
1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3000262, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 2020 1

Online Pricing with Reserve Price Constraint for
Personal Data Markets

Chaoyue Niu, Student Member, IEEE, Zhenzhe Zheng, Member, IEEE, Fan Wu, Member, IEEE,
Shaojie Tang, Member, IEEE, and Guihai Chen, Senior Member, IEEE

Abstract—The society’s insatiable appetites for personal data are driving the emergence of data markets, allowing data consumers to
launch customized queries over the datasets collected by a data broker from data owners. In this paper, we study how the data broker
can maximize its cumulative revenue by posting reasonable prices for sequential queries. We thus propose a contextual dynamic
pricing mechanism with the reserve price constraint, which features the properties of ellipsoid for efficient online optimization and can
support linear and non-linear market value models with uncertainty. In particular, under low uncertainty, the proposed pricing
mechanism attains a worst-case cumulative regret logarithmic in the number of queries. We further extend our approach to support
other similar application scenarios, including hospitality service and online advertising, and extensively evaluate all three use cases
over MovieLens 20M dataset, Airbnb listings in U.S. major cities, and Avazu mobile ad click dataset, respectively. The analysis and
evaluation results reveal that: (1) our pricing mechanism incurs low practical regret, while the latency and memory overhead incurred is
low enough for online applications; and (2) the existence of reserve price can mitigate the cold-start problem in a posted price
mechanism, thereby reducing the cumulative regret.

Index Terms—personal data market, revenue maximization, contextual dynamic pricing, reserve price, ellipsoid
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1 INTRODUCTION

NOWADAYS, tremendous volumes of diverse data are
collected to seamlessly monitor human behaviors,

such as product ratings, electrical usages, social media
data, web cookies, health records, and driving trajectories.
However, for the sake of security, privacy, or business com-
petition, most of data owners are reluctant to share their
data, resulting in a large number of data islands. Because
of data isolation, potential data consumers (e.g., commercial
companies, financial institutions, medical practitioners, and
researchers) cannot benefit from private data. To facilitate
personal data circulation, more and more data brokers have
emerged to build bridges between the data owners and the
data consumers. Typical data brokers in industry include
Factual [2], DataSift [3], Datacoup [4], CitizenMe [5], and
CoverUS [6]. On the one hand, a data broker needs to
adequately compensate the data owners for the breach of
their privacy caused by using their data to answer any data
consumer’s query, thereby incentivizing active data sharing.
On the other hand, the data broker should properly charge
the online data consumers for their sequential queries over
the collected datasets, because both underpricing and over-
pricing may result in loss of revenue for the data broker. The
data circulation ecosystem is conventionally called “data
market” in the literature [7].

In this paper, we study how to trade personal data for
revenue maximization from the data broker’s standpoint in
online data markets. We summarize three major design chal-
lenges as follows. The first and the thorniest challenge is that
the objective function for optimization is quite complicated.
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• An early version of this work with the same title appeared as a 4-page
poster paper in IEEE ICDE 2020 [1]. This journal version has added the
principles, details, and analysis of our design, the evaluation results, the
related work, as well as substantial illustrations and revisions.

The principal goal of a data broker in data markets is to
maximize its cumulative revenue, which is defined as the
difference between the prices of queries charged from the
data consumers and the privacy compensations allocated to
the data owners. Let’s examine one round of data trading.
Given a query, the privacy leakages together with the total
privacy compensation, regarded as the reserve price of the
query, are virtually fixed. Thus, for revenue maximization,
an ideal way for the data broker is to post a price, taking the
larger value of the query’s reserve price and market value.
However, the reality is that the data broker does not know
the exact market value and can only estimate it from the
context of the current query and the historical transaction
records. Of course, a loose estimation will lead to different
levels of regret: (1) if the reserve price is higher than the
market value, implying that the posted price must be higher
than the market value, the query definitely cannot be sold,
no matter whether the data broker knows the market value
or not. Thus, the regret is zero; and (2) if the reserve price is
no more than the market value, a slight underestimation of
the market value incurs a low regret, whereas a slight over-
estimation causes the query not to be sold, generating a high
regret. Therefore, the initial goal of revenue maximization
can be equivalently converted to minimizing the cumulative
regret, particularly, the difference between the data broker’s
cumulative revenues with and without the knowledge of
the market values. Considering even the single-round regret
function is piecewise and highly asymmetric, it is nontrivial
to perform optimization for multiple rounds.

Another challenge lies in how to model the market val-
ues of the customized queries from the data consumers. For
regret minimization in pricing online queries, the pivotal
step for the data broker is to gain a good knowledge of
their market values. However, markets for personal data
significantly differ from conventional markets in that each
data consumer as a buyer rather than the data broker
as a seller can determine the product, namely, a query.
In general, each query involves a concrete data analysis
method and a tolerable level of noise added to the true
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Fig. 1. A general system model of online personal data markets. The smile indicates that the posted price is accepted and a deal is made.

answer, which are both customized by a data consumer
[8], [9]. Hence, the queries from different data consumers
are highly differentiated and are uncontrollable by the data
broker. This striking property further implies that most of
the dynamic pricing mechanisms, which target identical
products or a manageable number of distinct products,
cannot apply here. In addition, existing work on data market
design either considered a single query [10] or investigated
the determinacy relation among multiple queries [9], [11]–
[17], but ignored whether the data consumers accept or
reject the marked prices. Thus, these work omitted modeling
the market values of queries and is parallel to this work.

The ultimate challenge comes from the novel online pric-
ing with reserve price setting. For the estimation of a query’s
market value, the data broker can exploit only the cur-
rent and historical queries. Thus, the pricing of sequential
queries can be viewed as an online learning process. Besides
the usual tension between exploitation and exploration, our
pricing problem has three atypical aspects: (1) the feedback
after trading one query is very limited. The data broker
can observe only whether the posted price for the query
is higher than its market value or not, but cannot obtain the
exact market value, which makes standard online learning
algorithms [18] inapplicable; (2) the reserve price essentially
imposes a lower bound on the posted price beyond the
market value estimation, while the ordering between the
reserve price and the market value is unknown. In addition,
the impact of such a lower bound on the whole learning
process has not been studied as of yet; and (3) the online
mode requires our design of the posted price mechanism to
be quite efficient. In other words, the data broker needs to
choose each posted price and further update its knowledge
about the market value model with low latency.

We outline the key contributions in this work as follows.
• To the best of our knowledge, we are the first to study

trading personal data for revenue maximization from the
perspective of a data broker in online data markets. In
addition, we formulate it into a contextual dynamic pricing
problem with the reserve price constraint.
• The proposed pricing mechanism features the prop-

erties of ellipsoid to exploit and explore the mar-
ket values of sequential queries effectively and effi-
ciently. It supports both linear and non-linear mar-
ket value models and tolerates some uncertainty. The
worst-case cumulative regret under low uncertainty is
O(max(n2 log(T/n), n3 log(T/n)/T )), where n is the di-
mension of feature vector and T is the total number of
rounds. The time and space complexities are both O(n2).
Further, our market framework can also support trading
other similar products, which share customization, existence
of reserve price, and timeliness with online queries.
• We evaluate three use cases over three real-world

datasets. The major results are: (1) for the pricing of noisy
linear query under the linear model, when n = 100 and the
number of rounds t is 105, the regret ratio of our pricing
mechanism with reserve price (resp., with reserve price and
uncertainty) is 7.77% (resp., 9.87%), reducing 57.19% (resp.,
45.64%) of the regret ratio than a risk-averse baseline, where
the reserve price is posted in each round; (2) for the pricing
of accommodation rental under the log-linear model, when
n = 55, t = 74, 111, and the ratio between the natural
logarithms of the reserve price and market value is set to 0.6,
the regret ratio of our pricing mechanism is 3.83%, reducing
77.46% of the regret ratio compared with the baseline; (3) for
the pricing of impression under the logistic model, when
n = 1024 and t = 105, the regret ratios of our pure pricing
mechanism are 8.04% and 0.89% in the sparse and dense
cases, respectively; and (4) the latency of three applications
per round is each in the magnitude of millisecond (ms for
short), while the memory overhead is each less than 160 MB.
•We instructively demonstrate that the reserve price can

mitigate the cold-start problem in a posted price mecha-
nism, thereby reducing the cumulative regret. Specifically,
(1) for the pricing of noisy linear query, when n = 20 and
t = 104, our pricing mechanism with reserve price (resp.,
with reserve price and uncertainty) reduces 13.16% (resp.,
10.92%) of the cumulative regret than without reserve price;
and (2) for the pricing of accommodation rental, as the
reserve price approaches the market value, its impact on
mitigating cold start is more evident.

2 TECHNICAL OVERVIEW
In this section, we introduce system model, problem formu-
lation, and design principles.

2.1 System Model
As shown in Fig. 1, we consider a general system model
for online personal data markets. There are three kinds of
entities: data owners, a data broker, and data consumers.

The data broker first collects massive personal data from
the data owners. Then, the data consumers come to the
data market in an online fashion. In round t ∈ [T ], a data
consumer arrives and makes a customized query Qt over
the collected dataset. Specifically, the query Qt comprises a
concrete data analysis method and a tolerable level of noise
added to the true answer [8], [9]. Here, the noise perturba-
tion not only can allow the data consumer to control the
accuracy of a returned answer but also can preserve the
privacy of the data owners.

Depending on Qt and the underlying dataset, the data
broker quantifies the privacy leakage of each data owner
and needs to compensate it if a deal occurs. The data broker
then offers a price pt to the data consumer. If pt is no more
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than the market value vt of Qt, this posted price will be
accepted. The data broker charges the data consumer pt,
returns the noisy answer, and compensates the data owners
as planned. Otherwise, this deal is aborted, and the data
consumer goes away. To guarantee non-negative utility for
the data broker no matter whether a deal occurs in round t
or not, the posted price pt should be no less than the total
privacy compensation qt. qt functions as the reserve price and
can be pre-computed when given Qt.

We next give the online trading of noisy linear queries
for example. A static market framework for trading the same
products with marked prices was studied in [9].

Example 1. A data broker, called Bob, maintains a vector
(2, 1, 4, 3), where each value is contributed by a data owner (e.g.,
denoting a student’s rating for some course). Each data owner also
signs a digital contract with Bob with respect to different levels
of privacy leakage and corresponding compensations. In round 1,
a data consumer, called Alice, launches a query Q1, including
“How many data owners have values higher than 3?” and “The
variance of tolerable noise is no more than 0.1.”. The level of noise
guarantees an error of 1 with 90% confidence for the counting
answer by Chebyshev’s inequality. Given Q1, Bob quantifies the
privacy leakage of each data owner (e.g., using differential privacy-
based method in [9]) and computes its privacy compensation
under the contract. For example, the privacy compensations of
4 data owners are (0.3, 0.25, 0.2, 0.25). Bob obtains the total
privacy compensation q1 = 1 and posts a price p1 to Alice. Here,
p1 must be higher than the reserve price q1 (e.g., p1 = 1.2). If
Alice accepts (resp., rejects) p1, Bob will know that the posted
price is no more than (resp., higher than) the market value of
Q1, namely, p1 ≤ v1 (resp., p1 > v1). In round t, another data
consumer launches another query Qt, comprising a different type
of statistic analysis (e.g., “What is the mean?”) and a different
tolerable variance of noise (e.g., 0.01). The holistic trading process
is the same as that of round 1.

2.2 Problem Formulation
We now formulate the regret minimization problem for
pricing sequential queries in online personal data markets.

We first model the market values of customized and
highly differentiated queries. We use an elementary as-
sumption from contextual pricing in computational eco-
nomics [19]–[21] and hedonic pricing in marketing [22], [23],
which states that the market value of a product is a deter-
ministic function of its features. Here, the product is a query,
and the function can be linear or non-linear. To make the
pricing model more robust, we allow for some uncertainty
in the market value of each query. In particular, for a query
Qt, we let xt ∈ Rn denote its n-dimensional feature vector,
let f : Rn 7→ R denote the mapping from the feature vector
xt to the deterministic part in its market value, and let
δt ∈ R denote the random variable in its market value,
which is independent of xt. In a nutshell, vt = f(xt) + δt.

We next identify the features of a query for measuring its
market value. One naı̈ve way is to directly encode the con-
tents of the whole query, including the data analysis method
and the noise level. However, the query alone, especially the
abstract data analysis method, is hard to embody its eco-
nomic value. Let’s examine the same type of simple queries
in Example 1 for easy illustration: it is nontrivial to directly
compare the economic values of the counting and mean
statistics, let alone incorporating different levels of accuracy.
Thus, we turn to leveraging the underlying valuations of the
data owners about the query, namely, the privacy compen-
sations, as the feature vector. We explain the rationality and

feasibility of this feature representation: (1) the market value
of a query depending on the privacy compensations inherits
the core principle of cost-plus pricing [24], [25] and has been
widely used in personal data pricing under the static market
framework [9], [16], [17]. In particular, cost-plus pricing
states that the market value of a product is determined
by adding a specific amount of markup to its cost. Here,
the cost is the total privacy compensation, the determinacy
is reflected in the feature representation, and the markup
is realized by setting the reserve price constraint; (2) the
privacy compensations are observable by the data broker
and can help it to discriminate the economic values of
distinct queries. For example, the privacy compensations are
higher, which implies that the privacy leakages of the data
owners are larger, the knowledge discovered by the data
consumer is richer, and thus the market value of the query
to the data consumer should be higher; and (3) considering
the scale of individual data owners can be large in practice,
the dimension of the feature vector call be high as well. We
can apply some celebrated dimension reduction techniques
(e.g., Principal Components Analysis (PCA) [26]). We can
also apply aggregation/clustering to the privacy compen-
sations and regard the aggregate results as the feature
vector, where the dimension n controls the granularity of
aggregation. One extreme case is n = 1, where the only
feature is the total privacy compensation; the other extreme
case is n equal to the number of data owners, where every
feature corresponds to a data owner’s individual privacy
compensation. Intuitively, we can interpret the aggregation
technique as the introduction of n “master” data owners.
Each master data owner represents and manages a group of
“child” data owners for unified privacy compensation. We
still examine Example 1 and set n = 2. We assume that one
master data owner manages the first two data owners, while
the other master data owner manages the last two data
owners. Then, the feature vector of Q1 is x1 = (0.55, 0.45).

We finally define the cumulative regret of the data broker
due to its limited knowledge of market values. We consider
a game between the data broker and an adversary. During
this game, the adversary chooses the sequence of queries
Q1, Q2, . . . , QT , selects the mapping f , but cannot control
the uncertainty δt in each round t, namely, the adversary can
determine the part f(xt) in the market value vt. In contrast,
the data broker only can passively receive each query Qt
and then post a price pt. If the posted price is no more than
the market value (i.e., pt ≤ vt), a deal occurs, and the data
broker earns a revenue of pt. Otherwise, the deal is aborted,
and the data broker gains no revenue. We define the regret rt
in round t as the difference between the adversary’s revenue
and the data broker’s revenue for trading the query Qt. The
detailed formula of rt is

rt =

{
0 if qt > vt,

max
p∗t

p∗t Pr
δt

(p∗t ≤ vt)− pt1 {pt ≤ vt} otherwise.

In the first branch (as qt > vt), if the reserve price and thus
the posted price are higher than the market value, there is
no regret. This is because under such a circumstance, no
matter whether the adversary knows the market value in
advance or the data broker does not, there is definitely no
deal and zero revenue. Let’s consider Q1 in Example 1: if
the reserve price q1 = 1 is higher than the market value
v1 = 0.8, then the posted price p1 > q1 = 1 must be higher
than v1 = 0.8, implying that Alice certainly rejects p1. In
the second branch (as qt ≤ vt), p∗t is the adversary’s optimal
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Fig. 2. Illustrations of (effective) exploratory posted prices under the linear market value model.

posted price to maximize its expected revenue in round t,
where the expectation is taken over δt. When δt is omitted,
the adversary will just post the market value if the reserve
price is no more than the market value (i.e., qt ≤ p∗t = vt),
and rt will change to:

rt =

{
0 if qt > vt,

vt − pt1 {pt ≤ vt} otherwise.
(1)

At last, considering the sequential queries can be chosen
adversarially (e.g., by other competitive data brokers or
malicious data consumers), our design goal is to minimize
the total worst-case regret accumulated over T rounds.

2.3 Design Principles
We overview our pricing framework and illustrate its key
principles. We first consider the deterministic linear market
value model, where f is a linear function, parameterized by
a weight vector θ∗ ∈ Rn. In other words, the market value
of the query Qt is vt = xt

T θ∗. We then consider extensions
to the uncertain setting and non-linear models.

We start with a special case of the linear model, where
each feature vector xt is one-dimensional (i.e., n = 1).
For example, the single feature can be the total privacy
compensation or the reserve price qt, and the weight θ∗
denotes some fixed but unknown revenue-to-cost ratio.
We note that to minimize the regret in pricing the query
Qt, the data broker needs to have a good estimation of
its market value vt, which can be equivalently converted
to gaining a good knowledge of the observable feature
xt’s market value, namely θ∗. We let Kt denote the data
broker’s knowledge set of θ∗ in round t. In addition, the
initial knowledge set K1 can be an interval [`, u] for some
`, u ∈ R. Moreover, after round t, if the posted price pt
is rejected (resp., accepted), the data broker will update
its knowledge set Kt to Kt+1 = Kt

⋂
{θ ∈ R|pt ≥ xt

T θ}
(resp., Kt+1 = Kt

⋂
{θ ∈ R|pt ≤ xt

T θ}). Now, the key
problem for the data broker is how to set the posted price
pt. In fact, the knowledge set Kt can impose a lower bound

¯
pt = minθ∈Kt

xt
T θ and an upper bound p̄t = maxθ∈Kt

xt
T θ

on estimating the market value vt and thus on the posted
price pt, while the reserve price qt imposes the other lower
bound on the posted price pt. If the posted price pt is
max(qt,

¯
pt), the data broker can sell the query Qt with

the highest probability. However, in the worst case, where
qt ≤

¯
pt, this deal will not refine the knowledge set (i.e.,

Kt+1 = Kt) and thus cannot benefit the following rounds.

We call such a price max(qt,
¯
pt) a conservative price. On the

other hand, as shown in Fig. 2a, inspired by bisection, we
define the larger value of the reserve price and the middle
price (i.e., max(qt, ¯

pt+p̄t

2 )) as an exploratory price. In the
worst case, the feedback from posting this price can narrow
down the knowledge set Kt by most and thus can benefit
the following rounds most. Of course, compared with the
conservative price, the exploratory price would suffer a
higher risk of no sale or losing the current revenue. We
note that both the conservative price and the exploratory
price have adequately exploited the experience from the
previous rounds (i.e., the latest knowledge set Kt), and
the difference is that these two types of posted prices give
distinct biases to the immediate rewards (exploitation) and
the future rewards (exploration). Accompanied with the key
problem of setting posted prices, another problem is when
the data broker should choose which price. Our strategy
is to measure the size of the knowledge set Kt (e.g., the
width of interval in the one-dimensional case). If it exceeds
some threshold, the data broker chooses the exploratory
price to further improve its knowledge set; otherwise, its
knowledge set is near optimal, and the data broker chooses
the conservative price. In our real design, we use p̄t −

¯
pt to

capture the size of Kt and let ε > 0 denote the threshold.

We next take Example 1 as a running instance of our one-
dimensional design. We set the revenue-to-cost ratio θ∗ =
1.4, set Bob’s initial knowledge set K1 = [1, 2], and set ε =
0.07. In round 1, given the feature of Q1 (i.e., x1 = q1 = 1),
Bob computes the lower bound and the upper bound on
estimating the market value, namely,

¯
pt = 1 × 1 = 1 and

p̄t = 1×2 = 2. Thus, the conservative price is max(1, 1) = 1,
and the exploratory price is max(1, 1+2

2 ) = 1.5. Considering
p̄t −

¯
pt = 1 > ε, Bob posts the exploratory price pt = 1.5,

which is higher than the market value v1 = 1 × 1.4 = 1.4
and is rejected by Alice. Bob has a regret of r1 = 1.4, but
narrows its knowledge set K1 to K2 = [1, 1.5), significantly
benefiting the following T − 1 rounds. Assume that Bob
posted the conservative price 1, which is lower than v1 and
would be accepted by Alice. Bob would have a lower regret
of 1.4 − 1 = 0.4, but cannot refine its knowledge set to
benefit the following rounds.

We further consider the general linear model with mul-
tiple features (i.e., n ≥ 2). The holistic process is the same.
The difference lies in the concrete form of the knowledge set
Kt. In the one-dimensional case, Kt is an interval, while the
minimum and maximum possible market values (i.e.,

¯
pt and
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p̄t) can be efficiently computed from Kt. However, when
extended to the multi-dimensional case, we assume that the
initial knowledge set is K1 = {θ ∈ Rn|`i ≤ θi ≤ ui, `i, ui ∈
R}. After each round, the knowledge set is updated by
adding a linear inequality. Thus, the knowledge set Kt can
be viewed as a set of linear inequalities, the cardinality
of which is non-decreasing with the number of rounds t.
To post a price in round t, it suffices to solve two linear
programs under Kt, which is quite time-consuming and can
be computationally infeasible in online mode. Therefore, we
turn to borrowing some key principles from the celebrated
ellipsoid method for solving online linear programs, which
was first proposed by Khachiyan in 1979 [27]. The key idea
is to replace the raw knowledge setKt, viewed as a polytope
in geometry, with the ellipsoid Et of the minimum volume
that contains Kt. Et is called the Löwner-John ellipsoid of
the convex body Kt. By leveraging the property that every
ellipsoid is an image of the unit ball under a bijective affine
transformation [28], the data broker can efficiently deter-
mine the posted price and further update its knowledge
set in each round, requiring only a few matrix-vector and
vector-vector multiplications. Fig. 2b gives an illustration of
the exploratory posted price in the two-dimensional case.

We finally consider the uncertain setting and non-linear
models. First, for tractability, we make a common assump-
tion on the randomness δt in the market value vt, where the
distribution of δt belongs to subGaussian. We thus bound
the absolute value of any δt in all T rounds by δ with prob-
ability near 1. We regard δ as a “buffer” in posting the price
and updating the knowledge set, which can circumvent the
randomness δt in each round. Second, we mainly investigate
four classic non-linear models in market value estimation,
whose pattern is first applying an inner feature mapping
to the feature vector, then performing dot product with the
weight vector, and finally applying an outer non-decreasing
and continuous function. By still focusing on the discovery
of the weight vector rather than the inner and outer non-
linear functions, we can extend our pricing mechanism to
support this class of non-linear market value models.

3 FUNDAMENTAL DESIGN UNDER LINEAR MAR-
KET VALUE MODEL

In this section, we propose an ellipsoid-based pricing mech-
anism under the deterministic linear model and then extend
it to tolerate uncertainty. We also analyze the time and space
complexities as well as the worst-case cumulative regret.

3.1 Ellipsoid-Based Pricing Mechanism
As an appetizer, we first briefly review the definition of an
ellipsoid and some of its key properties.

Definition 1. E ⊆ Rn is an ellipsoid, if there exists a vector
c ∈ Rn and a positive definite matrix A ∈ Rn×n such that:

E =
{
θ ∈ Rn

∣∣∣(θ − c)
T
A−1 (θ − c) ≤ 1

}
. (2)

Intuitively, c represents the center of the ellipsoid E ,
while A portrays its shape. In particular, there are some
useful connections between the geometric properties of E
and the algebraic properties of A. We let γi(A) > 0 denote
the i-th largest eigenvalue of A. Then, the i-th widest axis
(resp., its width) of the ellipsoid E corresponds to the i-
th eigenvector (resp., 2

√
γi(A)). In addition, the volume

of the ellipsoid E , denoted as V (E), depends only on

Algorithm 1: An Online Pricing Mechanism for
Personal Data Markets

Input: A1 = R2In×n, c1 = 0n×1, an uncertainty
parameter δ =

√
2 logCσ log T , a threshold ε.

Output: The posted price pt in each round t ∈ [T ].
1 for t = 1, 2, . . . , T do
2 Et = {θ ∈ Rn| (θ − ct)

T A−1
t (θ − ct) ≤ 1};

3 Receives a query Qt with the feature vector xt ∈ Rn;
4 Determines the reserve price qt of Qt;
5 bt = Atxt√

xt
TAtxt

;

6
¯
pt = minθ∈Et xt

T θ = xt
T (ct − bt);

7 p̄t = maxθ∈Et xt
T θ = xt

T (ct + bt);
8 if qt ≥ p̄t + δ then
9 At+1 = At; ct+1 = ct;

10 continue;
11 else
12 if p̄t −

¯
pt = 2

√
xtTAtxt > ε then

13 Posts a price pt = max
{
qt, ¯

pt+p̄t

2
= xt

T ct
}

;
14 if pt is rejected then

15 αt =
¯
pt+p̄t

2
−(pt+δ)√

xt
TAtxt

= xt
T ct−pt−δ√
xt

TAtxt

;

16 if − 1
n
≤ αt ≤ 1 then

17

At+1 =
n2
(
1− αt2

)
n2 − 1

(
At

− 2 (1 + nαt)

(n+ 1) (1 + αt)
btbt

T

)
;

ct+1 = ct − 1+nαt
n+1

bt;

18 else
19 At+1 = At; ct+1 = ct;

20 else

21 αt =
¯
pt+p̄t

2
−(pt−δ)√

xt
TAtxt

= xt
T ct−pt+δ√
xt

TAtxt

;

22 if − 1
n
≤ −αt ≤ 1 then

23

At+1 =
n2
(
1− αt2

)
n2 − 1

(
At

− 2 (1− nαt)
(n+ 1) (1− αt)

btbt
T

)
;

ct+1 = ct + 1−nαt
n+1

bt;

24 else
25 At+1 = At; ct+1 = ct;

26 else
27 Posts a price pt = max

{
qt,

¯
pt − δ

}
;

28 At+1 = At; ct+1 = ct;

the eigenvalues of A and the dimension n. Specifically,
V (E) = Vn

√∏
i∈[n] γi(A), where Vn is the volume of the

unit ball in Rn and is a constant that hinges only on n.
We now present the ellipsoid-based posted price mech-

anism with the reserve price constraint for online personal
data markets in Algorithm 1 (omitting the uncertainty pa-
rameter δ here, also called “the version with reserve price”
in our evaluation part). We recall that the initial knowledge
set of the data broker about the weight vector θ∗ is K1 =
{θ ∈ Rn|`i ≤ θi ≤ ui, `i, ui ∈ R}. We choose a ball centered
at the origin with radius R =

√∑
i∈[n] max(`i

2, ui2) to
enclose K1. This ball can serve as the initial ellipsoid E1,
where A1 = R2In×n and c1 = 0n×1 (Input). In what
follows, we focus on a concrete round t.
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The data broker receives a query Qt with the feature
vector xt from a data consumer. Without loss of generality,
we assume that ∀t ∈ [T ], ‖xt‖ ≤ S for some S ≥ 1.
Then, the data broker virtually computes the total privacy
compensation allocated to the data owners as the reserve
price qt, which imposes a strict lower bound on the posted
price pt. Based on the knowledge set Et, the data broker
can elicit that the market value of the query Qt falls into a
certain interval, namely, vt = xt

T θ∗ ∈ [
¯
pt, p̄t] (Lines 5–7).

If the reserve price is no less than the maximum possible
market value, implying that the posted price should be no
less than the market value, namely, pt ≥ qt ≥ p̄t ≥ vt, the
query Qt cannot be sold (Lines 8–10); otherwise, the data
broker judges whether the difference between the maximum
and minimum possible market values (i.e., p̄t −

¯
pt) exceeds

a threshold ε. If yes, the data broker posts the exploratory
price (Lines 12–13); otherwise, it posts the conservative price
(Lines 26–27). In fact, the posted price places a cut on the
ellipsoid Et and splits it into two parts, where the cutting
hyperplane is {θ ∈ Rn|pt = xt

T θ}. In addition, the data
broker can compute a parameter αt to locate the position
of the cut (Line 15 or 21). Formally, αt is interpreted as the
signed distance from the center ct to the cutting hyperplane,
measured in the space Rn endowed with the ellipsoidal
norm ‖·‖At

−1 . For example, if the posted price is the middle
price (i.e., pt = ¯

pt+p̄t

2 = xt
T ct), the center ct is on the

cutting hyperplane, and αt = 0. Moreover, according to
the feedback from the data consumer, the data broker can
decide to retain which side of the ellipsoid Et and update
to its Löwner-John ellipsoid Et+1 by computing the new
shape At+1 and center ct+1 (Lines 14–25). In particular,
Grötschel et al. [28] have offered the formulas of At+1 and
ct+1, when the remaining part of Et is contained in the
halfspace like {θ ∈ Rn|pt ≥ xt

T θ}. This corresponds to the
rejection branch (Lines 14–19). By the symmetry of ellipsoid,
we can obtain the formulas in the acceptance branch (Lines
20–25). Furthermore, if the remaining part after a cut is
exactly half of the ellipsoid Et, we call the cut a central cut;
if the remaining part is less than half, we call it a deep cut;
and if the remaining part is more than half, we call it a
shallow cut. Last, it is worth noting that the data broker is
prohibited from refining the ellipsoid with the conservative
price (Line 28). The reason is that p̄t −

¯
pt essentially probes

the ellipsoid’s width along the direction given by the feature
vector xt (Please see Fig. 2b for an intuition.), which is very
small (≤ ε) when posting the conservative price. Suppose
the data broker is allowed to cut along this direction. By
adversarially setting the reserve prices, the width of ellip-
soid along this direction can shrink successively, while the
widths along the other directions can expand exponentially,
which can result in O(T ) worst-case cumulative regret.
Details about the adversarial example and its regret analysis
are reserved in our technical report [29].

We finally discuss a special case by executing the above
pricing mechanism without the reserve price constraint
(omitting both δ and qt in Algorithm 1, also called “the
pure version” in our evaluation part). First, the exploratory
posted price takes the middle price ¯

pt+p̄t

2 and poses a central
cut over the ellipsoid Et. Second, the conservative posted
price takes the minimum possible market value

¯
pt, which is

definitely no more than the real market value vt and must be
accepted by the data consumer. In addition, the conservative
posted price does not refine Et and incurs a shallow cut. In
a nutshell, there is no deep cut in this special case.

3.2 Incorporating Uncertainty
We extend our online pricing mechanism under the deter-
ministic linear model to the uncertain setting. We make
an assumption on the random variable δt in the market
value model. We assume that the distribution of δt is σ-
subGaussian, i.e., there exists a constant C ∈ R such that:

∀z > 0,Pr (|δt| > z) ≤ C exp

(
− z2

2σ2

)
. (3)

This is a common assumption widely used in modeling
uncertainty [30], [31]. In particular, many celebrated prob-
ability distributions, including normal distribution, uniform
distribution, Rademacher distribution, and bounded ran-
dom variables are subGaussian. For example, normal dis-
tribution is σ-subGaussian for its standard deviation σ and
for C = 2 [30]. By assigning a value δ =

√
2 logCσ log T to

the variable z in Equation (3), we obtain:

Pr (|δt| > δ) ≤ T− log T . (4)

We further apply Boole’s inequality to the above inequality
for all t ∈ [T ] and derive:

∃t ∈ [T ],Pr (|δt| > δ) ≤ T 1−log T

⇒ ∀t ∈ [T ],Pr (|δt| ≤ δ) ≥ 1− T 1−log T ≥ 1− 1/T,
(5)

where the last inequality holds for T ≥ 8.
From Equation (5), we can draw that in each round t,

the randomness δt in the market value vt is bounded by δ
in absolute value with probability at least 1 − 1/T . There-
fore, when posting the price and updating the knowledge
set, we let the data broker introduce a “buffer” of size δ
to circumvent the randomness δt. Specifically, if the data
broker posts the price pt and observes a rejection, it can no
longer infer that pt ≥ xt

T θ∗. Instead, it should infer that
pt ≥ vt = xt

T θ∗ − δt ≥ xt
T θ∗ − δ. In a similar way, if

the data broker observes an acceptance, it will infer that
pt ≤ vt = xt

T θ∗ + δt ≤ xt
T θ∗ + δ rather than pt ≤ xt

T θ∗.
Intuitively, in the case of rejection (resp., acceptance), the
data broker imagines that it had posted pt+ δ (resp., pt− δ).
We call pt + δ (resp., pt − δ) the effective posted price in the
case of rejection (resp., acceptance).

We now present the robust pricing mechanism in Al-
gorithm 1 (called “the version with reserve price and un-
certainty” in our evaluation part). For conciseness, we il-
lustrate the differences after introducing uncertainty. First,
in Lines 8–10, the condition for a certain no deal changes
into qt ≥ p̄t + δ. Only under this condition, the posted
price must be no less than the market value, since pt ≥
qt ≥ p̄t + δ ≥ vt = xt

T θ∗ + δt. Second, in Lines 15 and
21, we use the effective exploratory prices to compute the
positions of the cutting hyperplanes. In particular, due to the
uncertainty in the market value, if the data broker posts the
same price, the feedback from the data consumer can result
in a smaller refinement of the knowledge set. We provide
Fig. 2c for a visual comparison with Fig. 2b. Third, in Line
27, the conservative posted price, involving

¯
pt, decreases by

δ to keep its high acceptance ratio.
We finally investigate Algorithm 1 without the reserve

price constraint, denoted as Algorithm 1* (also called “the
version with uncertainty” in our evaluation part). First, the
exploratory posted price is the middle price ¯

pt+p̄t

2 . The
effective exploratory price used in refining the ellipsoid is
¯
pt+p̄t

2 + δ (resp., ¯
pt+p̄t

2 − δ) in the case of rejection (resp.,
acceptance), and the corresponding position parameter αt is
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−δ/
√
xtTAtxt (resp., δ/

√
xtTAtxt). As δ > 0, the effective

exploratory prices will refine the ellipsoid less than half.
Second, the conservative posted price is

¯
pt − δ and can be

either rejected or accepted. Here, the rejection case happens
when the market value is outside the interval [

¯
pt− δ, p̄t + δ]

and has probability no more than 1/T by Equation (5). In ad-
dition, the conservative price keeps the ellipsoid unchanged.
Jointly considering two types of posted prices, we can find
that Algorithm 1* only has shallow cuts.

3.3 Performance Analysis
We analyze the time and space complexities, and the worst-
case cumulative regret of Algorithm 1.

3.3.1 Time and Space Complexities
Considering the data broker needs to run the posted price
mechanism online, Algorithm 1 should be quite efficient.
We analyze single-round time and space complexities. First,
the computation overhead of the data broker in round t
mainly comes from two parts: (1) determining the posted
price pt, which roughly consumes 2 matrix-vector and 3
vector-vector multiplications; and (2) updating the shape
and the center of the ellipsoid, which roughly consumes
1 vector-vector multiplication in the worst case. Thus, the
time complexity is O(n2). Second, the memory overhead
of the data broker is mainly caused by maintaining the
knowledge set Et, or alternatively, the shape and the center
of the ellipsoid, which requires 1 n × n matrix and 1 n × 1
vector, respectively. Hence, the space complexity is O(n2).

3.3.2 Worst-Case Cumulative Regret
We analyze the worst-case cumulative regret of Algorithm 1,
which is O(max(n2 log(T/n), n3 log(T/n)/T )) under the
low uncertain setting δ = O(n/T ), namely, Theorem 1.
We first prove that the existence of reserve price cannot
increase the regret of a posted price mechanism in single
round (Lemma 1). Thus, we can use Algorithm 1 without
the reserve price constraint, namely, Algorithm 1*, as a
springboard. In particular, to get an upper bound on the
cumulative regret of Algorithm 1, we need to derive an up-
per bound on the number of rounds where the exploratory
prices are posted, denoted as Te. We derive this upper
bound in a roundabout way: we first obtain the upper
bound in Algorithm 1* (Lemma 5) and further prove that
it still holds in Algorithm 1 by reduction and analyzing the
impact of reserve price (Lemma 6). We elicit Lemma 5 in
a squeezing manner, particularly, through constructing an
upper bound and a lower bound on the final volume of
the ellipsoid. For the upper bound, we adopt a core tech-
nique in proving the convergence of the traditional ellipsoid
method: the ratio between the volumes of an ellipsoid and
the Löwner-John ellipsoid after a cut has an upper bound
(Lemma 2) [28]. Regarding the lower bound, we resort to the
formula for computing an ellipsoid’s volume by multiplying
all the eigenvalues of its shape matrix. Thus, we can find a
lower bound on the volume, by constructing a lower bound
on the smallest eigenvalue (Lemmas 3 and 4). We present the
detailed lemmas and theorem as follows, while reserving
the proofs of Lemmas 3, 4, and 5 in our technical report [29].

Lemma 1. The existence of reserve price cannot increase the
regret of a posted price mechanism in single round.

Proof. For round t, we still let vt denote the market value
and let qt denote the reserve price. We introduce p′t as the

pure posted price and still let pt denote the posted price
with the reserve price constraint, where pt = max(qt, p

′
t).

We can express the regret of the posted price mechanism
without reserve price in round t as:

r′t = vt − p′t1 {p′t ≤ vt} . (6)

After introducing the reserve price constraint, the regret
changes to rt given in Equation (1). We now prove rt ≤ r′t
in two complementary cases: qt > vt and qt ≤ vt.

Case 1 (qt > vt): We can derive that rt = 0 ≤ r′t.
Case 2 (qt ≤ vt): We can derive that:

rt = vt − pt1 {pt ≤ vt}
= vt −max (qt, p

′
t)1 {max (qt, p

′
t) ≤ vt}

= vt −max (qt, p
′
t)1 {p′t ≤ vt} (7)

≤ vt − p′t1 {p′t ≤ vt} = r′t, (8)

where Equation (7) follows from that under the antecedent
qt ≤ vt, the conditional statement {max(qt, p

′
t) ≤ vt ⇔ qt ≤

vt and p′t ≤ vt} can be simplified to p′t ≤ vt. Additionally,
the inequality in Equation (8) follows from the maximum
function and takes equal sign when qt ≤ p′t.

Jointly considering two cases, we complete the proof.

Lemma 2. Let Et+1 denote the Löwner-John ellipsoid obtained
after a cut over the ellipsoid Et with the position parameter αt. If
αt ∈ [−1/n, 0], then V (Et+1)

V (Et) ≤ exp
(
− (1+nαt)

2

5n

)
.

Lemma 3. In Algorithm 1* (ε ≥ 4nδ), there exists τ ∈ R such
that γn(At) ≤ τε2,xtTAtxt > ε2/4⇒ γn(At+1) ≥ γn(At).
In addition, τ = 1

400n2S4 is a feasible solution.

Lemma 4. For any round t in Algorithm 1* (ε ≥ 4nδ) where the
exploratory price is posted, γn(At+1) ≥ n2(1−αt)

2

(n+1)2 γn (At).

We interpret the intuitions behind Lemmas 3 and 4.
Lemma 3 says that if the smallest eigenvalue is below some
threshold (i.e., τε2), it can no longer decrease. Lemma 4 says
that in each round, the smallest eigenvalue cannot decrease
sharply, to its n2(1−αt)

2

(n+1)2 at most. Therefore, the smallest

eigenvalue is bounded below by τε2 n
2(1−αt)

2

(n+1)2 . In terms of
geometry, these two lemmas follow from that the difference
p̄t −

¯
pt monitors the width of the ellipsoid along the direc-

tion given by the feature vector xt, and if it is below the
threshold ε, the data broker will post the conservative price
rather than the exploratory price to avoid shortening the
width along this direction. Hence, the smallest eigenvalue,
having a correspondence with the width of the ellipsoid’s
narrowest axis, cannot become too small.

By combining all above three lemmas, we can derive an
upper bound on Te in Algorithm 1*.

Lemma 5. Algorithm 1* (ε ≥ 4nδ) chooses the exploratory prices
in at most 20n2 log(20RS2(n+ 1)/ε) rounds.

We restate Lemma 5 for Algorithm 1, by analyzing the
impact of the reserve price constraint on Te.

Lemma 6. Algorithm 1 (ε ≥ 4nδ) chooses the exploratory prices
in at most 20n2 log(20RS2(n+ 1)/ε) rounds.

Proof. For conciseness, we here focus only on the rejection
branch of Algorithm 1. The analysis of the acceptance
branch can be derived by the symmetry of ellipsoid. We
recall that if the reserve price qt is introduced in round
t, the exploratory posted price is pt = max(qt, ¯

pt+p̄t

2 ),
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the effective exploratory price is pt + δ in the rejection
case, and its position parameter can be computed via
αt = (¯

pt+p̄t

2 − (pt + δ))/
√
xtTAtxt (Algorithm 1, Line 15).

We now prove Lemma 6 in two complementary cases:
Case 1 (¯

pt+p̄t

2 ≥ qt): The posted price is the middle price
(i.e., pt = ¯

pt+p̄t

2 ). Algorithm 1 degenerates to Algorithm 1*,
and Lemma 6 holds from Lemma 5.

Case 2 (qt > ¯
pt+p̄t

2 ): The posted price is the reserve
price (i.e., pt = qt). Given the reserve price is rejected,
we can draw that the reserve price is higher than the
market value (i.e., pt = qt > vt), which further implies
rt = 0 from Equation (1). Suppose the data broker does
not use the reserve price to refine the ellipsoid in this
round. The analysis of Algorithm 1 can be reduced to
analyzing Algorithm 1* with the total number of rounds
T − 1 plus one dummy round inserted in the t-th round.
Considering Lemma 5 does not rely on the total number
of rounds, Te ≤ 20n2 log(20RS2(n + 1)/ε) still holds in
Algorithm 1. However, in Algorithm 1 (Lines 14–19), the
data broker needs to cut the ellipsoid using the effective
exploratory price (i.e., qt + δ here). We thus need to analyze
the impact of such a cut on Te. Following the guidelines in
proving Lemma 5, to prove Lemma 6, it suffices to prove
that this cut cannot increase the upper bound on the final
volume of the ellipsoid, and meanwhile, cannot decrease the
lower bound. First, the effective exploratory price imposes
a cut over the ellipsoid and thus cannot increase the final
volume together with the upper bound on the final volume.
Second, the lower bound on the smallest eigenvalue of the
final ellipsoid’s shape matrix (i.e., τε2 n

2(1−αt)
2

(n+1)2 ) takes its
minimum at αt = 0. This corresponds to the lower bound on
the ellipsoid’s final volume used in proving Lemma 5. Ad-
ditionally, a negative αt can increase the lower bound. Thus,
the effective exploratory price qt+δ here, holding a negative
αt = (¯

pt+p̄t

2 − (qt + δ))/
√
xtTAtxt < −δ/

√
xtTAtxt < 0,

cannot decrease the lower bound on the final volume.
By summarizing two cases, we complete the proof.

We finally obtain Theorem 1 as follows.

Theorem 1. If δ = O(n/T ), then the worst-case cumulative re-
gret of Algorithm 1 is O(max(n2 log(T/n), n3 log(T/n)/T )).

Proof. First, as we illustrated below Equation (5): in each
round t, the absolute value of the random variable δt has
probability at most 1/T outside δ. Thus, the cumulative
regret incurred by removing the weight vector θ∗ from the
knowledge set is at most maxxt,θ∗ xt

T θ∗T/T = RS.
Second, we analyze the cumulative regret due to the

posted prices. In round t, the regret incurred by posting
the exploratory (resp., conservative) price can be bounded
above by p̄t + δ (resp., (p̄t + δ) − (

¯
pt − δ)), which can

be further bounded above by RS + δ (resp., ε + 2δ).
Thus, the cumulative regret is no more than Te(RS +
δ) + (T − Te)(ε + 2δ). When δ = O(n/T ), Te takes its
upper bound 20n2 log(20RS2 (n + 1)/ε) from Lemma 6,
and ε is set to max(n2/T, 4nδ) = O(n2/T ), the worst-
case cumulative regret incurred by the posted prices is
O(max(n2 log(T/n), n3 log(T/n)/T )).

By adding two parts, the worst-case cumulative regret of
Algorithm 1 is O(max(n2 log(T/n), n3 log(T/n)/T )).

4 EXTENSIONS
In this section, we extend the proposed pricing mechanism
under the fundamental linear model to support some com-

mon non-linear models. We also discuss how to support
several other similar application scenarios.

4.1 Supporting Non-Linear Market Value Models
We mainly investigate four kinds of non-linear models com-
monly used in measuring market values. The first two are
the log-log and log-linear models in hedonic pricing from
real estate and property studies [22], [23], which can be for-
malized as log vt =

∑
i∈[n] log(xt,i)θ

∗
i and log vt = xt

T θ∗,
respectively. Here, xt,i and θ∗i denote the i-th elements of
the feature vector xt and the weight vector θ∗, respec-
tively. The other two models are the logistic model [32],
[33] and the kernelized model [34] in online advertising,
which can be formalized as vt = 1/(1 + exp(xt

T θ∗)) and
vt =

∑t−1
k=1K(xt,xk)θ∗k, respectively. Here, K(·, ·) is a

Mercer kernel operator.
We can further observe that the above four non-linear

models can be unified to a general class of non-linear models
vt = g(φ(xt)

T θ∗). Here, g : R 7→ R is a non-decreasing
and continuous function. For example, in the two hedonic
pricing models, g is the natural exponential function; in the
logistic model, g is the logistic sigmoid function; and in the
kernelized model, g is the identity function. Additionally,
φ : Rn 7→ Rm represents a feature mapping of the original
feature vector xt and intends to capture non-linear correla-
tions/dependencies among the different features of xt and
the different feature vectors within t rounds. For example,
in the log-log model, φ denotes applying the natural log-
arithm function to each element of xt; in the kernelized
model, m = t − 1, and φ stands for the kernel function
K; and in the other two models, φ denotes the identity
map. Furthermore, we note that both g and φ are public
knowledge, and only the weight vector θ∗ is unknown.
Therefore, by regarding the domain of θ∗ as the knowledge
set to be refined, our proposed pricing mechanism under
the linear model can still apply to the above class of non-
linear models. Specifically, φ(xt) now functions as the new
feature vector, and the threshold ε is used to control p̄t −

¯
pt,

which denotes the difference between the maximum and
minimum possible values of φ(xt)

T θ, where θ belongs to
the data broker’s knowledge set. In addition, the data broker
will post the price g(pt) rather than the original pt. Due to
the limitation of space, the worst-case regret analysis of the
adapted Algorithm 1 under the above class of non-linear
models is put into our technical report [29].

4.2 Supporting Other Application Scenarios
We first summarize the characteristics of the pricing prob-
lem in online personal data markets. We then point out some
other similar application scenarios in practice and further
illustrate how to support them with our proposed pricing
mechanism under different market value models.

In personal data markets, the data broker is the seller,
and each data consumer is a buyer. The sequential queries,
as the products to be sold, have three atypical characteris-
tics: (1) Customization: The queries, requested by different
data consumers, are highly differentiated; (2) Existence of
reserve price: The total privacy compensation, allocated to
the underlying data owners, serves as the reserve price of a
query; and (3) Timeliness: If no deal occurs in a round, the
query will vanish, generating regret for the data broker.

Several other products in practice share one or more
characteristics listed above, which implies that our pro-
posed pricing mechanism for personal data markets can
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be extended to support these scenarios. One example is
the hospitality service on booking platforms (e.g., Airbnb,
Wimdu, and Workaway). A tourist can raise some require-
ments on his/her desirable accommodation, such as loca-
tion, the numbers of bedrooms and bathrooms, amenities,
reviews, historical occupancy rate, and so on. Meanwhile,
the host of the house can set a minimum/reserve price
for the accommodation. If the house is not rented out at
a certain date, it may cause regret for both the host and
the booking platform. We note that the host, the booking
platform, and the tourist play similar roles to the data
owner, the data broker, and the data consumer in data
markets, respectively. In addition, the market value of the
accommodation can be well interpreted by the linear or log-
linear model [23]. Another example is the online advertising
on web publishers. We consider a novel scenario, where the
impressions are traded through posting prices rather than
the ad auctions already adopted by Internet giants (e.g.,
Google, Microsoft, Facebook, and Alibaba). In particular, an
advertiser can customize its/his/her need of an impression
(e.g., position and target audience). If the impression is not
sold within a given time frame, it will generate regret for the
web publisher. We note that the web visitors who generate
impressions, the web publisher, and the advertiser play
similar roles to the data owners, the data broker, and the
data consumer in data markets, respectively. In addition, the
market value of an impression is normally measured by its
click-through rate (CTR), which can be effectively captured
by the logistic [32], [33] or kernelized model [34].

In conclusion, our proposed pricing mechanism is not
just limited to online personal data markets and can also
support other similar application scenarios.

5 EVALUATION RESULTS
In this section, we present the evaluation results of our
pricing mechanism from practical regret and overhead.

We use three real-world datasets, including MovieLens
20M dataset [35], Airbnb listings in U.S. major cities [36],
and Avazu mobile ad click dataset [37], to evaluate our
pricing mechanism over noisy linear queries, accommoda-
tion rentals, and impressions under the linear, log-linear,
and logistic market value models, respectively. First, the
MovieLens dataset contains 20, 000, 263 ratings of 27, 278
movies made by 138, 493 users. Second, the Airbnb dataset
provides 74, 111 booking records in 6 U.S. cities (e.g., New
York and Los Angeles). Each record contains a user id, the
logarithmic lodging price, house type, location, amenities,
host response rate, cancellation policy, and so on. Third,
the Avazu dataset comprises 10 days of click-through data,
in total 404, 289, 670 ad displaying samples. Each sample
covers information of an ad and the corresponding mobile
user (e.g., the ad id, click or non-click reaction, position,
device id, device ip, and internet access type).

5.1 Pricing of Noisy Linear Query
We first introduce our setup details for trading noisy linear
queries, the workflow of which has been briefly introduced
in Example 1. On the one hand, we regard the MovieLens
users, who contributed the ratings, as the data owners
in data markets. We adopt the differential privacy-based
privacy leakage quantification mechanism and the tanh-
based privacy compensation functions from [9] for each
data owner. On the other hand, we simulate the noisy
linear queries from online data consumers. To validate

TABLE 1
Statistics over pricing of noisy linear query per pound under the version

with reserve price.

n T Market Value Reserve Price Posted Price Regret

1 102 1.414 1 1.409 (0.045) 0.035 (0.202)
20 104 ∗3.874 (1.278) 3.388 (0.776) 3.685 (1.631) 0.166 (0.824)
40 104 5.246 (1.616) 4.739 (1.188) 5.254 (1.614) 0.743 (1.933)
60 105 7.098 (1.910) 5.733 (1.491) 7.089 (1.912) 0.220 (1.257)
80 105 7.266 (2.046) 6.531 (1.761) 7.243 (2.091) 0.387 (1.690)

100 105 8.824 (2.235) 7.221 (1.985) 8.820 (2.242) 0.686 (2.461)
∗The entry is stored in the format: mean (standard deviation).

the adaptability of our pricing mechanism, the parameters
of each linear query are randomly drawn either from a
multivariate normal distribution with zero mean vector
and identity covariance matrix or from a uniform distri-
bution within the interval [−1, 1]. Meanwhile, the variance
of Laplace noise added to the true answer is randomly
selected from {10k|k ∈ Z, |k| ≤ 4}. For each noisy linear
queryQt, we compute the privacy compensations of all data
owners and then generate an n-dimensional feature vector
with the aggregation technique: we first sort the privacy
compensations, then evenly divide them into n partitions,
and finally sum the privacy compensations falling into a
certain partition, thereby obtaining a feature. For the sake
of normalization, we scale each feature vector such that
its L2 norm is 1 (i.e., ∀t ∈ [T ], ‖xt‖ = 1 and S = 1).
Additionally, we set the reserve price of a query to be the
total privacy compensation (i.e., qt =

∑
i∈[n] xt,i here). In

nature, the L2 norm of the weight vector for deriving qt is√
n. Moreover, we draw the weight vector θ∗ for modeling

the market values of queries in a similar way to sample the
query’s parameters. The difference is that we further scale
θ∗ such that its L2 norm is

√
2n (i.e., ‖θ∗‖ =

√
2n). This

guarantees that the market value of each query vt = xt
T θ∗

is no less than its reserve price qt with a high probability.
Furthermore, we set the data broker’s initial knowledge set
of θ∗ to E1 = {θ ∈ Rn|‖θ‖ ≤ 2

√
n}, geometrically, the ball

centered at the origin with radius R = 2
√
n.

In Fig. 3, we plot the cumulative regrets of four versions
of our pricing mechanism under the linear model, including
the pure version (omitting the reserve price qt and the
uncertainty parameter δ in Algorithm 1), the version with
uncertainty (Algorithm 1*), the version with reserve price
(omitting δ in Algorithm 1), and the version with reserve
price and uncertainty (Algorithm 1). Here, the dimension of
feature vector n first takes 1 and then increases from 20 to
100 with a step of 20. In addition, δ is fixed at 0.01, which is
in the pre-analyzed order of O(n/T ) for n = 1, but is much
larger than O(n/T ) for n 6= 1. Moreover, in each round
t, the randomness δt in the market value vt is drawn from
the normal distribution with mean 0 and standard deviation
σ = δ/(

√
2 log 2 log T ). Furthermore, the threshold ε is set to

n2/T . As a complement to Fig. 3, Table 1 lists some precise
statistic information about the version with reserve price,
where the market value column can work as a baseline for
relatively measuring the levels of uncertainty (particularly,
in the magnitude of 0.1% of the market value) and regret.

We first observe Fig. 3 holistically. We can see that under
a specific version, the cumulative regret after a certain num-
ber of rounds increases with the dimension n. The reason is
that as n grows, the data broker needs to post exploratory
prices in more rounds to obtain a good knowledge of
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Fig. 3. Cumulative regrets with varying dimensions of feature vector in pricing of noisy linear query.

the weight vector θ∗, thus accumulating more regret. This
conforms to our theoretic regret analysis.

We then observe the one-dimensional case in Fig. 3a and
the multi-dimensional cases from Fig. 3b to Fig. 3f more
carefully. We start with the one-dimensional case. From
Fig. 3a, we can see that the introduction of the reserve price
constraint has no effect on the pure version of our pricing
mechanism. When n = 1, the reserve price and the market
value of each query are constants 1 and

√
2, respectively. In

addition, the data broker’s initial knowledge of the market
value is the interval [0, 2]. Thus, in the first round, no matter
the data broker considers or ignores the reserve price 1, it
posts the exploratory price 1, which is less than the market
value

√
2 and is accepted by the data consumer. After this

round, the interval is refined to [1, 2], which indicates that
the reserve price 1 can no longer affect the posted prices.
From Fig. 3a, we can also see that the introduction of low
uncertainty will slightly increase the cumulative regrets in
the pure version and the version with reserve price.

We next focus on the multi-dimensional cases. Once
again, we examine how the reserve price constraint can
affect our posted price mechanism. We can find that the
incorporation of reserve price can dramatically reduce the
cumulative regret. In particular, when n = 20 and the
number of rounds t is 104, the version with reserve price
(resp., the version with reserve price and uncertainty) re-
duces 13.16% (resp., 10.92%) of the cumulative regret than
the pure version (resp., the version with uncertainty). We
further examine the impact of uncertainty. We can see
that the existence of uncertainty accumulates more regret,
especially when t is large. This is because in the case of a
large t, the data broker already has a good knowledge of
the weight vector θ∗ and posts the conservative price with
a high probability. In addition, we recall that to circumvent
uncertainty, the conservative price, involving the minimum

possible market value
¯
pt, decreases by δ to keep its accep-

tance ratio, which can generate a higher regret.
We finally provide an intuition of the regret level of our

pricing mechanism. We introduce a metric, called regret ratio,
defined as the ratio between the cumulative regret and the
cumulative market value, namely,

∑t
k=1 rk/

∑t
k=1 vk at the

end of t rounds. For example, in Table 1, we can divide the
mean values in the regret column by those in the market
value column and obtain the regret ratios of the version
with reserve price for different n’s at the end of T rounds.
Coupled with Fig. 3f, which depicts the cumulative regrets
of four versions for n = 100 at the end of different rounds,
Fig. 4a further plots the regret ratios.

One key observation from Fig. 4a is that when the
number of rounds t is small, the regret ratio of the version
with reserve price (resp., the version with reserve price and
uncertainty) is much lower than that of the pure version
(resp., the version with uncertainty). This reflects a critical
functionality of reserve price: it can mitigate the cold-start
problem in a posted price mechanism. More specifically, in
the beginning, the data broker holds a broad knowledge set
of the weight vector θ∗, and thus the estimation of a query’s
market value is coarse, which implies a high regret ratio.
However, with the help of reserve price, the data broker
can improve the market value estimation, through imposing
an additional lower bound and refining the knowledge set
more quickly. The mitigation of cold start can be a factor
underlying our aforementioned observation that the reserve
price constraint reduces the cumulative regret.

The second key observation from Fig. 4a is that as t
grows, the difference between the regret ratios of the ver-
sions with and without reserve price shrinks. In addition,
when t is very large, the regret ratios of all four versions
are very low. In particular, at the end of T = 105 rounds,
the regret ratios of the pure version, the version with uncer-
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(a) Noisy Linear Query (n = 100) (b) Accommodation Rental (c) Impression

Fig. 4. Regret ratios in pricings of noisy linear query, accommodation rental, and impression.

tainty, the version with reserve price, and the version with
reserve price and uncertainty are 8.48%, 11.19%, 7.77%,
and 9.87%, respectively. The reason is that after enough
rounds, the data broker will have a good estimation of any
query’s market value, and the effect of reserve price on the
posted price diminishes. An extreme example happens in
the one-dimensional case presented above, where after the
first round, the reserve price has already been excluded
from the estimated interval. At last, we provide a risk-
averse baseline, which consistently posts the reserve price
in each round, for the versions involving the reserve price
constraint. The regret ratio of such a baseline is 18.16%.
Compared with this baseline, our pricing mechanism can
further reduce 57.19% (resp., 45.64%) of the regret ratio
in the version with reserve price (resp., the version with
reserve price and uncertainty).

These results demonstrate that our pricing mechanism
under the fundamental linear model can indeed reduce the
practical regret of the data broker in online data markets.

5.2 Pricing of Accommodation Rental
We first describe how to preprocess the Airbnb dataset and
then present the setup details for pricing accommodation
rentals under the log-linear model. First, to obtain the fea-
ture vector of each booking record, we process the categor-
ical features with the pandas library in Python, which can
handle the missing values and return an integer array of
codes for all categories. In addition, we add some interaction
features to enhance model capacity. The final dimension of
each feature vector n is 55. Second, to obtain the weight vec-
tor θ∗ in modeling the market values of accommodations,
we regard the logarithmic lodging prices as target variables
in supervised learning and then apply linear regression to
learn the coefficients of different features, which play the
role of θ∗ here. Specifically, the mean squared error (MSE)
over the test set, which occupies 20% of the Airbnb dataset,
is 0.226. Third, to investigate how different settings of
reserve price can affect the posted price mechanism, we vary
the ratio between the natural logarithms of reserve price and
market value (i.e., log qt/ log vt). Fourth, when computing
the regret ratios, we use the real rather than the logarithmic
posted prices and market values. Fig. 4b depicts the regret
ratios of the pure version of our pricing mechanism under
the log-linear model, as well as the version with reserve
price where log qt/ log vt ranges from 0.4, to 0.6, and to 0.8.

From Fig. 4b, we can see that when the reserve price
is set to be closer to the market value, the regret ratio
decreases, especially when the number of rounds t is small.

In other words, as the reserve price approaches the market
value, its impact on mitigating the cold-start problem in a
posted price mechanism is more evident. We can also see
from Fig. 4b that at the end of T = 74, 111 rounds, the
regret ratios are very low. In particular, the regret ratios
of the pure version and the version with reserve price
where log qt/ log vt = 0.4, 0.6, and 0.8, are 4.57%, 4.01%,
3.83%, and 3.79%, respectively. We still consider the risk-
averse baseline, where the reserve price is posted in each
round, for comparison. The regret ratios of this baseline
are 23.40%, 17.00%, and 9.33% in the version with reserve
price where log qt/ log vt = 0.4, 0.6, and 0.8, respectively.
Compared with this baseline, our pricing mechanism can
further reduce 82.88%, 77.46%, and 59.39% of the regret
ratios when log qt/ log vt = 0.4, 0.6, and 0.8, respectively.

The above fine-grained evaluation results provide a
deeper understanding of the reserve price’s role in reducing
the practical regret of a posted price mechanism. In addition,
our proposed pricing mechanism significantly outperforms
the baseline which merely exploits the reserve price.

5.3 Pricing of Impression in Advertising
We first introduce data preprocessing and setup for pricing
impressions under the logistic model. First, to handle the
categorical data fields in ad displaying samples, we use one-
hot encoding with the hashing trick, where the dimension
of the feature vector n serves as the modulus after hash-
ing. Second, we regard the click/non-click states as target
variables, further apply Follow The Proximally Regularized
Leader (FTRL-Proximal)-based logistic regression (which
has been deployed at Google’s advertising platform [33]),
thereby obtaining the weight vector θ∗ for capturing CTRs.
In particular, FTRL-Proximal is an online learning algorithm
with per-coordinate learning rates and L1, L2 regulariza-
tions, and it can preserve excellent performance and spar-
sity. When testing over the samples in the last two days,
the logistic loss is 0.420 (resp., 0.406) for n = 128 (resp.,
n = 1024). Additionally, the learnt weight vector θ∗ is quite
sparse. Specifically, the number of nonzero elements in θ∗

is 21 (resp., 23) for n = 128 (resp., n = 1024). In what
follows, we investigate two different cases to validate the
feasibility of our pricing mechanism over both sparse and
dense feature vectors. In the sparse case, all the features
are kept no matter whether their corresponding weights are
zero or not. In the dense case, the features are omitted if
their corresponding weights are zero.

In Fig. 4c, we plot the regret ratios of the pure version of
our pricing mechanism in both sparse and dense cases for
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n = 128 and n = 1024. We can observe from Fig. 4c that
the regret ratio in the sparse case decreases more slowly
than that in the dense case, especially when the number
of rounds t is smaller than 103. This outcome stems from
that the starting rounds are mainly dedicated to eliminating
those zero elements in the weight vector, which implies a
larger regret ratio in the beginning. This reason can also
account for the phenomenon that in the sparse case, the
regret ratio for n = 1024 decreases more slowly than that
for n = 128. Even so, after 105 rounds, the regret ratios
are 2.02% and 0.41% (resp., 8.04% and 0.89%) for n = 128
(resp., n = 1024) in the sparse and dense cases, respectively.

These evaluation results reveal that our pricing mech-
anism performs well over both sparse and dense feature
vectors. By further combining with the pricing of accommo-
dation rental, we can conclude that our pricing mechanism
has a good extensibility to non-linear market value models.

5.4 Details on Implementation and Overhead
We implemented our pricing mechanism in Python 2.7.15.
The running environment is a Broadwell-E workstation with
64-bit Ubuntu 16.04.5 OS. In particular, the processor is
Intel(R) Core(TM) i7-6900K with 8 cores, the base frequency
is 3.20 GHz, the memory size is 64 GB, and the cache size is
20 MB. Our source code is online available from [38].

We report the computation and memory overhead of
three use cases: (1) for the pricing of noisy linear query
under the version with reserve price, when n = 100, the
latency of the data broker in determining the posted price
and updating its knowledge set is 0.115 ms per query. In
addition, the memory overhead is 151 MB; (2) for the pricing
of accommodation rental under the version with reserve
price where log qt/ log vt = 0.6, the latency is 0.019 ms
per booking request, and the memory overhead is 105 MB;
and (3) for the pricing of impression, when n = 1024,
the latency is 3.509 ms (resp., 0.024 ms) per ad displaying
sample in the sparse (resp., dense) case. Additionally, the
memory overhead is 106 MB (resp., 75 MB) in the sparse
(resp., dense) case.

In a nutshell, our pricing mechanism has a light load un-
der both linear and non-linear models. It can be employed
to dynamically price the products with customization, exis-
tence of reserve price, and timeliness properties.

6 RELATED WORK

In this section, we briefly review related work.

6.1 Data Market Design
An explosive demand for sharing data contributes to grow-
ing interest in data market design. We here focus only
on the design of pricing mechanisms. We direct interested
readers to the comprehensive surveys [39]–[41] and the
vision papers [7], [42] for more perspectives. For example,
Fernandez et al. [42] provided a vision for the design and
implementation of data markets mainly from data sharing,
discovery, and integration.

First regards general (insensitive) data trading. The re-
searchers from the database community (e.g., Koutris et
al. [11]–[14], Lin and Kifer [15]) mainly focused on arbitrage
freeness in pricing queries over the relational databases.
The existence of arbitrage means that the data consumer
can buy a query with a lower price than the marked price
through combining a bundle of other cheaper queries. Thus,

the data broker needs to rule out arbitrage opportunities to
preserve its revenue. Stahl et al. surveyed several empirical
pricing strategies in practical data markets [43]. Their later
work [44]–[46] introduced data quality as a criterion of
pricing and allowed the data consumers to suggest their
own prices. Chawla et al. [47] considered the static revenue
maximization problem with the prior knowledge of the data
consumers’ queries and valuations, while leaving the online
setting as an open problem. They mainly adopted two
static pricing strategies, called uniform bundle pricing and
item pricing. Agarwal et al. [48] proposed a combinatorial
auction mechanism to trade data for machine learning tasks.

Specific to personal data trading, the researchers rou-
tinely adopted the cost-plus pricing strategy, where the data
broker first compensates each data owner for its privacy
leakage and then scales up the total privacy compensation
to determine the price of query for the data consumer. Dif-
ferent researchers investigated distinct types of queries from
the data consumers. Ghosh and Roth [10] considered single
counting query. The follow-up work by Li et al. [9] further
extended to multiple noisy linear queries. We considered the
queries of noisy aggregate statistics over private correlated
data [16], [17]. Hynes et al. [49] investigated model training
requests. Chen et al. [50] studied how to price a trained
model with different levels of noise perturbation, by an anal-
ogy to the queries over personal data. They also considered
how to statically optimize the data broker’s revenue under
the assumption that the error demands and corresponding
valuations of the data consumers are known.

Our work advances previous data trading work in that:
(1) we model the unknown valuations and demands of the
data consumers, namely, the market values of customized
and highly differentiated queries, which were assumed as
priors in previous work; (2) we consider a posted price
setting and incorporate the response of either an acceptance
or a rejection from each data consumer in sequence, whereas
the previous work normally used a marked price setting
and ignored the responses; and (3) we optimize the data
broker’s cumulative revenue in an online and dynamic
manner, whereas previous work optimized in a static way.

6.2 Contextual Dynamic Pricing
The dynamic pricing problem has been extensively studied
in diverse contexts. The pioneering work by Kleinberg and
Leighton [51] considered markets for identical products
and designed several optimal posted pricing strategies.
However, the products in practical markets (e.g., online
commerce and advertising) tend to differ from each other.
This further motivated the emergence of contextual pricing,
where the seller intends to sell a sequence of highly differ-
entiated products, posts a price for each product, and then
observes whether the buyer accepts or not. More specifically,
each product is represented by a feature vector for differen-
tiation, while its market value is typically assumed to linear
in the feature vector. The researchers thus turned to on-
line learning the weight vector from feedbacks and further
converted this task to a multi-dimensional binary search
problem. Amin et al. [34] first proposed a stochastic gradient
descent (SGD)-based solution, which can attain O(T 2/3)
strategic regret by ignoring logarithmic terms. However,
their solution requires an independent and identically dis-
tributed (i.i.d.) assumption on the feature vectors. Cohen et
al. [19] abandoned this strict requirement. They approxi-
mated the polytope-shaped knowledge set with ellipsoid
and provided O(n2 log T ) worst-case cumulative regret,
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which is essentially the pure version of our pricing mech-
anism. Lobel et al. [20] further reduced regret to O(n log T )
by projecting and cylindrifying the polytope. Leme et al. [21]
borrowed a key concept from geometric probability, called
the intrinsic volumes of a convex body, and achieved a
regret guarantee of O(n4 log log(nT )). The key principle
behind this line of work is to identify the centroid of the
knowledge set or its projection/transformation, such that
each exploratory posted price can roughly impose a central
cut in terms of different measures (e.g., volume, surface area,
and width). In addition, although the most recent two work
optimized the regret, they are too computationally complex
to be deployed in practical online markets.

It is still worth noting that the contextual dynamic
pricing mechanisms significantly differ from the classical
cutting-plane or localization algorithms in the field of con-
vex optimization (e.g., the original ellipsoid method [27] and
the analytic center cutting-plane method [52]). In particular,
the purpose of a cutting-plane method is to find a point
in a convex set for optimizing a preset objective func-
tion. In contrast, the goal of a contextual dynamic pricing
mechanism is to minimize the cumulative regret during the
process of locating a preset point (i.e., the weight vector
here). Furthermore, under contextual dynamic pricing, the
direction of each cut is fixed by the feature vector of a
product requested by a buyer, while the seller can choose
only the position of the cut through posting a certain price.
This setting distinguishes contextual dynamic pricing from
a majority of ellipsoid-based designs [53]–[55], which al-
low the seller to control the direction of each cut. In fact,
the contextual dynamic pricing problem can also be mod-
eled into contextual multi-armed bandit (MAB), where the
arms/actions to be exploited and explored are the domain of
the weight vector. However, given the domain of the weight
vector is continuous, we need to apply the discretization
technique, which makes the number of bandits extremely
large. In addition to inefficiency, since the payoff/regret
function is piecewise and highly asymmetric, this sort of
solutions can be oracle-based (e.g., [56]–[61]) and inevitably
incurs polynomial rather than logarithmic cumulative regret
in the total number of rounds T [20].

Our work advances contextual dynamic pricing in that:
(1) we, for the first time, incorporate the reserve price con-
straint; (2) due to the existence of reserve price, we support
an arbitrary position of the cut over the ellipsoid-shaped
knowledge set, whereas previous designs normally adopted
central cuts; and (3) we analyze and verify the impact of
reserve price on a posted price mechanism, particularly,
mitigating the cold-start problem and thus reducing the
cumulative regret.

7 CONCLUSION
In this paper, we have proposed the first contextual dynamic
pricing mechanism with the reserve price constraint, for
the data broker to maximize its cumulative revenue in
online personal data markets. Our posted price mechanism
features the properties of ellipsoid to perform online op-
timization effectively and efficiently and can support both
linear and non-linear market value models, while allow-
ing some uncertainty. We further have illustrated how to
support two other similar application scenarios and ex-
tensively evaluated all three use cases over three practical
datasets. Empirical results have demonstrated the feasibility
and extensibility of our pricing mechanism as well as the
functionality of the reserve price constraint.
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