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Abstract—With the commoditization of personal data, pricing
privacy has become an intriguing topic. In this paper, we study
time-series data trading from the perspective of a data broker in
data markets. We thus propose HORAE, which is a PufferfisH
privacy based framewOrk for tRAding timE-series data. HORAE
first employs Pufferfish privacy to quantify privacy losses under
temporal correlations, and compensates data owners with distinct
privacy strategies in a satisfying way. Besides, HORAE not only
guarantees good profitability at the data broker, but also ensures
arbitrage freeness against cunning data consumers. We further
apply HORAE to physical activity monitoring, and extensively
evaluate its performance on the real-world Activity Recognition
with Ambient Sensing (ARAS) dataset. Our analysis and evalu-
ation results reveal that HORAE compensates data owners in a
more fine-grained manner than entry/group differential privacy
based approaches, well controls the profit ratio of the data broker,
and thwarts arbitrage attacks launched by data consumers.

Index Terms—Data Trading; Data Privacy; Time-Series Data

I. INTRODUCTION

The past few years have witnessed the proliferations of
smart devices and Internet of Things (IoTs) in people’s daily
lives. Tremendous volumes of data are collected periodically
by the embedded sensors to monitor human activities. Typical
examples of monitoring data in time series include breathing
volumes [1], heartbeats [2], physical activities [3], and residen-
tial energy consumptions [4]. However, for privacy concerns,
most of data owners are reluctant to share their data, resulting
in a number of isolated data islands. To promote private
data circulation, many data brokers [5]–[8] have emerged to
bridge the gap between data owners and data consumers. On
one hand, a data broker needs to offer monetary rewards to
incentivize the data owners to contribute sensitive data. On
the other hand, the data broker charges the data consumers
for their queries over the collected dataset.

In this paper, we study a novel time-series data trading
problem from the data broker’s point of view in data mar-
kets. We summarize three major design challenges. The first
and the thorniest challenge is to rigorously quantify privacy
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loss at timestamp level. Markets for sensitive personal data
significantly differ from those for ordinary information goods
in privacy compensation [9]. To compensate each data owner
properly, it is necessary to quantify her privacy loss during the
usage of her data. Existing works on private data trading [9]–
[11] mainly considered data from multiple data owners, and
utilized differential privacy [12], [13] to measure individual
privacy loss. However, these works cannot directly apply to
our context, since we intend to investigate a sequence of
data from a certain data owner, and to quantify her privacy
loss at each timestamp. Although two modified versions of
differential privacy, called entry differential privacy [14] and
group differential privacy [15], may be applicable, they mis-
handle temporal correlations, where all states are assumed to
be independent (resp., correlated) in the entry (resp., group) d-
ifferential privacy. In other words, they treat each state equally,
which is unreasonable in practice. For example, Alice’s states
at 8:00am and 8:00pm have different sets of correlated states,
and thus can suffer distinct privacy losses.

Yet, another challenge comes from the query format over
time-series data. In data markets, each data consumer should
be permitted to purchase data analysis over her interested data
items rather than the whole dataset [16]. For time-series data,
we consider that the data consumer can designate a pair of
starting and ending points together with a sampling period.
Nevertheless, this query format has two striking impacts on
the entire framework: On one hand, different query settings
can induce distinct structures of temporal correlations, and
thus can affect the quantification and compensation of privacy
loss as mentioned above; On the other hand, the data broker
needs to set appropriate prices for different query settings. In
particular, a desirable pricing mechanism should be balanced
and arbitrage free. Balance enforces a constraint that the price
of a query is sufficient to cover the total privacy compensation,
while arbitrage freeness requires that the data consumer cannot
circumvent the advertised price of a query through buying
other cheaper ones. Considering the naive zero-price function
is arbitrage free but not balanced, it is highly nontrivial to
guarantee these two economic properties simultaneously.

Last but not least challenge is to avoid arbitrage opportuni-
ties in varying degrees of perturbation. For the sake of privacy
issues, e.g., the successive Facebook data scandals [17], [18],
it is necessary for the data broker to sell noisy answers.
Besides, to allow different prices for the same data analysis
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Fig. 1. A General System Model of Data Markets Trading Time-Series Data.

but with diverse accuracies, the data consumer can specify
her customized noise level, e.g., the variance of noise used
in [10], [11]. In particular, if less noise is added to the true
answer, the price of the query should be higher. However, this
setting makes reasoning about arbitrage freeness even harder.
A hidden arbitrage attack is that a savvy data consumer may
obtain a certain data analysis with low variance of noise at a
lower price, particularly through averaging multiple the same
analysis but with diverse high variances. Furthermore, if the
variance of noise is not independent in the pricing of query,
it can make thwarting the above attack more challenging.

In this paper, by jointly considering the above three chal-
lenges, we propose HORAE, which is a PufferfisH privacy
based framewOrk for tRAding timE-series data. HORAE
adopts a bottom-up design holistically, and considers privacy
loss quantification, privacy compensation, and pricing of query
in sequence. HORAE first employs Markov chains to model
private data with temporal correlations. HORAE then borrows
key principles from Pufferfish privacy to define the privacy
loss of a data owner at each timestamp, and further gives its
upper bound in the context of Markov quilt mechanism. Based
on this upper bound, HORAE devises customized privacy
compensation functions, which are satisfying for data owners
with different privacy strategies. Besides, when determining
the price of a query, HORAE gracefully enlarges the total
privacy compensation, such that it can not only guarantee non-
negative utility at the data broker, but also ensure arbitrage
freeness against the data consumer with respect to both the
queried states and the variance of noise.

We summarize our key contributions as follows.
• To the best of our knowledge, we are the first to study

trading private data with temporal correlations from the per-
spective of a data broker in data markets.
• Our proposed framework HORAE features the properties

of Pufferfish privacy and Markov quilt mechanism to quantify
privacy losses, and compensates diverse data owners in a
satisfying manner. Besides, when pricing queries from data
consumers, HORAE guarantees balance and avoids arbitrage.
• We instructively instantiate HORAE with the physical

activity monitoring application, and extensively evaluate its
performance on the real-world ARAS dataset. Our analysis
and evaluation results demonstrate that HORAE compensates

data owners in a more fine-grained way than entry/group
differential privacy based approaches, well controls the profit
ratio at the data broker, and discourages data consumers from
launching arbitrage attacks. Specifically, a certain data owner
receives distinct rather than the same privacy compensations
for her privacy losses at different timestamps. Besides, the
data broker can control the lowest point on the convex curve of
profit ratio, which in turn can guide consumption or maximize
her expected profit ratio. Moreover, to launch an arbitrage
attack in the advanced, unbounded, and valid pricing function,
the data consumer, as an attacker, has to pay the amount of
40 to 41 times the original price with 45.35% probability.

II. PRELIMINARIES

In this section, we introduce system model, Pufferfish
privacy, and Markov quilt mechanism.

A. System Model

As shown in Fig. 1, we consider a general system model for
data markets trading time-series data. There are three kinds of
entities: data owners, a data broker, and data consumers.

The data broker first procures time-series data, such as
physical activities, heart rates, and electrical usages, from the
data owners. We use a sequence of variables X = X1 →
X2 → . . . → XT to describe the data from a specific data
owner, where Xt denotes her state at time t. In addition, we
use Xt = a to represent the event that Xt takes the concrete
value a from a state space A. For example, A stands for a set
of all possible human activities, and Xt = a denotes an event
that Alice jogged at 8:00am.

We consider that each data consumer can make her cus-
tomized query Q = (f, v). Here, f is a general function
over X , and is assumed to be �-Lipschitz with respect to L1

norm, i.e., the change of any state in X (with all the other
states fixed) can vary the L1 norm of f ’s output by at most
�. Typical instantiations of f include common data analysis
methods, e.g., histogram count, weighted sum, and probability
distribution fitting. Besides, v denotes a tolerable variance of
noise added to the true result f(X). In other words, the data
broker answers the query Q with a randomized mechanism
M, and returns the answer M(X), where its expectation is
f(X), and its variance is no more than v.



Depending on the query Q, the data broker compensates
the data owner with ρ(Q) for her privacy leakage, and charges
the data consumer a price π(Q). Specifically, if the variance of
noise v is higher, the privacy loss becomes smaller, the privacy
compensation ρ(Q) would be lower, the returned answer is less
accurate, and the price π(Q) should be lower.

B. Pufferfish Privacy

The privacy framework of our choice is Pufferfish priva-
cy [19], which is an elegant generalization of the celebrated
differential privacy [12], [15], by incorporating general data
correlations. We introduce its technical details from the privacy
preservation perspective, i.e., we focus on the randomized
mechanism M itself. Yet, its key principles will be used to
mathematically quantify privacy loss in Section III-A.

A Pufferfish framework is instantiated by three parameters:
a set of secrets S that we wish to hide, a set of secret pairs
SP ⊆ S×S that we want to be indistinguishable, and a class
of probability distributions Θ that can plausibly generate the
data. For time-series data X , S = {Xt = a|a ∈ A, t ∈ [T ]}
indicates that the concrete event a at each time t is a secret;
SP = {(Xt = a,Xt = b)|a �= b ∈ A, t ∈ [T ]} means that
whether the data owner is engaging in event a or b at any time
t cannot be distinguished; Θ can be a set of Markov chains
that capture how the data owner switches between states.

Definition 1. A randomized mechanism M is said to be ε-
Pufferfish private, if for any θ ∈ Θ with X ∼ θ, any secret
pair (Xt = a,Xt = b) ∈ SP , and any possible output O:

e−ε ≤ P (M (X) = O|Xt = a, θ)

P (M (X) = O|Xt = b, θ)
≤ eε,

where ε is a privacy budget. Smaller ε provides better privacy
and worse utility guarantees.

We note that the definition of Pufferfish privacy is not
only with respect to the randomized mechanism M, like in
differential privacy, but also to the distribution class Θ, where
Θ can well control the amount and nature of data correlations.

C. Markov Quilt Mechanism

To achieve ε-Pufferfish privacy for any general Bayesian
network G, an efficient Markov quilt mechanism was pro-
posed in [20]. For consistency in notations, we use “state” to
represent “node” in the network G considered here, and use
X to denote the vertex set of G. Besides, we hereinafter let
card(·) denote the cardinality of a set.

The main insight behind Markov quilt mechanism is that if
two states Xt and Xr are “far apart” in G, then Xr is largely
independent of Xt. Thus, to obscure the effect of Xt on the
result of a function, it is sufficient to add noise proportional to
the number of states that are “close” to Xt plus a correction
term accounting for the effect of “distant” states. Now, two
key problems arise: one is how to separate “close” states from
“distant” states, and the other is how to calculate the correction
term for “distant” states.

For the first problem, a novel concept of Markov quilt is
established, which generalizes the standard Markov blanket

Algorithm 1: Markov Quilt Mechanism
Input: A dataset X , an �-Lipschitz function f , a privacy

budget ε, Markov quilt set SM,t of each state Xt, and
Laplace distribution Lap(·) centered at 0.

Output: ε-Pufferfish private perturbation mechanism M (X).
1 foreach Xt ∈ X do
2 foreach XM ∈ SM,t (with XC , XR) do
3 if ψΘ (XM |Xt) < ε then

4 σ (XM ) = �·card(XC)
ε−ψΘ(XM |Xt)

5 else
6 σ (XM ) = +∞
7 σt = minXM∈SM,t σ(XM )

8 return M (X) = f (X) + Lap (maxt σt)

in probabilistic graphical models. We recall that the Markov
blanket of a state Xt in a Bayesian network consists of its
parents, its children, and the other parents of its children.
Additionally, the rest states in the network are independent
of Xt conditioned on its Markov blanket. We present a
generalization of Markov blanket, Markov quilt, as follows.

Definition 2. A set of states XM is a Markov quilt of a state
Xt in a Bayesian network G, if the following conditions hold:

• Deleting XM partitions G into two parts XC and XR,
such that X = XC

⋃
XM

⋃
XR and Xt ∈ XC .

• XR is independent of Xt conditioned on XM .

Intuitively, XC is a set of “close” states, XR is a set of
“remote” states, and they are separated by the Markov quilt
XM . For example, XM = ∅ (with XC = X,XR = ∅) is a
trivial Markov quilt. Besides, different from the uniqueness of
Markov blanket, a state can have multiple Markov quilts.

Regarding the second problem, we note that “distant” s-
tates contain both the Markov quilt and “remote” states, i.e.,
XM

⋃
XR. Nevertheless, since XR is independent of Xt given

XM , to quantify the effect of Xt on XM

⋃
XR, it suffices to

measure the effect of Xt on XM . For this purpose, the max-
influence between a variable Xt and a set of variables XM

is defined, which quantifies how much changing the value of
Xt can affect XM , where their probabilistic dependence is
described by a distribution class Θ.

Definition 3. The max-influence of a variable Xt on a set of
variables XM under a distribution class Θ is defined as:

ψΘ (XM |Xt)

= sup
θ∈Θ

max
a,b∈A

max
xM∈Acard(XM )

log
P (XM = xM |Xt = a, θ)

P (XM = xM |Xt = b, θ)
.

The max-influence ψΘ (XM |Xt) is essentially the maxi-
mum max-divergence between two distributions XM |Xt =
a, θ and XM |Xt = b, θ, where the maximum is taken over
any a, b ∈ A, θ ∈ Θ. Thus, the mathematical forms of max-
influence here and the privacy budget ε in Definition 1 are
consistent in nature [21]. From this perspective, ψΘ (XM |Xt)
can function as a share of the total privacy budget ε allocated



to “distant” states XM

⋃
XR, and ε − ψΘ(XM |Xt) is the

complementary share allocated to “close” states XC .
After solving two problems, we present Markov quilt mech-

anism in Algorithm 1. If we want to release the result of an
�-Lipschitz function f while protecting Xt, and if we find
a Markov quilt XM of Xt, it is sufficient to add Laplace
noise with scale � ·card(XC)/(ε−ψΘ(XM |Xt)) (Line 4). We
search over the Markov quilt set SM,t of Xt (Line 2), and
pick the one which requires the least amount of noise (Line
7). We then iterate over all Xt’s (Line 1), and add to f(X)
the maximum amount of noise needed to protect the whole X
(Line 8). We finally note that if the output of f is of multiple
dimensions, we just need to add noise drawn from the same
Laplace distribution to each dimension. Hence, for brevity, we
hereinafter focus on a specific dimension of the output.

III. DESIGN OF HORAE

In this section, we propose HORAE. HORAE takes a
bottom-up design, where the data broker first needs to com-
pensate the privacy loss of the data owner at bottom, and then
determines the price of the query for the data consumer at top.

A. Privacy Loss

When the data broker answers the data consumer’s query Q
with the randomized mechanism M, some private information
of the data owner can be leaked. Based on the principles of
Pufferfish privacy, we formally define privacy loss.

We consider a pair of time-series data instances X ∼
θ|Xt = a and X ∼ θ|Xt = b for any a, b ∈ A, θ ∈ Θ,
which initially differ in the state Xt at time t. In fact, they
can simulate every possible change of Xt, together with
ripple effects on the other states due to the data correlations
modeled by Markov chains Θ. By comparing the output of
the randomized mechanism M over these two data instances,
we define the privacy loss ξt at time t.

Definition 4. The privacy loss of the data owner at time t in
the randomized mechanism M over the time-series data X is:

ξt = sup
a,b∈A,θ∈Θ,O

log

∣∣∣∣P (M (X) = O|Xt = a, θ)

P (M (X) = O|Xt = b, θ)

∣∣∣∣ . (1)

We further give an upper bound of the privacy loss εt, when
the randomized mechanism is known to be the Markov quilt
mechanism in Algorithm 1.

Theorem 1. Let M be Markov quilt mechanism, f be an �-
Lipschitz function, SM,t be the Markov quilt set of Xt, and v
be the variance of Laplace noise. The privacy loss of the data
owner at time t is bounded above by:

ξt ≤ min
XM∈SM,t

(
� · card (XC)√

v/2
+ ψΘ (XM |Xt)

)
.

When computing the upper bound of privacy loss given in
Theorem 1, specific to the topological structure of Markov
chains, we limit the size of Markov quilt set SM,t of each
state Xt, rather than traversing all its exponential number of
Markov quilts like in general Bayesian networks [20].

Lemma 1. To find the upper bound of privacy loss, it suffices
to search the Markov quilt set: SM,t = {{Xt−j , Xt+k},
{Xt−j}, {Xt+k},∅|1 ≤ j ≤ t− 1, 1 ≤ k ≤ T − t}.
Proof. We give a proof sketch. We first prove that any XM ∈
SM,t is a Markov quilt of Xt by Definition 2 and d-separation.
We next prove that for any Markov quilt XM ′ /∈ SM,t, there
exists XM ∈ SM,t such that the upper bound of privacy loss
over XM is no more than that over XM ′ .

Interested readers can refer to our technical report [22] for
detailed proofs of Theorem 1 and Lemma 1.

B. Privacy Compensation

After quantifying the privacy loss ξt, we consider the second
component of HORAE, namely the privacy compensation
mechanism for the data owner.

Just as [10], we first introduce a nondecreasing contract
function ω(ξt) between the data broker and the data owner,
such that ω(0) = 0. This is to ensure that the data owner will
be compensated with at least ω(ξt) in the event of a privacy
loss ξt. Based on the contract function, we define the valid
privacy compensation function in a formal way.

Definition 5. Let ω(·) be a contract function between the data
broker and the data owner. Let ρ(·) be a privacy compensation
function. If ∀t ∈ [T ], ρ(ξt) ≥ ω(ξt), then ρ(·) is valid.

Intuitively, a privacy compensation function is valid with
respect to the contract function, if it is satisfactory for the
data owner for her privacy loss at any time t.

We next demonstrate how the data owner can select a
customized contract function, and how the data broker can
construct a valid privacy compensation function accordingly.
In fact, the contract function hinges on the data owner’s
privacy strategy. For example, if the data owner values her
privacy highly, and would never accept full disclosure of
personal data, she may choose a linear contract function, which
sets infinite compensations for unperturbed answers, i.e., the
variance of noise v = 0. Correspondingly, the data broker can
utilize the upper bound of privacy loss in Theorem 1 to devise
a valid privacy compensation function.

Theorem 2. Let ω(ξt) = cξt for c > 0, t ∈ [T ]. Then, the
privacy compensation function

ρ(ξt) = c min
XM∈SM,t

(
� · card (XC)√

v/2
+ ψΘ (XM |Xt)

)

for t ∈ [T ] is unbounded and valid.

Proof. We prove unboundedness by checking that v = 0 ⇒
ρ(ξt) = ∞. We further prove validness by checking that ∀t ∈
[T ], ρ(ξt) ≥ ω(ξt), which follows from Theorem 1.

However, this kind of contract function may be unsuitable
for the data owner, who is less concerned about her privacy,
and is willing to sell her private data at some high but finite
price. Nevertheless, she can turn to selecting some bounded
contract functions, e.g., cut-off and sigmoid functions.



Theorem 3. Let ω(ξt) = c tanh(dξt) for c, d > 0, t ∈ [T ].
Then, the privacy compensation function

ρ(ξt) = c tanh

(
d min
XM∈SM,t

(
� · card (XC)√

v/2
+ ψΘ (XM |Xt)

))

for t ∈ [T ] is bounded and valid.

Proof. We prove boundedness by showing that 0 ≤ ρ(ξt) ≤ c.
We further prove validness by checking that ∀t ∈ [T ], ρ(ξt) ≥
ω(ξt), which follows from Theorem 1 and the fact that the
tanh function is nondecreasing.

We finally take a closer look at the format of the query Q,
and define the total privacy compensation of the data owner. In
addition to a tolerable variance of noise v, Q also contains a
general function f . Here, we consider that f should explicitly
express its input XQ ⊂ X rather than the entire time-series
data X . For example, XQ can be further designated by a
pair of starting and ending points together with a sampling
period. In particular, such a query setting can change the
initial distributions and transition matrixes of Markov chains,
and thus affect the privacy compensation functions defined in
Theorem 2 and Theorem 3. By incorporating the queried states
XQ, we give the definition of total privacy compensation.

Definition 6. Let XQ be the set of states in the query Q. The
total privacy compensation of the data owner in Q is:

ρ (Q) =
∑

Xt∈XQ

ρ(ξt),

where ρ(ξt) is the unbounded (resp., bounded) and valid pri-
vacy compensation at time t in Theorem 2 (resp., Theorem 3).

C. Pricing of Query

We present the last component of HORAE, namely the
pricing mechanism for the data consumer.

We first identify three desirable economic properties.

Definition 7. Let π(Q) be a valid pricing function for the
query Q. π(Q) should satisfy:

• Fairness: If XQ = ∅, π(Q) = 0.
• Balance: π(Q) ≥ ρ(Q).
• Arbitrage freeness: If Q determines Q′, π(Q) ≥ π(Q′).

We give some comments on these properties: (1) Fairness
says that if no states are queried, the data broker should charge
zero price; (2) Balance is to guarantee non-negative utility at
the data broker; (3) The intuition behind arbitrage freeness
is that if there exists arbitrage in π(·), e.g., π(Q) < π(Q′),
then the data consumer would never pay the full price of Q′.
Instead, she would buy a cheaper query Q to answer Q′.

Given the fact that the basic pricing function, i.e., setting the
query price π(Q) to be the total privacy compensation ρ(Q),
can guarantee the first two properties in Definition 7, we shall
focus on arbitrage freeness. To investigate arbitrage freeness,
the key issue is to determine whether a query can be derived
from others. Such a concept of determinacy relation has been
established in randomized query/statistic answering [10], [11],

where the function f can have different Lipschitz parameters,
and applies to the whole dataset X . Complementary to these
works, we here consider f with a certain Lipschitz parameter
�, but over any subset XQ of X . For brevity, we use the queried
states XQ to specify the data consumer’s requested function
f , i.e., Q = (XQ, v). Additionally, we give the the formal
definition of the determinacy relation in our new context.

Definition 8. The determinacy relation is between Q =
(XQ, v) and Q′ = (XQ′ , v′). We say that Q determines Q′, if
either of the following conditions holds:

• Less noise: XQ = XQ′ , v ≤ v′.
• More states: XQ′ ⊂ XQ, v = v′.

Based on the determinacy relation, we consider how to
guarantee arbitrage freeness in a pricing function π(Q). First
is with respect to the queried states XQ. A trivial example
is the basic pricing function π(Q) = ρ(Q) raised above. If
we regard the elementary part of π(Q), namely the privacy
compensation ρ(ξt) for a state Xt ∈ XQ, as the price of an
item, we find that the basic pricing function belongs to item
pricing [23], and can inherently guarantee arbitrage freeness
with respect to XQ. Second is about the variance of noise v.
Intuitively, π(Q) should monotonically decrease with v, but
the thorniest challenge is how fast it can decrease with v. To
figure out the boundary function, we formulate the arbitrage
attack raised in Section I as our motivating example.

Example 1. A data consumer, who wants to obtain the
query (XQ, v) with a lower price, may turn to buying n
other cheaper queries of the same states XQ but with higher
variances, denoted as {(XQ, vi)|i ∈ [n], vi > v}. Afterwards,
the data consumer computes the average of n answers, and
gets an unbiased result f(XQ), but with a lower variance
1
n2

∑n
i=1 vi. If the pricing function π(·) is arbitrage free, then

the following conditional statement must hold: 1
n2

∑n
i=1 vi ≤

v ⇒∑n
i=1 π (XQ, vi) ≥ π (XQ, v) .

We further give Lemma 2 to thwart the above attack, and
put its detailed proof into our technical report [22].

Lemma 2. For any arbitrage-free pricing function π(Q) that
depends on two independent parts XQ and v, it decreases not
faster than 1/v.

According to Lemma 2, we revise the basic pricing function
π(Q) = ρ(Q) =

∑
Xt∈XQ

ρ(ξt). We recall that the valid pri-
vacy compensation function ρ(ξt) hinges on the upper bound
of privacy loss, namely minXM∈SM,t

((� · card(XC))/
√
v/2+

ψΘ(XM |Xt)). Here, we can observe that for a certain state
Xt ∈ XQ, if the variance of noise v changes, this upper bound
may select a different Markov quilt XM ∈ SM,t to achieve
the minimum value. In other words, the change of v in the
basic pricing function is not independent, which may break the
less noise rule in Definition 8, and thus make reasoning about
arbitrage freeness with respect to v extremely hard. To handle
this problem, we fix the Markov quilt XM,t (with XC,t, XR,t)
for each state Xt in our advanced pricing function. Besides,



we provide two strategies for the data broker to determine a
sequence of stable Markov quilts:

• Randomized strategy: She randomly fixes a sequence of
Markov quilts, such that the max-influence of each state
on its Markov quilt is finite.

• Leading strategy: She searches for a leading query set-
ting, and uses its sequence of Markov quilts for all the
other query settings.

Our proposed solution above has three nice properties: (1)
The assumption of Lemma 2 is satisfied, and can be used
to definitely rule out arbitrage opportunities involving the
variance of noise v; (2) Due to the fact that any element in a
set is no less than the minimum element in the same set, the
advanced pricing function π(Q), now regarded as an upper
bound of the total privacy compensation ρ(Q), is balanced or
even profitable. Specifically, the data broker can well control
her profit ratio with the leading strategy, where it is 0 at
the leading setting, and increases when the data consumer’s
concrete query setting deviates from the leading setting. We
shall elaborate more on this in Section IV-B; (3) Just as the
basic pricing function, the advanced pricing function, falling
into the category of item pricing, can still ensure arbitrage
freeness involving the queried states XQ.

Specific to two kinds of valid privacy compensation func-
tions in Theorem 2 and Theorem 3, we present the correspond-
ing advanced pricing functions in Theorem 4 and Theorem 5,
respectively. In particular, the first advanced pricing function
sets an infinite price for the unperturbed answer.

Theorem 4. For the privacy compensation function in Theo-
rem 2, the following advanced pricing function

π(Q) = c
∑

Xt∈XQ

(
� · card (XC,t)√

v/2
+ ψΘ (XM,t|Xt)

)

is unbounded and valid.

Proof. First, we prove fairness by checking that XQ = ∅ ⇒
π(Q) = 0. Second, we prove balance by checking that π(Q) ≥
ρ(Q), which follows from the minimum function. Third, we
prove arbitrage freeness. For v, we prove by Lemma 2, i.e.,
π(Q) decreases with 1/

√
v, which is slower than 1/v. For XQ,

we prove by Definition 8. We can check that XQ′ ⊂ XQ, v =
v′ ⇒ π(Q) ≥ π(Q′), which follows from: XQ\XQ′ �= ∅ ⇒
π(Q)− π(Q′) = c

∑
Xt∈XQ\XQ′ (·) ≥ 0.

Yet, with the following advanced pricing function, the data
broker can sell the unperturbed answer at some finite price.

Theorem 5. For the privacy compensation function in Theo-
rem 3, the following advanced pricing function

π(Q) = c
∑

Xt∈XQ

tanh

(
d

(
� · card (XC,t)√

v/2
+ ψΘ (XM,t|Xt)

))

is bounded and valid.

Proof. The proof differs from that of Theorem 4 in that π(Q)
decreases with tanh(1/

√
v), which is slower than 1/v.

TABLE I
UPPER BOUND OF PRIVACY LOSS PER TIMESTAMP.

Period Data Owner 1 Data Owner 2 Data Owner 3 Data Owner 4

1 second ∗59.391 (8.070) 62.588 (7.815) 68.329 (8.485) 66.141 (8.801)
1 minute 30.958 (2.763) 31.032 (2.697) 30.026 (2.899) 31.826 (2.946)
1 hour 6.972 (0.295) 6.919 (0.265) 8.203 (0.341) 10.360 (0.528)
∗Each entry is stored in the format: mean (standard deviation).

IV. EVALUATION RESULTS

In this section, we focus on the physical activity monitoring
scenario, and present the evaluation results of HORAE in
terms of fine-grained privacy compensation and economically-
robust pricing of query, respectively.

Dataset: We use the public Activity Recognition with
Ambient Sensing (ARAS) dataset [24]. This dataset contains
30-day real-world monitoring data, including sensor readings
and activity labels, from 2 houses with 2 residents per house.
In addition, the original sampling period is 1 second, and the
size of the whole activity occurrences is 10,368,000. Moreover,
27 kinds of daily activities were recorded, e.g., sleeping,
studying, shaving, having dinner, and listening to music.

Setups: We treat 4 residents as 4 different data owners,
and index them from 1 to 4, where the first/last two data
owners live in the same house. Besides, we regard 27 kinds
of activities as the state space A. Moreover, we consider
Markov chains with different parameters, by varying the size
and sampling period of a certain data owner’s activity data.
For a concrete pair of size and sampling period, we cover all
possible starting points, which can help to verify the effect of
different ending points. The implementation code in Matlab is
online available from [25].

A. Fine-grained Privacy Compensation

In this section, we show privacy loss and privacy compen-
sation in physical activity monitoring.

1) Privacy Loss: Before investigating privacy compensa-
tion, we first show the upper bounds of the privacy losses of
four data owners per timestamp. Table I lists their mean values
and standard deviations, where the sampling period ranges
from 1 second, to 1 minute, and to 1 hour. Besides, all Markov
chains take the fixed length of 720, which is the maximum size
of a certain data owner’s activity data at the sampling period
of 1 hour. Furthermore, the Lipschitz parameter � is set to be
1, and the variance of noise v is fixed at 10, which gives an
error of 10 with 90% confidence by Chebyshev’s inequality.

From Table I, we can see that when the sampling period
becomes longer, the upper bound of a certain data owner’s
privacy loss decreases. We explain the reason from data
correlations. A longer sampling period tends to imply weaker
data correlations, and thus less privacy leakage. We can also
see from Table I that the upper bounds of the first/last two
data owners’ privacy losses are consistent in general. This is
because either pair of data owners, living in the same house,
can share similar activity patterns and thus privacy losses.
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Fig. 2. Unbounded and Valid Privacy Compensation in Physical Activity Monitoring.
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Fig. 3. Bounded and Valid Privacy Compensation in Physical Activity Monitoring.

2) Privacy Compensation: We now focus on the original
sampling period, and further explore how privacy compen-
sations are allocated at different timestamps. For clarity in
presentation and comparison, we fix the total privacy com-
pensation of each data owner, such that her privacy loss
at one timestamp is compensated with 10 units in average,
i.e., ρ(Q) = 10 × card(XQ). Besides, we consider both
bounded and unbounded privacy compensation functions. For
the bounded one, we choose the parameter d for each data
owner, such that the terms within tanh are scaled down to
1 or below. Fig. 2 and Fig. 3 plot the evaluation results,
where a pair of neighboring x-axis ticks denote a half-closed
interval, e.g., the bin from “10” to “10.5” stands for the privacy
compensations between 10 and 10.5 excluding 10.5.

First, we can see from Fig. 2 and Fig. 3 that each data owner
may obtain distinct privacy compensations for her privacy
losses at different timestamps, rather than the uniform 10 units
under entry/group differential privacy. The reason is that by
Lemma 1, the states of a data owner at different timestamps
have distinct sets of Markov quilts, and may have different
max-influences on the Markov quilts, which jointly imply
distinct privacy compensations. Second, we compare two kinds
of valid privacy compensations for a certain data owner, and
find that more privacy compensations fall into the center region
between 10 and 10.5 under the bounded privacy compensation.
This outcome truly reflects the difference between the linear
and tanh functions utilized in the unbounded and bounded
privacy compensations, respectively. The tanh function is less
sensitive to the changes of its variable than the linear function.
Third, we compare the privacy compensations of the first/last
two data owners in Fig. 2 or Fig. 3, and find them consistent
in general. Besides, compared with the first two data owners,
more privacy compensations of the last two data owners
deviate from the center region. These results conform to the
standard deviations at the original sampling period in Table I.

The above evaluation results demonstrate that HORAE can

indeed compensate the data owners for their privacy losses at
different timestamps in a more fine-grained way.

B. Economically-robust Pricing of Query
In this section, we show the pricing of query from queried

states, variance of noise, and arbitrage freeness, respectively.
For brevity, the pricing functions hereinafter refer to the
advanced ones by default. Nevertheless, when comparing with
the basic ones, we shall reserve “advanced” for clarity.

To quantify the profitability of the data broker, we first
introduce a common metric from economics, called profit
ratio, which is defined as the ratio between revenue minus cost
and cost. Under our data market model, we regard the payment
π(Q) from the data consumer as revenue, and view the total
privacy compensation ρ(Q) allocated to the data owner as cost.
Therefore, the profit ratio here is equal to π(Q)/ρ(Q)− 1.

We next note that compared with the unbounded pricing of
query in Theorem 4, the bounded one in Theorem 5 further
applies a scaling factor d and a tanh function, which can
mitigate the differences among the evaluation results of four
data owners. This characteristic has been depicted in the above
privacy compensation. Therefore, in what follows, we only
present the evaluation results of unbounded pricing of query.

1) Queried States: We start with the queried states XQ in
a pricing function, by varying its size and sampling period
separately. In particular, when evaluating the size of queried
states, we use the original sampling period, and take the ran-
domized strategy to determine the sequence of stable Markov
quilts for the pricing function. In contrast, when evaluating
the sampling period, we fix the size of queried states at 250,
which is roughly the maximum length of Markov chains at
the sampling period of 10000 seconds. Besides, we take the
leading strategy at the original sampling period, where the
leading variance of noise is 10. Furthermore, for consistency
with privacy compensation, we use the same values of the
other parameters in Section IV-A. The first two subfigures in
Fig. 4 plot the evaluation results.
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Fig. 4. Advanced, Unbounded, and Valid Pricing of Query in Physical Activity Monitoring.

From the leftmost subfigure in Fig. 4, we can see that the
profit ratio increases with the size of queried states. This is
because by Theorem 2, with more queried states, a larger size
of Markov quilt set SM,t can be searched to obtain a lower
privacy compensation ρ(ξt) for each state Xt. In contrast,
when determining the query price π(Q), we fix the Markov
quilt XM,t for Xt, which indicates that the part of π(Q)
involving Xt is almost irrelevant with the size of queried
states. Therefore, the profit ratio, depending on π(Q)/ρ(Q),
grows with the size of queried states.

From the middle subfigure in Fig. 4, one key observation
is that the profit ratio is 0 at the original sampling period.
This outcome stems from that the leading strategy is taken
here, and thus the sequence of Markov quilts in the pricing of
query is the same as that in the privacy compensation, which
further implies that the query price π(Q) is equal to the total
privacy compensation ρ(Q). The second key observation is
that the profit ratio increases with the sampling period. The
reason is that when a sampling period is farther away from the
leading sampling period of 1 second, the difference between
the sequence of stable Markov quilts in the pricing of query
and the sequence of Markov quilts in the privacy compensation
becomes larger, which implies a higher profit ratio.

2) Variance of Noise: We continue to examine the other
part of a pricing function, namely the variance of noise v.
The rightmost subfigure in Fig. 4 plots the evaluation results.
Here, we take the original sampling period, and keep the other
settings the same as those in evaluating the sampling period,
i.e., we take the leading strategy with leading variance of 10.

From the rightmost subfigure in Fig. 4, we can observe that
the four curves of profit ratio convex downward. In particular,
the minimum profit ratio is 0 at v = 10. This coincides with
the leading strategy adopted here. Besides, when v deviates
from 10, the profit ratio increases. The reason is analogous to
that in evaluating the sampling period, where the difference is
that the changes of v here can be bi-directional.

We now give some comments on how the data broker can
exploit the convexities of the profit ratio curves. On one hand,
if the data broker releases her leading strategy to the public,
she can guide the data consumers to buy the query with the
leading setting, e.g., a certain pair of sampling period and
variance of noise. On the other hand, if the leading strategy
is hidden, the data broker can carefully craft the strategy, e.g.,
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Fig. 5. Arbitrage Freeness in Unbounded and Valid Pricing of Query.

through learning the query histories of the data consumers,
such that her expected profit ratio is maximized.

3) Arbitrage Freeness: We finally investigate arbitrage free-
ness in the pricing of query by simulating the attack in Exam-
ple 1. After simulating 10000 samples, we plot the cumulative
fraction of the ratio between the attack cost

∑n
i=1 π(XQ, vi)

and the original price π(XQ, v) in Fig. 5, where π(·) can be
basic or advanced unbounded pricing function. In addition,
we note that the cumulative fraction differs from the common
cumulative distribution function in that it does not include the
endpoint. For example, when the ratio takes 1, the cumulative
fraction denotes the fraction of the samples, where the attack
cost is strictly less than the original price. More specifically,
the cumulative fraction at the ratio of 1 can generally embody
the success ratio of finding arbitrage.

By observing the cumulative fractions at the ratio of 1
in Fig. 5, we can see that both basic and advanced pricing
functions are arbitrage free. We can also observe that an
attempt of finding arbitrage in the advanced pricing function
is expected to be more costly than that in the basic one,
which can be roughly captured by the areas above a certain
data owner’s two function curves in Fig. 5(b) and Fig. 5(a),
respectively. Let’s examine the case of the first data owner in
detail. To launch an arbitrage attack in the advanced pricing
function, the attacker is most likely (with 45.35% probability)
to pay the amount of 40 to 41 times the original price. In
contrast, the most possible case in the basic pricing function
is to pay the amount of 14 to 15 times the original price
with 31.14% probability. Therefore, in the sense of defending
against arbitrage, the advanced pricing function can be more
robust than the basic one. This coincides with our theoretic
analysis in Section III-C.



The above evaluation results illustrate that the pricing mech-
anism in HORAE can preserve good profitability and arbitrage
freeness. In particular, the data broker can well control her
profit ratio, by developing the leading strategy. Besides, it is
infeasible for data consumers to game the data market.

V. RELATED WORK

In this section, we briefly review related work.

A. Data Market Design

An explosive demand for sharing data contributes to grow-
ing interest in data market design. The researchers from the
database community mainly focus on arbitrage freeness in
pricing queries over relational databases [16], [26]. Specific
to personal data trading, Ghosh and Roth [9] considered
differential privacy as a commodity, and proposed to selling
privacy at auction for single counting query. The follow-up
work by Li et al. [10] further extended to multiple linear
queries by introducing arbitrage freeness. We proposed to trade
noisy aggregate statistics over private data with correlations
at the individual level [11]. Different from these data trading
works, Wang et al. [27] focused on the data collection process,
and measured the value of privacy through a game-theoretic
model. Zhang et al. [28] considered crowdsourcing based
image collection, and studied the ownership and privacy issues.

However, none of the above works has taken temporal
correlations into account, and further considered privacy com-
pensation and pricing of query for time-series data.

B. Pufferfish Privacy over Correlated Data

The classical differential privacy framework, proposed by
Dwork et al. [12], [15], allows trusted data curators to add
appropriate noises to aggregate results before releasing them,
which can protect an individual’s private information. How-
ever, as pointed by Kifer and Machanavajjhala [29], when
there exist correlations among data items, the perturbation in
differential privacy can be inadequate. They thus proposed a
generalized version of differential privacy, called Pufferfish
privacy [19]. Many follow-up research works have been going
on around this particular issue. In addition to the Markov quilt
mechanism utilized in this work, Liu et al. [13] proposed
dependent differential privacy for correlations between indi-
viduals. Yang et al. [30] focused on the correlation structure
modeled by Gaussian Markov random fields. Xiao et al. [31]
considered continuous location sharing, and employed Markov
chains to model temporal correlations.

The original intention of these works is preserving privacy
rather than pricing privacy, which is our major focus.

VI. CONCLUSION

In this paper, we have proposed the first framework HO-
RAE for trading private data with temporal correlations. In
HORAE, the data owners can be compensated for their privacy
losses in a satisfying and fine-grained way. Besides, the data
broker can well control her profit ratio. Moreover, the data
consumers have to faithfully purchase their desired queries

rather than gaming the system. We have instantiated HORAE
with physical activity monitoring, and extensively evaluated
its performance on the ARAS dataset. Evaluation and analysis
results have demonstrated the feasibility of HORAE.
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