2015 IEEE Conference on Computer Communications (INFOCOM)

Network Coding-Based Multicast in Multi-Hop
CRNs under Uncertain Spectrum Availability

Yuben Qu*Y, Chao Dong*, Haipeng Daif, Fan Wu?, Shaojie Tang$, Hai Wang*, Chang Tian*¥
*College of Communications Engineering, PLA University of Science and Technology, China
TDepartment of Computer Science and Technology, Nanjing University, China
iDepartment of Computer Science and Engineering, Shanghai Jiao Tong University, China
§Naveen Jindal School of Management, University of Texas at Dallas, USA
1ICorresponding author: quyuben@gmail.com, tianchang126@ 126.com

Abstract—The benefits of network coding on multicast in tradi-
tional multi-hop wireless networks have already been demonstrat-
ed in previous works. However, most existing approaches cannot
be directly applied to multi-hop cognitive radio networks (CRNs),
given the unpredictable primary user occupancy on licensed
channels. Specifically, due to the unpredictable occupancy, the
channel’s bandwidth is uncertain and thus the capacity of the
link using this channel is also uncertain, which may result in
severe throughput loss.

In this paper, we study the problem of network coding-based
multicast in multi-hop CRNs considering the uncertain spectrum
availability. To capture the uncertainty of spectrum availability,
we first formulate our problem as a chance-constrained program.
Given the computationally intractability of the above program,
we transform the original problem into a tractable convex
optimization problem, through appropriate Bernstein approxi-
mation together with relaxation on link scheduling. We further
leverage Lagrangian relaxation-based optimization techniques
to propose an efficient distributed algorithm for the original
problem. Extensive simulation results show that, the proposed
algorithm achieves higher multicast rates, compared to a state-
of-the-art non-network coding algorithm in multi-hop CRNs, and
a conservative robust algorithm that treats the link capacity as
a constant value in the optimization.

I. INTRODUCTION

Due to the pressing demand of efficient frequency spectrum
usage, cognitive radio networks (CRNs) [1] have spurred a
wide range of research interests and emerged as a promising
technology to improve the spectrum utilization. In CRNs, with
the proliferation of computationally powerful wireless devices
and compelling demand on diversified services, providing
multicast services for secondary users (SUs), especially in a
multi-hop fashion, is urgently needed [2]-[5]. Therefore, it is
crucial to improve the performance of multicast in multi-hop
CRNE.

During the past decade, network coding [6], has been
proposed to improve the network resource utilization. By
combining multiple input packets into one packet algebraically
before forwarding, network coding is able to increase the
multicast capacity [6]. The throughput benefits of network
coding on multicast in multi-hop wireless networks have been
well recognized in previous works, e.g., [7]-[13]. However,
most of those works focus on traditional multi-hop wireless
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networks, and few of them study the impact of network coding
on improving the multicast throughput in multi-hop CRNSs.

Indeed, most existing works on network coding-based multi-
cast cannot handle new challenges arising from CRNs, includ-
ing the uncertainty of spectrum availability. Particularly, in the
optimization of traditional wireless networks, we often assume
that the link capacity is a fixed value [7]-[9], [13]. However,
in CRNSs, due to unpredictable primary occupancy on licensed
channels, the bandwidth of an available channel is uncertain in
the sense that it is a random variable satisfying some certain
distribution [14]-[17]. That is to say, the capacity of a link
using this channel is also a random variable, which invalidates
all of the previous approaches. Besides, simply replacing the
uncertain link capacity by its expected constant value is not
preferable, since the fruitful information of spectrum avail-
ability is not exploited, which will incur great performance
degradation.

In this paper, we study how to maximize the data rate of
a network coding-based multicast session in multi-hop CRNSs.
To the best of our knowledge, this is the first work to study
the problem of network coding-based multicast in multi-hop
CRNs, by taking into account the uncertainty of spectrum
availability. Different from existing works, we model the link
capacity as a random variable instead of a fixed value, which
captures the uncertainty of spectrum availability in CRNs. To
deal with the random variables in the constraints, we cast these
constraints as chance constraints [18]-[20], i.e., candidate
solutions are required to satisfy the randomly constraints with
a given probability. However, chance constraints are usually
more difficult to tackle because these constraints are typically
nonconvex and sometimes difficult to be expressed in a closed
form [18]. Another challenge in our problem is that since
the available channels at different nodes could be different in
multi-hop CRNs, how to efficiently schedule the links under
the channel availability is also a critical concern.

To overcome the above challenges, we first employ Bern-
stein approximation techniques [18] to translate the afore-
mentioned chance constraints into convex computable con-
straints, by properly choosing the approximation bounds. Fur-
ther, we encapsulate the constraints of hyperarc(link)-channel
scheduling in a two-dimensional conflict graph (TDCG), and
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eventually obtain an optimization problem that can be solved
by common convex optimization approaches. Specifically, we
decompose the overall problem into two relatively indepen-
dent subproblems, i.e., a multiple-shortest-paths problem with
channel availabilities constraints and a maximum-weighted-
stable-set problem on the TDCG, respectively. Then, we
propose an efficient distributed algorithm for network coding-
based multicast in multi-hop CRNs, to simultaneously opti-
mize the flow rate and coding subgraph with channel selection.
Our main contributions are summarized as follows:

1) We first consider the uncertainty of spectrum availability
and study the problem of network coding-based multi-
cast in multi-hop CRNs. We capture the uncertainty of
link capacity in chance constraints, and encapsulate both
hyperarc scheduling and channel selection into multiple
hyperarc-channel tuples represented by the TDCG.

2) We transform the formulated chance-constrained pro-
gram into a computationally tractable convex problem,
through appropriate Bernstein approximation and relax-
ation of finding stable sets on the TDCG. We decompose
the convex problem into two separate subproblems by
using Lagrangian relaxation, and propose an efficient
distributed algorithm.

3) Our extensive simulation results show that, our dis-
tributed algorithm outperforms the state-of-the-art non-
network coding algorithm in multi-hop CRNs and the
conservative robust algorithm, in terms of multicast
rate. We also demonstrate the fast convergence of our
decentralized algorithm.

II. NETWORK MODEL

In this section, we will first introduce the basic network
model used in our work, then interpret the modeling of
uncertain spectrum availability in CRNs, and lastly, explain
the coding subgraph optimization in multi-hop CRNs.

A. System Model

We consider a multi-hop CRN, where N SUs! share C
orthogonal channels that can be accessed by SUs when they
are not occupied by PUs. The set of nodes is denoted by
N = {1,2,...,N}, and the set of channels is denoted by
C = {1,2,...,C}. Each node is equipped with two radios:
one is a half-duplex cognitive radio that can switch among
the channels for data transmissions, and the other is a half-
duplex normal radio working on a common control channel
(CCCO) for exchanging control messages [5]. Following most
previous works [3], [5], we assume that the available channels
at a SU may be different from those at another one in the
network, considering the geographical location differences of
the SUs. Let C; C C represent the set of available channels at
SU 5 € N, and C; C C denote the set of common available
channels at a set of nodes J, i.e., Cj = ﬂjeJC]—. We assume
that set C; varies with time. However, we suppose that the

'SU and node will be used interchangeably in the rest of this paper.

channel availability at SUs is quasistatic, i.e., does not change
in a short period of time [5].

For flow service, we consider there is a multicast connection
of rate R with a source s € A/ and sinks D = {1,2,..., D} C
N. All multicast sinks request the same information and
thus R can be defined as the total amount of data that are
successfully delivered to all sinks per unit time. Table I
provides a list for the major notations used in this paper.

TABLE I: A List of Notations

Notation | Definition
N set of SU nodes
A set of hyperarcs
C set of licensed channels
R rate of multicast session
C; set of available channels at node 7
Cy set of common available channels at node set J
D set of sinks

B¢ bandwidth of channel ¢

zi5(C) rate restricted by coding subgraph on (7, J) through channel c
zigK (C) average rate on (7, J) exactly received by K on channel ¢
d;ij distance between node ¢ and node j
gij power propagation gain between node ¢ and node j
Q power spectral density from the transmitter
n ambient Gaussian noise density

fl.dJ ; () flow rate for sink d on channel ¢ from node ¢ to node j € J
T° set of nodes that can communicate with ¢ through channel ¢
u;j(c) indicator of whether ¢ communicates to j on channel ¢

indicator of whether ¢ communicates to J on channel ¢

c) capacity of link (z, 7) using channel ¢

capacity of hyperarc (¢, J) using channel ¢

B. Modeling of Uncertain Spectrum Availability

In CRNS, due to the unpredictable bandwidth occupancy of
PUs, the bandwidth of an available channel is uncertain in
the frequency domain [17]. In other words, SUs do not know
what the exact bandwidth is even if the channel is sensed idle.
To model this unique feature, let B¢ denote the unoccupied
bandwidth of an available channel ¢ € C, where B°¢ is a
random variable. According to the well known Shannon-
Hartley theorem, the capacity of a link has strong positive
relationship with the bandwidth of the channel it uses. Since
the channel bandwidth is random in CRNs, the link capacity
is also a random variable, which may pose great challenges
to the optimization of network performance.

C. Coding Subgraph Optimization in Multi-Hop CRNs

We leverage the broadcast nature for efficient multicast in
wireless CRNS, i.e., a node can transmit data simultaneously
to multiple nodes in its transmission range by switching to the
same available channel [5]. To illustrate the broadcast relation-
ship, we model the network by a hypergraph H = (N, A),
where A is the set of nodes and A is the set of hyperarcs. A
hyperarc is a pair (2, J) (at least one common channel available
in node i and set J), where i € A is the start node, and
J C N is the set of end nodes. Every hyperarc (i, J) represents
a broadcast link from node ¢ to the nodes in the nonempty
set J. Let z;7(c) denote the rate at which coded packets are
injected into hyperarc (¢, J) through channel c. The rate vector
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z = (2i7(¢))(i,7)eA,cec; N ¢, is termed as the coding subgraph
[8]. Denote z;;k (c) the rate at which packets are received by
precisely the set of nodes K C J through hyperarc (¢, .J).
Hence, we have z;;(c) = > zisk (c).

III. PROBLEM FORMULATION

In this section, we formulate the problem of network coding-
based multicast in multi-hop CRNs. The objective is to find
the flow rates and coding subgraphs with channel selection,
with the consideration of uncertain spectrum availability,
such that the multicast rate R is maximized. In general, we
should consider the following constraints: flow rate constraints,
coding subgraph constraints, and link capacity constraints. We
now specifiy these constraints separately in details.

A. Flow Rate Constraints

A flow rate constraint requires that the amount of incoming
traffic rate equals to the amount of outgoing traffic at every
node in the network. We denote by ﬁ]j(c) the data rate
for sink d from node 7 to node 57 € J, when packets are
actually transmitted on virtual wireless broadcast link (i, J),
using channel c. To explicitly demonstrate the dependency of
a broadcast link on a specific channel, we define

T = {jldy <rrj #ic e M

where d;; is the distance between node ¢ and j, and 77 is the
transmission range of node ¢. 7, is thus the set of nodes that

node 7 can simultaneously transmit data to through channel c.
According to the max-flow min-cut theorem in [6], there
exists a flow vector fide (¢) for each sink d, which satisfies

R =35
Z foiJj(C) - Z f;'iu(cl) = { —R ieD .
JCTF jeT {j\Ich’,ieI} 0 otherwise,
2

for all d € D. The first and second parts in the left of Eq.
(2) correspond to the total outgoing rate and total incoming
rate, respectively. If node i is the source node, its outgoing
rate is R and incoming rate is 0. If 4 is one of the sinks, its
outgoing rate is 0 and incoming rate is R. Otherwise, node %
is an intermediate node, and its outgoing rate should be equal
to its incoming rate.

B. Coding Subgraph Constraints

Similar to [7]-[9], [11], the constraints of coding subgraph
include two types. One is that the link rate for any sink
cannot exceed the corresponding injection rate restricted by
the coding subgraph. The other is about the scheduling of
hyperarcs, i.e., two hyperarcs cannot simultaneously transmit
if they conflict.

We define b;jk (c) as the ratio of the sum of any successful
reception rate that related to subset K C J, to the injection
rate on hyperarc (7, J) through channel ¢, i.e.,

bire(e) = Zizzssnen 2510, ©)
zig(c)

If channel c is lossless, we have b; ;i (¢) = 1 for all nonempty
K C J and b, j9(c) = 0. Then, for the link rate requirement on
the coding subgraph [8], [11], i.e., the flow rate for any sink
cannot exceed the rate determined by both coding subgraph
and channel quality, we have

> (0 < zis (b (©). )
JEK

Next, we deal with more complex scheduling constraints
on hyperarcs. According to [8], z should be restricted with a
convex subset. The core is to decide which sets of hyperarcs
can transmit simultaneously without conflict. However, this
depends on the interference model of the network. In this
study, we consider a more general secondary interference
model [11], i.e., each node is constrained to receive from at
most one other node, and can only successfully receive if all
other neighbors on the same channel are silent.

One may just follow the approach in [8], [11] using a
conflict graph on the hypergraph only to capture the conflict
of hyperarcs. Yet, this cannot be directly applied because
there are multiple channels in the network and channel
availabilities differ at different nodes. Instead, we utilize
a two-dimensional conflict graph (TDCG) to describe the
conflicts over hyperarcs and channels jointly, which can be
used in multiradio multichannel (MR-MC) networks [21]. We
first define a tuple w in the format:

hyperarc-channel tuple: [(i,J), c],

where (i, J)€ A and ¢ € C;[Cy. The tuple indicates that the
hyperarc (z,.J) operates on channel c.

Consider two tuples wy = [(i1,J1),¢1] and wy =
[(i2, J2), c2]. We say that wy and we do not conflict if the
following conditions hold: 1) i1 # ia; 2) i1 & Jo; 3) is & J1;
4 N2 = 0:5 JINT2 =0 and Jo (TS = 0 when
C1 = Ca.

Definition 1: The TDCG of a hypergraph H with the channel
availability (C;);enr is an undirected graph G = (V, &), with V
corresponding to the set of all hyperarc-channel tuples, and an
edge (w1, ws) belongs to the edge set £ if wy and wo interfere,
for all wy,wy € V.

Given the TDCG, a stable (independent) set Z is a set of
vertices belonging to V), any two of which are nonadjacent.
7 includes the tuples that can be active simultaneously in the
network. If adding any one more vertex into a stable set Z
results in a non-stable set, Z is a maximal stable set (MLSS).
A maximum stable set (MMSS) is one that is not contained
in any other stable set. Similar to [11], we define 75 as the
incidence vector of Z, which is given by

o 1 if node v € Z, )
7)1 0 otherwise.

Then, the stable set polytope of G, i.e., Pstap(§), is thus the
convex hull of the incidence vectors of all MMSSs of G.

Finally, the constraints of scheduling on the coding subgraph
can be obtained as follows

z = (2i7(¢))i,7)eA,cec € Pstan(9)- 6)
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The above constraint not only captures the classical coding
subgraph requirements including the scheduling of hyperarcs,
but also restricts the channel selection of different hyperarcs,
which significantly differentiates our study from previous
works.

C. Link Capacity Constraints

Since we consider wireless broadcasting nature, we should
take the capacity of a broadcast link rather than a point-
to-point link into consideration. We define the capacity of
a broadcast link as the minimum of the capacities of its
component point-to-point links [13].

Because the link capacity is significantly affected by the
channel selection, we define u;;(c) as the 0-1 indicator repre-
senting whether node 7 and j operate on channel c

wis(¢) = 1 if ¢ transmits data to j on channel ¢ 7
A1 0 otherwise,

where ¢ € C;()C;. We note that the value of wu;;(c) is
determined by the aforementioned coding subgraph constraint.
Based on the channel selection, we can define the capacity of
a link (4, j) on channel ¢ [17], i.e., h;;(c), which is given by

hij(c) = u;;(c) B¢ log, (1 + 915762) , (8)

where g;; is the power propagation gain between node 4 and
node j,  is the power spectral density from the transmitter 2,
and 7 is the ambient Gaussian noise density. Accordingly, the
capacity of a broadcast link (z, J) on channel ¢ can be given
by

. . c 9i;Q
hij(c) = Ijnel? hij(c) = 1251 {uij(c)B log, <1 + 7]7> } .
(©))
By defining u;;(c) £ [1;e s uij(c), we further have

9i;Q
n

hi](c) :uiJ(c)BCE%iylogQ (1+ ) ,J C 7:6 (10)
When u;;(c) = 0, we have h;;(c) = 0.

Intuitively, one may easily have the following constraints
for the flow rate requirement, i.e., the aggregate data rates on
each broadcast link (7, J) cannot exceed the link’s capacity on
channel ¢ [11], [13]

Z Z 7,de<C) S hiJ(C)7CECiMKC ‘]C7;C

deD jeK

an

However, the link capacity h;;(c) in (11) is actually a
random variable and thus uncertain — not knowing what the
exact value is. The standard way to treat such uncertainty is
to pass from the uncertain constraint to its chance-constrained
version [18]-[20]

Pri > ST i(0) = his(e) <05 >1—gi5(c), (12)

deD jeK

2We here assume that all nodes use the same power for transmission.

where ¢;5(c) € (0,1) is the corresponding violation tolerance.
Define ¢ £ DN ZCGC,; ZJcTiC gis(c). By setting ¢ < 1,
we can guarantee that for all c € C;,J C 7%, K C J, all the
constraints like (11) hold with a high probability 1 - ¢ 3.

D. Network Coding-Based Multicast in Multi-Hop CRNs

Putting the three types of constraints together, we have the
following chance-constrained program:

maximize R
(2), (4), (6), (12).
d

In the program, f{:(c) > 0 and z;;(c) > 0 are optimization
variables, corresponding to flow rate and coding subgraph,
respectively.

The above optimization problem is intractable, owing to
two main reasons. One is that the constraint in (6) requires
to find all MMSSs in a given TDCG. However, searching
all MMSSs is NP-hard [11], [25], due to the combinatorial
difficulty encapsulated in Pstap(G). The other, which is more
challenging, is the probabilistic constraint in (12), rendering
the convexity of the feasible set defined by (12) difficult to
verify. Specifically, the feasible set of (12) can be either convex
or non-convex, which depends on the distribution of h;;(c)
[18]. Typically, if [a”b”]T has a symmetric logarithmically
concave density, Pr{a’x < b} > 1 — ¢ is convex for ¢ < 1/2
[18]. However, it is still unclear how to compute the closed
form of the probability even if it is convex [18], making the
problem intractable.

subject to

IV. BERNSTEIN APPROXIMATION TO THE
CHANCE-CONSTRAINED PROGRAM

In this section, we propose a conservative convex approx-
imation approach. Bernstein approximations are known as
a useful class of approximation techniques for chance con-
straints [18]-[20]. The key idea is utilizing Bernstein approxi-
mation and judiciously choosing the approximation form, so as
to obtain a series of safe and tractable constraints. Specifically,
we replace the chance constraints with a series of constraints
T, such that (i) any solution satisfies (12) when it is feasible
for Y (safe approximation), and (ii) the constraints in Y are
convex and efficiently computable (tractable approximation).
In the rest of this section, we describe the approximation
approach in two steps, presented by Theorem 1 and Theorem
2, respectively.

For simplicity, we define fis;(c) = 3 cp fi;(c). Then,
(12) turns to be

Pr quj(c)—hu(c) SO 21—61‘J(C).

JjEK

(13)

3Note that there exists a small risk that no solution is feasible to (12). If
this happens, we can enlarge the parameter € and corresponding &;5(c) to
obtain a feasible solution.
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Enlightened by the Bernstein approximation [18], we con-
struct the following function

Z fl]j

JjEK

A
= inf

Q(—
inf )+ p )

— plog(eis(c)) ¢,
(14
where f = (fis;(c))jex > 0and Q(y) £ log Elexp(yhi(c))].
Here E[] is excuted on the distribution information of h;(c).
For a given €;;(c) > 0, consider the following inequality

a(f) < 0. (15)

We can prove that any solution f that is feasible for (15) is also
feasible for the chance constraint (13) through the following
theorem.

Theorem 1. Assume that ®(f) is defined as in (14) and
hiy(c) is a random variable following a specific probability
distribution. For a given €;;(c) > 0, suppose that there exists
f = (fisj(c))jex > 0, such that (15) holds. Then, f satisfies
(13).

Proof: (Sketch) Inspired by the Bernstein approximation
[18], let F(f,h) = ZJEK fizj(c) — hig(c), then (15) is
equivalent to

inf {pElexp(p™ " F (£, h))] — peis(c)} < 0.

If Pr{F(f,h) > 0} Elexp(p~tF(f,h))] holds and
Elexp(p~tF(f,h))] < eis(c), then we can have (13). In fact,
the former equality can be obtained by the property of exp(-)
and the latter one can be derived from (15). The detailed proof
is provided in [29]. [ |

In light of Theorem 1, we can use a series of constraints

T: mf{z Z f”j

deD jeK
—plog(gis(e)} <0,ie N, JC T cel;

to replace (12) in the chance-constrained program, so that an
optimal solution to the new problem is a feasible suboptimal
solution to the original problem. However, the closed form of
T is still hard to compute, owing to the uncertain expectation
value and the inf(-) function.

Next, we exploit some useful distribution features including
the support, unimodality, symmetry of the distribution, to
obtain a computationally tractable approximation, which is
presented by the following theorem.

+ plog E[exp(—p~'hiz(c))]
(16)

Theorem 2. Suppose that for a given €;;(c) > 0, there exists
f = (fisj(c))jex > 0 such that (15) holds, where ®(f) is
defined by (14). If the distribution of h;j(c) has bounded
support [a;;(c),biy(c)], we then have

S S £55(0) < Bua(©) — qus(ev + aus(e)ory [2log(——),
deD jEK eis(c)
(17)

which implies (13), where c;;(c) = 3(bis(c) — ais(c)) # 0,
Bis(c) = L(bis(c) + ais(c)), and v=, o are the constants
related to the probability distribution of h;j(c).

Proof: (Sketch) The proof of this theorem mainly utlhzes

the following inequality Q(y) < max{v-y,vTy} + % y ,
where v~ , vt € [-1,1] and ¢ > 0 are constants that depend
on the given families of probability distributions of y with
bounded support [-1, 1]. Since h;;(c) may not be bounded in
[-1, 11, e.g., his(c) € [ais(c),b;s(c)], we need to normalize
hiy(c) as follows: (;7(c) = %@’)J(), where «;;(c) =
%(le(C) — aiJ(c)) 7’5 0 and BZ‘J(C) £ %(biJ(C) + aiJ(c)).
And substituting ¢;;(c) in the inequality can derive the final
approximation. Please refer to [29] and find the detailed proof.
|

V. DECENTRALIZED ALGORITHM

We note that (17) is linear and thus convex, which may
enable the whole problem to be solved by convex optimization
techniques. However, the new problem is still NP-hard in
general, owing to the aforementioned combinatorial difficulty
in (6). Fortunately, enlightened by [11], after relaxing (6) of
finding all MLSSs rather than MMSSs in the TDCG, we can
employ the dual decomposition method to obtain an efficient
and decentralized solution.

Let fi(c) £ 2 IcTe fi;(c), where Vi € N and j € T,
with the clear understanding that f{ J]( c) =0if 5 & TC
Therefore, f{(c) represents the flow rate of innovative packets
on link (¢, j) using channel ¢ (c € C;(C;) for sink d.

The optimization problem is converted into

maximize R
(2), (4), (6),and
Z th

JCTE

where h;s(c) £ Bis(c) — ais(c)v™ 4+ aiy(c)oy /210g(— 5 J(c))

A. Dual Decomposition and Subgradient Method

subject to

> 2 5@

deD jeK

GEN,KCTE, — (18)

We form the dual problem by introducing the Lagrange
multipliers for constraints in (4) and (18). By introducing dual
variables A = (A% (c)) > 0, u = (uix(c)) > 0 to relax
(4) and (18) respectively, and moving them to the objective
function, we have

O\, ) = max L(R.£,2, A, p)
subject to (R,f) € QF (19)
Z € Pstan (g), (20

where f = (fd( ) >0,z = (z4(c)) > 0, and the flow
polytope Q is 'defined by (2). The corresponding Lagrangian
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is given by

L(R,f,z,\, n)
=R

EEE T o £

deDieN ceC; KCTf JCTE

7,7K

Zm)
Z Z fz%‘(@)

deD jEK

+zzzmx(2m

i€EN ceCy KCTF JCTS

)Y fi5(e)

jEK

{Rzzzzww

deEDiEN c€C; KCTS

=20 > il

iEN c€Cy KCTS

{zzzzwm

9D f%(C))

deD jeEK

deDieN ceC; KCTE

T2 D D e

1EN c€Cy KCTf

JCTE

Z h/lJ

JCTE

Z ZiJ(C)biJK(C))

@n

The first term in the above equation depends only on the
flow rate variables fidj (c), while the second term relies solely
on the coding subgraph variables z;;(c). Therefore, the dual
function can be computed by decomposing the optimization
problem into following subproblems:

O(A, ) = maX}L(R, f,z,\ )

{Rfz

= 01(A, 1) + 02(X) + 0o, (22)

where

91(A7 ’1')

B 3D ) SRTAL

deDieN ceC; KCTf

=30 D k() 0D

1EN c€Cy KCTfF deD jeK

) D Fi(e)

JEK

C)) (23)

Z zig(c)bisr (c)

JCTE

max (R
(R,$)eQF,0<RL1

02(A)

e (SEE 5 e

P,
2€Psman( deDiEN c€C; KCTE
(24)

and

(25)

B=Y Y Y o

iEN c€C; KCTS

In the first subproblem, similar as in [11], we add a redun-
dant constraint on R (0 < R < 1), since by the definitions of
zij(c) and b; 5k (c), and constraint (4), the rate R cannot be
larger than one. This constraint is to avoid handling possibly
unbounded solutions.

Then, we have the following dual problem
minimize (A, )
subjectto A >0, > 0.

Since §(A, p) may not be differentiable, we apply the well-

known subgradient projection method to solve the above dual
problem. And the update rules are given by

Alt+1] = {A[H] = m[A [t} (26)
plt + 1] = {pft] - n2[t] A0}, 27
where  {z}T = max(x,0), m[t] and 9]
are  the corresponding  appropriate  stepsizes, and
Adltl = ey 2 (@tbik(e) — Z]eK FE @It
Aolt] = (Xjcre his(€) = Yaep e F(e)[t]). Here,

fit] = ( Z‘é(c)[t]) and z[t] = (2;5(c¢)[t]) are the solutions
of subproblems (23) and (24) respectively, at step ¢t. And
l;i Ji(c) can be locally calculated by node i. We will show
how to solve these subproblems in a decentralized way in

Section V-B.

B. Flow Optimization and Scheduling Subproblem Solution
Rearranging (23) yields
(1.1)
o) ).
(28)

= arg max (
(R,H)€Qp,0<R<1

where ¢ (c) = Z{K|KCTCJGK}(/\1K( ¢) + pir(c)). This
subproblem is a multiple- shortest- -paths problem owing to the
conservation constraints in the flow polytope Q. Addition-
ally, the subproblem is similar to the subgraph optimization
problem in [11], except that we should consider the channel
selection for every link under a given set of available channels.
Solving (28) is equivalent to searching for each sink d € D,
the shortest path with respect to the cost qu (¢) from the source
s to sink d, ensuring that there is at least a common channel
available for each link in the path. Moreover, to maximize
(28), we need to increase IR and make the right expression
small. Nevertheless, R and f are coupled by Qr. Fixing R,
we should minimize the cost:

Somind o33 a0

deD 1€EN c€eC; JETS

Do bobop oyt

deD \i€EN ceC; jETE

(29)

for s to each d supporting end-to-end throughput R. (29) can
be seen as a minimum-cost network problem without capacity
constraints [11]. Consequently, it is sufficient for each of the
D parallel optimization problems to find a single minimum-
cost path from s to d with an available channel for each link.
Since each of the flows in the minimum-cost path carries the
total throughput R as there is only one active path from s to
d and one channel for each link, (28) can be reformulated as

-y Y

d€D (i,j,c)EPsa

max
R,0<R<1

@), @0
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where Psy denotes the collection of links (¢, j) with channel ¢
(c € C;(NC;) in the minimum-cost path from s to d. If the sum
of costs in all paths from source s to all sinks is less than 1,
the maximum is 1 for R and for those link flows Al-dj(c) with
(i,j,¢) € Pgq. Otherwise, the maximum is zero by setting
both R and f to zero.

To solve (30), we have to determine D shortest paths, which
can be distributively solved by the asynchronous Bellman-Ford
algorithm [26]. Since all qu(c) are greater than zero, there
exist no cycles with negative costs and thus the shortest path
algorithms converge [26] in O(M N) time, where M and N
are the number of arcs and nodes, respectively. In fact, in
our problem, the time complexity is O(M NC'), where C is
maximal number of available channels.

We now consider the second subproblem, which can be
rewritten as

Z = arg max Z Z Z wig(e)zig(c) |, (€2))
2€Psta(9) \ jeN cec, Ty
where weights w;j(c) = Y 4cp ZKcTiC(/\;‘,iK(c)biJK(C))-

The weight w;;(c) of a node 4 is just a function of local
variables A% (c) and b; sk (c)), which enables us to design a
distributed scheduling algorithm. This is a standard maximum-
weight-stable-set (MWSS) problem in the scheduling literature
[27], which is NP-hard in general. A worth emphasizing point
is that the weight is not only related to the hyperarc but also the
channel they choose. We have encapsulated both the hyperarc
and channel in a tuple in the proposed TDCG. To obtain
an efficient solution, we relax the maximum weight stable
set constraint and instead search a maximal stable set. The
relaxed problem can be solved using the distributed algorithm
in [27]. The input of the algorithm is a weighted indirected
graph and the output is a stable set with high weight. Further,
the output stable set is guaranteed to be maximal too. And
the algorithm converges in just 26(G) steps, where 6(G) is the
stability number of the conflict graph G [27].

The sequence of f[¢] and z[t] iterated by subgradient op-
timization methods might be infeasible [28]. To recover the

primal solution, we employ a classical primal recovery method
[28], which averages the intermediate optimal values, i.e.

T

R R R R~ . 1,
R :T;R[t], f :f;f[t}, z :TZz[ﬂ.

t=1

(32)

This approach can coverage to the primal optimal solution for
a stepsize ﬁ with @’ > 0, > 0 and ¢/ > 0 [28].

c't
VI. EVALUATION

In this section, we present evaluation results for our pro-
posed solution. The main goal is to demonstrate the superior
performance of our algorithm over existing approaches.

A. Objects of Comparison

Our decentralized algorithm offers a feasible solution to
the chance-constrained program. To evaluate the gap between
our algorithm and the optimal solution, we remove constraint
(12) in the program and obtain the new solution as an

“upper bound”. We also incorporate a naive approach called
as “conservative robust algorithm” that simply substitutes the
bandwidth B¢ to the expectation value of B¢ in the link
capacity h;;(c), which does not consider the uncertainty of
spectrum availability. Besides, since [3] is the first to study
multicast in multi-hop CRNs, we implement their approach
(labeled “non-network coding algorithm™ in the figs) to show
the benefits of network coding on multicast in multi-hop CRNs
when considering the uncertain spectrum availability.

B. Setup

We conduct simulations with a CRN over random network
topologies, where nodes are randomly placed on a square
region. Concretely, we evaluate all algorithms on two sce-
narios, 10 nodes on a 56x56 m? square and 20 nodes on
a 80x80 m? square, respectively. We consider the leftmost
node to always be the source s, and the two rightmost nodes
to be the sinks. Following previous works [3], [17], the explicit
settings of each node are as follows. The power propagation
gain between node ¢ and node j is g;; = *ydi_j”, where d;;
denotes the distance of node ¢ and node j, v is an antenna
related constant, and n is the path loss factor. We set v and n
to be 1 and 4, respectively. The power spectral density from
the transmitter is @ = 1.6 x 10°7, where 7 is the ambient
Gaussian noise density. The transmission range for a node
is thus rp = (yQ/n)* = (1.6 x 10%)3 = 20 (m). As for
the erasure model, for simplicity, we assume that any receiver
successfully receives a packet from its neighbor node with
identical probability 1 - p, where we change p from 0.05 to
0.25 in the simulations. We also suppose that the erasures
across different receivers are independent. For the tolerance
level, we set €;5(c) = 0.01 forall i € N, c € C;, J C TE.

For the channel availabilities, we assume that there are C
= 3 and C' = 5 licensed channels for the first network and
second network that can be opportunistically used by SUs,
respectively. Based on the data collection as well as statistical
analysis on spectrum utilization in [14], the bandwidth of
a channel ¢, B¢, can be exponential, i.e., B¢ ~ FE(v°),
where v°¢ € (0,3]. Note that different channel ¢ may have
different distribution parameter v°. In our simulation study, we
randomly choose v¢ from (0, 3] for each channel c to simulate
heterogeneous channels. The set of available channels at each
node is randomly selected from the channel pool. Besides, to
evaluate the performance of our algorithm in various spectrum
availabilities, we conduct the similar simulation study on
an another set of bandwidth distribution, i.e., B¢ follows a
Normal distribution, B¢ ~ N(u’,a’2). In the simulations, u’
and o’ are set as 2 and 1, respectively.

Due to the inherent spectrum scarce and consequent dis-
connectionless, there may exist no feasible solution for some
specific data set. In this study, we only focus on the data sets
with feasible solutions and present the corresponding results
in the following subsection.
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Fig. 1: Maximum multicast rate as a function of channel
erasure rate for two different sized networks under Exponential
distribution, i.e., B¢ ~ E(v®),v° € (0, 3].
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Fig. 2: Maximum multicast rate as a function of channel
erasure rate for two different sized networks under Normal
distribution, i.e., B¢ ~ N(2,1).

C. Results

Fig. 1 (a) shows the throughput performance of our de-
centralized algorithm in a network with 10 nodes and 3
channels under Exponential distribution, compared to the
upper bound, conservative robust algorithm and non-network
coding algorithm, when the channel erasure rate p varies.
According to the figure, firstly, our algorithm outperforms the
non-network coding algorithm, no matter when the channel
quality deteriorates. This is because with network coding, both
wireless broadcast nature and multipath benefits are effectively
exploited in multi-hop CRNs, while without network coding,
packets are transmitted for each sink on one single path only.
Moreover, we find that the performance of the conservative
robust algorithm is a little worse than the non-network coding
algorithm, due to the overly conservative constraints on link
capacity. And this shows the importance of considering the
uncertainty of spectrum availability. Also, our decentralized
algorithm achieves a competitive performance compared with
the upper bound. The above phenomenons are similar in a
larger network with 20 nodes and 5 channels, as shown in
Fig. 1 (b). This illustrates that our algorithm is effective facing
with a larger network and bigger channel set.

In Figs. 2 (a) and (b), we evaluate the performance of
all algorithms under Normal distribution, when the channel
erasure rate p changes from 0.05 to 0.25. As shown in the
figures, similar to Figs. 1 (a) and (b), compared to the conser-
vative robust algorithm and the non-network coding algorithm,
our proposed algorithm always achieves higher maximum

multicast rates when the channel erasure rate varies. Similarly,
the performance of the conservative robust algorithm is as
low as that of non-network coding algorithm. All in all, the
performance of our algorithm is relatively stable when the type
of spectrum availability changes.
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Fig. 3: Convergence of the distributed algorithm.

In Figs. 3 (a) and (b), we illustrate the convergence of the
decentralized algorithm for the two different sized networks.
Since the optimal value of the maximum multicast rate,
i.e., R*, cannot be efficiently obtained, we use instead the
improvement in the maximum multicast rate in each iteration,
ie., AR* = R*[t+ 1] — R*[t]. From the figures, we note that
our algorithm achieves fast convergence in both cases, where
AR* quickly converges close to zero within ~60 iterations.

VII. RELATED WORK

In this section, we review the related work in the follow-
ing two aspects: network coding-based multicast in MR-MC
networks, and multicast in multi-hop CRNs, which is further
divided into two parts according to whether network coding
is used.

Network Coding-Based Multicast in MR-MC Networks:
Zhang and Li [12] showed that network coding can further
increase the capacity of multichannel mesh networks. With
opportunistic overhearing, Chieochan and Hossain [13] pro-
posed a suboptimal, auction-based solution for the overal-
I network throughput optimization with network coding in
MR-MC networks. Lin and Yang [24] studied the problem
of multirate multichannel multicast with intraflow network
coding. However, these studies for MR-MC networks cannot
be applied to address our problem. This is because in MR-
MC networks, the set of common available channels for every
node in the network is assumed fixed and corresponding link
capacity is definite, which is impractical for CRNs.

Multicast in Multi-Hop CRNs:

Without network coding: Kim et al. [22] improved the
scalability of the classical routing protocol ODMRP to support
multicast services in a cognitive radio ad hoc wireless net-
work. Almasaeid et al. [23] proposed an on-demand multicast
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rouging algorithm for cognitive radio mesh networks. In [4],
a reactive joint channel allocation and multicast scheme is
proposed for a multi-hop CRN. Gao et al. [3] formulated
the problem of multicast in multi-hop CRNs as mixed linear
program to minimize the required resources. However, none
of the aforementioned works utilizes network coding to pursue
higher throughput performance.

With network coding: Jin et al. [2] studied multicast schedul-
ing with cooperation and network coding in CRNs, where
network coding is used to reduce overhead and perform error
control. Although [2] exploits network coding to improve the
network performance in multi-hop CRNs, network coding is
actually not utilized in SUs’ data transmissions. Using network
coding as an assistance strategy, Almasaeid and Kamal [5]
proposed an algorithm to reduce the effect of the channel
heterogeneity property on the multicast throughput in cognitive
radio wireless mesh networks. In [5], network coding is
employed to improve the performance of multicast in one cell,
which is limited to single hop only and thus the approach
cannot be utilized in multi-hop CRNs. Specifically, in single
hop scenarios, there are no forwarders, and thus the coding
subgraph selection is not involved, while it it not the case for
multi-hop CRNs. And both [2] and [5] do not consider the
uncertainty of spectrum availability in CRNs.

VIII. CONCLUSION

In this paper, we for the first time studied the network
coding-based multicast problem in multi-hop CRNs, while
considering the uncertain spectrum availability. We formulated
the overall problem as a chance-constrained program. We
constructed a TDCG to encapsulate both hyperarc scheduling
and channel selection into hyperarc-channel tuples. Though
appropriate Bernstein approximation and relaxation of finding
stable sets in the TDCG, we proposed an efficient distributed
algorithm for the original problem. Simulation results showed
that our algorithm obtains higher multicast rates than the non-
network coding algorithm in CRNs and the conservative robust
algorithm. Although our algorithm is provably efficient, we
found that the algorithm works not well in larger networks as
the number of possible stable sets increases very quickly with
the increased network size, which will be studied in future.
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