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Abstract—Neighbor Discovery (ND) plays an important role
in the initialization phase of wireless sensor networks. In real
deployments, sensor nodes may not always be awake due to
limited power supply, which forms low-duty-cycle networks.
Existing researches on the problem of ND in low-duty-cycle
networks are all based on the assumption that a receiver can
receive only one packet successfully at a time. k-Multipacket
Reception (MPR) techniques (i. e., k (k ≥ 2) packets can be
successfully received at a time.) have shown their significance
in improving packet transmission. However, how can MPR
benefit the problem of ND is still unknown. In this paper,
we the first to discuss the problem of ND in low-duty-cycle
networks with MPR. Specifically, we first present an ALOHA-
like protocol, and show that the expected time to discover all
n−1 neighbors is O(n logn log logn

k
) by reducing the problem to

a generalized form of the classic K Coupon Collector’s Problem.
Second, we show that when there is a feedback mechanism to
inform a node whether its transmission is successful or not, ND
can be finished in time O(n log logn

k
). Third, we point out that

lacking of knowledge of n results in a factor of two slowdown
in two protocols above. Finally, we evaluate the ND protocols
introduced in this paper, and compare their performance with
the analysis results.

Keywords-Wireless Sensor Networks, Low-Duty-Cycle,
Neighbor Discovery, Multipakcet Reception

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have drawn a lot

of researchers’ interests because of their wide range of

applications. In many cases, sensor nodes are deployed

without the support of pre-existing base infrastructures, and

they need to form a network through their own cooperation.

Neighbor Discovery (ND) is a family of protocols designed

to find nodes’ one-hop neighbors, and is the first step in the

initialization of WSNs. The information acquired through

neighbor discovery protocols is extremely useful for further

operations such as media access and routing.

Existing protocols for ND can be classified into three

categories: deterministic protocols [1], multi-user detection-

This work was supported in part by the State Key Development Program
for Basic Research of China (Grant No. 2012CB316201), in part by China
NSF grant 61073152, 61170236, 61272443, and 61133006, and in part
by Shanghai Science and Technology fund 12PJ1404900. The opinions,
findings, conclusions, and recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the funding
agencies or the government.

∗ F. Wu is the corresponding author.

based protocols [2–4], and randomized protocols [5–7, 9–

13]. Deterministic protocols usually use leaders to schedule

all nodes’ transmissions, and multi-user detection-based

protocols identify neighbors by their pre-defined signatures.

Compared with the first two categories, randomized proto-

cols are more commonly used to conduct ND. In random-

ized protocols, the nodes broadcast discovery messages in

randomly chosen time slots to reduce the possibility of the

collision from the other nodes.

Usually the problem of ND is discussed in a synchronous

system, e.g., Birthday Protocols [5]. In birthday protocols

each node independently chooses to transmit during each

slot by probability p and to receive by probability 1−p. By

reducing the analysis of birthday protocols to the classical

Coupon Collector’s Problem, Vasudevan et al. [7] discussed

the time complexity of birthday protocols. Many subsequent

protocols are based on birthday protocols [7, 9, 10, 13]. For

example, due to the development of Code Division Multiple

Access (CDMA) and Multiple-Input and Multiple-Output

(MIMO), several protocols adopt the fact that nodes can re-

ceive more than one packet simultaneously, i.e., Multipacket

Reception (MPR), instead of the traditional assumption of

Single Packet Reception (SPR) [9, 13]. Figure 1 gives

an example about how the MPR technique can help to

accelerate the process of ND.

Furthermore, we notice that most existing ND protocols

are based on the assumption that nodes are always awake

during the ND process. This is unrealistic in WSNs due

to the limited power supply. In WSNs, nodes are typically

working with a certain duty-cycle (transmitting, receiving,

and dormancy) to reduce the energy consumption. You et
al. [12] discussed the issue of ND process with low-duty-

cycle nodes and derived the upper bound of expected time

of ND under the SPR model. Jeon et al. [14] discussed the

issue of physical-layer signal processing to achieve MPR but

the low-duty-cycle scenario was not covered.

The transition from SPR to MPR in low-duty-cycle WSNs

is not trivial, because nodes act completely different from the

SPR scenario. First, in traditional ALOHA-like protocols (e.

g., birthday protocols), the optimal transmission probability

can be easily determined to be 1/n, where n is the clique
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Figure 1. An example of how the ND is conducted in MPR networks. Node
A, B, and C are broadcasting their discovery messages simultaneously.
Node X is in the coverage of all the three nodes. If they are in a SPR
network, collision will occur at X . However if they are in a 3-MPR
network, X will successfully receive three nodes’ discovery messages
simultaneously.

size [5]. However, it is difficult to derive a closed form for

the optimal transmission probability in k-MPR1 networks.

Second, previous researches with SPR model are all based

on the assumption that once a node has transmitted its

discovery message without collision, it will certainly be

discovered by all the other nodes in a clique, which does

not hold in low-duty-cycle WSNs. The reason is twofold.

On one hand, it is almost impossible for all nodes to be

awake at a certain time instant in low-duty-cycle networks

because many nodes may be dormant. On the other hand,

even if all nodes happen to be awake, it is still not enough

for a node A to transmit its discovery message only once

to let all other nodes find it, due to the reason that there

may be more than one node, say m(1 < m ≤ k) nodes

(including A), transmitting simultaneously. Since the radios

on sensors nodes are half duplex, n−m nodes can discover

A successfully , while m−1 nodes cannot, because they are

transmitting.

In this paper, we study the problem of ND in low-

duty-cycle WSNs with k-MPR radios, and conduct in-depth

performance analysis on ALOHA-like ND protocols with

various extensions. The contributions of this paper are listed

as follows:

• First, to the best of our knowledge, we are the first to

consider the problem of ND using MPR radios in low-

duty-cycle WSNs. We show that MPR can significantly

accelerate the ND process, and thus the duration of

ND in low-duty-cycle networks can be tremendously

shortened. We study the ALOHA-like protocol in k-

MPR networks and prove that the expected time needed

is O(n logn log logn
k ), where n is the clique size, by

reducing the problem to a generalized form of K
Coupon Collector’s Problem [17].

• Furthermore, when a feedback mechanism is introduced

1k-MPR means that a receiver can successfully receive at most k(k ≥ 2)
packets simultaneously.

into the system, we prove that it provides a log n
improvement over the ALOHA-like protocol.

• Finally, we extend our protocols to the case where the

clique size n is unknown and show that it results in a

factor of two slowdown.

The rest of this paper is organized as follows. In Section

II, we describe the model and assumptions under which

we present our discussion. In Section III, we analyze the

performance of ALOHA-like protocol in low-duty-cycle

WSNs. In Section IV, the case when a feedback mechanism

is introduced into the system. In Section V, we validate the

theoretical results by simulation. We present related works

in Section VI and the paper concludes with our future work

in Section VII.

II. NETWORK MODEL AND ASSUMPTIONS

In this section, we present our network model and as-

sumptions under which we discuss the issue of ND. They

are widely adopted by many previous works [5, 7, 9, 12, 13].

These assumptions are as follows:

• Each node has a locally unique identifier (e.g. the MAC

address, the location).

• Time is identically slotted and nodes are synchronized

on slot boundaries.

• n nodes are deployed in a clique. For simplicity we

label them as {1, 2, . . . , n}.
• We assume that n is known to all nodes in the clique.

• All nodes have the same transmission range and use

omnidirectional antennas.

• Nodes are in a k-MPR (k ≥ 2) network, which

indicates that there is a collision in the clique if and

only if there are more than k nodes transmitting simul-

taneously in a slot. This capabilities can be achived

by MIMO or CDMA. To simplify our discussion,

we neglect some real implementation issues of MPR,

and assume that all sending nodes’ packets can be

successfully decoded at receivers’ side as long as the

number of transmitters is no more than k.

• Nodes are half duplex, i.e., nodes can either transmit

or listen in a slot but not both at the same time.

III. ALOHA-LIKE PROTOCOL

In this section, we present the ALOHA-like protocol and

analyze its performance based on the model and assumptions

described in Section II. Recall that there are n nodes and

they are in a clique. Furthermore, the case where n is

unknown to nodes is discussed in Subsection III-C.

A. Protocol Description

In the ALOHA-like protocol, we assume that each node

independently chooses how to act in a time slot. Precisely

speaking, each node chooses to be awake by probability

pw and to be dormant by probability 1 − pw. Dormant

nodes do not transmit or receive and awake nodes will

491491491



independently choose to transmit by probability pt and

receive by probability pl. In total, there are three states for

a node in each slot: transmitting, receiving, and dormancy.

The corresponding probabilities are pwpt, pwpl and 1− pw,

respectively.

If we assume a node transmits by probability p in a slot,

we can also know that it is in receiving state by probability

pw − p and is dormant by probability 1− pw.

We can determine the probability of a successful slot, i.e.,

there is at least one node transmitting in the slot, and no

collision occurs. A theorem is as follows:

Theorem 1. For a given slot in k-MPR networks, the
probability that no collision occurs in the slot is given by

ps =
k∑

i=1

(
n

i

)
pi(1− p)n−i. (1)

Proof: In k-MPR networks, a collision occurs if and

only if more than k nodes transmit simultaneously. Since

all nodes independently choose to transmit by probability p,

the probability that i nodes transmit in a slot is

pi =

(
n

i

)
pi(1− p)n−i.

Therefore, the theorem holds.

B. Performance Analysis

In this subsection, before the analysis of the ALOHA-like

protocol in k-MPR low-duty-cycle WSNs, we first introduce

two lemmas. One is about the generalized form of K Coupon
Collector’s Problem, and the other is about the estimation

of ps.

Lemma 1. There are n different coupons and a collector
randomly chooses k(k < n) distinct coupons (with replace-
ment) in a run. Denote the number of expected runs to get
all n coupons picked out and each coupon is picked out at
least m times as Dk

m,n. Then

Dk
m,n = O(

nm log log n+ n log n

k
). (2)

Due to the space limitation we omit the analysis and proof

of this theorem and it can be found in [17]. The k in k-MPR

and the K in K Coupon Collecor’s Problem is different.

Although at most k nodes can successfully transmit simul-

taneously, there may not be exact k nodes transmitting, while

the K Coupon Collecor’s Problem requires that each time

there are exact K coupons that are picked out.

Lemma 2. Let p = k−1
n and the following inequality holds:

ps >
1

2
− 1

e
.

Proof: Define Xt
i as a binary indicator random variable

of the event “node i transmits in slot t”. Then the expression

of ps in time slot t can be rewritten as follows

ps = Pr[1 ≤
∑
i

Xt
i ≤ k].

It is obvious to see that
∑

i X
t
i follows a Binomial distribu-

tion, and its mean is np = k− 1. Due to the reason that the

mean and the median are at most ln 2 apart [18], the median

is in [k− 1− ln 2, k− 1+ ln 2]. Since k− 1+ ln 2 < k, we

can see that

Pr[
∑
i

Xt
i ≤ k] >

1

2
.

Hence,

ps = Pr[
∑
i

Xt
i ≤ k]− Pr[

∑
i

Xt
i = 0]

>
1

2
− (1− p)n >

1

2
− (1− 1

n
)n

>
1

2
− 1

e
, (3)

where the last inequality comes from the known inequality

(1− 1
n )

n < 1
e for ∀n ∈ N.

In Section I, we have mentioned that it is not enough

for a node to transmit successfully without collisions only

once to let all other nodes discover it in low-duty-cycle

WSNs. The following theorem shows how many successful

transmissions are needed for a node.

Theorem 2. If a node A transmits its discovery message
3 logL n times without collisions where L = 1/(1 − pw +
p), then A is discovered by its n − 1 neighbors with high
probability.

Proof: Since in these 3 logL n slots no collision occurs,

a node B will discover A if and only if B is in receiving state

in at least one of these 3 logL n slots. Hence, the probability

that B does not discover A successfully is given by

pB = (1− pw + p)3 logL n.

Hence,

pB = (
1

L
)3 logL n =

1

n3
.

We denote the event “there is at least one node that

does not discover A after 3 logL n slots” as ε, and we can

determine P (ε) according to Union Bound

P (ε) ≤ npB =
1

n2
.

We can see that P (ε)→ 0 as n→∞.

We are now ready to analyze the performance of the

ALOHA-like protocol and point out its time complexity.

Theorem 3. Let T be the time needed to discover all n
nodes by using the ALOHA-like protocol. The expected value
of T is given by

E[T ] = O(
n log n log logn

k
). (4)
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Proof: In each time slot, there are O(k) nodes intending

to transmit and each node need to transmit O(log n) times

without collisions to let all other nodes discover it. Accord-

ing to Lemma 1, we know that if every slot is successful

the expected time needed is given by

W = O(
n log n log logn

k
).

Note that T is a Pascal random variable with the parameter

ps and W , therefore we get

E[T ] =
W

ps
<

W
1
2 − 1

e

= O(
n log n log log n

k
).

Now we have proven the time complexity of the ALOHA-

like protocol and this is the generalization of previous works.

By using lemmas and theorems proposed in this paper, we

can derive many results of the performance of the ALOHA-

like protocol in various scenarios.

• By setting k = 1 and m = 1, we get O(n log n) which

is the time complexity of birthday protocols [5, 7]

which is designed for SPR networks and nodes are

always awake.

• By setting m = 3, we get O(n logn
k ) which is proven

in [9, 14]. It is aimed at MPR networks whose nodes

are keeping awake.

• By setting k = 1 and m = 3 log n, we get

O(n log n log logn) which is proposed in [12]. In this

SPR network nodes are not always awake and have a

duty cycle pw = 1/2.

C. Unknown Number of Neighbors

In previous discussion, we all assume that the clique size

n is known to all nodes in the clique. In this subsection, we

will discuss how the protocol works if n is unknown to all

nodes.

We use a standard method [7, 9, 13] to handle this situa-

tion. The basic idea is to divide the whole ND process into

phases. In phase i, each node runs the protocol as if there are

2i neighbors to discover. This phase lasts O( 2
i log 2i log log 2i

k )
slots. Consequently, in the �log2 n	-th phase, each node will

run the protocol as if there are n neighbors and this phase

will last O(n logn log logn
k ) slots. This is just what we have

derived before and the ND process can be terminated after

this phase.

Now the expected time needed is

�log2 n�∑
i=1

O(
2i log 2i log log 2i

k
)

<

�log2 n�∑
i=1

O(
2i log n log log n

k
)

= O(
2n log n log logn

k
).

Hence, we observe that the lack of knowledge of n results

in a factor of two slowdown.

IV. ADAPTIVE ALOHA-LIKE PROTOCOL

In this section, we discuss the problem of ND in low-

duty-cycle k-MPR WSNs when a transmitting node knows

whether its transmission is successful or not. The feasibility

and design of such kind of feedback mechanisms has been

discussed in [7, 10].

In contrast to Section III, we divide a time slot into two

sub-slots. Nodes independently choose to transmit or receive

in the first sub-slot. For a receiving node it will check if there

is a collision in the first sub-slot, i.e., more than k nodes are

simultaneously transmitting [10], and broadcast a signal in

the second sub-slot if a collision occurs. As a transmitting

node, it keeps listening in the second sub-slot. If it hears a

signal it knows that its transmission in this slot was failed;

otherwise, it knows that the transmission was successful.

We note that when all nodes are transmitting in the same

slot, all of them will think their transmissions are successful,

because they cannot receive feedback signals, which nullifies

the feedback mechanism. Fortunately, the probability of this

event is (k−1
n )n, which tends to be 0 as n→∞. Therefore

it is reasonable to ignore it.

The main idea of our design with the feedback mechanism

is similar with [9]. We refer to a node that only receives

and sleeps as passive node, otherwise active node. At the

beginning of the ND process all nodes are set to be active.

Time is divided into phases. In phase i there are ni nodes

to be discovered; p is set to be (k − 1)/ni and this phase

lasts Wi = Θ(ni log logni

k ) slots. At the end of a phase,

all nodes that have successfully transmitted their discovery

messages at least 3 logL n times will turn passive. We will

prove that with a proper Wi, at least half of the nodes will

turn passive at the end of this phase. Then in next phase, the

remaining active nodes transmit by a higher probability. This

process continues until there are at most n/ lnn nodes that

are active. Then we run the ALOHA-like protocol without

feedback mechanisms as in Section III.

According to the scheme described above, the following

inequality holds:

ni ≤ n

2i−1
,

where ni is the number of active nodes in phase i. Hence,

the total time needed is given by

log2 lnn∑
i=1

O(
n log log n

2i−1

k2i−1
) +O(

n
lnn log n

lnn log log n
lnn

k
).

We can get from the equation above that the total time

needed is O(n log logn
k ), which has a factor of log n speedup

compared with the one in Section III.

Because every phase runs independently and identically

except that ni and pi are different, we will consider only

493493493



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100

S
lo

ts
 N

ee
de

d

Clique Size

Simulation Result
Theoretical Value

Figure 2. Validation of the ALOHA-like Protocol

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

D
is

co
ve

re
d 

Li
nk

s 
R

at
io

Clique Size

Figure 3. The Discovery Ratio of the Adaptive ALOHA-like Protocol

one phase and prove that with proper n and p, at least n/2
nodes will turn passive at the end of the phase.

Theorem 4. Let S denote the set of passive nodes at the
end of the phase. Let p = (k − 1)/n and W = ηn log logn

k−1
where η satisfies the condition

(η log logn− 3 logL n+ 1
2 )

2

32η
>

k

k − 1
.

Then for ∀k ≥ 2

Pr[|S| < n

2
] < e−

n
k log log n . (5)

Proof: Define the variable Y t
i for node i in slot t as

follows:

Y t
i =

{
Xt

i if t is a successful slot,
0 otherwise.

By Lemma 2 and the definition of Y t
i we can get

Pr[Y t
i = 1] = Pr[Xt

i = 1] · Pr[
∑
i

Xt
i ≤ k] ≥ p

2
.

Let Kt
i = min{3 logL n,

∑
t′<t

Y t′
i } and St = {i|Kt

i =

3 logL n}. We have

Kt �
∑
i

Kt
i ≤ |St| · (3 logL n)+(n−|St|) · (3 logL n−1).

If |St| < n/2 we get

Kt < n(3 logL n− 1

2
).

Hence,

Pr[|SW | < n

2
] ≤ Pr[KW < n(3 logL n− 1

2
)] (6)

We define Zt � Kt − Kt−1 if |St−1| ≤ n/2. (If

|St−1| > n/2 the conclusion holds obviously.) Note that

Z �
W∑
t=1

Zt = KW . Therefore according to Equation (6),

Pr[|SW | < n

2
] ≤ Pr[Z < n(3 logL n− 1

2
)].

On the other hand, we have

E[Zt] =
∑

i/∈St−1

Y t
i ≥ (n− |St−1|) · p

2

≥ n

2
· k − 1

2n
=

k − 1

4
.

Define Z̃t = E[Z|Xm
i ,m ≤ t] and the following equation

holds:

E[Z̃t|Z̃t−1] = Z̃t−1,

which indicates that the sequence forms a martingale. Then

we apply Azuma’s inequality [20] to Z̃t and we have

Pr[|SW | < n

2
] ≤ Pr[Z < n(3 logL n− 1

2
)]

= Pr[Z̃W < n(3 logL n− 1

2
)].

Since E[Z̃W ] = E[Z] ≥ (k−1)W
4 = ηn log logn

4 , we get

Pr[Z̃W < n(3 logL n− 1

2
)] ≤ Pr[Z̃W < E[Z̃W ]− nM

4
]

≤ exp(− n2M2(k − 1)

32ηk2n log log n
),

where M = η log logn− 3 logL n+ 1
2 .

Taking the condition given in the theorem we can get

Pr[|SW | < n

2
] < e−

n
k log log n .

We note that previous mentioned strategy to handle the

case when n is unknown in Subsection III-C can also be

used in the protocol with a feedback mechanism. Similarly

we can observe a factor of two slowdown in this case.

V. PERFORMANCE EVALUATION

In this section, we validate our theoretical results by

simulations. In our simulations we assume that nodes are all

in a clique, and the size of the clique n is known beforehand.

The cases when n is unknown and nodes are in multi-hop

networks are well discussed and verified in [7, 9, 12, 13],

thus we omit them. Each data plot in the figures stands for

an average result over 20 runs for accuracy.
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A. Validation of Theoretical Results

Figure 2 and 3 are the simulation results for the ALOHA-

like protocol and the adaptive ALOHA-like protocol, re-

spectively. In both figures the parameter pw = 0.5 and

k = 3. Figure 2 shows the trend of the number of time

slots needed to discover all nodes with increasing size of

the clique. We can see that the simulation results well fit

with the corresponding theoretical values. The deviation is

due to the reason that the closed form of the generalized K
Coupon Collector’s Problem’s expected time is non-trivial

to be derived, thus we can only give the asymptotic results,

but it is still able to prove the correctness of our derivation.

Figure 3 provides a link-based view of the ND process. In

the link-based view we regard the connection between any

two nodes in the clique as a link, and it is easy to see there

are n(n−1) links in a clique of n nodes. We present the ratio

of discovered links in the given time with different sizes of

cliques, where the given time is determined by the adaptive

ALOHA-like protocol (We set η = 5 in this figure.). We can

see from the figure that the discovery ratio is very close to

1 when the clique size is relatively large. Nevertheless the

ratio is not that acceptable when n is small. It is reasonable

because our results are all asymptotic results and the results

match our derivation well when n is large.

B. Different Settings for ALOHA-like Protocol

Now we analyze the performance of ALOHA-like pro-

tocol when different duty cycles and k-MPR are deployed

in the clique. In this simulation, when comparing different

duty cycles we set k = 3. When comparing different k we

set the duty cycle pw = 0.8.

Figure 4 shows the comparison among three different

settings of duty cycles when k = 3. Figure 6 shows the trend

of the time slots needed with increasing duty cycles when

n = 50. When the duty cycle increases, the total time needed

to discover all nodes decreases. It is predictable because low

duty cycle means many nodes may be dormant at a single

slot and the transmitting nodes’ discovery messages cannot

be received by most nodes, indicating that transmitters need

more transmissions to ensure that the discovery messages

have been received by all nodes at least once.

The comparison among different settings of k-MPR is

shown in Figure 5 (Note that now pw = 0.8). Figure 7

shows the trend of the time slots needed with increasing

k when n = 50. When k increases, the total time needed

decreases. Furthermore, when k doubles, the speed of ND is

about twice faster. This coincides with our theoretical result

and thus proves the correctness of our theorems.

On the other hand we must point out that the time
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Figure 9. Comparison of Different k-MPR (Adaptive ALOHA-like)

needed is not always decreasing as k increases. Note that

the beginning part of the case k = 8 is higher than the case

k = 4. This is mainly because the transmitting probability is

based on k and thus this probability is relatively high if k is

large. When number of nodes is small, at a slot most nodes

are transmitting and few nodes are receiving. Consequently,

transmitting nodes need to spend more time letting all other

nodes receive their discovery messages. We can observe this

from Figure 7 obviously. When k > 15, the total time needed

fluctuates instead of keeping decreasing.

C. Different Settings for Adaptive ALOHA-like Protocol

In this subsection we begin to analyze the performance

of the adaptive ALOHA-like protocol with different settings

of duty cycles and k-MPR. Similarly, when comparing duty

cycles we set k = 3. When comparing different k we set

pw = 0.8.

Figure 8 shows the discovery ratio of three scenarios with

different duty cycles. It is clear that the discovery ratio

increases as the duty cycle pw increases. Again we observe

that when the size of the clique is small the ratio turns

out to be relatively low because of our asymptotic analysis.

When the duty cycle approches 0.8, the adaptive ALOHA-

like scheme ensures that almost all nodes can be discovered

in the given time slots. In addition, we can see from the

figure that as the size of clique rises, the discovery ratio also

rises. This coincides with our aysmptotic analysis and shows

that the validity of the adaptive ALOHA-like protocol.

Figure 9 shows the discovery ratio of three scenarios with

different settings of k. In this figure, when the clique size

is 10 with k = 8, the discovery ratio is only less than 0.6,

whereas the ratio is almost 1 when k = 4 and k = 2. This

result may not seem to cater our intuition, but it indeed can

justify our assertion again: when the clique size is small, it

is not a good idea to use large k. Too many transmitting

nodes and too few receiving nodes will bring the side effect

which prolongs the process of ND, because a node need

to transmit a lot of times to make itself heard by all other

nodes.

VI. RELATED WORK

Many works have focused on the problem of ND and

various protocols have been proposed and analyzed to adapt

to different situations and assumptions. Basically, protocols

of ND can be classified into three classes: deterministic pro-

tocols [1], multi-user detection-based protocols [2–4], and

randomized protocols [5–7, 9–13]. Deterministic protocols

usually need a leader, which is aware of the whole topology

of the network and schedule the transmitting and receiving

beforehand to total avoid collisions. This kind of scheduling

costs lot of time and it is hard to implement it in a large scale

distributed system. The multi-user detection-based protocols

need complicated signal processing techniques and require

that each node keeps all other nodes’ signal signatures,

which is unrealistic in many scenarios. Compared with the

previous two kinds of protocols, randomized protocols are

widely deployed due to their effectiveness and low cost.

The milestone of the randomized protocols of ND is the

Birthday Protocol proposed in [5] by McGlynn et al., who

consider the randomized strategy in a synchronous system

to avoid collisions in a clique. In birthday protocol, each

node transmits its discovery message by probability p and

receives other nodes’ messages by probability 1 − p in

a slot. Furthermore, the authors proved that the optimal

transmission probability p = 1/n, where n is the size of

the clique.

Based on the birthday protocol, Vasudevan et al. [6] pro-

posed a similar randomized strategy when directional anten-

nas are used instead of omnidirectional antennas. However

the authors did not analyze the expected time formally in this

paper. Later in [7], the authors first theoretically analyzed the

time upper bound of the birthday protocol by reducing the

ND problem to the classical Coupon Collector’s Problem.

When there are n nodes in the clique in a synchronous

system, the expected time needed to discover all nodes is

neHn where Hn is the n-th Harmonic number. In [7],

the authors also proposed methods to handle more realistic

situations where n is unknown beforehand, the system is
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asynchronous [11] and a feedback mechanism is introduced

into the system [10]. Basically, not knowing n beforehand

and the asynchronous system leads to no more than a factor

of two slowdown respectively, and there will be a lnn
improvement if a feedback mechanism is brought in. In

addition, the author also proposed a method to determine

when to terminate the ND process when n is unknown.

Sun et al. proposed a refined ALOHA-like protocol to

compete a long-existing problem in the traditional ALOHA-

like protocols.

Zeng et al. first extended the results of [5, 7] to the k-MPR

situation. In contrast to previous works that are all based on

the assumption that there is a collision if two or more nodes

transmit simultaneously in a clique, k-MPR allows at most

k (k ≥ 2) nodes in a clique transmit simultaneously. The

authors proved that the expected time needed to discover all

nodes is Θ(n lnn/k). Ideally, if k ≥ n, the expected time

is shortened to Θ(lnn). Similarly, the lack of knowledge

of n, the asynchronous system and the import of feedback

mechanisms result in the same factors of slowdown or

speedup as they are in [7].

You et al. [13] considered a different MPR model in

comparison with [9]. In [13], there are k channels. At each

slot each node can transmit on one of the k channels or

receive on all channels simultaneously. As a result a node

can receive at most k packets successfully if k nodes choose

mutually exclusive channels to transmit their messages (Note

that there is only one channel in [9].). The authors got the

same time complexity Θ(n lnn/k).
Recently many works have focused on the proper ND

protocols for WSNs. Many sensor nodes work in a duty

cycle because of the shortage of power supply. Hence, the

protocols which assume that a node has been discovered by

all other nodes if it has transmitted successfully only once

no longer work in the low-duty-cycle WSNs, since some

nodes may be dormant and cannot receive anything at some

time instants.

You et al. [12] extended the discussion of [7] to the low-

duty-cycle case. By reducing the problem to the K Coupon
Collector’s Problem [19], the authors proved that when the

duty cycle is 1/2, the upper bound is ne(log2 n+(3 log2 n−
1) log2 log2 n+ c) with a constant c.

Besides these works which are aimed at accelerating the

process of ND, there are also many other researches that

discuss other problems about ND such as the security [15],

energy consumption [16], etc. Due to the space limitation

we will not introduce them in detail.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the neighbor discovery problem

in low-duty-cycle WSNs, and derived the time complexity

for two protocols respectively. For the ALOHA-like proto-

col, the expected time to finish ND is O(n logn log logn
k ) with

k-MPR. Furthermore, if a feedback mechanism is introduced

into the system, the expected time is O(n log logn
k ). In

addition, the lack of knowledge of n results in a factor of

two slowdown in comparison with the n-known case. All

our theoretical results are verified by extensive simulations.

In the future, we would like to evaluate these protocols by

doing test-bed experiments. Also we would like to extend

the protocols to some more realistic situations, e.g. nodes

with different clocks, nodes with different duty cycles and

more realistic radio models.
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