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Abstract—Tree-based routing structures are widely used to
gather data in wireless sensor networks. Along with tree struc-
tures, in-network aggregation is adopted to reduce transmissions,
to save energy and to prolong the network lifetime. Most
existing works that focus on the lifetime optimization for data
aggregation do not take the link quality into consideration. In
this paper, we study the problem of Maximizing Reliability of
Lifetime Constrained data aggregation trees (MRLC) in WSNs.
Considering the NP-completeness of the MRLC problem, we
propose an algorithm, namely Iterative Relaxation Algorithm
(IRA), to iteratively relax the optimization program and to
find the aggregation tree subject to the lifetime bound with
a sub-optimal cost. To adapt to the distributed nature of the
WSNs in practice, we further propose a Prufer code based
distributed updating protocol. Through extensive simulations, we
demonstrate that IRA outperforms the best known related work
in term of reliability.

Keywords—data aggregation; iterative relaxing algorithm; max-
imizing reliability

I. INTRODUCTION

Data collection is one of the most basic operations in
many typical applications, such as habitat monitoring and
structure maintenance, in Wireless Sensor Networks (WSNs).
It requires sensor nodes to monitor environmental conditions
continuously. Each sensor periodically reports the sensing data
to the sink for processing. To collect sensing data, tree-based
routing structures are widely adopted in WSNs.

Since sensors are usually battery-powered and have limited
energy, how to perform data collection in an energy efficient
way is a critical problem in WSNs. However, in a data
collection tree, sensor nodes closer to the sink have to forward
more packets and might deplete their power more quickly.
This is so-called the energy hole phenomenon [2]. To alleviate
this problem, some divisible functions (e.g., SUM, MAX,
top-k, etc.) are used to fuse data packets and to eliminate
redundant transmissions. Meanwhile, Wu et al. [1] proved the
NP-Completeness of finding a maximum lifetime tree routing
structure. They proposed an approximation algorithm that finds
a sub-optimal tree in terms of network lifetime. Other related
works (e.g., [3], [4], [5], [6]) present different schemes for
finding maximum lifetime data aggregation trees with different
additional constraints.

The major shortcoming of existing works is that they do
not take the link quality into consideration. Considering the
error-prone nature of wireless links, ignoring the link quality
might cause high packet loss ratio and is not practical in

WSNs. We define the reliability of a data aggregation tree as
the probability that a round of data collection is successfully
performed. It is conflicting to achieve both high reliability
and optimal network lifetime in the general case. Therefore,
we need to carefully balance the trade-off between these two
contradicting objectives.

In this paper, we consider the problem of Maximizing
Reliability of Lifetime Constrained data aggregation trees
(MRLC) in WSNs with unreliable wireless links. We aim at
maximizing the reliability of the chosen data aggregation tree
while satisfying the lifetime bound required. We first analyze
the energy consumption model by preliminary experiments. As
the MRLC problem is NP-complete, we relax the formulation
of the MRLC problem to a linear program. We present a
centralized algorithm called Iterative Relaxation Algorithm
(IRA), which iteratively relaxes the linear program to get an
integral solution. For better applicability of our result to WSNs,
we present a distributed updating protocol based on message
exchanging.

Our main contributions are as follows.

• To the best of our knowledge, we are the first to study
the problem of maximizing reliability of lifetime con-
strained data aggregation tree taking unreliable wire-
less links into consideration. The lifetime constraint
guarantees the lifetime performance and maximizes
reliability of the data aggregation tree.

• We solve the MRLC problem by proposing an algo-
rithm, namely IRA, to find the aggregation tree subject
to the lifetime bound with a sub-optimal cost.

• We further propose a Prüfer code based distributed
updating protocol. The updating protocol is called in
two cases: a tree-link gets worse or a non-tree link
gets better.

• We carry out trace-driven evaluations so as to analyze
the performance of our approaches. The results show
that our approaches greatly improve the reliability of
WSNs.

The rest of this paper is organized as follows. Section II
reviews related works. Section III introduces our motivation
and the network model. In Section IV, we give the problem
definition and formulate the MRLC problem. We present the
centralized algorithm IRA in Section V and the distributed
protocol in Section VI. Section VII gives the performance
evaluations. Finally, we conclude our work in Section VIII.
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II. RELATED WORKS

There are many related works on the problem of building
data collection and aggregation structures in wireless sensor
networks. In this section, we briefly review related works.

Park and Sahni [8] proved that optimal routing in terms of
the network lifetime is NP-hard in wireless sensor networks.
They proposed a non-tree-based scheme for maximizing net-
work lifetime in data collection networks. However, the solu-
tion is a heuristic approach and it does not consider the energy
consumption of receiving. Wu et al [2] investigated the energy
hole problem in data collection. They proposed a distributed
routing algorithm based on shortest path trees, but the sensors
have to be deployed in a predefined distribution.

Some related works [22], [13], [17] study the problem
of reducing total energy consumption of data collection and
aggregation networks. Crowcroft et al. [22] considered the
problem of efficient data gathering in sensor networks and
the efficiency is measured by total energy consumption, the
quality of the transmissions, etc. The main objective is to
construct efficient backbones for multi-hop data collection
with data aggregation. Wu et al. [13] studied the problem
of energy-efficient wake-up scheduling in data aggregation
networks. They proposed efficient approximation algorithms
for constructing data aggregation trees that guarantee both
the energy consumption and network throughput are within
a constant factor of optimal. Kuo and Tsai [17] studied the
problem when a certain aggregation ratio q is given. The
problem is NP-complete and they proved that every shortest
path tree has an approximation ratio of 2. They also proved that
the problem is NP-complete if some relay nodes are available
and propose an 7-approximation algorithm. However, the total
energy consumption is different from the network lifetime.
Reducing the total energy consumption does not guarantee the
improvement of the network lifetime.

Building a tree structure to maximize network lifetime is
first proposed in data collection networks without aggregation.
In data gathering without aggregation, nodes close to the
sink would suffer from heavy loads. To extend the network
lifetime, energy consumption of nodes should be balanced
effectively. Some related works focus on maximizing lifetime
through efficient balancing the energy consumption among
sensor nodes. Levin et al. [20] studied the problem under two
network models: homogeneous networks with obstacles and
heterogeneous networks without obstacles. They provided an
approximation algorithm for each network model. However,
they did not consider the energy consumption for receiving,
which should not be ignored in most sensor networks. Liang
et al. [19] proved that the problem is NP-complete. They pro-
vided an algorithm called Maximum lifetime Tree construction
for data gaThering without aggregation (MITT) and proved
that MITT has an approximation ratio of Ω (logn/ log logn).
Imon et al. [23] proposed a novel and efficient algorithm called
Randomized Switching for Maximizing Lifetime (RaSMaLai).
RaSMaLai aims at maximizing the network lifetime through
load balancing with a low time-complexity. They also designed
a distributed version of RaSMaLai.

There are some related works focusing on maximizing
lifetime in data aggregation networks. Cheng et al. [15] studied
the degree bounded data aggregation network problem, but

only proposed heuristic approaches. Li [16] presented the
first distributed method to construct a bounded degree pla-
nar connected structure LRNG (Local Relative Neighborhood
Graph), whose total link length is within a constant factor of
the minimum spanning tree using total O(n) messages under
the broadcast communication model. However, this scheme is
only for nodes distributed in a two dimensional plane and
the transmission range is uniform and normalized to one
unit. An LRNG has more links than a minimum spanning
tree and it consumes more energy than that by MST. Tan
and Körpeoǧlu [3] proposed two algorithms for maximizing
lifetime. The algorithms are based on sensor locations and
minimum spanning tree construction. A linear program based
approach presented by Xue et al. [4] gives an approximation
algorithm for finding a maximum lifetime aggregation tree.
Wu et al. [1] first proved that the problem of maximizing
lifetime of data aggregation networks is NP-complete. They
also proposed an approximation algorithm. In all these works,
they have a strong assumption that wireless links are reliable.

Only a few works take both lifetime and unreliable links
into consideration. Kwon et al. [21] tried to maximize lifetime
under reliability and stability constraints in wireless sensor
networks. They found that short-distance hops are not always
optimal for energy saving and using multi-hop paths may
consume higher energy. They investigated the problem of
maximizing the network lifetime under reliability constraint
on the end-to-end success probability. In a tree-based data
collection model, it is important to balance loads among sensor
nodes and the reliability model is different from the end-to-end
paths. Shen et al. [5] presented the problem of constructing
data gathering tree to maximize the lifetime of unreliable
wireless sensor network under delay constraint. Their solution
is based on the minimum spanning tree of WSNs where the
weights of links are the Expected Transmission Count and the
network reliability is guaranteed by retransmissions. In this
paper, we use reliability to define the goodness of wireless
links and maximize the reliability of data aggregation trees.
The retransmissions are not necessary for our solution and the
lifetime preformance is still outstanding.

III. PRELIMINARIES

In this section, we first introduce the motivation of our
work. We then present the network model in this paper.

A. Motivation

Our work is motivated by the intersection between max-
imizing network lifetime and unreliable wireless links in
wireless data aggregation sensor networks.

First, wireless links are highly unreliable in wireless sensor
networks. Link-quality based forwarding strategies are de-
signed to improve the performance of end-to-end throughput
and transmission delay in tradition ad hoc networks and sensor
networks and not suitable for data aggregation networks. For
example, ETX [10] is a link-quality based forwarding strategy
based on the expected transmission count. A node sends a
packet again and again until the packet is received correctly
by a forwarder. It is energy consuming and is not suitable for
sensor networks where lifetime is a key issue. Retransmission
is also not necessary in some time critical applications, such as
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tracking and fire monitoring, etc. Figure 1 shows the average
number of packets for one round of data aggregation with
unreliable links for different sizes of networks. As shown in
Figure 1, when the network has 16 nodes, the total number
of packets increases from 15 to 150 while the average link
quality decrease from 100% to 10%. The total number of
packets increases even more when there are more nodes in
the networks. It means that nodes spend 90% of energy in
retransmission.
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Another problem is that most previous works focusing on
maximizing network lifetime perfer networks with good con-
nectivity, because better connectivity leads to more forwarding
candidates. Nodes might take long-distance links to get better
connectivity. Figure 2 shows the average packet reception ratio
of different distances. We also vary the transmitting power
of the TelosB nodes. As shown in Figure 2, the link quality
decreases while the distance increases when Tx = 19 and
the average link quality goes from almost 100% to less than
10% while the distance increases from 4ft to 16ft when the
transmission power is 11 and 15.
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B. Network Model

Suppose that there is a sink node and n − 1 sensor
nodes V = {v0, v1, · · · , vn−1}, where v0 is the sink node
and {0, 1, 2, · · · , n − 1} are the labels of nodes. The initial
energy of vi is denoted by I(vi). We use an undirected graph
G = (V,E) to represent the network, where E is the set of
wireless links. G is connected so that every node has at least
one path to the sink. Nodes can do in-network aggregation, i.e.,
each node aggregates the received messages from its children,
combines them with its own sensing information into a single
outgoing message, and sends the combined message to the next
hop node.

To estimate the lifetime, we use PowerMonitor [9] to mea-
sure the energy consumption of sensor nodes under 3 working
states: sending, receiving and idle. We use three identical
TelosB sensor nodes and show their energy consumption in
Figure 3. The first sensor keeps sending packets. Each packet
is 34 bytes’ long and the energy consumption is shown in
Figure 3(a), which has an average of 80mW . The second

sensor receives all packets the first sensor sent. Its energy
consumption is about 60mW as shown in Figure 3(b). The
last sensor does all the Led blinking and computing as the
first two with its radio module turned off. It costs only 80μW ,
as shown in Figure 3(c).

According to the observations above, most energy is used
in the sending and receiving states. In this paper, we estimate
network lifetime by only considering the energy consumption
for sending and receiving packets. We denote Tx as the energy
cost of sending a packet and Rx as the energy consumption
of receiving a packet. For an arbitrary data aggregation tree T ,
the lifetime of any node v is related to the number of packet
sending and receiving in each data aggregation round. The
lifetime of a node v is defined as:

L(v) =
I(v)

Tx+Rx ∗ ChT (v)
, (1)

where ChT (v) is the number of children in the aggregation
tree T . The network lifetime L is defined as the time till the
first sensor node depletes its energy, which is presented as:

L = min
∀v∈V

L(v).

In this paper, we use the Packet Reception Ratio as the
reliability of wireless links, which is denoted by qe. The Packet
Reception Ratio (PRR, which is also referred as the Packet
Success Ratio) is a basic metric for link quality estimation
and has been widely used in many sensor networks. It can
be estimated by the ratio of the number of correctly received
packets to the number of total transmitted packets:

qe =
Nr

Ns
, (2)

where Nr is the number of successfully received packets and
Ns is the number of total transmitted packets.

In some applications of WSNs, such as tracking and fire
monitoring, retransmission and acknowledgement are normally
disabled for real-time data gathering. As there is no retransmis-
sion or ACK, in each data aggregation round, the successful
ratio of all packets received is the product of all edges’ packet
reception ratios. The reliability of a data aggregation tree T
is defined as the product of all edges’ packet reception ratios.
Let Q(T ) be the reliability of tree T (V,ET ) and it is defined
as follows:

Q(T ) =
∏

e∈ET

qe.

A toy example of the network reliability is shown in
Figure 4. There are 6 sensor nodes in the network and
Figure 4(a) is a data aggregation tree with the PPR of each
links. In an data aggregation round, Node 4 receives packets
from Node 2 and Node 3, aggregates with its own sensing
information, and then sends a packet to the sink node. For time
critical applications where retransmissions are not necessary,
if Node 4 did not receive the packet from Node 2, due to the
unreliable link, the sink will not get the sensing information
of Node 2. As we can see, the sink can only get sensing
information from all nodes if every packet was correctly
received. The network reliability of the aggregation tree in
Figure 4(a) is 0.36 = 0.8 × 0.5 × 0.9 × 1.0 × 1.0, which is
the product of all links?PPRs. Another possible aggregation
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Fig. 3. The figures show the energy consumption of TelosB nodes during sending, receiving and idling, respectively. We get the data by PowerMonitor [9].
The average power consumption during a TelosB node sending packets is about 80mW . When a node is listening and receiving, the energy consumption is at
the average of 60mW . When a TelosB node is in the idle state, the power consumption is only about 80μW .

tree is shown in Figure 4(b). The aggregation reliability is
0.648 = 0.8 × 0.9 × 0.9 × 1.0 × 1.0. We can see that the
aggregation tree in Figure 4(b) has a better performance in
term of reliability.
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Fig. 4. A toy example of the network reliability.

IV. PROBLEM FORMULATION

In this paper, we fuse a linear program to formulate the
MRLC problem. The linear program is based on Subtour Lin-
ear Program, which will be introduced first in this section. We
then give the formal definition of the Maximizing Reliability of
Lifetime Constrained (MRLC) data aggregation tree problem.
At last we formulate the MRLC problem by a linear program.

A. Subtour LP

We first formulate MST with Subtour LP. Subtour LP is a
linear program which is usually used in the study of MST and
TSP. Later we will show the MRLC problem can be formulated
with a similar linear program.

min
∑

e∈E
cexe (Subtour LP)

s.t. x(E(S)) ≤ |S| − 1, ∀S ⊆ V (3)

x(E(V )) = |V | − 1, (4)

xe ≥ 0, ∀e ∈ E. (5)

xe is the variable that indicates whether e is in the tree
or not. S is any subset of V and E(S) denotes the set of
edges with both endpoints in S and x(F ) is used to denote∑

e∈F xe where F is a set of links. Constraint 3 guarantees
that there is no loop among any subset of V , and Constraint 4
ensures that a spanning tree has |V | − 1 edges. Though the
number of constraints is exponential, we can prove that an
integral solution of the Subtour LP can be found in polynomial
time. We first introduce the theorem of Grötschel, Lovász and
Schrijver in [11].

Theorem 1. Given a full-dimensional polytope P and a
polynomial-time separation oracle for P , one can find an
optimal extreme point solution to a linear objective function
over P (assuming it is bounded) via the Ellipsoid algorithm
that uses a polynomial number of operations and calls to the
separation oracle.

According to Theorem 1, we only need to find a way
to check if x satisfies the Subtour LP. Related works [12]
have proven that there is a Min-Cut based polynomial time
separation oracle which finds an S with minimum |S| − 1 +
x(E(V ))− x(E(S)). If it is less than |V | − 1, x is not in the
polytope, and vice verse.

Then we have the following lemma.

Lemma 1. An extreme point solution to the Subtour LP is
integral.

To prove Lemma 1, we first prove that

xe ≤ 1, ∀e ∈ E. (6)

Assume that u and v are two endpoints of e. Set S to be {u, v}.
According to Equation 3, we can get that x(E(S)) ≤ |S| − 1
and xe ≤ 1.

Next we introduce the laminar family and intersecting. Let
F be the family of tight constraints in Equation 3 and 4:

F = {S ⊆ V | x (E (S)) = |S| − 1} . (7)

Call two sets X,Y ∈ F intersecting if X ∩ Y , X \ Y and
Y \X are nonempty. A family of sets is laminar if no two sets
are intersecting. Let L ⊆ F be the maximal laminar family.
As there is no intersecting, sets in L are linear independent.
According to the Rank Lemma [12], the number of linear
independent tight constraints equals to non-zero variables. In
this case, we have that:

|E∗| = |L|, (8)

where E∗ = {e | xe > 0}.
Lemma 2. A laminar family L over the ground set V without
singletons (subsets with only one element make no contribution
in Equation 3) has at most |V | − 1 distinct member.

Proof: We prove this lemma by induction on the size of
the |V |. If |V | = 2, it is quite clear that |L| ≤ 1. Let the
claim be true for all laminar families over ground sets of size
strictly smaller than n. Let |V | = n and S be a maximal set
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in L which is not equal to V . According to the definition of
laminar family, each set in L, except V , is either contained by
S, or is not intersected with S. The number of sets contained
by S (including S) is at most |S|−1, by induction hypothesis.
The sets in L, which are not intersected with S form a laminar
family on the ground set V \ S, which has a size at most
|V | − |S| − 1 by induction hypothesis. Along with V , the
laminar family L has at most |S|−1+|V |−|S|−1+1 = |V |−1
sets.

According to Equation 6 and Equation 4, we have that
|E∗| ≥ |V | − 1. We can also prove that |E∗| ≤ |V | − 1 by
Equation 8 and Lemma 2. Then we have |E∗| = |V | − 1 and
Lemma 1 is proved.

B. Problem Definition

Based on the aforementioned model, we give the definition
of the Maximizing Reliability of Lifetime Constrained data
aggregation tree (MRLC) problem.

Problem 1 (MRLC Problem). Given a network topology G =
(V,E), the packet reception ratio of all possible links: E → R,
initial energy of all sensor nodes: V → R and a threshold
of the lifetime LC, for any data aggregation tree T and its
lifetime L(T ), we want to maximize Q(T ) while L(T ) ≥ LC.

However, it is hard to directly express Q(T ) in a graph. We
first introduce a notion, edge cost, in order to maximize the
reliability of sensor networks. For any wireless link e, the cost
is defined as the logarithm of ETX. ETX is a high throughput
metric for wireless networks proposed by Couto et al. in [10].
Let ETX(e) be the ETX of link e, which is the expected total
number of packet transmissions (without ACK).

ce = logETX(e) = − log qe. (9)

The cost of a data aggregation tree is the sum of all edges’
cost, which is:

C(T ) =
∑

e∈T
ce. (10)

Lemma 3. The aggregation tree with maximum reliability has
the minimum cost defined in Equation 10.

Proof: By Equation 9 and 10, we have that:

C(T ) =
∑

e∈T
logETX(e),

= − log
∏

e∈T
qe,

= − logQ(T ).

According to the above equation, we can prove the lemma.

Problem 2. Given a network topology, the cost of each link,
the initial energy of all sensor nodes, and a lifetime threshold
of the lifetime LC, for any data aggregation tree T, we want
to minimize C(T ) while L(T ) ≥ LC.

According to Lemma 3, Problem 2 is essentially equivalent
to Problem 1.

Algorithm 1 Iterative Relaxation Algorithm

Input:
The network topology G(V,E);
The packet reception ratio of each edge qe, e ∈ E;
Initial energy of every node I(v), v ∈ V ;
The threshold of lifetime B.

Output:
The spanning tree T .

1: W ← V .
2: Imin = minvi∈V I(vi), ∀vi ∈W .
3: L′ ← IminLC

Imin−2RxLC .

4: while W �= ∅ do
5: Find an extreme point solution x of LP (G,L′,W ).
6: Remove every edge e with xe = 0 from G.
7: Let E∗ be the support of x.
8: If these is a vertex vi ∈ W with E∗(L(vi)) ≥ LC,

update W ←W \ {vi}.
9: end while

10: return T = (V,E∗).

C. Problem Formulation

With lifetime constraint added to the Subtour LP, the
MRLC problem is formulated as follows:

min
∑

e∈E
cexe (11)

s.t. xe ≥ 0, ∀e ∈ E (12)

x(E(S)) ≤ |S| − 1, ∀S ⊆ V (13)

x(E(V )) = |V | − 1, (14)

x(L(vi)) ≥ L′, ∀vi ∈W. (15)

The parameter G is the network topology, L′ is a given
constraint for lifetime and W is the set of nodes whose lifetime
is constrained by L′. The variable xe is used to indicate that
whether e is included in the data aggregation tree and ce is
the cost of edge e. Equation 12, 13 and 14 guarantee that
the output is a spanning tree. Equation 15 promises that every
node’s lifetime is no less than L′. The objective function is to
minimize the total cost, which equals to maximize reliability,
according to Lemma 3.

As we can see, an integral solution of LP (G,L′,W ) is
the optimal solution to our problem if L′ = LC and W = V .
However, integer programming is NP-hard. In the following
sections, we propose a centralized algorithm by iteratively
relaxing the linear program and get a sub-optimal solution.

V. CENTRALIZED ALGORITHM

In this section, we present our Iterative Relaxation Al-
gorithm (IRA), followed by the correctness and performance
analysis.

A. Iterative Algorithm

The proposed algorithm is shown in Algorithm 1. Let
Imin be the minimum initial energy among all nodes. L′ is
the lifetime constraint used in the LP (G,L′,W ), which is a
little larger than LC. If there is a data aggregation tree with
lifetime bounded by L′, IRA returns a data aggregation tree
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whose lifetime is bounded by LC and the total cost is at most
OPT (L′), where OPT (L′) is the minimum spanning tree with
lifetime constrained by L′. In [14], Fürer and Raghavachari
proved that it is possible to find a spanning tree with maximum
degree at most k+1 if there is a spanning tree with maximum
degree at most k. In this case, we can say that either IRA:

• shows that there is no data aggregation tree with
lifetime bounded by LC,

• or finds a data aggregation tree with lifetime bounded
by LC and total cost at most OPT (L′).

B. Correctness and Performance Analysis

In this subsection, we prove the correctness of IRA, which
means the algorithm can always find a node in W whose
lifetime constraint can be removed in Line 8 of Algorithm 1.
Once all lifetime constraints are removed, the problem is trans-
formed to a minimum spanning tree problem. With Lemma 1,
we can prove that an extreme point solution to LP (G,L′,W )
is integral.

Assume that x is an extreme point solution to
LP (G,L′,W ) and E∗ is the support of x, which is:

E∗ = {e | xe > 0} . (16)

Let F be the family of tight constraints in Equation 13 and
14:

F = {S ⊆ V | x (E (S)) = |S| − 1} . (17)

According to the Rank Lemma [12], we have the following
characterization:

Lemma 4. Let x be an extreme point solution to LP (G,L′,W )
and E∗ is the support of x. There exists a set T ∈ W and a
laminar family L such that

• x(L(v)) = L′ for each v ∈ T and x(E(S)) = |S|− 1
for each S ∈ L.

• {E(S) | S ∈ L}∪ {δ(v) | v ∈ T} are linear indepen-
dent, where δ(v) is the set of edges connected to v.

• |L|+ |T | = |E| .
Theorem 2. There exists a node v ∈ W with x (L(v)) ≥ L′
if W �= ∅.

Proof: First of all, we observe that if T = ∅,
LP (G,L′,W ) can be seen as the Subtour LP. Hence, the
problem is a simple minimum spanning tree problem and an
extreme point of the linear program must be integral.

On the other hand, if T �= ∅, suppose for the sake of
contradiction that

E∗(L(v)) > LC, ∀v ∈W. (18)

We give one token for each edge in E∗ and the sum of all
tokens equals to |L| + |W | by Lemma 4. We redistribute the
tokens by the following two rules. Each edge e ∈ E∗ gives:

• xe fractional token to the smallest set in L containing
both endpoints of e,

• and (1− xe) /2 fractional token to each of its end-
points for the lifetime constraints.

According to the definition of the laminar family, every tight
set constraint in L suffices to obtain one token in the first rule
of redistribution. Thus the sum of tokens assigned to sets in the
laminar is |L|. Let v ∈ T be a node with a lifetime constraint.
v receives (1− xe)/2 token for each edge incident at v, for a
total token of value:

∑

e∈δ(v)

1− xe

2
>

E∗(δ(v))− x(δ(v))

2
. (19)

As E∗(L(v)) > LC and x(L(v)) ≥ L′, we have that:

E∗(δ(v))− x(δ(v))

2
=

I(v)

Imin
> 1, (20)

where Equation 19 holds since x(L(v)) = L′ and Equation 20
holds by E∗(L(v)) > LC. Every node in T gets more than 1
tokens and the sum of the second redistribution is more than
|T |.

As we can see above, tokens are more than |L|+|T |, which
gives us the contradiction.

Next we analyse the performance of our scheme. First of
all, for any iterative step, let C1 be the optimal solution to
LP (G,L′,W ), let C2 be the optimal solution after removing
edges with xe = 0. As we only remove edges with xe = 0, the
optimal solution should be the same. So we have C1 = C2.
Let C3 be the optimal solution after removing some lifetime
constraints. The solution should be the same or better because
there are less constraints in the linear program. We have that

C3 ≤ C2 = C1. (21)

According to the above inequation, the total cost of the
aggregation tree would never get worse in each iteration step.
Let C(IRA) be the final solution of IRA and we have that:

C(IRA) ≤ OPT (L′). (22)

VI. DISTRIBUTED PROTOCOL

In a distributed system, the link quality might change as
time goes and the environment changes. It is inefficient to
recall the centralized algorithm every time. In this section,
we propose the distributed updating schemes for maintaining
a sub-optimal aggregation tree. The updating schemes are
activated under two circumstances. One is that a high qual-
ity wireless link in the data aggregation tree suddenly gets
unreliable. The other is an unreliable link which is not in the
data aggregation tree gets better. For each case, we propose a
distributed updating scheme by message passing.

A. Prüfer Code

Before introducing the distributed protocol, we introduce
the Prüfer code first, as it is very efficient for any node
changing its parent when the spanning tree is presented by
the Prüfer code. The Prüfer code, which is also called Prüfer
sequence or Prüfer number, is a unique code associated with
a labeled spanning tree. The Prüfer code needs only needs
n− 2 integers to present a labeled spanning tree with n nodes
and both the encoding and decoding algorithms have low time
complexity. Traditional Prüfer code is used to unrooted tree.
We extend the Prüfer code to adapt the data aggregation tree,
in which the root is the sink node and every non-sink node is
aware of its parent.
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Algorithm 2 Encoding

Input:
The labeled tree T where the label of a node is its ID.

Output:
Prüfer code P for T

1: P = ().
2: T ′ = T .
3: for i = 1 to n− 2 do
4: Let u be the leaf with the largest label in T ′.
5: There must exist a node v that (u, v) ∈ T ′.
6: Remove u and (u, v) from T ′
7: Append v to P (pi = v).
8: end for
9: return P = (p1, p2, · · · , pn−2)

Algorithm 3 Decoding

Input:
Prüfer code P = (p1, p2, ..., pn−2)

Output:
Decoded code D = (d1, d2, · · · , dn).

1: D = ().
2: P̄ = P .
3: for i = 1 to n− 2 do
4: Let u be the node with the largest label which is not in

D
⋃

P̄ .
5: Append u to D (di = u).
6: Remove pi from P̄ .
7: end for
8: Append pn−2 to D (dn−1 = pn−2).
9: Append 0 to D (dn = 0).

10: return D = (d1, d2, · · · , dn).

1) Encoding: The encoding algorithm is shown in Algo-
rithm 2. In each round, we find the leaf with the largest ID,
add its parent into the Prüfer sequence and remove the leaf
node from the tree. The algorithm goes until only 2 nodes
remain. Figure 5(a) is an example of encoding. The tree has
5 leaf nodes, labeled as {1, 3, 5, 6, 7} and 7 is the largest
one. We remove 7 from the tree, and append 0 (7’s parent)
to P . The second removed node is 6 and 2 is appended to
P . After removing 6, 2 is a leaf node and added to the leaf
node set. We repeat these steps for n− 2 times until there are
only 2 nodes and 1 edge left in the tree. We get the Prüfer
code P = (0, 2, 8, 4, 4, 0, 8) by removing (6, 3, 2, 4, 7, 5, 1),
respectively. With proper data structure, Algorithm 2 has a
time complexity of O(n lg n).

2) Decoding: For any node in the data aggregation tree,
by the time it received the Prüfer code, it can decode P by
Algorithm 3. In the decoding algorithm, we find the children
of nodes in the Prüfer code one by one. For all candidates, we
pick the one with the largest ID. We use the encoded Prüfer
code P = (0, 2, 8, 4, 4, 0, 8) above as an example. First we set
P̄ = P and D = (). Let u be the node with the largest label
and not in D

⋃
P̄ , which is 7. Append 7 to D and remove 0

from P̄ . Repeat these steps until there is no node in P̄ and D
is now D = (7, 6, 5, 3, 2, 4, 1). We than append 8, which is the
last remove node from P̄ and 0, which is the sink node with the
smallest label, to D and we get D = (7, 6, 5, 3, 2, 4, 1, 8, 0).
As we can see in Figure 5(a), the edge set of the spanning
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Fig. 5. An example of Prüfer code. The Prüfer code of Figure 5(a) is P =
(0, 2, 8, 4, 4, 0, 8) and the decode sequence is D = (7, 6, 5, 3, 2, 4, 1, 8, 0).
The Prüfer code P has a length of n− 2 and the decode sequence D has a
length of n, where n is the number of nodes. Both the coding and decoding
algorithms have the time complexity of O(n lgn). Figure 5(b) is an example
of parent changing by the Prüfer code. 4 wants to change its parent from 0
to 7. After decoding the Prüfer code, 4 first finds its connected component
without (4, 0) and it is (6, 3, 2, 4).

tree is {(d1, p1), (d2, p2), · · · , (dn−2, pn−2)}
⋃{(dn−1, dn)}

precisely. Algorithm 3 has also a time complexity of O(n lg n).

According to Equation 1, the lifetime of a node is only
related to the number of its children in the tree. In Prüfer code
P = (0, 2, 8, 4, 4, 0, 8), 0, 4 and 8 all appear twice and 2 only
appears once. In Figure 5(a), both 4 and 8 has two children
in the tree, 2 has one children. The number of children is the
same as the number appeared in the Prüfer code. The only
exception is sink node 0, which has 3 children but 2. Besides
the sink node, we have the following observation:

ChT (v) = NP (v), ∀v �= v0, (23)

where NP (v) is the number of v appearing in Prüfer code P .
To the sink node, as we can see in Algorithm 2, one edge
remains and this edge is always adjacent to the sink node
because the sink node has the smallest label. This makes the
sink has one more children than it appearing in the Prüfer
code.

B. Distributed Protocol

There are two cases an update might happen. One is that
a selected link in the tree gets unreliable and the child wants
to change its parent. The other is that an unreliable link not in
the tree gets better and can be added into the aggregation tree.
Once an aggregation tree is constructed, the sink calculates the
Prüfer code and broadcasts to all sensors.

1) Link Getting Worse: When a link in the tree gets worse,
the child will select a new parent. It decodes the Prüfer code
first, removes the link from the tree, find its new parent which
connects two separated components with the highest link qual-
ity. Take Figure 5(b) as an example. 4 finds that the link (4, 0)
gets very unstable and has a high packet loss rate. Assume that
4 has the Prüfer code P = (0, 2, 8, 4, 4, 0, 8) and it gets the
sequence D = (7, 6, 5, 3, 2, 4, 1, 8, 0) by decoding. If (4, 0)
was removed, the graph would be two connect components.
By P and D, we can find that 2 and 3 are children of 4 and
6 is the child of 2. So 4 is in the component of (6, 3, 2, 4)
and the new parent of 4 should be in V \ {6, 3, 2, 4}. Assume
that (4, 7) has better link quality and 7’s lifetime in under
constraint after 4 connected. Let P ′ and D′ be the updated
sequences. We first move (6, 3, 2, 4) to the top of D′, which
gives D′ = (6, 3, 2, 4, 7, 5, 1, 8, 0). We then move parents of
(6, 3, 2) to the top of P ′, followed 7 and other nodes. The
updated P ′ is P ′ = (2, 4, 4, 7, 0, 8, 8). As every node has the
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Algorithm 4 Iterative Local Updating Algorithm

Input:
A Link (u, v);
Prüfer code P = (p1, p2, ..., pn−2).

Output:
An Updated Aggregation Tree.

1: Decode P and get D.
2: Let pu and pv are parents of u and v, respectively.
3: Without loss of generality, we assume that the cost of

(v, pv) is smaller than (u, pu).
4: if u can have more children under the lifetime constraint

& the cost (v, pv) is larger than (v, u) then
5: v changes its parent from pv to u.
6: Recall this algorithm by giving (v, pv) and updated

Prüfer code.
7: else if v can have more children under the lifetime

constraint & the cost (u, pu) is larger than (v, u) then
8: u changes its parent from pu to v.
9: Recall this algorithm by giving (u, pu) and updated

Prüfer code.
10: end if
11: return The updated tree.

same information, 4 only needs to broadcast a Parent-Changing
information to other nodes and every node could get the same
P ′ and D′. For every sensor node, it only needs to maintain
P ′ and D′. The time complexity of parent changing is only
O(n) for each sensor.

2) Link Getting Better: Adding an edge in a tree is much
more involved than the first case. There exists a loop in the
graph after the edge is added. Usually a depth-first-search
algorithm is used to find the loop in a graph. The time
complexity of finding the loop in a graph is O(n) and it
can hardly be modified to a distributed system. Given the
Prüfer code, it might be easier to find the loop. However,
cutting a loop might change the child-parent relationship. For
this problem, we present the ILU (Iterative Local Updating)
algorithm. The algorithm is shown in Algorithm 4. Assume
that the link between u and v is getting better and it is more
reliable than the link between u and its parent. We first remove
the link between u and its parent. We then let v be u’s new
parent by adding the link (u, v). At last, we recall the algorithm
by inputting the link between u and its last parent.

An example of this algorithm is shown in Figure 5(c) while
a link between 1 and 3 is getting better. Assume that (3, 4) has
lower cost than (1, 8) and 3 can have more children under the
lifetime constraint. The ILU algorithm solves the problem in
two steps. First 1 changes its parent from 8 to 3 by using the
Link Getting Worse scheme. Then we recall the ILU algorithm
by regarding (8, 1) as a link getting better. The ILU algorithm
only needs information among two neighbors and it can search
the loop in a distributed way iteratively.

VII. PERFORMANCE EVALUATION

We evaluate the performance of our approaches with trace
data from a device free localization system. The system
comprises a wireless sensor network consisting 16 adjustable
tripods with a height of 0.9m, along the perimeter of a
3.6m × 3.6m square. The distance between two adjacent

Fig. 6. The Device Free Localization System
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Fig. 7. Performance in the DFL system

sensors is 0.9m. The sensors are labeled from 0 to 15 and
the node 0 is the sink node. All sensors are powered by two
AA batteries with initial energy of 3000J . At the beginning,
every sensor node broadcasts a thousand rounds of beacons to
estimate the link quality. The energy consumption for sending
and receiving a packet are 1.6−4J and 1.2−4J , respectively.
The network lifetime is defined as the total number of data
aggregation rounds until the first node depletes all its energy.
The system is shown in Figure 6.

We compare our algorithm IRA with two related works.
One approach is Approximation Algorithm for Maximizing
Lifetime (AAML) proposed in [1]. AAML starts from an
arbitrary tree and iteratively reduce the load on bottleneck
nodes. The bottleneck nodes are likely to deplete their energy
due to high number of children or low remaining energy. Wu et
al. prove that AAML terminates in polynomial time and is near
optimal. The other solution (MST) is the Prim’s Algorithm for
the Minimum Spanning Tree problem [18]. It initializes a tree
with the root node. Then it grows the tree by one edge: of
the edges that connect the tree to vertices not yet in the tree,
find the min-cost edge and transfer it to the tree. Repeat this
step until all nodes are added into the tree. Since the MRLC
problem is NP-complete and there is no efficient algorithm
returning the optimal solution. The optimal solution of MRLC
should be at least the cost of MST. We use MST as the lower
bound of optimal solutions to our problem. In some cases,
we only compare the cost of different solutions as cost is the
metric used in both IRA and MST. According to Lemma 3,
low cost equals to high reliability.

A. Performance in the DFL System

We run our algorithm with trace data from the device
free localization system, as well as AAML and MST. We
compare the total cost and the reliability of data aggregation
trees given by different approaches. As AAML does not take
link quality under consideration, we ignore unreliable links
with the packet reception ratio lower than 0.95. The result
is shown in Figure 7. The blue bars are the total cost and the
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green bars are the reliability of different data aggregation trees.
AAML has a total cost of 378 and the reliability is about 0.77.
The aggregation tree generated by MST has the minimum cost
among all spanning trees in the network, which is 55 and the
reliability is about 0.963. Moreover, we use different lifetime
constraints in our approaches, which are LAAML, 1.5LAAML,
2LAAML and 2.5LAAML, and LAAML is the near optimal
lifetime given by AAML. When LC1 = LAAML, the total
cost of IRA is 68 and the reliability is 0.954. Without loss of
lifetime performance, the total cost is only 18% of which in
AAML and the reliability has an improvement of 24%. The
performances of IRA under some other lifetime constraints are
also provided. When LC2 = 1.5LAAML, the total cost is 58.
When LC3 = 2LAAML, the cost of IRA equals to that of
MST, which is the minimum cost of all possible aggregation
trees in the network. We can conclude that our solution has
much better cost and reliability performance than AAML even
under the same lifetime constraint and achieve the optimal
reliability by a little violation of lifetime.

B. Performance in Random Graphs

We run our approaches on random graphs with different
network parameters. Each random graph has 16 nodes and
every possible edge occurs independently with probability
70%. The link quality of each edge is randomly selected in
(0.95, 1). We use the lifetime of aggregation trees by AAML
as the lifetime constraint in our scheme. Here results of MST
are also provided as a low bound.

1) Same Initial Energy: In this set of simulations, every
sensor node has the same initial energy 3000J . The results
are shown in Figure 8, where three curves present the cost of
AAML, IRA and MST, respectively. The solid curve shows
the cost of AAML in [1]. The curve starts at about 400 and
the maximum cost is over 800. The reliability of AAML is
between 57% and 75%. The blue curve is the cost of IRA,
which starts at about 75 and ends at a little above 225. As
we can see, with the same lifetime performance, the total cost
of IRA is only about 30% of which given by AAML. The
cost of IRA is between 75 and 250, which indicates that the
reliability of IRA trees is between 85% and 95%. The black
curve presents the cost of MST and it is quite close to the blue
curve. As we can see, in most cases, the cost of IRA is only
about 20 more than MST, which has no lifetime constraint and

is the lower bound of optimal solution to the MRLC problem.
We can conclude that our solution is more reliable than AAML
and the cost is near optimal.

2) Different Initial Energy: We analyze the performance of
IRA under different initial energy in this part. As the energy
consumption is different among sensor nodes, it is quite normal
that sensor nodes have different energy after the system is
running for a while. In this set of simulations, a sensor node
has the initial energy randomly selected in [1500J, 5000J ]. The
results are shown in Figure 10. The red curve is for AAML,
the blue curve is for IRA and the black one is for MST. As
we can see, the IRA and MST curves are more closer than
in Figure 9 and AAML also have a better performance. It
is mainly because that the network is highly connected (about
70% pairs of nodes are connected). When nodes have different
initial energy, the lifetime is mainly based on nodes with
less initial energy and they usually are used as leaves in the
aggregation trees. Nodes with more initial energy have more
choices and thus have a better performance. However, unlike
IRA and MST, AAML’s performance is quite unstable and the
cost is very high in about 30% of cases. In most situations,
the cost of AAML is at least 50% higher than that of IRA. We
conclude that IRA has a better performance than AAML for
different initial energy situations and the cost of IRA is close
to the optimal solution.

3) Different Link Probability: In the above simulations, the
network is highly connected with a link probability of 70%.
In this set of simulations, we give more results with different
link probabilities. For each link connection probability, we
construct 100 random graphs and the results are shown in
Figure 10. The red curve presents the average cost of AAML,
the blue curve presents the average of IRA and the black curve
is MST. As we can see, the red curve increases as the link
probability increases while the IRA and MST almost stays
the same under different link connection probabilities. That is
mainly because the AAML has more choices as more links
are in the network while IRA and MST only cares more about
low cost links, other than the number of links.

C. Performance of Distributed Protocol

In this section, we evaluate the performance of the dis-
tributed protocol. We use the DFL system as the initial state of
the simulation. An data aggregation tree has been constructed
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and every node is aware of the Prüfer code of the aggregation.
We simulate the distributed protocol by 100 rounds of update.
As ILU is based on iteratively parent-changing, we randomly
select a tree edge make it unreliable (cost of select edge
increases 10−3 ) in each round. We compare the distributed
protocol with the centralized solution IRA.

Figure 11 shows the total cost by two curves both starting
from 58. The red curve shows the cost of aggregation trees
given by IRA and the blue curve shows the cost of distributed
updates. We can see from the figure that IRA has a better
performance. However IRA is very complicated and cannot
be implemented in a distributed system. The distributed pro-
tocol only needs local information and has quite competitive
performance. The cost difference of the centralized algorithm
and the distributed protocol is only about 25. Figure 12
shows the comparison of reliability between centralized and
distributed approaches. Both approaches have a good reliability
performance in the beginning and the reliability goes down as
links get unreliable. Similar to the cost performance, reliability
of the distributed protocol is quite close to IRA and the largest
distinction is only about 0.02. We can conclude that both cost
and reliability performances of the distributed protocol are
comparable to the centralized approach.

We also analyze the message complexity of the distributed
protocol. In the distributed updating protocol, the update
information should be broadcasted to all sensors through non-
leaf nodes. The results of message complexity analysis are
shown in Figure 13. The blue curve shows the number of
total messages, which increases when more and more updates
happen. The red curve shows the average number of messages
for an update. The number of messages transmitted varies a lot
at the beginning and becomes stable after 40 updates. For each
update, it only needs less than 10 messages to broadcast the
update information. We can see that the message complexity
of the distributed protocol is quite low.

VIII. CONCLUSION

In this paper, we have studied the Maximizing Reliability of
Lifetime Constrained data aggregation tree problem in wireless
sensor networks. We have formulated the MRLC problem with
a linear program and presented a centralized algorithm IRA.
Moreover, we have presented a distributed updating protocol.
We have carried out extensive simulations and some of which
is based on trace data from a device free localization system.
The results have shown that our IRA outperforms AAML by
24% in term of reliability.
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