely studied and utilized in a lot of
fields. For instance, Zhang et al. [44] proposed a compressive
sensing based data reconstruction algorithm to deal with
the missing values in the network traffic matrices. They
combined the spatio-temporal features with the compres-
sive sensing method and greatly improve the reconstruction
accuracy. Luo et al. [26] were the first to apply compressive
sensing technique to sensor data gathering for large-scale
wireless sensor networks, and proposed an energy efficient
data gathering algorithm. Rallapalli et al. [29] studied the
temporal stability and low rank structure in mobile networks,
and proposed three compressive sensing based localization
schemes: low rank based localization, temporal stability based
localization, and temporal stability and low rank localization.
According to the extensive evaluation results, their schemes
significantly outperform state-of-the-art localization schemes.
Kong et al. [22] investigated the data loss pattern in sen-
sor networks and studied the low rank structure, temporal
stability feature, and spatial correlation feature from exten-
sive real-world datasets. Based on these observations, they
proposed a compressive sensing based sensor network data
reconstruction algorithm with high reconstruction accuracy.
When we apply compressive sensing technique to the real-
world network scenarios, a major challenge is the existence
of missing data, measurement errors, and anomalies. In order
to address these issues, Chen et al. [13] developed a novel
technique to accurately decompose a network matrix into a

low rank matrix, an error matrix, an anomaly matrix, and a
noise matrix. According to their experiments based on a wide
range of real-world network matrices, this kind of decompo-
sition really outperforms state-of-the-art compressive sensing
schemes. Moreover, compressive sensing has been utilized
for soil moisture sensing [37], latency analysis in wireless
sensor networks [45], data gathering in lossy wireless sensor
networks [38], and urban traffic sensing [25]. In FIWEX,
we combine compressive sensing with indoor white space
exploration in an innovative way and efficiently explore indoor
white spaces with a high accuracy.

The projection design is an important part of the com-
pressive sensing technique. The original compressive sens-
ing works [9], [11], [16], [30] use some kind of random
matrix as the projection, which is not practical in some real-
world applications. In [20], Ji et al. presented the concept
of Bayesian compressive sensing and designed an adaptive
projection selection method using differential entropy. Adap-
tive compressive sensing, which has been widely utilized
in wireless sensor network data gathering [14], [36] and
other realms, can help us to design a more efficient sensor
deployment algorithm, and this is one of our future work.

VII. CONCLUSIONS

In this paper, we performed indoor white space mea-
surements in a real building to study the characteristics of
indoor white spaces. The measurement results confirmed the
existence of strong channels and location-channel dependence.
Motivated by these observations, we proposed a cost-efficient
indoor white space exploration mechanism, called FIWEX.
Given the same number of sensors, FIWEX can identify more
indoor white spaces with averaged less false alarms compared
to the existing indoor white space exploration systems.
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