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Abstract—Opportunistic networking is an important technique
to enable users to communicate in an environment where
contemporaneous end-to-end paths are unavailable or unstable.
To support end-to-end messaging in opportunistic networks, a
number of probabilistic routing protocols have been proposed.
However, when nodes are selfish, they may not have incentives to
participate in probabilistic routing, and the system performance
will degrade significantly. In this paper, we present a novel
incentive scheme for probabilistic routing that stimulates selfish
nodes to participate. We not only rigorously prove the properties
of our schemes, but also extensively evaluate our schemes using
GloMoSim. Evaluation results show that there is an up to 75.8%
gain in delivery ratio compared with a probabilistic routing
protocol providing no incentive.

I. INTRODUCTION

With the broad deployment of mobile wireless devices,
opportunistic networking is becoming increasingly important
in Mobile Ad-Hoc Networks (MANETs) and Delay-Tolerant
Networks (DTNs), as well as mobile social networking ap-
plications. Opportunistic networking techniques enable users
to communicate in an environment where contemporaneous
end-to-end paths are unavailable or unstable. In such an
environment, due to transitivity of links, messages are usually
passed from one user to another in a store and forward fashion.
Forwarding opportunities arise whenever mobile devices/users
come into the communication range of each other. In contrast
to traditional networking techniques, in which messages are
delivered along preexisting end-to-end paths, opportunistic
networking allows a message to be transferred from its source
to its destination even when such a path from the source to
the destination never exists.

In recent years, many routing protocols have been proposed
to support end-to-end messaging in opportunistic networks
(see [18] for a survey). A large portion of these existing
protocols (e.g., [8], [27]) are probabilistic routing protocols.
In probabilistic routing protocols, when a node carrying a
message meets another node, it estimates the probability of the
latter node being able to bring the message to the destination.
This probability is used to decide whether the message should
be forwarded to the latter node or not. Existing research

has shown that probabilistic routing is a very practical and
effective technique in opportunistic networking.

The adoption of such probabilistic routing protocols, how-
ever, might lead to reduced network performance when nodes
have selfish behavior. In particular, opportunistic networks,
like many distributed autonomous systems, suffer from com-
mon incentive problems such as the free-rider problem [2]
when nodes are selfish. If selfish nodes are not appropriately
rewarded, they do not have incentives to behave cooperatively.
Hence, the performance of the network could degrade signifi-
cantly, because only a small fraction of user nodes contribute
their resources. Therefore, it is crucial to have a good incentive
scheme that stimulates selfish nodes to cooperate in probabilis-
tic routing.

Although much progress has been made in designing in-
centive schemes for wireless networks [10], most of existing
incentive schemes are based on contemporaneous end-to-end
connections, and thus do not apply to probabilistic routing.
It is still an open problem to design incentive schemes for
probabilistic routing. The objective of this paper is to study
this open problem. Specifically, we would like to answer this
question: if we are given a probabilistic routing protocol, how
can we make it incentive compatible? That is, how can we
enhance a probabilistic routing protocol such that selfish nodes
will have incentives to cooperate when using this protocol?

To answer this question, we propose an approach based
on bargaining. Our approach is motivated by the observation
that message exchange in probabilistic routing is analogous
to commodity exchange in markets: in probabilistic routing,
a message is transferred from a node with a lower delivery
probability of the message to a node with a higher delivery
probability, just as in a market, a good is traded from a person
with a lower valuation of the good to a person with a higher
valuation. Therefore, if we can design a scheme, in which
a node with a higher delivery probability can make profit
by forwarding the packet from a node with a lower delivery
probability, then the nodes will have incentives to participate
in the packet forwarding. In this paper, we borrow ideas from
bargaining theory [29], [30] to solve the incentive problem in
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probabilistic routing.

According to [1], to bargain is “to negotiate the terms of an
agreement, as to sell or exchange”. Bargaining theory captures
both the competitive property and the positional property
of a negotiation process between two or more parties. The
intersecting yet conflicting interests of the different parties
lead to a game between the involved parties, through which
an agreement is reached.

In this paper, we model the message exchange process
between a pair of nodes in probabilistic routing as a bargaining
game. Hence, when a message is transferred from its source
to its destination, it goes through a series of bargaining game.
In each of these games, the message is traded from its current
carrier to a node with even higher valuation. When this
series of bargaining games is completed, the message reaches
its destination. Based on analysis of the bargaining game,
we design an incentive scheme that stimulates cooperative
behavior in probabilistic routing. Below is a summary of our
contributions in this paper:

• We model the process of probabilistic routing as a series
of bargaining game, and show that, if no incentive scheme
is used, participating in the game will not be to the
nodes’ best interests, and thus selfish nodes will refuse
to participate, resulting that system performance will be
degraded significantly.

• We present a novel and practical scheme to make a
broad class of probabilistic routing protocols incentive
compatible. We rigorously prove that, if our incentive
scheme is used, there exists a unique subgame perfect
equilibrium, in which nodes behave cooperatively. Here,
intuitively, subgame perfect equilibrium means that a
player can not get more benefit by unilaterally deviating
from the equilibrium strategy in any subgame starting at
her move. So, being cooperative is always to the best
interests of the selfish nodes.

• We extend our model to consider the case in which there
is a risk of breakdown in the bargaining process, and
present a practical solution.

• We extensively evaluate our schemes using GloMoSim.
Our evaluation results verify that, with our schemes,
participation is to the best interest of each node, and
there is an up to 75.8% gain in delivery ratio if compared
with a probabilistic routing protocol having no incentive
provided.

The rest of this paper is organized as follows. In Section II,
we present technical preliminaries. In Section III, we show
that, if no incentive scheme is used, participating in the game
will not be to the nodes’ best interests. Hence, we present
our message trading scheme to achieve incentive compatibility
for probabilistic routing. In Section IV, we extend our model
to consider the risk of breakdown. In Section V, we discuss
implementation issues. In Section VI, we report evaluation
results on GloMoSim. In Section VII, we review related works.
In Section VIII, we draw conclusions and discuss future work.

II. TECHNICAL PRELIMINARIES

Before presenting our system architecture and developing
our scheme, we first review the probabilistic routing protocols
we consider. We also review relevant game theoretic solution
concepts.

A. Basic Probabilistic Routing Protocol

As we have mentioned, our target is to design an incentive
scheme for a broad class of probabilistic routing protocols.
Specifically, we assume we are given a probabilistic rout-
ing protocol, which is called the basic probabilistic routing
protocol in the sequel. Then, starting from Section III, we
establish our incentive scheme for this basic protocol to
make it incentive compatible. Note that this basic probabilistic
routing protocol can be one of many existing protocols, so
that our scheme is widely applicable. Below we give a brief
description of the type of basic probabilistic routing protocol
we consider.

Probabilistic routing protocols are based on the observation
that, in practice, nodes are not likely to move around randomly,
but rather move in a predictable fashion based on mobility
patterns. If a pair of nodes has met several times before, it is
likely that they will meet again in the future. Such mobility
patterns can be exploited to improve performance of routing
protocol in opportunistic networks.

To exploit the mobility patterns, a probabilistic metric called
delivery probability was introduced. Let Pa,b ∈ [0, 1] be the
delivery probability from node a to a destination node b.
This metric indicates how likely that a node will be able
to deliver a message to the destination. Each node stores
a matrix of delivery probabilities. When two nodes meet,
they exchange their delivery probability matrices. This matrix
is used to update the internal delivery probability matrix.
Then the delivery probability matrix is used to decide which
message to forward from one node to another node.

Formally, a basic probabilistic routing protocol works as
follows.

Forwarding Algorithm: When a node a meets another node
b, they perform a message exchange through a number of steps.
First, node a gives node b a list of the messages node a carries
as well as their destinations. Each message is also annotated by
a with a’s delivery probability. Node a receives the same list
from node b and calculates its delivery probabilities of node
b’s messages. Node a then requests from node b the messages
of which it has higher delivery probability than node b by at
least θ.

Delivery Probability Calculation: The calculation of the
delivery probability has two parts. The first part is to calculate
each node’s probability of meeting each of the other nodes. Let
ρa,b be the estimated probability that node a and node b meet.
Here ρa,b is computed based on the recorded movement events
of the nodes during the last τ time slots, where a time slot is
a fixed length of time (e.g., 1 hour or 1 day, depending on the
movement speed of a typical node). The basic probabilistic
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routing protocol specifies a function f1(), which computes

ρa,b = f1

({
et−t̂
a,b |t̂ ∈ {1, 2, . . . , τ}

})
,

where t is the current time slot, et−t̂
a,b indicates whether node

a and node b met in time slot t− t̂.
Next, the transitive property of previously computed meet-

ing probabilities is exploited to calculate the delivery probabil-
ity Pa,b. The basic probabilistic routing protocol also specifies
a function f2(), which computes

Pa,b = f2 ({(a, b, ρa,b)|a, b ∈ V }) ,

where V is the set of nodes in the system.
Note that, by using different functions for f1() and f2(),

we can get different instances of basic probabilistic routing
protocol. For example, PROPHET [27] and MV [8] are both
instances of the basic probabilistic routing protocol. Protocols
in [12], [13] are also instances of this class after scaling the
estimation to the range [0, 1].

As we have mentioned, the existing probabilistic routing
protocols lack incentive mechanisms, and accordingly selfish
intermediate nodes may not be willing to forward messages
for others for free. In some applications, incentives are needed
in order to stimulate the selfish nodes to forward messages,
so that messages are forwarded to the node with a higher and
higher delivery probability and finally to the destination.

B. Game Theoretic Model and Solution Concepts

To study the incentive compatibility of probabilistic routing,
we model the message forwarding process as a bargaining
game [30].

Specifically, we isolate a pair of nodes, who come into the
communication range of each other, and model the interaction
between them for the possible transfer of a message as a
bargaining game. One of these two nodes is the current carrier
of the message. It determines whether to forward the message
to the other node. We view this process as bargaining, where
the current carrier of the message is the seller of the message,
and the other node is the buyer. Hence, there are two players
in the game, the seller S and the buyer B. The set of players
is N = {S,B}. These two players need to agree on a price
at which S sells the message to B.

The bargaining game is played in rounds. In each round,
the seller S makes a proposal, then the buyer B decides to
accept it or not. Acceptance ends the game while rejection
leads to the next round. A strategy si of player i ∈ N is
a function that assigns an action to player i when it is its
turn to move. As a notational convention, −i represents the
player other than player i in the bargaining game. Similarly,
s−i represents the strategies of the player other than player i.
Note that s = (si, s−i) is a strategy profile.

If an agreement on purchase price x is reached in round r,
then the two players’ utilities are:

uS = x− VS(m)− T (m)− cS(r), (1)
uB = VB(m)− P (m)− x− cB(r), (2)

where Vi(m) is the valuation of message m to player i, T (m)
and P (m) are the costs associated with the transmission and
reception of message m, cS(r) and cB(r) are the bargaining
costs of seller S and buyer B in the procedure of the game.

We note that Vi(m) is the integrated message valuation of
node i and its downstream nodes. In a bargaining game, if −i
is i’s downstream node, then V−i(m)−Vi(m)−T (m)−P (m)
is this game’s profit margin.1 Vi(m) is determined as follows:
assume that whoever delivers message m to the destination
node can get a payment ω from the source node. Considering
the previously defined delivery probability Pi,d, the valuation
of a message m at node i is as follows.

Vi(m) = ω · Pi,d.

Clearly, a node with a higher delivery probability of a message
also has a higher valuation of the message. Hence, a node
has incentives to purchase the message from nodes who
have lower delivery probabilities. (Consequently, the message
is forwarded to the node with higher and higher delivery
probability, and finally reaches the destination.) For simplicity,
we assume that the source and the destination nodes in a
session are trustworthy, and do not consider their utilities in
this work. However, we will consider the case in which both
the source and the destination nodes act as game players in
our future work.

Assume that each of the two player nodes S and B incurs
a cost σ > 0 for every round of the game. Then we have
cS(r) = cB(r) = r · σ.

To enable nodes to pay each other, just as in [4], [14],
[40], [41], [43]–[45], we assume that there is some kind
of virtual currency in the system. In the system, there is a
Credit Clearance Center (CCC). Each node has an account
in the CCC and each transaction has to be processed by the
CCC. Each node keeps a digitally signed recept for each
transaction and submit receipts to the CCC. The CCC is a
server connected to the Internet. So the node can access the
CCC whenever they have connections to the Internet. The CCC
clear the transaction after receiving the receipts.

Let R be the maximum number of rounds for bargaining.
If the players do not reach any agreement after R rounds of
bargaining, then their utilities are

uS = −cS(R), (3)
uB = −cB(R). (4)

In Section III, we assume that the value of R is known
by all nodes.2 We also assume that the players always keep
bargaining for the possible message exchange, until an agree-
ment is reached or the bargaining reaches the last round. In
Section IV, we study the case in which nodes do not know the
value of R, and can terminate the bargaining game to avoid
loss exaggeration.

1We do not deduct the bargaining costs here, because they are variables
depending on the design of the bargaining scheme.

2This is the case when, for example, nodes are equipped with GPS systems,
which enable they to calculate the length of communication time by geometry,
given communication ranges, speeds, and heading directions of the two nodes.
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Bargaining game is a special case of extensive game with
perfect information [30]. In an extensive game with perfect
information Γ, a history h is a sequence of actions starting
from the beginning of the game. A subgame is the remaining
part of the game following a specific history. Denote by Γ|h the
subgame that follows the history h. Let si|h denote the strategy
that si induces in the subgame Γ|h, and ui|h denote the utility
of player i in subgame Γ|h. We now review commonly used
solution concepts for extensive game with perfect information.

In extensive games, an important solution concept is sub-
game perfect equilibrium [30]:

Definition 1 (Subgame Perfect Equilibrium): A subgame
perfect equilibrium of an extensive game with perfect
information Γ is a strategy profile s⋆ such that for every
player i ∈ N and every nonterminal history h, after which it
is player i’s turn to take an action, we have

ui|h(s⋆i |h, s⋆−i|h) ≥ ui|h(si, s⋆−i|h),

for every strategy si of player i in the subgame Γ|h.
The game studied in this paper has a finite horizon, which

means that the number of rounds is finite and the number of
actions at any round is finite. An efficient tool to verify a
strategy profile s⋆ is a subgame perfect equilibrium in a game
with a finite horizon is the one deviation property [30]:

Lemma 2 (The One Deviation Property): The strategy pro-
file s⋆ is a subgame perfect equilibrium of a finite horizon
extensive game with perfect information Γ if and only if for
every player i ∈ N and every history h, after which it is player
i’s turn to take an action, we have

ui|h(s⋆i |h, s⋆−i|h) ≥ ui|h(si, s⋆−i|h),

for every strategy si of player i in the subgame Γ|h that differs
from s⋆i |h only in the action it prescribes after the initial history
of Γ|h.

We can restrict our attention, for each player i and each
subgame, to alternative strategies that differ from s⋆i in the
actions they prescribe after just one history. That is to say, a
strategy profile is a subgame perfect equilibrium if and only if
in each subgame the player who makes the first move cannot
obtain a better utility by changing only his initial action.

III. INCENTIVE ANALYSIS AND DESIGN OF SCHEME

In this section, we first show that, if there is no incentive
scheme, nodes will be unwilling to participate. Then we
propose a message trading scheme, under which the system
will converge to a unique subgame perfect equilibrium. In this
subgame perfect equilibrium, an agreement between the two
players is reached immediately in the first round, so that the
message can be forwarded from the seller to the buyer without
any hassle.

A. Analysis of the System without Scheme

In the section, we use a standard analysis method from
bargaining theory to show that the buyer cannot get any benefit
from the trading, if no incentive scheme is provided.

Recall that, in each round r, the seller S makes a proposal
x and the buyer decides whether to accept it or not; and the
bargaining process lasts until an agreement is reached or the
bargaining reaches the last round R. Then, if we analyze the
bargaining process backwards, starting from the last round, we
can conclude that the best strategy for the seller S is to always
propose

x(r) = VB(m)− P (m) + (R− r) · σ,

in round r. Suppose the buyer B prefers reaching an agreement
to disagreement when the above two possibilities have the
same utility to her. Since the buyer B wants to maximize
her utility, she will accept the offer

x ≤ VB(m)− P (m) + (R− r) · σ,

in round r and reject the others. According to the one deviation
property, this strategy profile is a subgame perfect equilibrium.
In this subgame perfect equilibrium, an agreement is reached
in the first round. The seller S gets good utility:

uS = x− VS(m)− T (m)− σ

= VB(m)− VS(m)− T (m)− P (m) + (R− 2) · σ.

(We assume VB(m) > VS(m) + T (m) + P (m) and R > 2.)
But the buyer B’s utility is

uB = VB(m)− P (m)− x− σ

= −R · σ.

The above analysis shows that, if there is no incentive
scheme, the buyer B always gets negative utility no matter
an agreement is reached or not. This result inevitably hurts
the buyer’s incentive to buy the message. In reality, selfish
nodes will refuse to participate in the game to avoid losses.
So a scheme for message trading, which stimulates nodes to
participate in the game, is highly needed.

B. Message Trading Scheme

In this section, we propose a scheme that stimulates nodes
to participate in the game, so that messages can be forwarded.

The main idea of our scheme is to influence the players’
strategy by introducing a carefully designed transaction fee.
Denote by X(m,x) the transaction fee of the message m at
price x. In the message trading game, this transaction fee is
included in the final purchase price. That is to say, the seller
gives out some of her profit as transaction fee when accessing
the CCC to clear the transaction. The advantage of introducing
the transaction fee is that, by carefully choosing a formula for
X(m,x), we can change the seller’s best strategy in the game,
such that her offer in the first round is a “reasonable” price
for the message. This price is “reasonable” in the sense that it
makes the transaction profitable for both parties. That is, both
parties will have positive utilities in the game.3 Furthermore,

3Recall that a node request a message on which it has at least θ higher
delivery probability. In our scheme, a message trading game takes place only
on a message m such that VB(m)− VS(m)− T (m)− P (m) > 2σ.
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accepting this “reasonable” price is also to the best interest of
the buyer.

Our designed formula for X(m,x) is as follows:

X(m,x) =

{
γ if x ≤ VS(m)+VB(m)+T (m)−P (m)

2

k(x− VS(m)+VB(m)+T (m)−P (m)
2 ) + γ o.w.,

where γ ≤ (VB(m) − VS(m) − T (m) − P (m))/2 − σ is a
very small primary transaction fee, and k = 2−2γ/(VB(m)−
VS(m)−T (m)−P (m)). We note that the advantage of using
the proposed formula is twofold. On one hand, since γ is very
small, the transaction fee is also very small compared with
the utilities got by the players, when the purchase price is in
reasonable range (x ≤ (VS(m)+VB(m)+T (m)−P (m))/2).
On the other hand, using the proposed formula, the equilibrium
purchase price is (VS(m)+VB(m)+T (m)−P (m))/2, which
makes the utility difference between seller and buyer is only
γ. When γ converges to 0, seller and buyer will have the same
utility in the transaction.

Our analysis in Section III-C will explain why it is a good
formula for the transaction fee in detail. Figure 1 gives a
complete description of our scheme.

Suppose two nodes come into the communication range
of each other.

1) The two nodes exchange the lists of the message
they carry. Suppose one of the nodes (buyer B)
wants to buy a message m from the other node
(seller S).

2) In each round r ≤ R, starting from r = 1, the
seller S makes a proposal (a purchase price) x,
which the buyer B then either accepts or rejects.
Acceptance ends the game while rejection leads to
round r + 1.

3) If an agreement is reached, the seller S transmits
the message m to the buyer B; and the buyer
B pays x to the seller S. If no proposal is ever
accepted then the outcome is the disagreement
event.

4) When the seller S has a connection to the credit
clearance center (CCC), it clear the transaction and
pays transaction fee X(m,x).

Fig. 1. Message Trading Scheme.

C. Analysis of Our Scheme

For notational clearance, we let ur
i denote player i’s utility

if an agreement is reached in round r.
Suppose an agreement is reached in round r. The utilities

of the seller S and the buyer B become:

ur
S = x−X(m,x)− VS(m)− T (m)− r · σ, (5)

ur
B = VB(m)− P (m)− x− σ · r. (6)

If the disagreement event is reached, then the utilities of the
players are

uD
S = uD

B = −R · σ. (7)

We assume that each player i ∈ {S,B} prefers reaching an
agreement in round r to round r + 1, when ur

i = ur+1
i ; and

prefers reaching an agreement in the last round to disagree-
ment event, when uR

i = uD
i . Then, we have the following

theorem.
Theorem 3: If the above scheme is used, then there exists

a unique subgame perfect equilibrium. In the subgame perfect
equilibrium, the seller S always proposes

x⋆ =
VS(m) + VB(m) + T (m)− P (m)

2
,

in each round r; the buyer B only accepts proposal x for
which

x ≤
{

VS(m)+VB(m)+T (m)−P (m)
2 + σ if r < R

VB(m)− P (m) if r = R,

and rejects any other proposals.
Proof: We construct a subgame perfect equilibrium by

backwards induction.
Start from the last round r = R. The last mover is the buyer

B. She will accept proposal x only if the outcome is not worse
than the disagreement event.

uR
B ≥ uD

B

VB(m)− P (m)− x−R · σ ≥ −R · σ
x ≤ VB(m)− P (m).

Next, we consider the move of seller S. Since S is selfish, it
must make a proposal x⋆(R) that maximize its utility in round
R.

x⋆(R)

= argmax
x

(uR
S )

= argmax
x

 x−X(m,x)− VS(m)− T (m)−R · σ
if x ≤ VB(m)− P (m)

−R · σ if x > VB(m)− P (m).

Here VS(m), T (m), P (m), and R · σ are constants. We
consider

x−X(m,x)

=

{
x− γ if x ≤ VS(m)+VB(m)+T (m)−P (m)

2

x− k(x− VS(m)+VB(m)+T (m)−P (m)
2 )− γ o.w.,

Since k > 1, x−X(m,x) get maximized when x = (VS(m)+
VB(m) + T (m)− P (m))/2. Consequently,

x⋆(R) =
VS(m) + VB(m) + T (m)− P (m)

2
.

Next, move to the round r = R − 1. The buyer B accepts
a proposal x only when

uR−1
B ≥ uR

B

VB(m)− P (m)− x− (R− 1) · σ
≥ VB(m)− P (m)− x⋆(R)−R · σ
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x ≤ VS(m) + VB(m) + T (m)− P (m)

2
+ σ = β.

Again, the seller S makes a proposal x⋆(R − 1) that
maximize its utility.

x⋆(R− 1)

= argmax
x

(uR−1
S )

= argmax
x

 x−X(m,x)− VS(m)− T (m)
−(R− 1)σ if x ≤ β

uR
S if x > β

=
VS(m) + VB(m) + T (m)− P (m)

2
.

Repeat the above analysis backwards to the first round. In
each round r < R, the buyer B’s optimal strategy is accepting
proposal x for which

x ≤ VS(m) + VB(m) + T (m)− P (m)

2
+ σ,

and the seller S’s optimal strategy is proposing

x⋆(r) =
VS(m) + VB(m) + T (m)− P (m)

2
.

Since in every subgame, the constructed strategy is strictly
optimal, the game has a unique subgame perfect equilibrium.
This completes our proof.

Note that the structure of message trading game allows the
game to continue for R rounds, but under our scheme, an
agreement is reached immediately at price x = (VS(m) +
VB(m)+T (m)−P (m))/2 in the subgame perfect equilibrium.
(One may wonder why we need the sophisticated analysis of
the R-round game while under our scheme the agreement is
reached in just one round. The answer is that reaching an
agreement in one round is just the equilibrium state of the R-
round game. Without analysis of the R-round game, we would
not be able to determine it is an equilibrium. This explanation
also applies to a similar question for our work in Section IV.)

IV. RISK OF BREAKDOWN

In the previous section, we have considered the case in
which the player nodes know R, which is the maximum
number of rounds. In this section, we extend our work to
consider the case in which player nodes do not know the exact
number of rounds in the game. This happens when nodes do
not know when they will go out of the communication range of
each other. Consequently, there is a risk of breakdown during
both the bargaining phase and the message transmission phase.

A. Extended Model

To study the above scenario, we need an extended model
for our game. Here we use the model of bargaining with a
risk of breakdown [29], [30]. Specifically, we assume that
immediately after the buyer rejects any offer in any round,
with probability p (0 < p < 1) the bargaining breaks down in
disagreement, and with probability 1−p the game proceeds to
the next round. We also assume that the probability of break-
down during message transmission increases with the advance

of bargaining. That is to say, the longer the bargaining phase
takes, the higher risk of breakdown the message transmissions
have. Let q(r) be the probability of breakdown during message
transmissions if the agreement could be reached in round r.
Here q(r) is an increasing function on range [0, 1].

Different from the bargaining game model we have used
in Section III, there is no explicit end of the game in the
extended game model with risk of breakdown. The bargaining
game may last so long that the gain from trading the message
cannot cover the bargaining cost and the transmission cost. To
avoid this situation, we allow the players to terminate the game
when they realize that the loss will be widened if bargaining
continues.

If an agreement on purchase price x is reached in round r,
then the two players’ expected utilities are:

ur
S = (1− q(r))(x−X(m,x)− VS(m))− T (m)− r · σ,

ur
B = (1− q(r))(VB(m)− x)− P (m)− r · σ.

If the bargaining terminates in round r or breaks down after
round r, then the players’ utilities are:

uD
S = uD

B = −r · σ.

B. Bargaining Scheme for Extended Model

Suppose the bargaining scheme in Figure 1 is still used in
the extended model. We note that previously defined trans-
action fee no longer works well, because the seller’s best
expected utility

ur
S < 0,

when

q(r) > 1− 2(T (m) + r · σ)
VB(m)− VS(m) + T (m)− P (m)− 2γ

.

This prevents the players from reaching an agreement, al-
though there still exist prices at which both of the players can
get profit. Consequently, previously proposed scheme need to
be changed to work with the extended model.

To cope with the extended model, we continue to use the
scheme in Figure 1 with a changed transaction fee formula as
follows:

X ′(m,x) =


γ if x ≤

VS(m)+VB(m)+
T (m)−P (m)

1−q(r)

2

k

(
x−

VS(m)+VB(m)+
T (m)−P (m)

1−q(r)

2

)
+ γ o.w.,

where

γ ≤
(
VB(m)− VS(m)− T (m)− P (m)

1− q(r)

)/
2− σ

is the primary transaction fee, and

k = 2− 2γ

/(
VB(m)− VS(m)− T (m)− P (m)

1− q(r)

)
.

Recall that the players can terminate the bargaining when
their losses will definitely be widened, if bargaining continues.
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The seller terminates the bargaining when the expected gain
from the trade cannot cover the transmission cost:

(1− q(r))(x−X ′(m,x)− VS(m)) < T (m)

⇒
VS(m) + VB(m) + T (m)−P (m)

1−q(r)

2
− γ − VS(m) <

T (m)

1− q(r)

⇒r > q−1

(
1− T (m) + P (m)

VB(m)− VS(m)− 2γ

)
.

While the buyer terminates the bargaining when she cannot
get satisfying proposal and her maximal gain in the next round
cannot cover expected further bargaining cost:

(1− q(r + 1))(VB(m)− x)− P (m) < (1− p)σ

⇒
VB(m)− VS(m)− T (m)−P (m)

1−q(r+1)

2
<

P (m) + (1− p)σ

1− q(r + 1)

⇒r > q−1

(
1− T (m) + P (m) + 2(1− p)σ

VB(m)− VS(m)− γ

)
− 1.

Let

R1 =

⌈
q−1

(
1− T (m)

VB(m)− VS(m)− 2γ

)⌉
,

R2 =

⌈
q−1

(
1− T (m) + P (m) + 2(1− p)σ

VB(m)− VS(m)− γ

)
− 1

⌉
.

Consequently, the last round R = min(R1, R2).
Theorem 4: There exists a unique subgame perfect equilib-

rium in extended model. In the subgame perfect equilibrium,
the seller S always proposes

x△ =
VS(m) + VB(m) + T (m)−P (m)

1−q(r)

2
,

in each round r < R1; and terminates the bargaining if the
game forward to round r = R (if R = R1). The buyer B only
accepts proposal x for which

x ≤


VB(m)− (1−p)(1−q(r+1))(VB(m)−VS(m))

2(1−q(r))

+ (1−p)(T (m)+P (m)+2σ)
2(1−q(r)) if r < R

VB(m)− P (m) if r = R;

and terminates the bargaining if she cannot accept the proposal
in round r = R (if R = R2).

The proof of Theorem 4 is similar to that of Theorem 3.
Due to limitation of space, we omit the proof here.

Note that under our scheme, an agreement is reached im-
mediately at price x =

(
VS(m) + VB(m) + T (m)−P (m)

1−q(r)

)/
2

in the subgame perfect equilibrium.

V. IMPLEMENTATION ISSUES

Given the preceding core theoretical results, we now discuss
some implementation issues related to integrating the proposed
incentive scheme into a given probabilistic routing protocol.
Due to space limitations, we only focus on a high-level
overview.

Misreporting Prevention: The incentive-compatibility pro-
vided by our message trading scheme relies on the truthfulness
of the underlying probabilistic routing protocol. However, a
selfish node may lie about her meeting probabilities with
and delivery probabilities to the other nodes, in order to pay
less or charge more for messages. Therefore, we must ensure
that each node honestly reports her meeting probabilities and
delivery probabilities.

We prevent the misreporting by requiring each forwarding
node to submit the delivery probabilities of herself and her
downstream node together with the transaction receipt of each
message to the CCC. In this way, for each message, the CCC
will collect two delivery probabilities for each forwarder: one
is from the forwarder herself, the other is from her upstream
node. On one hand, reporting a lower delivery probability for
a message is not beneficial to a forwarder herself. On the other
hand, a forwarder’s delivery probability for a message cannot
be increased unless she meets a node with a higher delivery
probability, in which case the message should be forwarded to
the later node. Consequently, the forwarder should not report
a higher delivery probability for the message. Therefore, a
forwarder’s delivery probability for a message reported by
herself should be no more than that reported by her upstream
node. If aging is used in calculating the delivery probability,
after aging, the delivery probability with a later time stamp
should be no more than that with an earlier time stamp. Once
a misreporting is detected, indicating that one of the two nodes
(the forwarder and her upstream node) must have manipulated
the transaction, the CCC will punish both of the two nodes
with a high penalty. Intuitively, this method can prevent the
nodes from misreporting, because a node cannot increase her
utility, by unilaterally misreporting her delivery probability for
a message, given the delivery probabilities for the message of
her upstream node and downstream node.

Message Duplication Prevention: A node may forward a
message to multiple downstream nodes, in order to get more
utility. Such a misbehavior can inject redundant messages
into the network, thus the performance of the network may
be degraded due to an increased workload. We solve this
problem by letting the CCC only process one transaction
recept from each node for each message. To prevent a node
selectively submit the most beneficial recept from a number
of transactions of the same message, the CCC also check the
receipts from the other nodes. A duplicated message must
have multiple receipts indicating the same upstream node from
different nodes. If a message duplication behavior is detected,
the CCC will punish the misbehaving node with a high penalty.

Forwarder Selection: When our message trading schemes
are used, to maximize utility, a rational strategy of a node
is to always forward the message to the node with the
highest delivery probability to her knowledge. This rational
strategy does not contradict to the objective of our system,
and can usually increase system performance. In this work, we
assume that the nodes do not have the knowledge on delivery
probabilities of nodes possibly met in the future, and do not
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Fig. 2. Cumulative utilities obtained by node 13 in a network with 20 nodes. Four cases are compared: A) Behaving cooperatively when all the other nodes
are cooperative; B) Behaving cooperatively when 30% nodes are selfish; C) Behaving cooperatively when 70% nodes are selfish; D) Behaving selfishly no
matter what the others do. The figures demonstrate that the node get better utility when behaving cooperatively.

have patience to wait for another node with a potentially higher
delivery probability. However, we will study how to provide
the incentives for opportunistic routing protocols, when the
nodes are capable of deciding whether to start a message
bargaining game with the current buyer in our future work.

VI. EVALUATIONS

In this section, we integrate our schemes with MV rout-
ing [8] and evaluate them using GloMoSim [38]. Our evalu-
ations have two objectives. One is to verify that our schemes
indeed prevent nodes from being selfish. The other is to
measure the influence of our schemes on the delivery ratio of
probabilistic routing in a wireless network with selfish nodes.

A. Methodology
We consider wireless networks with 10, 20, 30, and 40

mobile nodes randomly distributed in a terrain area of 10
km by 10 km. Each node has three locations in the physical
terrain, and randomly travel among these locations at a speed
uniformly chosen between 10 m/s and 30 m/s. After reaching
its destination, the node stays there for 5 minutes.4 Nodes
use IEEE 802.11 (at 11Mbps) as the MAC layer protocol.
The radios’ transmission range is set to 250 meters. Nodes
broadcast hello message every 1 second. The length of time
unit used in probabilistic routing protocols is set to 1 minute.

Nodes generate messages with uniform time interval of 10
minutes. The destination of the message is randomly selected
from the other nodes. A message is dropped if it can not be
forwarded to another node in 1 hour. Each simulation runs
for 24 hours, and is repeated 10 times with different random
seeds. Every node has an initial credit of 5000, and pays 100
credit for each delivered message.

In the model with risk of breakdown, we set p = 0.01 and
q(r) = 0.1 + 0.01(r − 1), where r ≥ 1. 5

4We evaluate the performance of our schemes on a 3-waypoint mobility
model instead of human movement traces, because the time spans of available
human movement traces are not long enough for this evaluation. The range
of movement speed roughly captures the average driving speeds in city.

5Here q(r) is not limited to linear function. It can also be quadratic function,
reciprocal function, exponential function, etc. However, the evaluation results
of using different functions for q(r) are identical. Therefore, we only show
the results for linear q(r) in this paper.

Node Behaviors: In our evaluations, we compare two types
of node behavior:

• Cooperative behavior: Following the scheme faithfully.
• Selfish behavior: As we have mentioned in previous

sections, selfish nodes are not be willing to participate in
message forwarding for others. We report results when
30% and 70% of the nodes are selfish.

Metrics: We evaluate three metrics:
• Cumulative utility: The total utility obtained by a node

over a period of time. Cumulative utility reflects the
impacts of a node’s behavior on its own. All nodes prefer
a higher utility.

• Credit balance: The credit remained on a node. Credit
balance reflects a node’s participation in the process of
message forwarding. All nodes prefer a higher credit
balance.

• Delivery ratio: The ratio between number of delivered
messages and total generated messages. Delivery ratio
reflects the impacts of our schemes on the performance
of a opportunistic network with selfish nodes.

B. Impacts of Selfish Behavior on Cumulative Utility and
Credit Balance

In our first set of evaluations we demonstrate that being
cooperative is better than being selfish in terms of cumulative
utility and credit balance.

Figure 2 shows the cumulative utilities of node 13 in a
20-node network, with and without a risk of breakdown.
We note that the results for the other players are similar
to that of player 13. In the figures, four different cases are
compared: A) Behaving cooperatively when all the other nodes
are cooperative; B) Behaving cooperatively when 30% nodes
are selfish; C) Behaving cooperatively when 70% nodes are
selfish; D) Behaving selfishly no matter what the other nodes
do. We can see that the node always has positive and increasing
cumulative utility when it behaves cooperatively no matter
what the other nodes do. In contrast, the node’s cumulative
utility always stays at 0 throughout the simulation if it behaves
selfishly. Therefore, for an individual node, being cooperative
can always get a better utility than being selfish.
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Fig. 3. CDF of cumulative utilities achieved with our schemes for 400 tracked node records. (The simulation on a network with 40 nodes is repeated 10
times with different random seeds.) Three cases are compared: A) 100% nodes behave cooperatively; B) 30% nodes behave selfishly; C) 70% nodes behave
selfishly. The figures show that generally nodes get higher utilities when being cooperative.
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Fig. 4. Credit balance of node 13 in a network with 20 nodes. Six cases are compared: A) Behaving cooperatively when all the other nodes are cooperative;
B) Behaving cooperatively when 30% nodes are selfish; C) Behaving cooperatively when 70% nodes are selfish; D) Behaving selfishly when all the other
nodes are cooperative; E) Behaving selfishly when 30% nodes are selfish; F) Behaving selfishly when 70% nodes are selfish. The figures demonstrate that
the node get higher credit balance when behaving cooperatively, and selfish behaviors have no way to increase the credit balance.

Figure 3 shows the cumulative distribution function (CDF)
of the achieved cumulative utilities for 400 tracked node
records. This result is composed of 10 repeated simulations
with different random seeds. Each simulation is on a network
with 40 nodes. The figures show the results when all nodes are
cooperative and when some of them are selfish. In the latter
case, we consider two situations, in which 30% and 70% of
the nodes are selfish. We observe that the cumulative utilities
achieved by collectively being cooperative are higher than
those of partially being selfish. Intuitively, this is because when
more nodes are cooperative, nodes get more opportunities
to forward messages, which results in getting more utilities.
These figures again demonstrates that being cooperative is
better than being selfish in getting utility.

Figure 4 shows the credit balances of node 13 in a 20-
node network, with and without a risk of breakdown. We
also note that the results for the other players are similar
to that of player 13. In the figures, six different cases are
compared: A) Behaving cooperatively when all the other
nodes are cooperative; B) Behaving cooperatively when 30%
nodes are selfish; C) Behaving cooperatively when 70% nodes
are selfish; D) Behaving selfishly when all the other nodes
are cooperative; E) Behaving selfishly when 30% nodes are
selfish; F) Behaving selfishly when 70% nodes are selfish.

We can observe that: 1) being cooperative always achieves a
higher credit balance than being selfish, when the other nodes’
behaviors are given; 2) the credit balance is always decreasing
with the time, if the node behaves selfishly by only sending
her own message. Therefore, these results again demonstrate
that being cooperative is better than being selfish.

From the results presented above, we can conclude that the
best strategy of the nodes is to always behave cooperatively,
when our schemes are used.

C. Impacts on Delivery Ratio

Our second set of evaluations are to demonstrate that our
schemes improve the delivery ratio of probabilistic routing in
face of selfish nodes. As we have mentioned, selfish behavior
of nodes can lower the network performance. In contrast, our
schemes can prevent selfish behavior of nodes, and thus can
boost the network performance in terms of delivery ratio in
face of selfish nodes.

Figure 5 shows the average delivery ratio as a function of
the number of nodes in the network when all nodes behave
cooperatively and when some of the nodes behave selfishly.
In the latter case, we consider two cases, in which 30%
and 70% of the nodes behave selfishly. The figures show
that the average delivery ratio increases with the number of
nodes in the network, and the highest delivery ratio is always
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Fig. 5. Average delivery ratio as a function of the number of nodes in the network. Standard deviations are shown using lines. Three cases are compared: A)
100% nodes behave cooperatively; B) 30% nodes behave selfishly; C) 70% nodes behave selfishly. The figures show that the highest delivery ratio is achieved
by 100% being cooperative, which can be guaranteed by our incentive schemes.

achieved by 100% being cooperative, which can be guaranteed
by our incentive schemes. However, the larger number of
nodes is, the more significant advantage of using our schemes
is. Particularly, when the length of the game is known, our
schemes achieves 11.1-22.8% and 28.8-75.8% gain in delivery
ratio in the cases where 30% and 70% of the nodes behave
selfishly, respectively; when there is a risk of breakdown, our
schemes achieves 10.1-19.0% and 21.7-71.6% gain in delivery
ratio in the cases where 30% and 70% of the nodes behave
selfishly, respectively.

VII. RELATED WORK

In this section we briefly review the related works on
routing in opportunistic networks and cooperation in wireless
networks.

A. Routing in Opportunistic Networks

Routing in opportunistic networks has been studied for
many years. Some early works (e.g., [33], [34], [39]) use
epidemic routing to distribute messages to destinations.

Later a group of works, namely probabilistic routing, extend
the idea of epidemic routing by estimating the probability of
each link to destination and use this information to decide
whether it should store the packet and wait for a better chance
as well as to decide which nodes to forward. In particular,
PROPHET [27] estimates a probabilistic metric called delivery
predictability, which indicates the probability of successfully
delivering a message to the destination from the local node,
and forward messages to the nodes who have higher delivery
predictabilities to the destination. In a similar manner, MV [8]
uses past frequencies of contacts to estimate the probability of
delivery. Devis et al. studied the performance of a number of
different strategies for deciding which messages to exchange
when two nodes meet and which messages to drop when buffer
is full [13]. Kun et al. proposed a shortest expected path
routing (SEPR) based on link forwarding probability in the
history data [36]. LeBrun et al. proposed a method using the
motion vector (MoVe) of mobile nodes to predict their future
location [24]. Messages are passed to the node that is moving
closer to the destination. Ghosh et al. elegantly calculated
mobility profiles of individual wireless users involved in a

probabilistic movement among hubs, and used the mobility
profiles to guide probabilistic routing [16].

With the help of position information, some location-
based routing algorithms emerged. Greedy Perimeter Stateless
Routing (GPSR) [23] uses Most Forwarding Progress within
radius R (MFR) to greedily forward messages. Jain et. al.
use partial location information to achieve suboptimal routing
decision [19]. Authors in [17], [31] proposed to use local infor-
mation, which is the history of other nodes it has encountered
in the past, to eliminate the cost to update location state.

Another group of works use certain knowledge about the
network to direct the route of messages. For example, Jain
et al. [20] defined four knowledge oracles, which represent
some particular knowledge of network, and presented a routing
algorithm based on the oracles. Chen and Murphy introduced
utility functions to describe the usefulness of a host as the next
hop for forwarding a message [12]. Burgess et al. proposed
MaxProp to schedule messages transmission and determines
which messages should be deleted when buffer space is full,
based on the path likelihoods to nodes according to historical
data, as well as acknowledgments [7].

To improve the performance of routing protocols in op-
portunistic networks, it is necessary to better understand
the underlying user mobility. Some researchers tried to find
practical mobility model to assist reproducing user movement
in simulations [11], [15], [25], [37].

B. Cooperation in Wireless Networks

A considerable amount of work has been done on the
cooperation problems in wireless networks. There are two
major approaches: route selection based approach and packet
forwarding based approach. The route selection based ap-
proaches (e.g., [3], [40]–[42], [45]) calculates the lowest cost
path despite of the fact that selfish nodes can make false claims
about their costs. Most works in the category only work when
there are contemporaneous end-to-end routes. In contrast, the
packet forwarding based approaches (e.g., [5], [9], [28], [44])
stimulate selfish nodes to forward packets. Here, we focus on
the later category, since our work falls into it.

The earliest packet forwarding based approach was pre-
sented by Marti et al. [28]. Their major contribution is
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proposing a watchdog and a pathrater, which monitor the
reputation of nodes. Similarly, Buchegger and Le Boudec
proposed a state machine, which is updated according to the
observation and received reports of other nodes’ behavior [5],
[6]. Srinivasan et al. proposed generous TIT-FOR-TAT and
showed that this strategy leads to a Nash Equilibrium [35].
Jaramillo and Srikant used the theory of repeated game to
study packet forwarding [22]. Among many other interesting
results, they proved that their scheme DAWIN is optimal in
their repeated game model. Recently, Shevade et al. proposed a
TIT-FOR-TAT-based incentive mechanism to let nodes reward
or punish their neighbors based on the history they have
observed in the routing process [32]. In common, these works
enforce packet forwarding by constructing reputation systems.

In contrast, some other works use credit, or virtual money,
as compensation for participating the game and forwarding
packets. Buttyan and Hubaux was the first to use virtual money
for the packet forwarding [9]. Their solution needs the help
of a piece of tamper-proof hardware on each node. Zhong et
al.’s Sprite [44] is another simple credit-based solution but
it does not require tamper-proof hardware. Another solution
to this problem was due to Jakobsson et al., using a micro-
payment scheme [21]. Zhong et al. combined problems of
route selection and packet forwarding and designed a protocol
using an integrated approach of game theory and cryptogra-
phy [43]. Lee et al. presented a secure incentive framework
for commercial ad dissemination in vehicular networks [26].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented novel and practical schemes
to integrate incentive compatibility into a class of probabilistic
routing protocols for opportunistic networks. We have inte-
grated our schemes with MV routing and evaluated them using
GloMoSim. Evaluation results have shown that: A) behaving
cooperatively is to the best interest of each node under our
schemes; B) our incentive schemes can substantially improve
network delivery ratio (10.1%-75.8% in our evaluated settings)
in the presence of selfish nodes.

Since this work focuses on unicast probabilistic routing,
an interesting direction of future work is designing similar
practical schemes that can work with multicast and broadcast
probabilistic routing. Noting that collusion is an increasingly
important problem in user contributed wireless networks, an-
other attractive direction of future work is designing collusion-
resistent probabilistic routing protocol.
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