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Abstract—With the popularity of mobile wireless devices equipped with various kinds of sensing abilities, a new service paradigm
named participatory sensing has emerged to provide users with brand new life experience. However, the wide application of
participatory sensing has its own challenges, among which privacy and multimedia data quality preservations are two critical problems.
Unfortunately, none of the existing work has fully solved the problem of privacy and quality preserving participatory sensing with
multimedia data. In this paper, we propose SLICER, which is the first k-anonymous privacy preserving scheme for participatory sensing
with multimedia data. SLICER integrates a data coding technique and message transfer strategies, to achieve strong protection of
participants’ privacy, while maintaining high data quality. Specifically, we study two kinds of data transfer strategies, namely transfer
on meet up (TMU) and minimal cost transfer (MCT). For MCT, we propose two different but complimentary algorithms, including an
approximation algorithm and a heuristic algorithm, subject to different strengths of the requirement. Furthermore, we have implemented
SLICER and evaluated its performance using publicly released taxi traces. Our evaluation results show that SLICER achieves high data

quality, with low computation and communication overhead.

Index Terms—Participatory Sensing, Privacy Preservation, K-Anonymity, Erasure Coding.

1 INTRODUCTION

The wide application of mobile communication equipments
and the fast advance of sensing technologies have led to
the wide availability of privately-held, low-cost, advanced-
processing, and big-storage mobile wireless devices, that are
equipped with a number of embedded sensors (e.g., mi-
crophone, camera, accelerometer, gyroscope, and GPS). On
one hand, modern wireless communication technologies (e.g.,
2G/3G/4G, Wi-Fi, and Bluetooth) make the communication
between mobile devices and infrastructure, as well as between
mobile devices themselves, convenient and fast. On the other
hand, the mobile devices, especially smart phones, are no
longer a tool only for communication, but “computers” with
multifunction.

Participatory sensing [1] emerged as a new service paradigm
using human-carried mobile devices, such as smart phones, for
distributed data collection, exchange, analysis, and sharing.
With an estimated number of 6.8 billion mobile-cellular sub-
scriptions worldwide [2], participatory sensing may provide
an unprecedented spatial coverage, with very low or even no
deployment cost. Compared with traditional decentralized data
collection methods (e.g., wireless sensor networks), partici-
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patory sensing demonstrates several outstanding advantages,
including larger coverage, lower cost, mobile capability, more
sufficient energy supply, and more flexible interactive capa-
bility. Attracted by the practical and commercial value of
participatory sensing, many participatory sensing applications
have appeared. For instance, GreenGPS [3] provides the most
fuel-efficient routes to drivers; PEIR [4] presents a personal
environmental impact report for every individual; PEPSI [5]
[6] introduces a privacy enhanced infrastructure for participa-
tory sensing system; ARTSense [7] proposes an anonymous
reputation and trust mechanism for participatory sensing; and
Ikarus [8] uses sensor data collected during cross-country
flights via participatory sensing applications to study thermal
effects in the atmosphere, and PoolView [9] gives a privacy
preserving architecture for stream data collection. In addition,
participatory sensing has been widely used in many practical
situations [1], for instance, environment measurement, health
care, traffic monitoring, community service, crowdsourcing,
and so on.

However, the application of participatory sensing has a
number of challenges. One of the major challenges is on
privacy preservation [10]-[17]. Sensing record sent to the
service provider, is usually attached with spatio-temporal tags
indicating the location and time information of the data col-
lected. However, a corrupt service provider may infer private
information of the participants, such as identity, home and
office addresses, traveling paths, as well as participants’ habits
and lifestyles, from the sensing records. In turn, many users
are reluctant to contribute any sensing record if proper privacy
preservation scheme is not applied. Without sufficient number
of participants, participatory sensing applications cannot guar-
antee their quality of services at the expected level. There-
fore, designing privacy preserving schemes for participatory
sensing is highly important. Another major challenge is on
the variety of sensing data. Most of existing applications
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of participatory sensing only collect small pieces of sensing
data (e.g., temperature, velocity, and geographic location).
However, more and more newly emerged applications rely
on collecting information of surrounding environment in the
format of multimedia (e.g., digital image and video) [18],
which result in much higher volume of sensing data. Simply
applying existing privacy preserving schemes to participatory
sensing with multimedia data is not satisfactory, since existing
schemes either induce unacceptable amount of communication
cost, or degrade the utility/quality of the data badly, in case
of multimedia sensing.

In this paper, we present SLICER, which is a coding-
based k-anonymous privacy preserving scheme, working on
application layer, for participatory sensing with multimedia
data. Intuitively, k-anonymity means that the service provider
cannot identify the contributor of each sensing record from a
group of at least k participants. SLICER integrates a data cod-
ing technique and message exchanging strategies, to achieve
strong protection of participants’ privacy, while maintaining
high data quality and inducing low communication and com-
putation overhead.

The contributions of this work are listed as follows:

o We propose SLICER for participatory sensing with multi-
media data, to achieve both k-anonymous privacy preser-
vation and high data quality, with low communication and
computation overhead.

o We design an erasure coding based sensing record coding
scheme to encode each sensing record into a number
of data slices, each of which can be delivered to the
service provider through the other participants or the
record’s generator herself. When a proper data slice
exchanging strategy is applied, the contributor of each
particular sensing record is hidden in a group of at least
k participants.

o« We propose two kinds of strategies for slice transfer.
The first and straightforward strategy is named Transfer
on Meet Up (TMU), which is to transfer a slice upon
meeting another participant. The latter delivers the slice
to the service provider. The second kind contains two
complementary sub-optimal strategies to transfer the s-
lices to a set of participants that might be met within a
required period of time, minimizing the total cost while
guaranteeing that the sensing record can be delivered
to the service provider with guaranteed high probability,
which is named Minimal Cost Transfer (MCT). The cost
difference can be resulted from the wireless communica-
tion fee, available bandwidth, battery power, and so on.

o We have implemented SLICER and evaluated its perfor-
mance using publicly released real traces of taxis [19].
Evaluation results show that SLICER achieves high data
quality, with low computation and communication over-
head.

The rest of this paper is organized as follows. In section 2,
we briefly introduce some technical preliminaries, including
the system model, privacy model, and design objectives. In
section 3, we describe our coding-based privacy preserving
scheme (SLICER), illustrate the basic rationale and detailed
design processes, propose the well designed algorithms of

vice Provi@\ (E
Base Stati%n

Wireless 1

Link (B)

/fyélse Station
&S

S

Mobile Nod:

@ Others

Video

Temperature Location Digital Image

Electromagneti
Signal

Fig. 1.
Sensing.

The Architecture of Cloud-Based Participatory

slices transfer, and give the necessary analysis and proof of
privacy preserving. In section 4, we present the evaluation
results. In section 5, we talk about the related work and
make some comparison with ours. Finally, we conclude our
article and point out our potential directions of future work in
section 6.

2 TECHNICAL PRELIMINARIES

In this section, we present the system model, privacy models,
as well as objectives of our design.

2.1 System Model

We consider a cloud-based participatory sensing and service
framework as shown in Fig. 1, in which there is a service
provider and a number of mobile nodes/participants equipped
with different kinds of sensors.

The service provider aggregates, classifies, analyzes, and
stores sensing records reported from the participants, and
provides query services based on the records. A mobile
node/participant is a user carrying a portable and wireless-
enabled device (e.g., smart phone, tablet, and laptop). In this
paper, we use mobile node and participant interchangeably.
Participants can use their sensing devices to collect various
kinds of environmental information, such as geographical
location, temperature, electromagnetic signal, digital image,
video, and so on. In contrast to most of the existing work,
which focus on short sensor readings, we consider a partici-
patory sensing system that adapts to multimedia information,
such as digital image, audio, and video. We assume that
the participants can directly report sensing records through
pre-existing communication infrastructure, including GSM,
3G/4G, and Wi-Fi, or indirectly report the records with the
help of the other participants.

In this paper, we consider one service provider and a
set N = {ay,aq,...,a,} of participants. Each participant
a; € N would like to contribute her sensing records R; = {<
t1,l1,dy >,< tg,la,do >,...} to the service provider, only
when her privacy is properly protected. The triple < ¢,1,d >
denotes a sensing record including timestamp, location info,
and data info. To facilitate reading, the summary of the
notations appeared in this paper is presented in Table 1.
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2.2 Privacy Model

Although participatory sensing provides a new service paradig-
m, its functionality relies on the contribution of participants.
Existing work [1], [11]-[13], [16], [17], [20]-[22] show that
contributed information may be misused to reveal the partici-
pants’ privacy [23]. Most users are not willing to join partici-
patory sensing applications, unless their sensitive information
is well protected from both service provider and neighboring
participants [12], [24], [25].

In this paper, we consider the problem of privacy preserving
in a semi-honest model, in which the adversary correctly fol-
lows the protocol specification, but attempts to learn additional
information by analyzing the transcript of messages received
during the execution [20], [26]-[31]. We classify the attacks
in the semi-honest model into two categories: external attack
and internal attack. The external attack aims to obtain private
information of participants by overhearing the message passing
through the wireless communication network. Such attack can
be prevented by end-to-end cryptographic schemes. Different
from the external attack, designing a scheme to prevent the
internal attack is much more challenging. The internal attack
may come from two different kinds of entities, including the
service provider and the participants.

o Service provider’s attack: The service provider has full
access to the sensing records reported by the partici-
pants. It might infer considerable amount of sensitive
information about the participants (e.g., home address,
frequently visited places, traveling path, and even the
lifestyle), if a proper privacy-preserving scheme is not
provided. For instance, the sensor readings collected by
a user who drives from home to work might reveal the
participant’s traveling path as well as her home address.
In this work, we focus on protecting users’ location/path
privacy against the service provider, while assuming that
the service provider does not have other background
or correlated information about participants. It is also
important to consider the privacy protection of the content
of multimedia data. However, it is out of the scope
of this work. For interested readers, please refer to the
previous literatures [32] [33] [34] for privacy processing
techniques.

o Participants’ attack: Participants may receive some sens-
ing records, when they serve as relays for other par-
ticipants (e.g., in [35]). Semi-honest participants might
position themselves to some critical locations in order to
collect sensitive information by pretending to be relays. In
this work, we assume that the participants do not collude
with the service provider, and there is no collusion among
different participants.

2.3 Design Objectives

The design of a privacy preserving scheme should prevent
both the external and the internal attacks. Specifically, first, the
design needs to prevent external eavesdroppers from obtaining
any meaningful information. Second, the design needs to
prevent service provider from recognizing the identity of
the participant who contributes a particular sensing record,

Symbol Description

N ={ai,az2,...,an} The participants set

<tl,d> An original sensing record

R; ={<ti,li,d1 >,...}  The sensing records set

m Number of encoded slices from one record
k Minimal number needed to construct record
EC(-) Erasure coding algorithms.

H(,") Cryptographic hash function

Tij Encoded slice
rgj Encrypted slice
ENCRYPT(-,-) Asymmetric encryption function

p(aj) Meeting probability
c(aj) Cost of a; for delivering a slice
P Threshold possibility

Boolean parameter
Asymmetric decryption function
Decoding function

;
DECRY PT(-,-)
EC~1()

TABLE 1
Notations

and to prevent the participants from knowing the content
of the relayed sensing record. Especially, we require the
privacy protection scheme be k-anonymous [36] against the
service provider. Here, k-anonymity is reached when the
service provider can only identify a particular participant that
contributes a sensing record with probability no more than
1/k.

Definition 1 (K-Anonymous Participatory Sensing): A pri-
vacy preserving participatory sensing scheme satisfies k-
anonymity against the service provider, if for any sensing
record reported to the service provider, the service provider
cannot distinguish the generator of the record from a group of
at least k participants.

Besides the objective on privacy preservation, the design
should also satisfy the following requirements:

e The design should maintain high quality of the sensor
readings.

o The design should be tolerant of packet/message loss.

o The design can only induce low computation and com-
munication overhead.

3 CODING-BASED PRIVACY PRESERVING

SCHEME

In this section, we present the design of our coding-based k-
anonymous privacy preserving scheme — SLICER. We first
outline the general idea of SLICER, and then explain the
details of each component. Finally, we analyze the privacy
preservation properties of SLICER.

3.1 Design Rationale

The main idea of SLICER is to hide the generator of each
sensing record among a group of at least k participants,
through which all parts of the sensing record are reported to
the service provider. Thus, the service provider cannot identify
the generator of the original sensing record from at least k
participants. We will illustrate the designing challenges and
our idea in this section.

(1) Sensing Record Coding
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Fig. 2. Work Flow of SLICER

If we simply transfer the (encrypted) sensing record to k
participants, then the communication overhead is k times the
size of the sensing record, which is unacceptable especially
when the sensing record contains multimedia data. Therefore,
we incorporate erasure coding to encode each sensing record
into a number of small slices. Then each of the slices can be
transferred to a participant, and the latter reports the slice to
the service provider. Once the service provider receives enough
number of slices, not necessarily all the slices, it can decode
the original sensing record. The usage of erasure coding has
two advantages. One is to greatly reduce the communication
overhead needed to transfer the sensing record (slices in this
paper) to other participants. The other is to increase the
reliability of the system, when the slices may be lost due to
various reasons.

(2) Transfer Strategy

Since the slices need to be transferred to a set of partici-
pants, carefully selecting the participants to transfer to may
affect the performance of the scheme. The straightforward
strategy is to transfer a slice whenever another participant
is met. However, when the participants in the system have
different capabilities, the straightforward way may not be
the best strategy. In this paper, we consider the case, in
which the participants have different cost to deliver the same
slice. The cost difference can be resulted from the wireless
communication fee, available bandwidth, battery power, and so
on. Through analysis, we also propose two sub-optimal slice
transfer strategies to minimize the total cost for delivering the
slices in section 3.3.2.

Fig. 2 shows the general work flow of our SLICER. Specif-
ically, a sensing record contains the sensor reading and spatio-
temporal information. Then, SLICER encodes the sensing
record using an erasure coding technique(e.g., Tornado [37]),
encrypts the encoded slices, and attaches an unique tag, to
generate encrypted slices. Next, SLICER selectively transfers
the encrypted slices to the target participants, following one
of its transfer strategies. The slices are delivered to the
service provider through different participants. Finally, the
service provider decrypts the slice and reconstructs the original
sensing record, when enough number of slices are received.

In the following subsections, we present the design details of
SLICER’s major components, including Coding, Transferring,
and Reconstructing.

3.2 Coding

Algorithm 1 Sensing Record Coding Algorithm
Input: A sensing record < ¢,1,d > from participant a; € N,

and coding rate k/m.
Output: Encrypted slices {r/;|1 <j < m}.
{T¢j|1 <7< m} — EO(< t,l,d >);
nonce < random();
tag = H(i,nonce);
for all j =1 to m do

ri; = ENCRY PT(ri||tag, KEYpub);

end for
return {r;;|1 <j <m};

NN R

Algorithm 1 shows the pseudo-code of our sensing record
coding algorithm. Given a sensing record < t,l,d > from
participant a; € N, we encode it into a number of slices, each
of which will be delivered to the service provider through
different participants. We encode the record < ¢,1,d > using
erasure coding (e.g., Reed-Solomon [38] and Tornado [37]).
Basically, erasure coding breaks a sensing record into frag-
ments, expands and encodes with redundant data pieces into
m slices. The original record can be reconstructed from any &
out of m encoded slices, where m > k. The ratio k/m is the
coding rate. Here, the combined size of any £ slices is approx-
imately equal to the size of the original record, according to
Tornado Codes [37]. Intuitively, if the service provider decodes
the record from k slices reported by k different participants,
the real generator of the record is hidden in a group of k par-
ticipants, which provides a privacy guarantee of k-anonymity.
Furthermore, SLICER inherits the property of loss tolerance
from erasure coding to achieve high record reconstruction ratio
with relatively lower communication overhead. We denote the
encoded slices by {r;;|1 < j < m}:

{rijll <j<m}=FEC(<tld>),

where EC(-) is one of the erasure coding algorithms.

Since the service provider may receive a large number of
encoded slices originating from various participants’ sensing
records, we have to tag the slices to clearly indicate which
slices belong to the same record. Since directly tagging a slice
with its generator’s ID and a sequence number will reveal
the identity privacy of the generator to the service provider,
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we adopt a cryptographic hash function (e.g., SHA-1 [39]) to
create the tag:

tag = H(i,nonce),

where H (-, -) is a cryptographic hash function and nonce is an
arbitrary number. Since the pseudo-random number generator
usually takes discrete time as the seed in practice, if multiple
participants happen to initialize their pseudo-random number
generators at the same time, then the same sequences of
numbers will be generated as the nonce, resulting in encoded
slices originating from different sensing records having the
same tag. This will cause failure in the process of sensing
record reconstruction. Therefore, we append the participant’s
ID to the randomly generated nonce, in order to eliminate the
harm of nonce collision. Noting that the use of IDs in the
form of plaintext reveals the participants privacy, we hash the
combination of the generators ID and the nonce.

To prevent the content of encoded slices being revealed to
external attacker and neighboring participants, we encrypt the
encoded slices and the tag using the public key K EY,,; of
the service provider and get the encrypted slices:

ri; = ENCRY PT(rij|[tag, KEYpu),1 < j < m,

where ENCRY PT(-,-) is an asymmetric encryption func-
tion, and || is string concatenation operation.

3.3 Transferring

To prevent the service provider from recognizing participants’
identities with the collected sensing records, not all slices of a
sensing record can be directly sent to the service provider by
the generator. To guarantee k-anonymity, at least k — 1 slices
need to be delivered by participants other than the generator.
We note that although all the slices can be transferred to and
delivered by participants other than the generator, SLICER
requires the generator to report (at least) one slice to the
service provider by herself, in order to guarantee the integrity
of the sensing record.

In this paper, we consider two kinds of slice transferring
strategies: transfer on meet up (TMU) and minimal cost
transfer (MCT).

3.3.1 Transfer on Meet Up (TMU)

This is the straightforward way to spread the encrypted slices.
One slice of each sensing record is transferred, when the
generator meets another participant. Later, all the participants,
including the generator, report the slices(and received slices)
to the service provider.

Fig. 3 shows a toy example of applying the strategy of TMU.
Assume that there is a participant A who is going to office
from her home. She meets other participants B, C, and D in
sequence on her way to the office. The upper part of Fig. 3
shows the path that A travels, and the lower part shows the
slices each of the users hold with advance of time. Assume
that A, B, C, and D initially have 3, 0, 2 and 3 slices of
their own, respectively, and meetings occurs at 77, 75, and
T3, at where a participant transfers one slice to the one met.
For example, at T3, A transfers one slice to B. After that, A
has 2 slices left, and B holds 1 slice from A. Finally, after
three meetings, A has 1 own slice and 2 slices from C' and
D, B has 1 slice from A, C has 1 own slices and 1 from A,
and D has 2 own slices.

3.3.2 Minimal Cost Transfer (MCT)

In this section, we consider the case that different participants
consume different costs to deliver a slice. The cost difference
can be resulted from the wireless communication fee, available
bandwidth, battery power, and so on. Intuitively, high cost
will reduce people’s enthusiasm to participate in the sensing
activities. Here, we present our algorithms for the problem of
Minimal Cost Transfer (MCT).

Each sensing record has an expiration time, before which the
record has to be delivered to the service provider. We assume
that each participant a; € N knows a set N(a;) C N of par-
ticipants that might be met before the expiration of the sensing
record. For each participant a; € N(a;), let p(a;) and c¢(a;) be
the meeting probability before the expiration time and the cost
of the participant a; for delivering a slice. As we mentioned
before, the cost can be resulted from the wireless commu-
nication fee, available bandwidth, battery power, and so on.
We assume that there is a mobility prediction module ( [40]—
[42]) to provide the prediction of N (a;), (p(a;))a,en(a;)> and
(c(@j))a;eN(a;)> based on historical event logs.

The objective of MCT is to pick a subset of participants
F C N(a;) as forwarders of the slices to minimize the
cost for delivering the slices, satisfying one of the following
requirements.

o Requirement 1: It is expected to meet at least m — 1
participants from the forwarder set F', namely MCT-EXP
problem;

« Requirement 2: The (expected) probability of meeting at
least m—1 participants from F'is at least P (0 < P < 1),
namely MCT-PRO problem.

Next, we will present our approaches to solve the above two
problems, MCT-EXP problem and MCT-PRO problem.

Solution to MCT-EXP Problem

We first consider the MCT-EXP problem (i.e., MCT
problem with requirement 1), which can be formulated as a
binary program with an objective of minimizing the expected
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delivery cost of the slices, as follows:

Objective:
Minimize Z (claj)p(az)z;)
a; €N (a;)
Subject to:
> (plag)ay) >m—1, M
ajeN(ai)
z; € (0,1}, Va;€N(a) (2

Here, constraint (1) guarantees that the participant a; is ex-
pected to meet at least other m — 1 participants in the selected
forwarder set F' = {a; € N(a;)lx; = 1}. Constraint (2)
indicates the possible values of x;. If a; is selected to be
a candidate for delivering a slice, then x; = 1; otherwise,
$j =0.

We note that the above formulation of MCT-EXP Problem
can be reduced to the 0-1 Knapsack Problem [43] with
an objective of maximizing the expected cost of the
complimentary of the forwarder set. The re-formulated
equation can be written as follows:

Objective:
Mazimize Z (c(aj)p(az)(1 = x))
a_jEN(a,;)
Subject to:
> )i —a)) < Y play)—(m—1), 3)
a;EN(a;) a; €N (a;)
WS {0, 1}, Vaj S N(az) “4)

In the reduced 0-1 Knapsack Problem, p(a;) and c(a;)p(a;)
are the weight and value of the jth item, respectively, while
the capacity of the knapsack is ZajeN(ai)p(aj) —(m—-1).
Here, constraint (3) guarantees that the sum of the weights
must be less than the knapsack’s capacity. Constraint (4) is
exactly the same as constraint (2). Consequently, we can have a
Fully Polynomial Time Approximation Scheme (FPTAS) [43],
which runs in polynomial time and is correct within 1 — € per-
cent of the optimal solution, to solve the MCT-EXP problem.
Due to limitations of space, we refer the reader to [43] for the
detailed solution.

Solution to MCT-PRO Problem

Although we can have an FPTAS solution to the MCT-EXP
problem, it is still not satisfactory, because the probability of
meeting m — 1 participants cannot be guaranteed at a high
level. Therefore, we further consider the MCT-PRO problem,
which strictly require that the probability of meeting at least
m — 1 participants from the forwarder set F' is at least at a
preset level P. Again, we formulate the MCT-PRO problem
as a binary program, which aims to minimize the average
delivery cost of the m — 1 slices, as follows:

Objective: Minimize

(claj)z;y;)
g

ag€N(ay;)

R >
(zgyg)=m—1 \a;EN(ai)

I1 p(%‘)”)

a; EN(a;)

> I1

(Zgyg)=m—1a;€N (a;)

p(a;)¥s
g

ag€N(ay)
Subject to:

EageN(a,i) Tg

2. 2. 11

(paz)e

t=m—1 y“:ZageN(ai)(xgyg):t ajEN(a;)
(1= pla) ™) =P, (5)
T; € {0, 1}, Va]‘ S N(al) (6)

Here, the numerator of objective formula calculates the
total “weighted” cost of all possible combinations of m — 1
participants from a selected set of forwarders F' = {a; €
N(a;)|z; = 1}, while the denominator denotes the total
“weight” of these combinations. The “weight” of a combi-
nation of m — 1 participants here is the possibility of meeting
exactly all of them by a;. Consequently, the objective formula
is to minimize the weighted-average cost for delivering the
slices. Constraint (5) guarantees that a; can meet at least
m — 1 participants in the selected forwarder set F' = {a; €
N(a;)|z; = 1} with probability at least P. Constraint (6) is
exactly the same as constraint (2). In the binary program, ¥ is
a binary vector with |N(a;)| bits. However, since the above
binary program cannot be efficiently solved in polynomial
time, we propose a polynomial time greedy algorithm, which
can achieve good performance in most of the cases.

We first sort the participants in set N(a;) by
p(aj)/c(aj), a; € N(a;) in non-increasing order [3:

B:al,ah,. .., aiN(az‘)\’
such that
pla;) _ plag)
c(a;) ~ clag)
Then, we find the smallest number « of participants in the front
of the ordered list 3, such that the probability of meeting at
least m—1 of them is at least P (i.e., constraint (5) is satisfied).
We call the last selected participant in this process as critical
participant and « as critical number. The pseudo-code for
finding the critical participant is shown by Algorithm 2.

In Algorithm 2, we first check whether there are enough
participants (Lines 1-3). If not, then there is no feasible
solution; otherwise, we use a dynamic programming-based
method to find the critical participant a/, (Lines 4-14). In
this process, we first initialize a one-dimensional array p
for storing intermediate results (Line 4). Each element p[j]
(0 < j < |N(a;))) means the probability of meeting j
participant(s), given the first «v participant(s) in the list 3. Then
we test the participants in list 5 one by one (Lines 5-9) and
update the array elements up to p[a] (Lines 10-13), until the
critical participant a/, is identified. If no critical participant is

V1 <j<g<|N(a)l
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Algorithm 2 Finding Critical Participant

Algorithm 3 Forwarder Set Selection

Input: Set of participants N(a;), profile of meeting
probabilities (p(a;))a;en(a;)» profile of delivery costs
(c(@j))a;eN(a;)> ordered list 3, and the minimal proba-
bility P.

Output: Critical participant a’, .

1: if |[N(a;)| < m —1 then

2:  return “No feasible solution.”;

3: end if

4 p = O 0] 1 — p(a)); p[1] = pl(a)); @ « 1
s: while -7, p[j] < P do

6: if « =|N(a;)| then

7: return “No feasible solution.”;

8: end if

9 a+ a+1;

10 forg=ato1ldo

1 plgl < plg —1p(ag) + plgl(1 — p(ay));

12 end for

13 p[0] < p[0](1 — p(ag,))s
14: end while

15: return al;

found, then return with no feasible solution (Lines 6-8). The
runtime of Algorithm 2 is O(n?), where n = |N(a;)|.

Noting that having more than « participants in the front of
the ordered list 5, constraint (5) is always satisfied. Conse-
quently, after locating the critical participant a,, if any, each
set with v € {o, a+1,...,|N(a;)|} participants in the front of
the ordered list (3 is a feasible solution of the MCT-PRO prob-
lem. So, our next job is to find the v € {a, a+1,...,|N(a;)|}
that minimize the objective function of the MCT-PRO problem
formulation. Algorithm 3 shows our pseudo-code for selecting
forwarder set F, given the critical participant a/, found by
Algorithm 2.

Algorithm 3 maintains a two-dimensional matrix p to store
intermediate results. Each element p[j][g] (0 < 7,9 < |N(a;)|)
represents the probability of meeting g participants, under
the condition that participant a;- is met, given the first
participants in the list 8 (during the process, the position of a}
and a; is switched for calculating the probabilities of row p[3]).
After initialization (Line 1), we iterate each of the possible
values of y from 1 to | N (a;)| (Lines 2-19). For the iterations of
v from 1 to a—1, we only update the dynamic matrix p (Lines
3-12) without checking the average delivery cost, because the
necessary number of participants has not been reached. From
the iteration with 7 = « on, we check the average delivery cost
with m — 1 participants (Line 14), after updating the dynamic
matrix p (Lines 3-12). If a lower average delivery cost is found
(i.e., cost’ < cost), we update the current smallest average
delivery cost and its corresponding forwarder set (Lines 14-
17). Finally, Algorithm 3 returns the forwarder set F'. The
running time of Algorithm 3 is O(n?), where n = |N(a;)|.

Algorithm 3 can return a feasible result if there are suffi-
cient number of meeting opportunities with other participants.
However, we note that it is possible that a sensing record
generator cannot meet enough participants to transfer each of
the encoded slices from a record to a different participant. In

Input: Set of participants N(a;), profile of meeting
probabilities (p(a;))a;en(a;)» profile of delivery costs
(c(@j))a;eN(a,)> ordered list 3, and critical participant ay, .

Output: Set of forwarders F'.

1. p  OIN(@)+LIN(@)+1 co5t « MAX_REAL;
2: for v =1 to |N(a;)| do
3: for j =1to|N(a;)| do
for g = v downto 2 do

if j = v then

plillg] < plillg — 1lp(at) + pli]lgl;
else

plillg] « plillg — Lp(al) + plillg;
end if

10: end for

ne ol pa)); plill0] < 1;

12 end for

13:  if v > « then

R A A

14: cost’ 22:1 c(a})plilm — 1J;

15: if cost’ < cost then

16: F <+ first « participants in ; cost < cost’;
17: end if

18:  end if

19: end for

20: return F;

this case, we use the prediction model based on the history to
estimate the number of encounters beforehand. For participants
who do not have sufficient slice transfer opportunities, we
allow them to transfer more than one slice during each
meeting. Suppose h slices are transferred each time, then the
record generator is hidden in [k/h| participants.

3.4 Reconstructing

After receiving at least k slices encoded from the same sensing
record, the service provider can reconstruct the original sens-
ing record. Besides maintaining a database storing the sensing
records, the service provider also keeps a table 7' caching
slices that have not been decoded.

Algorithm 4 shows the pseudo-code of our sensing record
reconstructing algorithm. Upon receiving a reported slice s,
the service provider decrypts the slice using her private key
KEY),,i, to get the encoded slice s’ and a tag that uniquely
identifies the record it is encoded from:

(s',tag) = DECRY PT (s, KEYiv),

where DECRY PT(-,-) is an asymmetric decryption func-
tion.

The service provider adds the encoded slice s’ into the
caching table 7" with index tag, and then check whether there
are k encoded slices with the same tag. Then, the service
provider checks the integrity of the k slices. If these slices pass
the integrity check, service provider extracts the k£ encoded
slices with the same tag, and then decodes the original sensing
record:

<tl,d>=EC '({3] < 5, >€ T At = tag}),
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Algorithm 4 Sensing Record Reconstructing Algorithm
Input: Caching table 7T'.
Qutput: Each original sensing record < ¢,1,d >.

1: while TRUE do

2:  Receive slice s;

32 (¢,tag) < DECRY PT (s, KEY,rin);

4 Add (¢',tag) into T}

5. if [{5] <5, > T At =tag}| > k then

6 if IntegrityCheck({5| < 5,t >€ T At = tag})=true

then
7: <t l,d >« EC71({3] < 5,{ > T At =tag});
8: Remove {5| < 5,{ >€ T At = tag} from T}
9: Store sensing record < t,1,d >;
10: else
11: Remove {5| < 5,{ >€ T At = tag} from T}
12: end if
13:  end if

14: end while

where EC~1(-) is the decoding function corresponding to
EC(-). Otherwise, the collected slices marked with tag are
removed from the caching table.

3.5 Analysis

In this section, we show that SLICER can provide strong
privacy protection against the external and internal attacks.

3.5.1 Protection Against External Attacks

The external attacker eavesdrops messages passed in the
participatory sensing system, in order to collect sensitive infor-
mation about particular participants. In SLICER, we employ
an end-to-end cryptographic encryption scheme, such that the
external attacker cannot decrypt the slices transferred among
participants, as well as that reported to the service provider.
Although the external attacker may extract some information
from the eavesdropped packets to uniquely identify the partici-
pant, she cannot get the concrete content of the sensing record.
Because the eavesdropped content is under the protection of
the end-to-end encryption, such that the eavesdropper cannot
decrypt it unless she colludes with service provider. There-
fore, SLICER provides privacy protection against the external
attacks.

3.5.2 Protection Against Internal Attacks

The internal attack may come from both the participants and
the service provider. We distinguish two cases:

Protection against participants’ attack

Each participant may receive some slices, when she is
selected as a slice deliver for participants met. Similar with
the external attacker, the participant cannot decrypt the slice
for delivering.

Protection against service provider’s attack

Since the service provider has full access to the sensing
records contributed by the participants, she can easily infer
private information about the participants, if proper privacy-
preserving scheme is not provided. However, SLICER can

achieve the k-anonymity and protect participants’ privacy
information against the service provider. Therefore, we can
draw the following theorem.

Theorem 1: SLICER achieves k-anonymity, when there are
k participants who deliver slices to the service provider.

Proof: In SLICER, we isolate the participants’ identity

and the sensing records, by encoding each sensing record into
m slices and letting at least k different slices be delivered to
the service provider through different participants. To achieve
this, we designed three different algorithms (TMC, MCT-EXP,
and MCT-PRO) in section 3.3 according to different situations
to select at least m participants (including the generator itself)
as forwarders to transfer m slices to the service provider. Then,
the original sensing record can be decoded by the service
provider if and only if receiving at least k different slices.
Therefore, the identity of the record generator is hidden among
a group of at least k participants. O

We note that SLICER’s privacy guarantee degrades to
[k/h]-anonymity, when a sensing record generator cannot
meet enough participants to transfer slices and thus has to
transfer A slices during each meeting. Further, if the sensing
record generator is completely isolated and cannot meet any
other participant (i.e., h = k), SLICER cannot preserve the
privacy on linkage between identity and location. In this case,
an alternative privacy preserving scheme (e.g., [11], [21], [44])
can be applied.

4 EVALUATION

We have implemented the SLICER and evaluated its perfor-
mance on taxi traces collected from practice. In this section,
we specify evaluation setups and metrics, and present evalua-
tion results.

4.1 Setup and Metrics

Our evaluation is based on the realistic GPS mobility traces
of 500 taxi cabs over 30 days in San Francisco, USA,
which were collected by Cabspotting Project [19] and can be
accessed from the CRAWDAD [45] website. In this real world
deployment, each cab is outfitted with a GPS tracking device
that is used by dispatchers to efficiently reach customers. Each
cab sends a location-update triplet (timestamp, identifier, geo-
coordinates) to a central server in a period varied from 30
to 60 seconds, which forms the mobility traces we used in
this paper. We extend this scenario to a participatory sensing
situation by assuming that the cabs are participants equipped
with mobile devices.

We consider a mobile infrastructure with the whole 500
participants. We set that every participant generates one record
per day, and the period of validity of the record is 24 hours.
The loss possibility of the slices varies from 0.2 to 0.4.

We evaluate the performance of SLICER using the follow-
ing four metrics.

e Reconstruction Ratio: The percentage of sensing records
successfully reconstructed by the service provider. This
reflects the loss tolerance of SLICER.

o Communication Overhead: The total amount of data
transmitted to guarantee required reconstruction ratio.
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o Computation Overhead: The time consumed to process a
sensing record.

o Total Transfer Cost: The sum of the cost for delivering a
sensing record (i.e., m — 1 slices) to the service provider.

4.2 Evaluation Results on Reconstruction Ratio

We compare the performance of SLICER implemented with
the three transfer strategies proposed in Section 3 (i.e., T-
MU, MCT-EXP, and MCT-PRO), with an existing privacy
preserving schemes for participatory sensing, namely Simple
Exchanging [35], in which the sensing records are transferred
among participants as a whole without coding. We should note
that we did not compare with [11], [12], [21], because the
setup of these work are significantly different with ours.
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05 1
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Simple Exchanging @
SLICER with MCT-EXP 1

Reconstruction Ratio
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Number of Participants

Fig. 4. Impact of Participant Number on Reconstruction
Ratio

Fig. 4 shows the reconstruction ratios achieved by the
four schemes with growing number of participants, which
are selected from the public taxi trace dataset. We set the
coding rate to 10/20 and the probability of slice loss to 0.2 in
this simulation. To be fair, we let the four evaluated schemes
have the same communication overhead, and then compare
their achieved reconstruction ratios. Specifically, given that
the coding rate of our three SLICER strategies is 10/20,
the total size of encoded slices is doubled from the original
sensing record. So, we let the Simple Exchanging scheme
transfer twice for each sensing record. We can see from
Fig. 4 that SLICER with TMU and SLICER with MCT-
PRO perform better than Simple Exchanging, when there are
sufficient number of participants (i.e., > 200 participants).
This is because SLICER inherits high loss tolerant capability
from erasure coding technique. Specifically, the reconstruction
ratio of SLICER with TMU, SLICER with MCT-PRO reaches
0.97 when there are 400 participants or more. In contrast,
Simple Exchanging has relatively stable reconstruction ratio
(about 0.86). However, we can see that SLICER with MCT-
EXP performs not well, due to the fact that the MCT-EXP
strategy may not guarantee the probability of meeting m — 1
participants at a high level. In addition, when the number
of participants is less than 200, Simple Exchanging performs
the best. This is because Simple Exchanging only needs one
other participant to deliver the sensing record, while SLICER
needs m — 1 participants. However, Simple Exchanging cannot
improve its reconstruction ratio with the help of increasing

number of participants, and loses its advantage when the
number of participants grows beyond 200. Furthermore, Sim-
ple Exchanging cannot provide the strong guarantee of k-
anonymity. So the results of this simulation confirms that
SLICER with TMU or MCT-PRO is preferred when there
are sufficient number of participants in the participant sensing
system.
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Fig. 5. Impact of Coding Rate k/m on Reconstruction
Ratio (We fix £ = 10, and vary m in this evaluation.)

Then, we evaluate the impact of coding rate (k/m) on
reconstruction ratio of our transfer strategies, including TMU,
MCT-EXP, and MCT-PRO. The evaluation results are shown
in Fig. 5. Here, we fix £k = 10, and vary the value of m
from 15 to 30 with a step of 5 in this evaluation. The slice
losing probability is again set to 0.2. From Fig. 5, we can see
that the reconstruction ratios achieved by the three transfer
strategies increase with the decrement of coding rate (i.e.,
increment of m in the evaluation) and increment of the number
of participants. Having coding rates of 10/25 and 10/30, each
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of the three transfer strategies produces close reconstruction
ratios, which are clearly higher than those in cases of 10/15
and 10/20. This indicates that coding the sensing record into at
least 25 slices can achieve relatively good reconstruction ratio
on the dataset used in our evaluation. We note that the coding
ratio still need to be carefully set for different application
scenarios in order to obtain high reconstruction ratios with
appropriate costs.
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Fig. 6. Impact of Inaccurate Mobility Prediction Module
on the Reconstruction Ratios of Our Designs

Furthermore, we evaluate the impact of inaccurate mobility
prediction module on the performance of our designs. In this
set of evaluations, we directly add noises to the meeting
probabilities generated by the mobility prediction module to
make them deviate from the ground-truth prediction. Fig. 6
shows the evaluation results. By adding +5% (£10% and
+20%) noise, we mean the meeting probabilities are randomly
increased or decreased by up to 5% (10% and 20%) from
their ground truth values, respectively. In this evaluation, the
coding rate is set to 10/20, and the probability of slice loss
is 0.2. Fig. 6(a) shows the results for MCT-EXP. We can
observe that the reconstruction ratios achieved by MCT-EXP
with £5% and £10% noise are very close to the case with
ground-truth prediction. Specifically, when £10% noise is
added, reconstruction ratio is only decreased by 4.92% from
the result on ground truth, given 500 participants. Only when
the noise is as large as +20%, the reconstruction ratio is
decreased by 15.28% for 500 participants. Besides, the results
shown in Fig. 6(b) for MCT-PRO is quite similar to those for
MCT-EXP. Reconstruction ratios of MCT-PRO with £5% and
4+10% noise have good approximations to that of MCT-PRO

10

with ground-truth prediction, while MCT-PRO with £20%
noise suffers from 16.1% decrement on construction ratio for
500 participants. These results show that our approaches can
tolerate small amount of prediction inaccuracy

4.3 Evaluation Results on Overhead

SLICER with TMU
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SLICER with MCT-PRO C—

Simple Exchanging C—

0.2 0.3 04
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Communication Overhead (MB)
O P N W A O O N

Fig. 7. Communication Overhead to Achieve Reconstruc-
tion Ratio of 0.99

We evaluate the communication overhead of four schemes
(TMU, MCT-EXP, MCT-PRO, and Simple Exchanging) to
achieve a targeted reconstruction ratio of 0.99, under different
slice losing probabilities. We set the sensing record size to
1M B. Three loss probabilities are evaluated. To achieve the
reconstruction ratio of 0.99, the coding rate of SLICER needs
to reach 10/18, 10/21, and 10/26, when the loss probability is
0.2, 0.3, and 0.4, respectively. Similarly, we also set proper
transmission redundancies for the Simple Exchanging for
different loss probabilities. As shown in Fig. 7, we can see
that the communication overhead of SLICER is always lower
than Simple Exchanging under different losing probabilities,
showing that SLICER has better loss tolerance. Although the
communication overheads of the four schemes increase with
the loss probability, the growth speed of SLICER is much
slower. In addition, the performance of SLICER implemented
with different transfer strategies has subtle differences due to
the reason that participants selected by SLICER with MCT-
EXP and MCT-PRO may not be met in some probability. This
result confirms that SLICER can achieve low communication
overhead.
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Fig. 8. Computation Overhead

We also evaluate the computation overhead of SLICER with
different transfer strategies (as shown in Fig. 8, which is a
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log-log scale plot), comparing with the traditional encryption
only scheme, which is the Simple Exchanging [35] scheme
(RSA is adopted in this simulation). What we consider in
SLICER are only the computations needed at mobile device
side, including erasure coding (Tornado [37]), hashing (SHA-
1 [39]), encryption (RSA [46]), and running the three different
transfer strategies. Our schemes are evaluated in Windows 7
OS environment, with C++ programmed simulator running
on a computer with a CPU speed of 2.40GHz. In Fig. 8,
we can see that SLICER induces some extra computation
overhead compared with the Simple Exchanging scheme,
when dealing with the same size of data. This is caused
mainly by the usage of erasure coding. Although, SLICER
with TMU, SLICER with MCT-EXP, and SLICER with MCT-
PRO consume 42.5%, 48.3% and 42.7% more time than
the Simple Exchanging method when dealing with a 10M B
sensing record, respectively, the per kilobyte computation
overheads are still very small and can be afforded by mobile
devices. Specifically, for a 10MB sensing record, SLICER
with TMU, SLICER with MCT-EXP, and SLICER with MCT-
PRO consume 0.479ms/KB, 0.480ms/KB, and 0.499ms/KB,
respectively.
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Fig. 9. Transfer Cost of Different Strategies

Then, we compare the total slice transfer cost when using
different strategies (Simple Exchanging, TMU, MCT-EXP,
and MCT-PRO) to achieve an expected construction ratio of
0.9994. The transfer cost on each participant is generated ran-
domly from (0, 1], the meeting probability (used in Minimal
Cost Transfer) comes from the statistics of the 500 partici-
pants’ trace data, the probability of slice loss is set to 0.2, and
the coding rate is set to 10/20. As shown in Fig. 9, Simple
Exchanging performs the worst, and SLICER with TMU also
suffers from relatively high transfer cost, which is close to the
excepted value (i.e., 0.5 x 19 = 9.5). Minimal Cost Transfer
performs better than the previous two when the participants
are sufficient, due to the well designed algorithms, especially
the MCT-EXP. We believe the MCT-PRO is more reasonable
due to its threshold probability of P (0.9). In addition, the
transfer cost of SLICER converges with the growth of number
of participants, because more participants will provide more
meeting opportunities, higher meeting probability, and more
low-cost relays to select. For example, the total cost for
transferring one record is lower than 3.6 by SLICER with
MCT-PRO, when there are 500 participants. This means a per
participant cost of 0.19. The results of this simulation confirm

that our algorithm for minimal cost transfer can reduce transfer
cost.

4.4 Summary of Evaluation Results
We summarize the above evaluation results as follows:

o SLICER with TMU provides the best reconstruction ratio
when the participants are sufficient in the participatory
sensing system. It also has relatively low communication
and computation overhead compared with other SLICER
strategies. However, TMU has the highest transfer cost.

o SLICER with MCT-EXP is more sensitive to inaccurate
mobility predictions than MCT-PRO (and actually TMU
is not sensitive at all), but has a lower computation
overhead.

e SLICER with MCT-PRO achieves the lowest transfer cost
and (near) the best reconstruction ratio, but has a little bit
higher computation overhead.

Generally speaking, SLICER with MCT-PRO provides good
reconstruction ratio with appropriate overhead most of the
time, while SLICER with TMU can be a good alternative when
the mobility prediction module is not available or inaccurate.

5 RELATED WORK

In this section, we first review some related work on privacy
preserving techniques for participatory sensing, and then re-
view the work on data aggregation. Finally, we analyse some
key differences with the closely related previous work.

5.1

In the current state-of-the-art, a number of privacy preserving
techniques for participatory sensing systems, especially the
location-based services (LBSs), have been proposed by previ-
ous researchers, mainly to address the privacy of data source
identity, user location, user trajectory, and sensing data content
itself. These techniques can be classified into the following
four categories.

Privacy Preserving Techniques

5.1.1 Randomization Based Techniques

Randomization (noise) based technique [13], [47]-[49], where
noise (e.g., Gaussian noise) may be added into the original
data, can hide the real value of sensitive information (e.g., the
trend of the data over time). This method was widely studied
and used in data mining field. However, the loss of data quality
is a significant shortcoming.

5.1.2 Generalization

The k-anonymity [36] model, which aims to hide each user’s
sensitive information among k—1 others’, is a universal metric
for privacy preservation, and has been applied to participatory
sensing in several previous work [11], [50]. However, this
kind of method usually needs an honest third-party as the
anonymizer, which is not allowed in ubiquitous semi-honest
models. Therefore, when a more severe situation of semi-
honest third-party is considered, these approaches cannot meet
requirements.
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5.1.3 Cloaking Techniques

Cloaking techniques usually use generalization or perturbation
to replace the actual location with larger area or to cloak
real location using some functions (e.g., [11], [44], [50],
[51]). However, while spatial cloaking techniques can well
protect single location information, they fail to protect the
trace privacy, with which user’s identity is also inferable [22],
[52]. Recently, several work were proposed aiming to solve
the trajectory privacy problems [21], [35], [53]. However,
same questions exist that the protection of privacy reduces
the quality of reported data.

5.1.4 Cryptography Based Solutions

End-to-end encryption, which can guarantee the high security
of reported data, is widely used for the privacy preserva-
tion [12], [54]-[57]. However, encryption can only protect
participants’ privacy from external attacks (e.g., the eavesdrop-
per). When the encrypted data arrives at the service provider
side, service provider can decrypt ciphertext and obtain the
corresponding plaintext. Therefore, encryption technique fails
to prevent the service provider from inferring users sensitive
features. Since internal attacks are also undesirable, designing
privacy preserving schemes for participatory sensing against
both external and internal attacks is highly important.

5.2 Data Aggregation Protocols

Data aggregation is a widely used technique in wireless sensor
networks. Data aggregation algorithms are designed to gather
and aggregate data in an energy efficient manner so that
the network lifetime is enhanced [58]-[60]. Cam et al. [61]
presented a multi-stage real-time alert aggregation technique
over mobile networks that greatly reduces the amount data
transmission and attempts to maximize the bandwidth uti-
lization. Kumar et al. [62] proposed a learning automata-
based opportunistic data aggregation and forwarding scheme
for alert generation in vehicle ad hoc networks (VANETS),
which overcomes the challenges of high velocity and constant
topological changes in VANETSs and can adaptively select the
next hop for data forwarding and aggregation from the other
nodes. However, security issues are not considered in these
data aggregation protocols.

As mentioned above, security is an important issue in the
process of data aggregation. Secure data aggregation protocols
(e.g., [59], [63], [64]) try to achieve security requirements
(e.g., data integrity, data confidentiality, authentication, and
etc.) along with data aggregation. Aviv et al. [65] proposed
a privacy-aware geographic message exchange protocol for
Human Movement Networks (HumaNets). However, they only
consider static networks. Therefore, these methods are not
suitable for participatory sensing, where the network changes
dynamically.

5.3 Differences with Existing Work

In the literature, [35] and [12] are the two most closely
related work to ours. Christin et al. [35] proposed to hide
participants’ travel paths via collaborative message exchanging
in physical proximity. However, although by carefully setting

the exchange strategies and the reporting strategies, various
levels of privacy preservation against the application admin-
istrator can be achieved (e.g., k-anonymity), the approach is
still vulnerable to privacy breach from malicious participants,
since the triplets encapsulating the whole sensor readings
are directly transferred to the encountered participants. Shi
et al. [12] elegantly implemented a data aggregation method
for supporting various aggregation functions on numerical
data. However, their method cannot be applied to multimedia
sensing data. In contrast, SLICER proposed in this paper
is a coding-based k-anonymous privacy preserving scheme
for high quality multimedia data aggregation in participatory
sensing systems.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a coding-based privacy
preserving scheme, namely SLICER, which is a k-anonymous
privacy preserving scheme for participatory sensing with mul-
timedia data. SLICER integrates the technique of erasure
coding and well designed slice transfer strategies, to achieve
strong protection of participants’ private information as well as
high data quality and loss tolerance, with low computation and
communication overhead. We have studied two kinds of data
transfer strategies, including TMU and MCT. While TMU is a
simple and straightforward strategy, MCT contains two com-
plimentary algorithms, including an approximation algorithm
and a heuristic algorithm, designed for satisfying different
levels of delivery guarantee. We also implement SLICER and
evaluate its performance using publicly released taxi traces.
Our evaluation results confirm that SLICER achieves high
data quality, strong robustness, with low computation and
communication overhead.

For future work, one possible direction is to study the
problem of privacy preservation in the query process [66] [67],
and design new privacy preserving query schemes based on
SLICER. We also think about the lost-packet authentication in
server side to increase the construction ratio and further reduce
the communication overhead. Another possible direction is
to design efficient slice transfer algorithm, considering the
limitation of mobile devices’ battery power, storage space,
availability, computation ability, and communication band-
width.
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