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Abstract—As a significant business paradigm, many online information platforms have emerged to satisfy society’s needs for

person-specific data, where a service provider collects raw data from data contributors, and then offers value-added data services to

data consumers. However, in the data trading layer, the data consumers face a pressing problem, i.e., how to verify whether the service

provider has truthfully collected and processed data? Furthermore, the data contributors are usually unwilling to reveal their sensitive

personal data and real identities to the data consumers. In this paper, we propose TPDM, which efficiently integrates Truthfulness and

Privacy preservation in Data Markets. TPDM is structured internally in an Encrypt-then-Sign fashion, using partially homomorphic

encryption and identity-based signature. It simultaneously facilitates batch verification, data processing, and outcome verification,

while maintaining identity preservation and data confidentiality. We also instantiate TPDM with a profile matching service and a data

distribution service, and extensively evaluate their performances on Yahoo! Music ratings dataset and 2009 RECS dataset,

respectively. Our analysis and evaluation results reveal that TPDM achieves several desirable properties, while incurring low

computation and communication overheads when supporting large-scale data markets.

Index Terms—Data markets, data truthfulness, privacy preservation
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1 INTRODUCTION

IN the era of big data, society has developed an insatiable
appetite for sharing personal data. Realizing the potential

of personal data’s economic value in decision making and
user experience enhancement, several open information
platforms have emerged to enable person-specific data to be
exchanged on the Internet [1], [2], [3], [4], [5]. For example,
Gnip, which is Twitter’s enterprise API platform, collects
social media data from Twitter users, mines deep insights
into customized audiences, and provides data analysis solu-
tions to more than 95 percent of the Fortune 500 [2].

However, there exists a critical security problem in these
market-based platforms, i.e., it is difficult to guarantee the
truthfulness in terms of data collection and data processing,
especially when privacies of the data contributors are
needed to be preserved. Let’s examine the role of a pollster
in the presidential election as follows. As a reliable source
of intelligence, the Gallup Poll [6] uses impeccable data to
assist presidential candidates in identifying and monitoring
economic and behavioral indicators. In this scenario, simul-
taneously ensuring truthfulness and preserving privacy
require the Gallup Poll to convince the presidential candi-
dates that those indicators are derived from live interviews
without leaking any interviewer’s real identity (e.g., social
security number) or the content of her interview. If raw data

sets for drawing these indicators are mixed with even a
small number of bogus or synthetic samples, it will exert
bad influence on the final election result.

Ensuring truthfulness and protecting the privacies of data
contributors are both important to the long term healthy
development of data markets. On one hand, the ultimate
goal of the service provider in a data market is to maximize
her profit. Therefore, in order to minimize the expenditure
for data acquisition, an opportunistic way for the service pro-
vider is to mingle some bogus or synthetic data into the raw
data sets. Yet, to reduce operation cost, a strategic service
provider may provide data services based on a subset of the
whole raw data set, or even return a fake result without proc-
essing the data from designated data sources. However, if
such speculative and illegal behaviors cannot be identified
and prohibited, it will cause heavy losses to the data consum-
ers, and thus destabilize the data market. On the other hand,
while unleashing the power of personal data, it is the bottom
line of every business to respect the privacies of data contrib-
utors. The debacle, which follows AOL’s public release of
“anonymized” search records of its customers, highlights
the potential risk to individuals in sharing personal data
with private companies [7]. Besides, according to the survey
report of 2016 TRUSTe/NCSA Consumer Privacy Info-
graphic - US Edition [8], 89 percent say they avoid companies
that do not protect their privacies. Therefore, the content of
raw data should not be disclosed to data consumers to guar-
antee data confidentiality, even if the real identities of the
data contributors are hidden.

To integrate truthfulness and privacy preservation in a
practical data market, there are four major challenges. The
first and the thorniest design challenge is that verifying the
truthfulness of data collection and preserving the privacy
seem to be contradictory objectives. Ensuring the truthful-
ness of data collection allows the data consumers to verify
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the validities of data contributors’ identities and the content
of raw data, whereas privacy preservation tends to prevent
them from learning these confidential contents. Specifically,
the property of non-repudiation in classical digital signature
schemes implies that the signature is unforgeable, and any
third party is able to verify the authenticity of a data submit-
ter using her public key and the corresponding digital certif-
icate, i.e., the truthfulness of data collection in our model.
However, the verification in digital signature schemes
requires the knowledge of raw data, and can easily leak a
data contributor’s real identity [9]. Regarding a message
authentication code (MAC), the data contributors and the
data consumers need to agree on a shared secret key, which
is unpractical in data markets.

Yet, another challenge comes from data processing, which
makes verifying the truthfulness of data collection even
harder. Nowadays, more and more data markets provide
data services rather than directly offering raw data. The fol-
lowing three reasons account for such a trend: 1) For the data
contributors, they have several privacy concerns [8]. Never-
theless, the service-based trading mode, which has hidden
the sensitive raw data, alleviates their concerns; 2) For the
service provider, semantically rich and insightful data serv-
ices can bring in more profits [10]; 3) For the data consumers,
data copyright infringement [11] and datasets resale [12] are
serious. However, such a data trading mode differs from
most of conventional data sharing scenarios, e.g., data pub-
lishing [13]. Besides, the result of data processingmay no lon-
ger be semantically consistent with the raw data [14], which
makes the data consumer hard to believe the truthfulness of
data collection. In addition, the digital signatures on raw
data become invalid for the data processing result, which dis-
courages the data consumer from doing verification as men-
tioned above. Moreover, although data provenance [15]
helps to determine the derivation history of a data processing
result, it cannot guarantee the truthfulness of data collection.

The third challenge lies in how to guarantee the truthful-
ness of data processing, under the information asymmetry
between the data consumer and the service provider due to
data confidentiality. In particular, to ensure data confidenti-
ality against the data consumer, the service provider can
employ a conventional symmetric/asymmetric cryptosys-
tem, and can let the data contributors encrypt their raw data.
Unfortunately, a hidden problem arisen is that the data con-
sumer fails to verify the correctness and completeness of a
returned data service. Even worse, some greedy service pro-
vidersmay exploit this vulnerability to reduce operation cost
during the execution of data processing, e.g., they might
return an incomplete data service without processing the
whole raw data set, or even return an outright fake result
without processing the data from designated data sources.

Last but not least, the fourth design challenge is the effi-
ciency requirement of datamarkets, especially for data acqui-
sition, i.e., the service provider should be able to collect data
from a large number of data contributors with low latency.
Due to the timeliness of some kinds of person-specific data,
the service provider has to periodically collect fresh raw data
to meet the diverse demands of high-quality data services.
For example, 25 billion data collection activities take place on
Gnip every day [2]. Meanwhile, the service provider needs to
verify data authentication and data integrity. One basic
approach is to let each data contributor sign her raw data.
However, classical digital signature schemes, which verify
the received signatures one after another, may fail to satisfy

the stringent time requirement of datamarkets. Furthermore,
the maintenance of digital certificates under the traditional
Public Key Infrastructure (PKI) also incurs significant com-
munication overhead. Under such circumstances, verifying a
large number of signatures sequentially certainly becomes
the processing bottleneck at the service provider.

In this paper, by jointly considering above four chal-
lenges, we propose TPDM, which achieves both Truthful-
ness and Privacy preservation in Data Markets. TPDM first
exploits partially homomorphic encryption to construct a
ciphertext space, which enables the service provider to
launch data services and the data consumers to verify the
correctness and completeness of data processing results,
while maintaining data confidentiality. In contrast to classi-
cal digital signature schemes, which are operated over
plaintexts, our new identity-based signature scheme is con-
ducted in the ciphertext space. Furthermore, each data con-
tributor’s signature is derived from her real identity, and is
unforgeable against the service provider or other external
attackers. This appealing property can convince data con-
sumers that the service provider has truthfully collected
data. To reduce the latency caused by verifying a bulk of
signatures, we propose a two-layer batch verification
scheme, which is built on the bilinearity of admissible pair-
ing. At last, TPDM realizes identity preservation and revo-
cability by carefully adopting ElGamal encryption and
introducing a semi-honest registration center.

We summarize our key contributions as follows:

� To the best of our knowledge, TPDM is the first
secure mechanism for data markets achieving both
data truthfulness and privacy preservation.

� TPDM is structured internally in a way of Encrypt-
then-Sign using partially homomorphic encryption
and identity-based signature. It enforces the service
provider to truthfully collect and to process real
data. Besides, TPDM incorporates a two-layer batch
verification scheme with an efficient outcome verifi-
cation scheme, which can drastically reduce compu-
tation overhead.

� We instructively instantiate TPDMwith two kinds of
practical data services, namely profile matching and
data distribution. Besides, we implement these two
concrete data markets, and extensively evaluate their
performances on Yahoo! Music ratings dataset and
2009 RECS dataset. Our analysis and evaluation
results reveal that TPDM achieves good effectiveness
and efficiency in large-scale data markets. Specifi-
cally, for the profile matching service, when support-
ing as many as 1 million data contributors in one
session of data acquisition, the computation and
communication overheads at the service provider
are 0.930s and 0.235 KB per matching with 10 evalu-
ating attributes in each profile. Furthermore, the out-
come verification phase in TPDM avoids the most
time-consuming homomorphic multiplications, and
its overhead per data contributor is only 1.17 percent
of the original similarity evaluation cost.

The remainder of this paper is organized as follows. In
Section 2, we introduce system model and adversary model.
We show the detailed design of TPDM in Section 3, and ana-
lyze its security in Section 4. In Section 5, we elaborate on
the applications to profile matching and data distribution.
The evaluation results are presented in Section 6. We briefly
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review related work in Section 7. We conclude the paper,
and point out our future work in Section 8.

2 PRELIMINARIES

In this section, we first describe a general system model for
data markets. We then introduce the adversary model, and
present corresponding security requirements on the design.

2.1 System Model
As shown in Fig. 1, we consider a two-layer system model
for data markets. The model has a data acquisition layer
and a data trading layer. There are four major kinds of enti-
ties, including data contributors, a service provider, data
consumers, and a registration center.

In the data acquisition layer, the service provider pro-
cures massive raw data from the data contributors, such as
social network users, mobile smart devices, smart meters,
and so on. In order to incentivize more data contributors
to actively submit high-quality data, the service provider
needs to reward those valid ones to compensate their data
collection costs. For the sake of security, each registered
data contributor is equipped with a tamper-proof device.
The tamper-proof device can be implemented in the form of
either specific hardware [16] or software [17]. It prevents
any adversary from extracting the information stored in the
device, including cryptographic keys, codes, and data.

We consider that the service provider is cloud based, and
has abundant computing resources, network bandwidths,
and storage space. Besides, she tends to offer semantically
rich and value-added data services to data consumers rather
than directly revealing sensitive raw data, e.g., social net-
work analyses, data distributions, personalized recommen-
dations, and aggregate statistics.

The registration center maintains an online database of
registrations, and assigns each registered data contributor
an identity and a password to activate the tamper-proof
device. Besides, she maintains an official website, called cer-
tificated bulletin board [18], on which the legitimate system
participants can publish essential information, e.g., white-
lists, blacklists, resubmit-lists, and reward-lists of data con-
tributors. Yet, another duty of the registration center is to
set up the parameters for a signature scheme and a crypto-
system. To avoid being a single point of failure or bottle-
neck, redundant registration centers, which have identical
functionalities and databases, can be installed.

2.2 Adversary Model
In this section, we focus on attacks in practical data markets,
and define corresponding security requirements.

First, we consider that a malicious data contributor or an
external attacker may impersonate other legitimate data
contributors to submit possibly bogus raw data. Besides,
some malicious attackers may deliberately modify raw data
during submission. Hence, the service provider needs to
confirm that raw data are indeed sent unaltered by regis-
tered data contributors, i.e., to guarantee data authentication
and data integrity in the data acquisition layer.

Second, the service provider in the data market might be
greedy, and attempts to maximize her profit by launching
the following two types of attacks:

� Partial data collection: To cut down the expenditure on
data acquisition, the service provider may insert
bogus data into the raw data set.

� No/Partial data processing: To reduce the operation
cost, the service provider may try to return a fake
result without processing the data from designated
sources, or to provide data services based on a subset
of the whole raw data set.

On one hand, to counter partial data collection attack,
each data consumer should be enabled to verify whether
raw data are really provided by registered data contributors,
i.e., truthfulness of data collection in the data trading layer. On
the other hand, the data consumer should have the capability
to verify the correctness and completeness of a returned data
service in order to combat no/partial data processing attack.
We here use the term truthfulness of data processing in the data
trading layer to represent the integrated requirement of cor-
rectness and completeness of data processing results.

Third, we assume that some honest-but-curious data con-
tributors, the service provider, the data consumers, and
external attackers, e.g., eavesdroppers, may glean sensitive
information from raw data, and recognize real identities of
data contributors for illegal purposes, e.g., an attacker can
infer a data contributor’s home location from her GPS
records. Hence, raw data of a data contributor should be
kept secret from these system participants, i.e., data confi-
dentiality. Besides, an outside observer cannot reveal a data
contributor’s real identity by analysing data sets sent by her,
i.e., identity preservation.

Fourth, a minority of data contributors may try to behave
illegally, e.g., launching attacks as mentioned above, if there
is no punishment. To prevent this threat, the registration
center should have the ability to retrieve a data contributor’s
real identity, and revoke it from further usage, when her
signature is in dispute, i.e., traceability and revocability.

Last but not least, the semi-honest registration center
may misbehave by trying to link a data contributor’s real
identity with her raw data. Besides, if there is no detection
or verification in the cryptosystem, she may deliberately
corrupt the decrypted results. However, to guarantee full
side information protection, the requirement on the registra-
tion center is that she cannot leak decrypted samples to
irrelevant system participants. Moreover, she is required to
perform an acknowledged number of decryptions in a spe-
cific data service [19], which should be publicly posted on
the certificated bulletin board.

3 DESIGN OF TPDM

In this section, we propose TPDM, which integrates data
truthfulness and privacy preservation in data markets.

Fig. 1. A two-layer system model for data markets.
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3.1 Design Rationales
Using the terminology from the signcryption scheme [20],
TPDM is structured internally in a way of Encrypt-then-
Sign, using partially homomorphic encryption and identity-
based signature. It enforces the service provider to truthfully
collect and process real data. The essence of TPDM is to first
synchronize data processing and signature verification into
the same ciphertext space, and then to tightly integrate data
processing with outcome verification via the homomorphic
properties. With the help of the architectural overview in
Fig. 2, we illustrate the design rationales as follows.

Space Construction. The thorniest problem is how to
enable the data consumer to verify the validnesses of signa-
tures, while maintaining data confidentiality. If the signa-
ture scheme is applied to the plaintext space, the data
consumer needs to know the content of raw data for verifi-
cation. However, if we employ a conventional public key
encryption scheme to construct the ciphertext space, the ser-
vice provider has to decrypt and then process the data. Even
worse, such a construction is vulnerable to the no/partial
data processing attack, because the data consumer, only
knowing the ciphertexts, fails to verify the correctness and
completeness of the data service. Thus, the greedy service
provider may reduce operation cost, by returning a fake
result or manipulating the inputs of data processing. There-
fore, we turn to the partially homomorphic cryptosystem
for encryption, whose properties facilitate both data proc-
essing and outcome verification on the ciphertexts.

Batch Verification. After constructing the ciphertext space,
we can let each data contributor digitally sign her encrypted
raw data. Given the ciphertext and signature, the service
provider is able to verify data authentication and data integ-
rity. Besides, we can treat the data consumer as a third party
to verify the truthfulness of data collection. However, an
immediate question arisen is that the sequential verification
schema may fail to meet the stringent time requirement of
large-scale data markets. In addition, the maintenance of
digital certificates also incurs significant communication
overhead. To tackle these two problems, we propose an
identity-based signature scheme, which supports two-layer
batch verifications, while incurring small computation and
communication overheads.

Breach Detection. Yet, another problem in existing iden-
tity-based signature schemes is that the real identities are
viewed as public parameters, and are not well-protected.
On the other hand, if all the real identities are hidden, none
of the misbehaved data contributors can be identified.
To meet these two seemly contradictory requirements, we
employ ElGamal encryption to generate pseudo identities for
each registered data contributor, and introduce a new third
party, called registration center. Specifically, the registration

center, who owns the private key, is the only authorizedparty
to retrieve the real identities, and to revoke those malicious
accounts from further usage.

3.2 Design Details
Following the guidelines given above, we now introduce
TPDM in detail. TPDM consists of 5 phases: initialization,
signing key generation, data submission, data processing
and verifications, and tracing and revocation.

Phase I: Initialization. We assume that the registration cen-
ter sets up the system parameters at the beginning of data
trading as follows:

� The registration center chooses three multiplicative
cyclic groups G1, G2, and GT with the same prime
order q. Besides, g1 is a generator ofG1, and g2 is a gen-
erator ofG2. Moreover, these three cyclic groups com-
pose an admissible pairing ê : G1 � G2 ! GT [21].

� The registration center randomly picks s1; s2 2 Z�
q as

her two master keys, and then computes

P0 ¼ g1
s1 ; P1 ¼ g2

s1 ; and P2 ¼ g2
s2 ;

as public keys. The master keys s1; s2 are preloaded
into each registered data contributor’s tamper-proof
device.

� The registration center sets up parameters for a par-
tially homomorphic cryptosystem: a private key SK,
a public key PK, an encryption scheme Eð�Þ, and a
decryption schemeDð�Þ.

� To activate the tamper-proof device, each registered
data contributor oi is assigned with a “real” identity
RIDi 2 G1 and a password PWi. Here, RIDi

uniquely identifies oi, while PWi is required in the
access control process.

� The system parameters

ê;G1;G2;GT ; q; g1; g2; P0; P1; P2; PK; Eð�Þf g;
are published on the certificated bulletin board.

Phase II: Signing Key Generation. To achieve anonymous
authentication in data markets, the tamper-proof device is
utilized to generate a pair of pseudo identity PIDi and
secret key SKi for each registered data contributor oi:

PIDi ¼ hPID1
i ; PID

2
i i ¼ hg1r; RIDi � P0

ri; (1)

SKi ¼ hSK1
i ; SK

2
i i ¼ hPID1

i

s1 ; HðPID2
i Þs2i: (2)

Here, r is a per-session random nonce, � represents the
Exclusive-OR (XOR) operation, and H(�) is a MapToPoint
hash function [21], i.e., Hð�Þ : f0; 1g� ! G1. Besides, PIDi is

Fig. 2. System architecture of TPDM.
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an ElGamal encryption [22] of the real identity RIDi over
the elliptic curves, while SKi is generated accordingly by
exploiting identity-based encryption (IBE) [21].

Phase III: Data Submission. For secure submission of raw
data, we need to consider several requirements, including
confidentiality, authentication, and integrity. To provide
data confidentiality, we employ partially homomorphic
encryption. Besides, to guarantee data authentication and
data integrity, the encrypted raw data should be signed
before submission, and be verified after reception.

" Data Encryption. Ahead of submission, each data con-
tributor oi encrypts her raw data Ui to different powers
under the public key PK, and gets the ciphertext vector

~Di ¼ EðUi
kÞjk2K�Zþ ; (3)

where K is a set of positive integers, and is determined by
the requirements of data services, e.g., the location-based
aggregate statistics [19] may require K ¼ f1g, whereas in
the fine-grained profile matching [23], K ¼ f1; 2g.

" Encrypted Data Signing. After encryption, each data
contributor oi computes the signature si on the ciphertext
vector ~Di using her secret key:

si ¼ SK1
i � SK2

i

hðDiÞ; (4)

where “�” denotes the group operation in G1, hð�Þ is a one-
way hash function, e.g., SHA-1 [24], and Di is derived by
concatenating all the elements of ~Di together.

Eventually, oi submits her tuple hPIDi; ~Di; sii to the ser-
vice provider. On one hand, once receiving the tuple, the
service provider is required to post the pseudo identity
PIDi on the certificated bulletin board for fear of receiver-
repudiation. On the other hand, to prevent a registered data
contributor from using the same pair of pseudo identity
and secret key for multiple times in different sessions of
data acquisition, one intuitive way is to encapsulate the
signing phase into the tamper-proof device. Yet, another
feasible way is to let the service provider store those used
pseudo identities for duplication check later.

Phase IV: Data Processing and Verifications. In this phase,
we consider two-layer batch verifications, i.e., verifications
conducted by both the service provider and the data con-
sumer. Between the two-layer batch verifications, we intro-
duce data processing and signatures aggregation done by
the service provider. At last, we present outcome verifica-
tion conducted by the data consumer.

" First-layer Batch Verification. We assume that the ser-
vice provider receives a bundle of data tuples from n dis-
tinct data contributors, denoted as fhPIDi; ~Di; siiji 2 ½1; n�g.
To prevent a malicious data contributor from impersonating
other legitimate ones to submit possibly bogus data, the ser-
vice provider needs to verify the validnesses of signatures
by checking whether

ê
Yn
i¼1

si; g2

 !
¼ ê

Yn
i¼1

PID1
i ; P1

 !
ê
Yn
i¼1

HðPID2
i ÞhðDiÞ; P2

 !
: (5)

Compared with single signature verification, this batch
verification scheme can dramatically reduce the verification
latency, especially when verifying a large number of signa-
tures. Since the three pairing operations in Equation (5)
dominate the overall computation cost, the batch verifica-
tion time is almost a constant if the time overhead of n

MapToPoint hashings and n exponentiations is small
enough to be emitted. However, in a practical data market,
when the number of data contributors is too large, the
expensive pairing operations cannot dominate the verifica-
tion time. We will elaborate on this point in Section 6.1.

" Data Processing and Signatures Aggregation. Instead of
directly trading raw data for revenue, more and more ser-
vice providers tend to trade value-added data services, e.g.,
social network analysis, personalized recommendation,
location-based service, and data distribution.

To facilitate generating a precise and customized strategy
in targeted data services, e.g., profile matching and person-
alized recommendation, the data consumer also needs to
provide her own ciphertext vector ~D0 and a threshold d.
Moreover, ~D0 is derived from the data consumer’s informa-
tion V as follows:

~D0 ¼ EðviV
�kiÞj�ki2�K�Zþ;i2½1;j�Kj�; (6)

where �ki;vi are parameters determined by a concrete data
service. For example, the profile-matching service in Section
5.1 requires �ki 2 f1; 2g and vi 2 f	2; 1g.

Now, the service provider can process the collected data
as required by the data consumer. We model such a data
processing in the plaintext space as

g ¼ f V; Uc1 ; Uc2 ; . . . ; Ucm

� �
; (7)

for generality. Accordingly, f can be equivalently evaluated
in the ciphertext space using

R ¼ EðgÞ ¼ F ð~D0; ~Dc1 ;
~Dc2 ; . . . ;

~DcmÞ: (8)

The equivalent transformation from f to F is based on the
properties of the partially homomorphic cryptosystem, e.g.,
homomorphic addition 
 and homomorphic multiplication
�, which are arithmetic operations on the ciphertexts that
are equivalent to the usual addition and multiplication on
the plaintexts, respectively. Hence, only polynomial func-
tions can be computed in a straightforward way. Neverthe-
less, most non-polynomial functions, e.g., sigmoid and
rectified linear activation functions in machine learning, can
be well approximated/handled by polynomials [25].
Besides, the function f is determined by the data processing
method, and the choice of a specific partially homomorphic
cryptosystem should support the basic operation(s) in f .
For example, the primitive of aggregate statistics [19] is
addition, hence, the Paillier scheme [26] can be the first
choice; while the distance calculation [27] requires one more
multiplication, thus, the BGN scheme [18] may be preferred.
Furthermore, in Equation (8), ~D0 is the data consumer’s
ciphertext vector, and ~Dci indicates that the data contributor
oci is one of them valid data contributors. More precisely,m
is the size of whitelist on the certificated bulletin board, and
its default value is n. However, if either of the two-layer
batch verifications fails, m will be updated in the tracing
and revocation phase. We below use C to denote the indexes
ofm valid data contributors, i.e., C ¼ fc1; c2; . . . ; cmg.

Now, the service provider sends R to the registration
center for decryption. We note that the registration center
can only perform decryptions for acknowledged times,
which should be publicly announced on the certificated bul-
letin board. For example, in the aggregate statistics over a
valid dataset of size m, the registration center just needs to
do one decryption, and cannot do more than required. The
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reason is that the service provider can still obtain the correct
aggregate result by decrypting allm encrypted raw data.

Upon getting the plaintext g, the service provider can
compare it with d, and obtain the comparison result #. For
brevity, the concrete-value result g and the comparison
result # are collectively called outcome. We note that the out-
come may be in different formats, e.g., average speeds in
location-based aggregate statistics [19], shopping sugges-
tions in private recommendation [28], and friending strate-
gies in social networking [23]. We assume that the outcome
involves f candidate data contributors, and the subscripts
of their pseudo identities are denoted as I ¼ I1; I2; . . . ; If

� �
:

After data processing, to further reduce communication
overhead, the service provider can aggregate f candidate
signatures into one signature. In our scheme, the aggregate
signature s ¼Qi2I si: Then, the service provider sends the
final tuple to the data consumer, including the data service
outcome, the aggregate signature s, the index set I, and f
candidate ciphertexts f~Diji 2 Ig.

" Second-layer Batch Verification. Similar to the first-layer
batch verification, the data consumer can verify the legiti-
macy of f candidate data sources by checking whether

ê s; g2ð Þ ¼ ê
Y
i2I

PID1
i ; P1

 !
ê
Y
i¼1

HðPID2
i ÞhðDiÞ; P2

 !
: (9)

Here, the pseudo identities on the right hand side of the
above equation can be fetched from the certificated bulletin
board according to the index set I.

" Outcome Verification. The homomorphic properties also
enable the data consumer to verify the truthfulness of data
processing. Under the condition that the data consumer
knows her plaintext V , all the cross terms involving ~D0 in
Equation (8) can be evaluated through multiplication by a
constant V . Hence, part of the most time-consuming homo-
morphicmultiplications� in the original data processing are
no longer needed in outcome verification. Besides, if for cor-
rectness, the data consumer just needs to evaluate on the f
candidate ciphertexts. Of course, she reserves the right to
require the service provider to send her the other ðm	 fÞ
valid ones, onwhich the completeness can be verified.

In fact, if f or m	 f is too large, the data consumer can
take the strategy of random sampling for verification, where
the m valid pseudo identities on the certificated bulletin
board can be used for the sampling indexes. Random sam-
pling is a tradeoff between security and efficiency, and we
shall illustrate its feasibility in Sections 5 and 6.1.

Phase V: Tracing and Revocation. The two-layer batch veri-
fications only hold when all the signatures are valid, and
fail even when there is a single invalid signature. In prac-
tice, a signature batch may contain invalid one(s) caused by
accidental data corruption or possibly malicious activities
launched by an external attacker. Traditional batch verifier
would reject the entire batch, even if there is a single invalid
signature, and thus waste the other valid data items. There-
fore, tracing and/or recollecting invalid data items and their
corresponding signatures are important in practice. If the
second-layer batch verification fails, the data consumer can
require the service provider to find out the invalid signature
(s). Similarly, if the first-layer batch verification fails, the ser-
vice provider has to find out the invalid one(s) by herself.

To extract invalid signatures, as shown in Algorithm 1,
we propose ‘-DEPTH-TRACING algorithm. We consider that the

batch contains n signatures. In addition, the whitelist, the
blacklist, and the resubmit-list of pseudo identities are
global variables, and are initialized as empty sets. If a batch
verification fails, the service provider first finds out the
mid-point as mid ¼ b1þn

2 c (Line 9). Then, she performs batch
verification on the first half (head to mid) (Line 10) and the
second half (midþ 1 to tail) (Line 11), respectively. If either
of these two halves causes a failure, the service provider
repeats the same process on it. Otherwise, she adds the
pseudo identities from the valid half to the whitelist (Line 4-
5). The recursive process terminates, if validnesses of all the
signatures has been identified or a pre-defined limit of
search depth is reached (Line 2). A special case is the single
signature verification, in which the service provider can
determine its validness (Line 6-7). After this algorithm, the
service provider can form the resubmit-list of pseudo identi-
ties by excluding those in the other two lists.

Algorithm 1. ‘-DEPTH-TRACING

Initialization: S ¼ fs1; . . . ; sng, head ¼ 1, tail ¼ n, limit ¼ ‘,
whitelist ¼ ? ; blacklist ¼ ? ; resubmitlist ¼ ?

1: Function ‘-depth-TracingS; head; tail; limit
2: if jwhitelistj þ jblacklistj ¼ n or limit ¼ 0 then
3: return
4: else if CHECK-VALIDS; head; tail = true then
5: ADD-TO-WHITELIST head; tail
6: else if head ¼ tail then "Single signature verification
7: ADD-TO-BLACKLIST head; tail
8: else "Batch signatures verification from shead to stail

9: mid ¼ bheadþtail
2 c

10: ‘- DEPTH-TRACINGS; head;mid; limit	 1
11: ‘-DEPTH-TRACINGS;midþ 1; tail; limit	 1

According to the blacklist on the certificated bulletin
board, the registration center can reveal the real identities of
those invalid data contributors. Given the data contributor
oi’s pseudo identity PIDi, the registration center can use her
master key s1 to perform revealing by computing

PID2
i � PID1

i

s1 ¼ RIDi � P0
r � g1

s1�r ¼ RIDi: (10)

Upon getting a misbehaved data contributor’s real identity,
the registration center can revoke it from further usage if
necessary, e.g., deleting her account from the online regis-
tration database. Thus, the revoked data contributor can no
longer activate the tamper-proof device, which indicates
that she does not have the right to submit data any more.

4 SECURITY ANALYSIS

In this section, we analyze the security of TPDM.

4.1 Data Authentication and Data Integrity
Data authentication and data integrity are regarded as two
basic security requirements in the data acquisition layer.

The signature in TPDM si ¼ SK1
i � SK2

i
hðDiÞ is actually a

one-time identity-based signature. We now prove that if the
Computational Diffie-Hellman (CDH) problem in the bilin-
ear group G1 is hard [21], an attacker cannot successfully
forge a valid signature on behalf of any registered data con-
tributor except with a negligible probability.

First, we consider Game 1 between a challenger and an
attacker as follows:
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Setup: The challenger starts by giving the attacker the sys-
tem parameters g1 and P0. The challenger also offers a
pseudo identity PIDi ¼ hPID1

i ; PID
2
i i to the attacker,

which simulates the condition that the pseudo identities
are posted on the certificated bulletin board in TPDM.

Query: We assume that the attacker does not know how to
compute the MapToPoint hash function Hð�Þ and the
one-way hash function hð�Þ. However, she can ask the
challenger for the value HðPID2

i Þ and the one-way
hashes hð�Þ for up to n different messages.

Challenge: The challenger asks the attacker to pick two ran-
dom messages Mi1 and Mi2 , and to generate two corre-
sponding signatures si1 and si2 on behalf of the data
contributor oi.

Guess: The attacker sends hMi1 ; si1i and hMi2 ; si2i to the
challenger. We denote the attacker’s advantage in win-
ning Game 1 to be

�1 ¼ Pr½si1 and si2 are valid�: (11)

We further claim that our signature scheme is adaptively
secure against existential forgery, if �1 is negligible. We
prove our claim using Game 2 by contradiction.

Second, we assume that there exists a probabilistic poly-
nomial-time algorithm A such that it has the same non-neg-
ligible advantage �1 as the attacker in Game 1. Then, we
will construct Game 2, in which an attacker B can make use
of A to break the CDH assumption with non-negligible
probability. In particular, B is given ðg1; g1a; g1b; g1c; dÞ for
unknown ða; b; cÞ and known d, and is asked to compute
g1

2ab � g1cd. We note that computing g1
2ab � g1cd is as hard as

computing g1
ab, which is the original CDH problem. We

present the details of Game 2 as follows:

Setup: B makes up the parameters g1 and P0 ¼ g1
a, where a

plays the role of the master key s1 in TPDM. Besides,
B also provides A with a pseudo identity PIDi ¼ hPID1

i ;
PID2

i i ¼ hg1b; RIDi � g1
abi. Here, b functions as the ran-

domnonce r in TPDM.
Query: A then asks B for the value HðPID2

i Þs2 , and B replies
with g1

c. We note that HðPID2
i Þ is the only MapToPoint

hash operation to forge the data contributor oi’s valid
signatures. Besides, A picks n random messages, and
requests B for their one-way hash values hð�Þ. B
answers these queries using a random oracle: B main-
tains a table to store all the answers. Upon receiving a
message, if the message has been queried before, B
answers with the stored value; otherwise, she answers
with a random value, which is stored into the table for
later usage. Except for the x-th and y-th queries (i.e.,
messages Mx and My), B answers with the values d1
and d2, respectively, where d1 þ d2 ¼ d.

Challenge: When the query phase is over, B asks A to choose
two random messages Mi1 and Mi2 , and to sign them
on behalf of the data contributor oi.

Guess: A returns two signatures si1 and si2 on the messages
Mi1 and Mi2 to B. We note that Mi1 and Mi2 must be
within the n queried messages; otherwise, A does not
know hðMi1Þ and hðMi2Þ. Furthermore, ifMi1 ¼ Mx and
Mi2 ¼ My or Mi1 ¼ My and Mi2 ¼ Mx, B then computes
si1 � si2 , which is equivalent to:

SK1
i � SK2

i

hðMi1 Þ � SK1
i � SK2

i

hðMi2 Þ

¼ SK1
i

2 � SK2
i

hðMi1 ÞþhðMi2 Þ ¼ g1
2ab � g1cd:

(12)

After obtaining si1 � si2 , B solves the given CDH
instance successfully. We note that A’s advantage in
breaking TPDM is �1, and the probability that A
picks Mx and My is 2

nðn	1Þ. Thus, the probability of
B’s success is:

�2 ¼ Pr½B succeeds� ¼ 2�1
nðn	 1Þ : (13)

Since �1 is non-negligible, B can solve the CDH problem
with the non-negligible probability �2, which contradicts
with the assumption that the CDH problem is hard. This
completes our proof. Therefore, our signature scheme is
adaptively secure under random oracle model.

Last but not least, the first-layer batch verification
scheme in TPDM is correct if and only if Equation (5) holds.
The correctness of this equation follows from the bilinear
property of admissible pairing. Due to the limitation of
space, the detailed proof is put into our technical report [29].

In conclusion, our novel identity-based signature scheme
is provably secure, and the properties of data authentication
and data integrity are achieved.

4.2 Truthfulness of Data Collection

To guarantee the truthfulness of data collection, we need to
combat the partial data collection attack defined in the Sec-
tion 2.2. We note that it is just a special case of Game 1 in
Section 4.1, where the service provider is the attacker.
Hence, it is infeasible for the service provider to forge valid
signatures on behalf of any registered data contributor.
Such an appealing property prevents the service provider
from injecting spurious data undetectably, and enforces her
to truthfully collect real data. In addition, similar to data
authentication and data integrity, the data consumer can
verify the truthfulness of data collection by performing the
second-layer batch verification with Equation (9). Proof of
correctness is similar to that of Equation (5), where we can
just replace the aggregate signature s with

Q
i2I si.

4.3 Truthfulness of Data Processing
We now analyze the truthfulness of data processing from
two aspects, i.e., correctness and completeness.

Correctness. TPDM ensures the truthfulness of data col-
lection, which is the premise of a correct data service. Then,
given a truthfully collected dataset, the data consumer can
evaluate over the f candidate data sources, which is consis-
tent with the original data processing under the homomor-
phic properties.

Completeness. In fact, our design provides the property of
completeness by guaranteeing the correctness of n, m, and
f, which are the numbers of total, valid, and candidate data
contributors, respectively:

First, the service provider cannot deliberately omit a data
contributor’s real data. The reason is that if the data contrib-
utor has submitted her encrypted raw data, without finding
her pseudo identity on the certificated bulletin board, she
would obtain no reward for data contribution. Therefore,
she has incentives to report data missing to the registration
center, which in turn ensures the correctness of n.

Second, we consider that the service provider compro-
mises the number of valid data contributors m in two ways:
one is to put a valid data contributor’s pseudo identity into
the blacklist; the other is to put an invalid pseudo identity
into the whitelist. We discuss these two cases separately: 1)
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In the first case, the valid data contributor would not only
receive no reward, but may also be revoked from the online
registration database. Hence, she has strong incentives to
resort to the registration center for arbitration. Besides, we
claim that the service provider wins the arbitration except
with negligible probability. We give the detailed proof via
Game 3 between a challenger and an attacker:

Setup: The challenger first gives the attacker m valid data
tuples, denoted as fhPIDi; ~Di; siiji 2 Cg. This simulates
the data submissions fromm valid data contributors.

Challenge: The challenger asks the attacker to pick a random
data contributor oi within the m valid ones, and to gen-
erate a distinct signature s�

i on the data vector ~Di.
Guess: The attacker returns s�

i to the challenger. The attacker
wins Game 3, if s�

i 6¼ si, s
�
i passes the challenger’s veri-

fication, and si fails in the verification.
Next, we demonstrate that the attacker’s winning proba-

bility in Game 3, denoted as

�3 ¼ Pr½s�
i 6¼ si; s�

i passes verification, and si fails�; (14)

is negligible. On one hand, the verification scheme in TPDM
is publicly verifiable, which indicates that the challenger can
verify the legitimacy of s�

i and si through checkingwhether

ê s�
i ; g2

� � ¼ ê PID1
i ; P1

� �
ê HðPID2

i ÞhðDiÞ; P2

� �
;

ê si; g2ð Þ 6¼ ê PID1
i ; P1

� �
ê HðPID2

i ÞhðDiÞ; P2

� �
;

8><
>:

(15)

hold at the same time. We note that the above two equations
conform to the formula of single signature verification, i.e.,
n ¼ 1 in Equation (5). However, the second one contradicts
with our assumption that oi is a valid data contributor. On
the other hand, s�

i passes the challenger’s verification, while
s�
i is not equal to si, which implies that s�

i is a valid signa-
ture forged by the attacker. As shown in Game 1, the proba-
bility of successfully forging a valid signature �1 is
negligible, and thus the attacker’s winning probability in
Game 3 �3 is negligible as well. This completes our proof;
2). The second case is essentially the tracing and revocation
phase in Section 3.2, where a batch of signatures contains
invalid ones. Therefore, this case cannot pass two-layer
batch verifications in TPDM. Moreover, the greedy service
provider has no incentives to reward those invalid data con-
tributors, which could in turn destabilize the data market.
Joint considering above two cases, our scheme TPDM can
guarantee the correctness ofm.

Third, as stated in outcome verification, the data con-
sumer reserves the right to verify over all m valid data
items, and the service provider cannot just process a subset
without being found. Thus, the correctness of f is assured.

In conclusion, TPDM can guarantee the truthfulness of
data processing in the data trading layer.

4.4 Data Confidentiality
Considering the potential economic value and the sensitive
information contained in raw data, data confidentiality is a
necessity in the data market. Since partially homomorphic
encryption provides semantic security [18], [22], [26], by
definition, except the registration center, any probabilistic
polynomial-time adversary cannot reveal the contents of
raw data. Moreover, although the registration center holds
the private key, she cannot learn the sensitive raw data as

well, since neither the service provider nor the data con-
sumer directly forwards the original ciphertexts of the data
contributors for decryption. Therefore, data confidentiality
is achieved against all these system participants.

4.5 Identity Preservation
To protect a data contributor’s unique identifier in the data
market, her real identity is converted into a random pseudo
identity. We note that the two parts of a pseudo identity are
actually two items of an ElGamal-type ciphertext, which is
semantically secure under the chosen plaintext attacks [22].
Furthermore, the linkability between a data contributor’s
signatures does not exist, because the pseudo identities for
different signing instances are indistinguishable. Hence,
identity preservation can be ensured.

4.6 Semi-Honest Registration Center
Registration center in TPDM performs two main tasks: one
is to maintain the online database of legal registrations; the
other is to set up the partially homomorphic cryptosystem.

First, as we have clarified in Section 4.4, TPDM guaran-
tees data confidentiality against the registration center.
Thus, although she maintains the database of real identities,
she cannot link them with corresponding raw data. Second,
partially homomorphic encryption schemes (e.g., [18], [22],
[26]) normally provide a proof of decryption, which indi-
cates that the registration center cannot corrupt the
decrypted results undetectably. Hence, she virtually has no
effect on data processing and outcome verification. At last,
we will further show the feasibility of distributing registra-
tion centers in our evaluation part.

5 TWO PRACTICAL DATA MARKETS

In this section, from a practical standpoint, we consider two
practical data markets, which provide fine-grained profile
matching and multivariate data distribution, respectively.
The major difference between these two data markets is
whether the data consumer has inputs.

5.1 Fine-Grained Profile Matching
We first elaborate on a classic data service in social network-
ing, i.e., fine-grained profile matching. Unlike the directly
interactive scenario in [23], our centralized data market
breaks the limit of neighborhood finding. In particular, a
data consumer’s friending strategy can be derived from a
large scale of data contributions. For convenience, we shall
not differentiate “profile” from “raw data” in the profile-
matching scenario considered here.

During the initial phase of profile matching, the service
provider, e.g., Twitter or OkCupid, defines a public attri-
bute vector consisting of b attributes A ¼ ðA1; A2; . . . ; AbÞ,
where Ai corresponds to a personal interest such as movie,
sports, cooking, and so on. Then, to create a fine-grained
personal profile, a data contributor oi, e.g., a Twitter or
OkCupid user, selects an integer uij 2 ½0; u� to indicate her
level of interest in Aj 2 A, and thus forms her profile vector
~Ui ¼ ðui1; ui2; . . . ; uibÞ: Subsequently, oi submits ~Ui to the
service provider for matching process.

To facilitate profile matching, the data consumer also
needs to provide her profile vector ~V ¼ ðv1; v2; . . . ; vbÞ and
an acceptable similarity threshold d, where d is a non-nega-
tive integer. Without loss of generality, we assume that the
service provider employs euclidean distance fð�Þ to measure
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the similarity between the data contributor oi and the data

consumer, where fð~Ui; ~V Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPb

j¼1 ðuij 	 vjÞ2
q

. We note

that if fð~Ui; ~V Þ < d; then the data contributor oi is a match-
ing target to the data consumer. In what follows, to simplify

construction, we covert the matching metric fð~Ui; ~V Þ < d to

its squared form
Pb

j¼1 ðuij 	 vjÞ2 < d2:

5.1.1 Recap of Adversary Model

Before introducing our detailed construction, we first give a
brief review of the adversary model and corresponding
security requirements in the context of profile matching.

As shown in Fig. 3, Alice and Bob are registered data
contributors, and Charlie is a data consumer. Here, the par-
tial data collection attack means that to reduce data acquisi-
tion cost, the service provider may insert unregistered/fake
David’s profile. Besides, the partial data processing attack
indicates that to reduce operation cost, the service provider
may just evaluate the similarity between Charlie and Alice,
while generating a random result for Bob. Moreover, the no
data processing attack implies that the service provider just
returns two random matching results without processing
both Alice and Bob.

Our joint security requirements of privacy preservation
and data truthfulness mainly include two aspects: 1) With-
out leaking the real identities and the profiles of Alice and
Bob, the service provider needs to prove the legitimacies of
Alice and Bob to Charlie; 2) Without revealing Alice’s and
Bob’s profiles, Charlie can verify the correctness and com-
pleteness of returned matching results.

5.1.2 BGN-Based Construction

Given the profile-matching scenario considered here, we
utilize a partially homomorphic encryption scheme based
on bilinear maps, called Boneh-Goh-Nissim (BGN) crypto-
system [18]. This is because we only require the oblivious
evaluation of quadratic polynomials, i.e.,

Pb
j¼1 ðuij 	 vjÞ2. In

particular, the BGN scheme supports any number of homo-
morphic additions after a single homomorphic multiplica-
tion. Now, we briefly introduce how to adapt TPDM to this
practical data market. Due to the limitation of space, here
we focus on the major phases, including data submission,
data processing, and outcome verification.

Data Submission. When a data contributor oi intends to
submit her profile ~Ui, she employs the BGN scheme to do
encryption, and gets the ciphertext vector:

~Di ¼ EðuijÞ; Eðuij
2Þ� �jj2½1;b�: (16)

Afterwards, the data contributor oi computes the signature
si on ~Di using her secret key SKi:

si ¼ SK1
i � SK2

i

hðDiÞ; (17)

whereDi is derived by concatenating all the elements of ~Di.
Data Processing. To facilitate generating a personalized

friending strategy, the data consumer also needs to provide
her encrypted profile vector ~D0 and a threshold d, where

~D0 ¼ Eðvj2Þ; EðvjÞ	2 ¼ Eð	2vjÞ
� �

jj2½1;b�: (18)

Now, the service provider can directly do matching on
the encrypted profiles. For brevity in expression, we assume
that oi is one of the m valid data contributors, i.e., i 2 C.

Besides, to obliviously evaluate the similarity fð~Ui; ~V Þ, the
service provider first preprocesses ~Di and ~D0 by adding
Eð1Þ to the first and the last places of two vectors, respec-
tively, and gets new vectors ~Ci ¼ ðC1

ij; C
2
ij; C

3
ijÞjj2½1;b� and

~C0 ¼ ðC1
0j; C

2
0j; C

3
0jÞjj2½1;b�, where

C1
ij; C

2
ij; C

3
ij

� �
¼ Eð1Þ; EðuijÞ; Eðuij

2Þ� �
; (19)

C1
0j; C

2
0j; C

3
0j

� �
¼ Eðvj2Þ; Eð	2vjÞ; Eð1Þ� �

: (20)

After preprocessing, the service provider can compute the
“dot product” of Equation (19) and Equation (20), by first
applying homomorphic multiplication � and then homo-
morphic addition 
, and gets Rij, where

Rij ¼ C1
ij � C1

0j 
 C2
ij � C2

0j 
 C3
ij � C3

0j

¼ E vj
2 þ uijð	2vjÞ þ uij

2
� �

¼ E ðuij 	 vjÞ2
� �

:

(21)

Next, the service provider applies 
 to Rij with 8j 2 ½1;b�,
and gets Ri ¼ EðPb

j¼1ðuij 	 vjÞ2Þ ¼ Eðfð~Ui; ~V Þ2Þ.
Now, the service provider can send Ri to the registration

center for decryption.We note that for each data contributor,
the registration center just needs to do one decryption, i.e.,
supposing the size of whitelist on the certificated bulletin
board is m, she can only perform m decryptions in total.
The registration center cannot do more decryptions than
required, since the service provider may still obtain a correct
and complete matching strategy by revealing the profiles
of all the valid data contributors and the data consumer.
However, this case requires at least ðmþ 1Þb decryptions.
Furthermore, to speed up BGN decryption in outcome
verification, the registration center should retain the
decrypted plaintexts in storage for a preset validity period.

When getting fð~Ui; ~V Þ2, the service provider can compare
it with d2, and thus determines whether the data contributor
oi matches the data consumer. We assume that f data con-
tributors are matched, and the subscripts of their pseudo
identities are denoted as I ¼ fI1; I2; . . . ; Ifg.

After data processing, the service provider aggregates
the signatures of f matched data contributors into one sig-
nature. Then, she sends the aggregate signature, the indexes
of matched data contributors, and their encrypted profile
vectors to the data consumer, on which the second-layer
batch verification can be performed with Equation (9).
Besides, to prevent the service provider from changing/
revaluating ðm	 fÞ valid but unmatched data contributors
in the completeness verification later, their similarities, i.e.,
ffð~Ui; ~V Þ2ji 2 C; i =2 Ig; should also be forwarded. We note
that the pseudo identities of f matched data contributors
can be viewed as the friending strategy, i.e., outcome in the
general model, since the data consumer can resort to the

Fig. 3. An illustration of fine-grained profile matching.
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registration center, as a relay, for handshaking with those
matched data contributors.

Outcome Verification. During the validity period preset by
the registration center, the data consumer can verify the
truthfulness of data processing via homomorphic proper-
ties. For correctness, the data consumer just needs to
evaluate over the f matched profiles. Of course, for com-
pleteness, the data consumer reserves the right to do verifi-
cation on the other ðm	 fÞ unmatched ones. We note that
the data consumer, knowing her profile vector ~V , can com-
pute Equation (21) through

Rij ¼ E uij
2

� �
 E uij

� �	2vj
Eðvj2Þ: (22)

Thus, the most time-consuming homomorphic multiplica-
tions � can be avoided in outcome verification. Moreover,
we note that the registration center does not need to do
decryption as in data processing, since she can just search a
smaller-size table of plaintexts in the storage. If there is no
matched one, the outcome verification fails, and the service
provider will be questioned by the data consumer.

To further reduce verification cost, the data consumer
can take the stratified sampling strategy in practice. We
assume that the greedy service provider cheats by not eval-
uating each data contributor in the original data processing
with a probability p. Then, the probability of successfully
detecting an attempt for returning an incorrect/incomplete
result, �, increases exponentially with the number of checks
c, i.e., � ¼ 1	 ð1	 pÞc. For example, when p ¼ 20% and
c ¼ 10, the success rate � is already 90 percent.

5.2 Multivariate Data Distribution
We further consider an advanced aggregate statistic, where
the service provider wants to capture the underlying distri-
bution over the collected dataset, and to offer such a distri-
bution as a data service to the data consumer [30], [31]. For
example, an analyst, as the data consumer, may want to
learn the distribution of residential energy consumptions.

Due to central limit theorem, we assume that the multi-
variate Gaussian distribution can closely approximate the
raw data, which is a widely used assumption in statistical
learning algorithms [32]. For convenience, we continue to
use the notations in profile matching, i.e., the attribute vec-
tor A now represents a vector of b random variables. In par-
ticular, A � Nðmm;SSÞ, where mm is a b-dimensional mean
vector, and SS is a b� b covariance matrix. Besides, the
covariance matrix can be evaluated by:

SS ¼ E AAT
	 
	 mmmmT : (23)

Here, E½�� denotes taking expectation. We below focus on
the key designs different from profile matching.

For data submission, the cipertext vector of the data con-
tributor oi is changed into:

~Di ¼ EðuijÞ; Eðuij � uikÞ
� �jj2½1;b�;k2½j;b�; (24)

where the first element is to facilitate computing the mean
vector mm, while the second element is to help the service
provider in evaluating the matrix E½AAT �more efficiently.

For data processing, the service provider first employs
homomorphic additions to obliviously evaluate the mean
vector mm, where the ciphertext of its j-th element multiply-
ing the number of valid data contributorsm is:



i2C

E uij

� � ¼ E
X
i2C

uij

 !
¼ Eðm� mmjÞ: (25)

Additionally, to compute the covariance matrix, it suffices
for the service provider to derive E½AAT �. Here, the service
provider can avoid the time-consuming homomorphic mul-
tiplications. For example, the j-th row, k-th column entry of
E½AAT �, denoted as E½AAT �jk, can be computed through:



i2C

E uij � uik
� �� � ¼ E

X
i2C

uij � uik

 !

¼ E m� E AAT
	 


jk

� �
:

(26)

However, supposing that the data contributor oi excluded
fEðuij � uikÞjj 2 ½1;b�; k 2 ½j;b�g from her ciphertext vector,
the service provider would need to perform bðbþ1Þ

2 time-
consuming homomorphic multiplications for oi, because
Eðuij � uikÞ in Equation (26) now needs to be derived using
EðuijÞ � EðuikÞ instead.

For outcome verification, the data consumer can take the
stratified random sampling strategy from two aspects: 1)
She can randomly check parts of the mean vector mm and the
matrix AAT ; 2) She can reevaluate a random subset of m
valid data items, and compare the new distribution with the
returned distribution. If the difference is within a threshold,
the data consumer would accept; otherwise, she rejects.

6 EVALUATION RESULTS

In this section, we show the evaluation results of TPDM in
terms of computation overhead and communication over-
head. We also demonstrate the feasibility of the registration
center and the ‘-DEPTH-TRACING algorithm. We finally discuss
the practicality of TPDM in current data markets.

Datasets. We use two real-world datasets, called R1-
Yahoo! Music User Ratings of Musical Artists Version
1.0 [33] and 2009 Residential Energy Consumption Survey
(RECS) dataset [34], for the profile matching service and the
data distribution service, respectively. First, the Yahoo! data-
set represents a snapshot of Yahoo!Music community’s pref-
erence for various musical artists. It contains 11,557,943
ratings of 98,211 artists given by 1,948,882 anonymous users,
and was gathered over the course of one month prior to
March 2004. To evaluate the performance of profile match-
ing, we choose b common artists as the evaluating attributes,
append each user’s corresponding ratings ranging from 0 to
10, and thus form her fine-grained profile. Second, the RECS
dataset, which was released by U.S. Energy Information
Administration (EIA) in January 2013, provides detailed
information about diverse energy usages in U.S. homes. The
dataset was collected from 12,083 randomly selected house-
holds between July 2009 and December 2012. In this evalua-
tion, we view b types of energy consumptions, e.g.,
electricity, natural gas, space heating, and water heating, as
b random variables, and intend to the distribution.

Evaluation Settings.We implemented TPDM using the lat-
est Pairing-Based Cryptography (PBC) library [35]. The
elliptic curves utilized in our identity-based signature
scheme include a supersingular curve with a base field size
of 512 bits and an embedding degree of 2 (abbreviated as
SS512), and a MNT curve with a base field size of 159 bits
and an embedding degree of 6 (abbreviated as MNT159). In
addition, the group order q is 160-bit long, and all hashings
are implemented in SHA1, considering its digest size closely
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matches the order of G1. The BGN cryptosystem is realized
using Type A1 pairing, in which the group order is a prod-
uct of two 512-bit primes. The running environment is a
standard 64-bit Ubuntu 14.04 Linux operation system on
a desktop with Intel(R) Core(TM) i5 3:10 GHz.

6.1 Computation Overhead
We show the computation overheads of four important
components in TPDM, namely profile matching, data distri-
bution, identity-based signature, and batch verification.

Profile Matching. In Fig. 4a, we plot the computation over-
heads of profile encryption, similarity evaluation, and out-
come verification per data contributor, when the number of
attributes b increases from 5 to 40 with a step of 5. From
Fig. 4a, we can see that the computation overheads of these
three phases increase linearly with b. This is because the
profile encryption requires 2b BGN encryptions, the similar-
ity evaluation consists of 3b homomorphic multiplications
and additions, and the outcome verification is composed of
3b homomorphic additions and b exponentiations, which
are both proportional to b. In addition, the outcome verifica-
tion is light-weight, whose overhead is only 1.17 percent of
the original similarity evaluation cost. Moreover, when
b ¼ 10, one decryption overhead at the registration center is
1.648ms in the original data processing, while in outcome
verification, it is in tens of microseconds.

We now show the feasibility of outcome verification by
comparing with the original data processing. We analyze the
matching ratio based on Yahoo! Music ratings dataset. Given
b ¼ 10, when a data consumer sets her threshold d ¼ 12, she
is matched with 4.49 percent in average of the 10000 data
contributors, who are selected randomly from the dataset.
The relatively small matching ratio means that even if all
matched data contributors are verified for correctness, it
only incurs an overhead of 4.859s at the data consumer,
which is roughly 0.05 percent of the data processing work-
load at the service provider. Next, we simulate the partial
data processing attack by randomly corrupting 20 percent of
unmatched data contributors, i.e., replacing their similarities
with random values. Then, the data consumer can detect
such type attack using 26 random checks in average for com-
pleteness, which incurs an additional overhead of 0.281s.

Data Distribution. Fig. 4b plots the computation overhead
of the data distribution service, where the number of ran-
dom variables b increases from 1 to 8, and the number of
valid data contributors m is fixed at 10000. Besides, for out-
come verification, the data consumer checks all the elements
in the mean vector, while only checks the diagonal elements
in the covariance matrix. From Fig. 4b, we can see that the
computation overheads of the first two phases roughly
increase quadratically with b, whereas the computation

overhead of the last phase increases linearly with b. The rea-
son is that the data encryption phase consists of bðbþ3Þ

2
BGN encryptions for each data contributor, and the distri-
bution evaluation phase mainly comprises mbðbþ3Þ

2 homo-
morphic additions. In contrast, the outcome verification
phase mainly requires 2 mb homomorphic additions. Fur-
thermore, when b ¼ 8, these three phases consume 0.402s,
140.395s, and 51.200s, respectively.

Jointly summarizing above evaluation results, TPDM
performs well in both kinds of data markets. Thus, the gen-
erality of TPDM can be validated.

Identity-Based Signature. We now investigate the compu-
tation overhead of the identity-based signature scheme,
including preparation and operation phases. In this set of
simulations, we set the number of data contributors to be
10000. Table 1 lists the average time overhead per data con-
tributor. From Table 1, we can see that the time cost of the
preparation phase dominates the total overhead in both
SS512 and MNT159. This outcome stems from that the
pseudo identity generation employs ElGamal encryption,
and the secret key generation is composed of one MapTo-
Point hash operation and two exponentiations. In contrast,
the operation phase mainly consists of one exponentiation.

The above results demonstrate that the signature scheme
in TPDM is efficient enough, and can be applied to the data
contributors with mobile devices.

Batch Verification. To examine the efficiency of batch veri-
fication, we vary the number of data contributors from 1 to
1 million by exponential growth. The performance of the
corresponding single signature verification is provided as a
baseline. Fig. 4c depicts the evaluation results using SS512
and MNT159, where verification time per signature (VTPS)
is computed by dividing the total verification time by the
number of data contributors. In particular, such a perfor-
mance measure in an average sense can be found in [36],
[37]. From Fig. 4c, we can see that when the scale of data
acquisition or data trading is small, e.g., when the number
of data contributors is 10, TPDM saves 48.22 and 87.94 per-
cent of VTPS in SS512 and MNT159, respectively. When the
scale becomes larger, TPDM’s advantage over the baseline
is more remarkable. This is owing to the fact that TPDM

Fig. 4. Computation overhead of TPDM.

TABLE 1
Computation Overhead of Identity-Based Signature Scheme

Preparation Operation

Setting Pseudo Identity
Generation

Secret Key
Generation

Signing

SS512 4.698ms (39.40%) 6.023ms (50.53%) 1.201ms (10.07%)
MNT159 1.958ms (57.33%) 1.028ms (30.10%) 0.429ms (12.57%)
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amortizes the overhead of 3 time-consuming pairing opera-
tions among all the data contributors.

We now compare the bath verification efficiency of
two settings. Although the baseline of MNT159 increases
41.44 percent verification time than that of SS512, MNT159’s
implementation is more efficient when the number of
data contributors is larger than 10, e.g., when supporting
as many as 1 million data contributors, MNT159 reduces
89.93 percent verification latency than SS512. We explain
the reason by analyzing the asymptotic value of VTPS:

lim
n!þ1

3Tpar þ nTmtp þ nTexp

n
¼ Tmtp þ Texp: (27)

Here, we let Tpar, Tmtp, and Texp denote the time overheads
of a pairing operation, a MapToPoint hashing, and an expo-
nentiation, respectively. From Equation (27), we can draw
that if the time overheads of additional operations, e.g., Tmtp

and Texp, are approaching or even greater than that of pair-
ing operation (e.g., in SS512), their effect cannot be elided.
Besides, the expensive additional operations will cancel
parts of the advantage gained by batch verification. Even
so, the batch verification scheme can still sharply reduce
per-signature verification cost.

These evaluation results reveal that TPDM can indeed
help to reduce the computation overheads of the service
provider and the data consumer by introducing two-layer
batch verifications, especially in large-scale data markets.

6.2 Communication Overhead
In this section, we show the communication overheads of
profile matching and data distribution separately.

Fig. 5 plots the communication overhead of profile match-
ing, where the identity-based signature scheme is imple-
mented in MNT159, the number of attributes b is fixed at 10,
and the threshold d takes 12. Here, the communication over-
heads merely count in the amount of sending content.
Besides, we only consider the correctness verification. In fact,
when the number of valid data contributors m is 104, if we
check 26 unmatched ones for completeness, it incurs addi-
tional communication overheads of 80.03 KB at the service
provider, and 3.35 KB at the data consumer. Moreover, our
statistics on the dataset show a linear correlation between the
numbers of matched data contributors f and valid ones m,
where thematching ratio is 4.24 percent in average.

The first observation from Fig. 5 is that the communica-
tion overheads of the service provider and the data con-
sumer grow linearly with the number of valid data
contributors, while the communication overhead of each
data contributor remains unchanged. The reason is that
each data contributor just needs to do one profile submis-
sion, and thus its cost is independent of m. However, the
service provider primarily needs to send m encrypted simi-
larities for decryption, and to forward the indexes and
ciphertexts of f matched data contributors for verifications.
Regarding the data consumer, her communication overhead
mainly comes from one data submission and the delivery of
f encrypted similarities for decryption. These imply that
the communication overheads of the service provider and
the data consumer are linear with m. Here, we note that x, y
axes in Fig. 5 are log-scaled, and thus the communication
overhead of the data consumer, containing a constant of one
data submission overhead, seems non-linear. In particular,
when m  100, one data submission overhead dominates

the total communication overhead, and this interval looks
like a horizontal line; while m � 1000, the communication
overhead of delivering f encrypted similarities dominates,
and it appears linear.

The second key observation is that when m ¼ 10, all the
three participants spend almost the same network band-
width. The cause lies in that the small matching ratio implies
a small number of matched data contributors involved in
correctness verification, e.g., the mean of f is only about
0:4 < 1 at m ¼ 10, and the communication overheads at
each data contributor, the service provider, and the data con-
sumer are 2.60 KB, 2.37 KB, and 2.59 KB, respectively.

We further plot the communication overhead of data distri-
bution in Fig. 6,where the number of randomvariables b is set
to be 8. From Fig. 6, we can see that the communication over-
head of the service provider increases linearly with the num-
ber of valid data contributors m. This is because the service
providermainly needs to send 2 bm BGN-type ciphertexts for
verifications, which is linear with m. By comparison, besides
the data contributor, the data consumer’s bandwidth over-
head stays the same, since she needs to deliver 2b BGN-type
ciphertexts for decryption, which is independent ofm.

At last, we note that the transmission of BGN-type
ciphertexts dominates the total communication overheads
in both data services, while the overhead incurred by send-
ing the pseudo identities and the aggregate signature is
comparatively low. Hence, we do not plot the cases for
SS512, which are similar to Figs. 5 and 6. In particular, com-
pared with MNT159, SS512 adds 132 bytes and 176 bytes at
each data contributor in profile matching and data distribu-
tion, respectively. Moreover, SS512 adds 44 bytes at the ser-
vice provider in both data services, but incurs no extra
bandwidth at the data consumer.

6.3 Feasibility of Registration Center
In this section, we consider the feasibility of the registration
center from the perspectives of computation, communica-
tion, and storage overheads. We implement the identity-
based signature scheme with MNT159. In addition, for the
profile matching service, the number of attributes is fixed at
10, and the number of valid data contributors m is set to be
10000. Accordingly, the number of matched ones f is 449 at
d ¼ 12. For the data distribution service, we fix the number
of random variables b at 8, and set the number of valid data
contributors to be 10000.

First, the primary responsibility of the registration center
is to initialize the system parameters for the identity-based
signature scheme and the BGN cryptosystem. Besides, she
is required to perform totally ðmþ fÞ and ðbþ7Þb

2 decryptions
in the profile matching and the data distribution services,
respectively. The total computation overheads are 16.692s

Fig. 5. Communication overhead of profile matching.
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and 3.065s in two data services, respectively, which are only
0.18 and 2.11 percent of the service provider’s workloads.
Furthermore, the one-time setup overhead can be amortized
over several data services. Second, the main communication
overheads of the registration center in two data services are
incurred by returning decrypted results, which occupies
the network bandwidth of 15.31 KB and 0.23 KB, respec-
tively. Third, the storage overhead of the registration center
mostly comes from maintaining the online database of
registrations and the real-time certificated bulletin board,
and caching the intermediate plaintexts. These two parts
take up roughly 600.59 KB and 586.11 KB storage space in
profile matching and data distribution, respectively.

In conclusion, our design of registration center has a light
load, and can be implemented in a distributed manner,
where each registration center can be responsible for one or
a few data services.

6.4 Feasibility of Tracing Algorithm
To evaluate the feasibility of ‘-DEPTH-TRACING algorithm
when the batch verification fails, we generate a collection of
1024 valid signatures, and then randomly corrupt an a-frac-
tion of the batch by replacing them with random elements
from the cyclic group G1. We repeat this evaluation with
various values of a ranging from 0 to 20 percent, and com-
pare the verification latency per signature in batch verifica-
tion with that in single signature verification. Here, the
batch verification time includes the time cost spent in identi-
fying invalid signatures. Fig. 7 presents the evaluation
results using the efficient MNT159.

As shown in Fig. 7, batch verification is preferable to sin-
gle signature verificationwhen the ratio of invalid signatures
is up to 16 percent. The worst case of batch verification hap-
pens when the invalid signatures are distributed uniformly.
In case the invalid signatures are clustered together, the per-
formance of batch verification should be better. Furthermore,
as shown in the initialization phase of Algorithm 1, the ser-
vice provider can preset a practical tracing depth, and let
those unidentified data contributors do resubmissions.

6.5 Practicality of TPDM
We finally discuss the practical feasibility of TPDM in cur-
rent data markets.

First, to the best of our knowledge, the current applica-
tions in real-world data markets, e.g., Microsoft Azure Mar-
ketplace [1], Gnip [2], DataSift [3], Datacoup [4], and
Citizenme [5], have not provided the security guarantees
studied in the TPDM framework.

Second, for the profile matching service, when supporting
as many as 1 million data contributors, the computation

overhead at the service provider is 0.930s per matching with
10 evaluating attributes in each profile. Besides, for the data
distribution service, when supporting 10000 data contribu-
tors and 8 random variables, the computation overhead at
the service provider is 144.944s in total. Furthermore, the
most time-consuming part of the service provider in TPDM
is the computation on encrypted data due to data confidenti-
ality. Specific to its feasibility in practical applications, we
below list the computation overheads of two state-of-art lit-
eratures from machine learning and security communities:
1) In [25], Gilad-Bachrach et al. proposed CryptoNets, which
applies neural networks to encrypted data with high
throughput and accuracy. Besides, they tested CryptoNets
on the benchmark MNIST dataset. Their evaluation results
show that CryptoNets achieve 99 percent accuracy, and a
single predication takes 250s on a single PC. 2) In [38],
Bost et al. considered some commonmachine learning classi-
fiers over encrypted data, including linear classifier, naive
Bayes, and decision trees. Moreover, they used several data-
sets from the UCI repository for evaluation. According to
their evaluation results, their decision tree classifier con-
sumes 9.8s per time over the ECG dataset on a single PC.

Last but not least, our implementation using the latest
PBC library is single-threaded on single core. If we deploy
TPDM on the cloud-based servers with abundant resources,
and further employ some parallel and distributed operations,
such as Single Instruction Multiple Data (SIMD) utilized
in [25], [38], the performance should be significantly
improved. In particular, after parallel computation, Crypto-
Nets can process 4,096 predications simultaneously, and can
reach a throughput of 58,982 predications per hour.

7 RELATED WORK

In this section, we briefly review related work.

7.1 Data Market Design
In recent years, data market design has gained increasing
interest, especially from the database community. The semi-
nal paper [10] by Balazinska et al. discusses the implications
of the emerging digital data markets, and lists the research
opportunities in this direction. Li et al. [39] proposed a the-
ory of pricing private data based on differential privacy.
Upadhyaya et al. [11] developed a middleware system,
called DataLawyer, to formally specify data use policies,
and to automatically enforce these pre-defined terms during
data usage. Jung et al. [12] focused on the datasets resale
issue at the dishonest data consumers.

However, the original intention of above works is pricing
data or monitoring data usage rather than integrating data
truthfulness with privacy preservation in data markets,
which is the consideration of our paper.

7.2 Practical Computation on Encrypted Data
To get a tradeoff between functionality and performance,
partially homomorphic encryption (PHE) schemes were
exploited to enable practical computation on encrypted data.
Unlike those prohibitively slow fully homomorphic encryp-
tion (FHE) schemes [40], [41] that support arbitrary opera-
tions, PHE schemes focus on specific function(s), and
achieve better performance in practice. A celebrated example
is the Paillier cryptosystem [26], which preserves the group
homomorphism of addition and allows multiplication by a
constant. Thus, it can be utilized in data aggregation [19] and

Fig. 6. Communication overhead of data distribution.
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interactive personalized recommendation [23], [28]. Yet,
another one is ElGamal encryption [22], which supports
homomorphic multiplication, and it is widely employed in
voting [42]. Moreover, the BGN scheme [18] facilitates one
extra multiplication followed by multiple additions, which
in turn allows the oblivious evaluation of quadratic multi-
variate polynomials, e.g., shortest distance query [27]
and optimal meeting location decision [43]. Lastly, several
stripped-down homomorphic encryption schemes were
employed to facilitate practical machine learning algorithms
on encrypted data, such as linear means classifier [44], naive
Bayes [38], neural networks [25], and so on.

These schemes enable the service provider and the data
consumer to efficiently perform data processing and out-
come verification over encrypted data, respectively. Besides,
we note that the outcome verification in data markets differs
from the verifiable computation in outsourcing scenarios,
since before data processing, the data consumer, as a client,
does not hold a local copy of the collected dataset. Further-
more, interested readers can refer to our technical report [29]
for more related work.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the first efficient secure
scheme TPDM for data markets, which simultaneously
guarantees data truthfulness and privacy preservation. In
TPDM, the data contributors have to truthfully submit their
own data, but cannot impersonate others. Besides, the ser-
vice provider is enforced to truthfully collect and process
data. Furthermore, both the personally identifiable informa-
tion and the sensitive raw data of data contributors are well
protected. In addition, we have instantiated TPDM with
two different data services, and extensively evaluated their
performances on two real-world datasets. Evaluation results
have demonstrated the scalability of TPDM in the context
of large user base, especially from computation and com-
munication overheads. At last, we have shown the feasibil-
ity of introducing the semi-honest registration center with
detailed theoretical analysis and substantial evaluations.

As for further work in data markets, it would be interest-
ing to consider diverse data services with more complex
mathematic formulas, e.g., Machine Learning as a Service
(MLaaS) [25], [45], [46]. Under a specific data service, it is
well-motivated to uncover some novel security problems,
such as privacy preservation and verifiability.
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