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ABSTRACT
Exploring the utilization of white spaces (vacant VHF and
UHF TV channels) is a promising way to satisfy the rapid
growth of the radio frequency (RF) demand. Although a
few outdoor white space exploration methods have been pro-
posed in the past few years, researches that focus on indoor
white space exploration just emerge recently. In this pa-
per, we propose a novel cost-efficient indoor white space
exploration method by exploiting the location dependence
and channel dependence of TV channels’ signal strength in
indoor environments. We measure the UHF TV channels
in a building, and study the temporal and spatial features
of indoor white spaces. Based on the extracted features,
we design a cost-eFficient Indoor White space EXploration
mechanism, namely FIWEX. Furthermore, we build a pro-
totype of FIWEX and extensively evaluate its performance
in real world environments. The evaluation results show
that FIWEX can identify 47.8% more indoor white spaces
with 38.4% less false alarms compared with the best known
existing solution.
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1. INTRODUCTION
The growth of wireless networks are currently facing an

increasing shortage of available radio frequency spectrums,
since the number of mobile devices and their related applica-
tions is raising rapidly. However, the amount of unlicensed
spectrums that are free to use is very limited. To deal with
this problem, the concept of Dynamic Spectrum Access (D-
SA) that aims at exploring the opportunity of sharing and
utilization of licensed spectrums among both licensed users
and unlicensed users is proposed and has been applied to
several applications [30, 31].

In 2008, FCC (Federal Communications Commission) is-
sued a historic ruling that allowed unlicensed devices to use
the TV spectrum that is not locally occupied by licensed
devices. (The unoccupied TV spectrum is often referred to
as TV white spaces or simply white spaces). After that,
the TV white spaces receive more and more attentions from
DSA developers. Although white spaces are open for un-
licensed use now, FCC also required that unlicensed white
space devices should not interfere with the licensed devices
(TV broadcasts). Therefore, it is essential for all user de-
vices (especially the unlicensed ones) to find out whether a
spectrum band is available before using it in communica-
tions.

To explore white spaces, there are mainly two approaches:
spectrum sensing approach and geo-location database ap-
proach. The spectrum sensing approach, which is less widely
used, relies on the user devices to perform spectrum sens-
ing. Thus, it requires the devices to be equipped with proper
sensing hardware and to have enough power for sensing and
signal analysis. On the contrary, the geo-location database
approach that is currently used by most white space user de-
vices and standards does not need the user devices to sense
and thus saves their power. Instead, a user device gets to
know the availability of white spaces by querying an online
geo-location database that stores a “white space availabil-
ity map” indicating spectrum’s availability information at
different locations.

For the geo-location database approach, the map of white
space availability is vital. In this paper, we study how to
efficiently construct a “white space availability map”, which
is used by the geo-location database approach in indoor en-
vironments. Most prior works [26–28] on white space ex-
ploration only focus on outdoor scenarios. Since there is
relatively few obstructions in outdoor environments, exist-
ing works use signal propagation models to infer whether
a spectrum band at a specific location is available or not.
However, if we directly apply these approaches to indoor
environments, which generally have many man-made obsta-
cles, it is likely that we would get results that are overly
conservative.

To solve the problem of indoor white space exploration,
we propose a cost-eFficient Indoor White space EXploration



mechanism, called FIWEX. Intuitively, one can always solve
the problem by deploying a large number of RF-sensors that
cover the entire floor in a building. However, this could in-
cur a large amount of expense on the sensors. By strategi-
cally deploying only a limited number of sensors, FIWEX
is able to reconstruct the white space availability map of
the entire floor with a small number of RF sensors at high
accuracy. Due to the innovative utilizations of 1) the exis-
tence of strong channel, 2) the location dependence as well
as channel dependence of channels’ signal strength in indoor
environments, 3) the compressive sensing technique, and 4)
a well designed k-medoids-based sensor deployment method,
FIWEX features a promising efficiency on the total number
of sensors deployed and reconstruction accuracy.
The main contributions of this paper are as follows.

• We perform indoor white space measurements in a
building for two weeks. The measurement results con-
firm that (1) there exists strong channels whose signal
strength is at least 5dB greater than the white space
threshold. (2) indoor white spaces’ signal strength
has both location dependence and channel dependence.
These two key characteristics allow us to efficiently ex-
plore indoor white spaces without making a very dense
deployment of RF-sensors over the entire building.

• We propose FIWEX, a cost-efficient indoor white space
exploration mechanism that does not require user de-
vices to sense the spectrum by themselves. By taking
strong channels, location dependence, and channel de-
pendence into consideration, we propose a novel data
reconstruction algorithm based on compressive sensing
technique to reduce the number of sensors needed for
detection. In addition, we design an innovative sen-
sor deployment method to improve the reconstruction
accuracy.

• We have built a prototype of FIWEX, and evaluat-
ed its performance with real-world experiments. First,
we evaluate FIWEX’s performance compared to WIS-
ER, the best indoor white space identification system
so far. In average, FIWEX can identify 47.8% more
indoor white spaces with 38.4% less false alarms com-
pared to WISER. Then, we studied the performance
versus the number of indoor sensors.

The remainder of the paper is organized as follows. We in-
troduce our indoor white space measurement experiments in
Section 2. We describe system model of FIWEX in Section 3.
In Section 4, we provide detailed algorithms of FIWEX, in-
cluding compressive sensing based data reconstruction and
the sensor deployment method. In Section 5, we present
evaluation results. Related work and conclusions are in Sec-
tion 6 and Section 7, respectively.

2. INDOOR WHITE SPACE AVAILABILITY
MEASUREMENT

We perform our indoor white space measurement in the
third floor of a building. The purpose of the indoor white s-
pace measurement is exploring strong channels and location-
channel dependence of indoor white spaces. These features
will be utilized in designing the indoor white space explo-
ration mechanism in Section 3.

2.1 Measurement Setup
The measurement device (Figure 1) we used consists of a

USRP N210, an omni-directional receive antenna, a laptop
and a uninterrupted power supply (UPS). The daughter-
board of our USRP is SBX with 5-10 dBm noise figure. We

Figure 1: The measurement device.

calibrate the device using a RF signal generator to get the
accurate signal strength. As suggested by FCC [1], the gain
of the antenna is also taken into consideration during the
calibration process.

A number of different methods were proposed for identify-
ing the presence of signal transmissions, such as energy de-
tection, waveform-based sensing, and matched-filtering [18].
Here, we choose energy detection, since it is the most com-
mon way with low computation and implementation com-
plexities. In our measurements, we judge whether a TV
channel is vacant by comparing the channel’s signal strength
with a threshold, which depends on the noise floor [19]. If the
signal strength of a TV channel is greater than the threshold,
we label this channel as locally occupied, otherwise the chan-
nel is labeled as vacant. We measure the digital TV channels
between 470 MHz - 566 MHZ and 606 MHz - 870 MHz with
8 MHz channel bandwidth, and use the same threshold -84.5
dBm/8 MHz as [2] for digital TV signals. Due to the hard-
ware limitations, the vacant channels determined using the
above mentioned threshold may be not safe to use, but the
observations drawn from the measurement are general, and
our mechanism is not limited to any specific threshold. We
believe that if the sensitivity of the measurement hardware
can support a threshold of -114 dBm as suggested by FCC
[1], our mechanism can be safely used in practice.

We implement the energy detector with a bin size of 1024
and sampling rate 4 MHz. We calculate the power of a
channel using the average value of all corresponding bins.
During the indoor white space measurement experiment, we
measure 45 channels in total.

Our measurement is divided into two parts, namely long-
time sensing and short-time sensing.

2.2 Long-Time Sensing
In long-time sensing, we randomly choose 20 rooms and

deploy a USRP coupled with a laptop in every room. The
absolute signal strength for all 45 TV channels is measured
for 87.5 hours in total. For the convenience of comparisons,
we convert absolute power to relative power by subtracting
the white space threshold from the absolute power. Devices
in different rooms are synchronized using “crontab” of Un-
buntu 12.04, and the spectrum sensing programs of different
computers run synchronously every half an hour.

We have the following observations from long-time sensing
results. First, as shown in Figure 2(a), there exists strong
channels whose relative signal strength is obviously greater
than 0 during most of the time. For example, we observe
3 channels with >5dB relative signal strength during the
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Figure 2: Results of indoor white space measurement

whole 87.5 hours interval. That means these three channels
are long time occupied in room 11.
Second, we observe that a channel may have different sig-

nal strengths in different locations. As shown in Figure
2(b), the relative signal strength of channel 13 in room 11 is
greater than 5 dB during the whole measurement period; in
room 9, the channel’s relative signal strength moves up and
down around 5 dB; in room 1 it is always below 5 dB.
Finally, short term occupied channels exist. We refer a

channel which is occupied for some periods of time and va-
cant for the rest of time as a short term occupied channel.
Figure 2(c) shows two short term occupied channels (chan-
nel 2 in room 13 and channel 27 in room 11) whose relative
signal strength moves up and down around 0.
Long-time sensing experiment results show the existence

of strong channels and short term occupied channels. If we
find strong channels and consider them always strong in the
future, then we can pay our attention to the short term
occupied channels, and in this way, the resources (e.g., RF-
sensors, energy) can be more efficiently utilized. Actually,
there exists weak channels whose signal strength is lower
than the white space threshold in our measurement experi-
ments, but we don’t consider them as always weak in order
to protect the licensed user.

2.3 Short-Time Sensing
Indoor short-time sensing experiments collect the spatial-

channel features of indoor white space. Our indoor white
space exploration mechanism was designed based on the da-
ta collected during this process.
We choose 67 typical locations labeled as location 1 to lo-

cation 67, and measure all 45 TV channels at every location
and record the received signal strength using our movable de-
vice (a cart with a USRP, an antenna, a laptop, and a UPS).
After each round of short-time sensing, we get a Measure-
ment Matrix (MM), which is a 67 × 45 matrix denoted by
M . M contains the absolute signal strength for 45 channels

at 67 locations, each row/column of which represents a loca-
tion/channel. We perform 14 rounds of short-time sensing
in a period of two weeks and get 14 measurement matrices
in total. From the short-time sensing, we have the following
observations.

First, Figure 2(d) shows the indoor white space availabili-
ty map where white blocks represent white spaces and black
blocks represent occupied channels. We observed that the
signal strength of a channel at different locations could be d-
ifferent (a channel could be occupied at some locations while
be vacant at others). This is mainly caused by the complex
indoor signal attenuation patterns due to obstructions (e.g.,
walls). If we directly use the outdoor white space explo-
ration approaches to indoor scenarios, we will lose a lot of
white spaces.

Second, in Figure 2(e), the relative signal strength of all
channels is similar at four different locations (1, 26, 28, 31).
Prior work [2] described this kind of relationship between
different locations according to locations’ similarity. They
treat the correlated locations as a group and represents the
white space availability of all locations in this group using
only one of them. It is indeed a creative way to utilize the
similarity relationship between locations. However, in our
mechanism, we consider not only the similarity relationship
but also the linear dependence between locations. Location
dependence represents the linear dependence between differ-
ent locations, that means any row of M can be approximate-
ly represented as a linear function of some of the other rows.
Assume that Mi is ith row of M (Mi is a 1× 45 row vector
containing the signal strength of 45 channels at location i),
we can approximate Mi as

Mi ≈ a0M0 + a1Mi1 + a2Mi2 + ...+ akMik ,

where M0 is a 1 × 45 row vector equals to (1, 1, ..., 1) and
Mi1 ,Mi2 , ...,Mik (i1, i2, ..., ik �= i) are the i1th, i2th, ..., ikth
rows of MM, and a0, ..., ak are the weight parameters. Sim-
ilar to location dependence, we define channel dependence



as the linear dependence of channels. As shown in Figure
2(f), although the similar relationship is not suitable here
as the signal strength of channel 13 and channel 37 are not
close, our linear dependence relationship works well since the
difference of them is almost fixed in different locations. Ac-
cording to the definition of relative location-channel matrix
X (Section 3.1), we got that location-channel dependence al-
so exists in X, since M −X is a constant matrix. In Section
4.3, we introduce a novel way to draw the location-channel
dependence.

2.4 Summary
The indoor white space measurements give us a better un-

derstanding about the characteristics of indoor white spaces.
Below we summarize guidelines for designing FIWEX.

• Strong channels are occupied for most of time, thus we
can neglect these channels once we spot them.

• Location dependence and channel dependence allow us
to infer a channel’s signal strength or status based on
its correlated channels or locations.

In next section, we will show how to use these guidelines to
make FIWEX cost-efficient and accurate.

3. SYSTEM MODEL
FIWEX aims to accurately identify indoor white spaces

with a small number of RF sensors deployed. As shown in
Figure 3, FIWEX is mainly composed of two parts: central
server and real time sensing module. The central server
receives the real-time sensing results reported by the indoor
sensors, and maintains the historical sensing records. Upon
receiving a query for availability of the white space at a
certain location from a user, the central server calculates the
up-to-date indoor white space availability map, and make a
respond.

Figure 3: System architecture of FIWEX.

3.1 Real Time Sensing Module
We describe the real time sensing module using our test

building with 67 locations as an example. The real time
sensing module’s job is choosing a part of these 67 loca-
tions, placing a sensor at each chosen location, performing
a “partial sensing” (since not all 67 locations have sensors
deployed), and sending the data to the central server.
If the real time sensing module deploys sensors at all 67

locations, clearly the central server can get complete short-
time sensing data. However, due to the cost considerations,
real time sensing module aims to use less number of sensors
to get complete sensing data.
For ease of presentation, we define the following matrices:

• Relative Location-Channel Matrix (RLCM): is
a 67 × 45 matrix recording channels’ relative signal
strength. RLCM is denoted by X, where X(i, j) is the
relative signal strength of channel j at location i.

X(i, j) = M(i, j)− TH,

where TH is the white space threshold. If X(i, j) <
0, then channel j is vacant at location i, otherwise
occupied.

• Binary Index Matrix (BM): is a 67 × 45 matrix,
which indicates where the sensors are deployed. BM is
denoted by B, and for any channel j between 1 and 45

B(i, j) =

{
0 if no sensor is deployed at location i,

1 otherwise.

• Direct Sensory Matrix (DM): is a 67× 45 matrix,
which records the relative signal strength at locations
with sensors deployed. For locations without a sensor,
the corresponding rows in DM contain 45 0s. DM is
denoted by D:

D(i, j) =

{
X(i, j) if B(i, j) = 1,

0 if B(i, j) = 0.

This meansD = B◦X, where ◦ refers to the Hadamard
product. (D = B ◦X means D(i, j) = B(i, j)X(i, j)).

Given a specific number of sensors, different deployments
of these sensors lead to different performance of FIWEX.
(We will discuss our indoor sensor deployment method in
Section 4.5). Once a sensor deployment is determined, B is
fixed. Sensors deployed at different locations collect absolute
signal strength in real time and the corresponding relative
ones are recorded in D. After that, real time sensing module
submits matrix D to the central server at regular intervals.

3.2 Central Server:
The central server of FIWEX consists of two parts: data

reconstruction and white space database.
In data reconstruction part, a complete relative location-

channel matrix is reconstructed based on the direct sensory
matrix (D). We define the reconstructed matrix as follows:

• Reconstructed Matrix (RM) : is a 67× 45 matrix
generated by interpolating the missing values in D.
RM is denoted by X̃.

Data reconstruction part aims to find X̃ that approximates
X as accurate as possible.

Strong channels can be utilized to improve the accuracy
of data reconstruction. In contrast to existing works, ob-
servations in Section 2.2 (Figure 2(b)) show that different
locations may have different strong channels. Based on this
observation, we define the strong channel matrix as follows:

• Strong Channel Matrix (SCM) : is a 67×45 matrix
that indicates strong channels in different locations.
SCM is denoted by

S(i, j) =

{
1 channel j is a strong channel at location i,

0 otherwise.

Given D, B and S as inputs, the central server performs
data reconstruction based on compressive sensing. We will
present the details of this process in Section 4.

White space database receives the result of data recon-
struction X̃, and produces the up-to-date indoor white s-
pace availability map according to X̃. In order to avoid



interference with licensed users, we compare X̃(i, j) with
PR (instead of 0) to decide whether channel j at location i
is vacant. We define the reconstructed indoor white space
availability map as

MAP (i, j) =

{
1 if X̃(i, j) < PR,

0 if X̃(i, j) ≥ PR,

where PR is the protection range (PR = −0.7 by default).
Hence, MAP approximately denotes the availability (1 for
vacant and 0 for occupied) of indoor white spaces with a low
false alarm rate.
Users submit their indoor positions to the central server

through an indoor localization system [20, 21]. Given the in-
door position of a user, the database first finds one of the 67
profiled locations which is the nearest to the user, and then
returns the white space list of this profiled location to the
user after considering the interference with neighbors. Here
for simplicity, FIWEX assumes the white space availability
of a non-profiled location is the same as the availability of
the nearest profiled one. We leave the case where these t-
wo availability results are not equal to our future work. We
have to note that our approach proposed in the paper is
to efficiently identify indoor white spaces. A closely related
problem on how to utilize the identified indoor white spaces
without interfering is our another future work.

4. DATA RECONSTRUCTION AND SENSOR
DEPLOYMENT

In this section, we present our compressive sensing based
indoor white space reconstruction algorithm, and propose a
cost-efficient sensor deployment method.
Compressive sensing is a generic data reconstruction tech-

nique based on the structure and redundancy of real-world
signals or datasets [3–6]. So far, compressive sensing has
been widely applied to different realms [7–11]. However, in-
door white spaces have unique strong channels and location-
channel dependence. Consequently, we cannot directly ap-
ply the traditional compressive sensing technique to the rel-
ative location-channel matrix recovery. To deal with this
issue, we introduce strong channels and location-channel de-
pendence to compressive sensing, and solve the problem us-
ing alternative least square method. Compressive sensing
based data reconstruction algorithms perform very differ-
ently given different data loss patterns [8], and thus differ-
ent sensor deployments may lead to different performance
of FIWEX. In order to find appropriate locations to deploy
sensors, we propose a k-medoids [13] based sensor deploy-
ment method.

4.1 Compressive Sensing
Given D, B and S, compressive sensing can help us to

approximately reconstruct X. According to the theory of
compressive sensing, matrices with low-rank feature can be
reconstructed with a high accuracy. When the vector con-
taining all singular values of a matrix is sparse, the matrix is
low-rank. In Figure 4, we illustrate the distribution of sin-
gular values in 7 of the 14 relative location-channel matrices
we got in the short time sensing experiments. The X-axis
presents the i-th singular values, and the Y-axis presents
the normalized values of i-th singular value. This figure
suggests that the energy is always contributed by the top
several singular values in X. In average, the top 25% singu-
lar values contribute most of the energy in this graph. This
phenomenon reveals that X exhibits approximate low-rank
structure. The followings are the details about our compres-
sive sensing algorithm.
We begin with the Singular Value Decomposition (SVD)

using the similar methodology as [7]. SVD is a kind of fac-
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torization of a matrix, and it is a useful tool for creating low-
rank matrix approximation. Here, we generalize the discus-
sion of the relative location-channel matrix (X) to an m×n
matrix. For the m×n matrix X, there exists a factorization
of the form

X = UΣV T =

min(m,n)∑
i=1

σiuiv
T
i , (1)

where U is anm×m unitary matrix (i.e., UUT = UTU = I),
V T is the transpose of an n×n unitary matrix, Σ is an m×n
diagonal matrix with the singular value σi of X on the main
diagonal, where σi ≥ σi+1. Here ui and vi are the ith
columns of U and V , respectively. As we mentioned before,
the top 25% singular values of X contribute most of the sum
of all singular values, and this means that

r∑
i=1

σi ≈
min(m,n)∑

i=1

σi (2)

and

r∑
i=1

σiuiv
T
i ≈

min(m,n)∑
i=1

σiuiv
T
i , (3)

where r � min(m,n). Hence we can approximately repre-
sent X as

X̃ =

r∑
i=1

σiuiv
T
i , (4)

where r is the rank of X̃. Actually, X̃ is the best r-rank
approximation that minimize the Frobenius norm ‖ · ‖F be-

tween X and X̃. That is, X̃ is the solution to:

Minimize ‖X − X̃‖F ,
Subject to rank(X̃) ≤ r.

(5)

In the indoor white space exploration, we are given D
and required to estimate X. Then, we can judge whether a
channel is busy or not at a given location. It is impossible to
directly solve (5), since we do not know the value of original
matrix and the proper rank. Instead, we use B ◦ X = D
as the constraint. Considering the low rank property of X,
we can alternatively solve the following rank minimization
problem:

Minimize rank(X),

Subject to B ◦X = D.
(6)

However, it is also difficult to solve this rank minimization
problem as it is non-convex. So, we transform it to the



nuclear norm minimization problem in help of the SVD-like
factorization of X:

X = UΣV T = LRT , (7)

where L = UΣ1/2, R = V Σ1/2.
According to the compressive sensing theory [3, 4], we

can perform the rank minimization by solving the nuclear
norm minimization problem for the low rank matrix LRT ,
if the isometry property [4] holds on binary index matrix B.
Therefore we just need to minimize the sum of L and R’s
Frobenius norms:

Minimize ‖L‖2F + ‖R‖2F ,
Subject to B ◦ (LRT ) = D.

(8)

It is usually difficult to find L and R that strictly satisfy
(8), because (i) the direct sensory matrix D contains noise,
(ii) X is just approximately low-rank in the real world, and
the rank of X may be largely different in different indoor
environments. Thus, we use Lagrange multiplier method to
solve (8):

Minimize ‖B ◦ (LRT )−D‖2F + λ(‖L‖2F + ‖R‖2F ). (9)

In this way, the constraint B ◦ (LRT ) = D is not strictly
enforced, and we use the Lagrange multiplier λ to control
the tradeoff between the precise fit to the measurement and
the rank minimization.
The compressive sensing approach (9) finds the global

low-rank structure in matrix X. We can further improve
the accuracy in two ways: strong channel improvement and
location-channel dependence improvement.

4.2 Introducing Strong Channel
Performance of the compressive sensing based indoor white

space reconstruction can be improved by taking strong chan-
nels into consideration. In contrast to most prior works,
which just define a single set of strong channels shared by
all indoor locations, we argue that different locations have
different strong channels as shown in Section 2. Based on
this observation, we define strong channel matrix S in Sec-
tion 3.2 to describe the spatial variance of strong channels.
In short-time sensing experiment, we obtain 14 short-time

sensing data (MMs) in total and we use 7 of them as the
training set while the other 7 are used for evaluation. If
the signal strength of channel j at location i are at least
5dB higher than the white space threshold in all 7 train-
ing MMs, then channel j is a strong channel at location i
and S(i, j) = 1; otherwise, S(i, j) = 0. We simply con-
sider strong channels as always busy because channels that
carry strong signals are normally used for TV broadcast and
TV broadcasting arrangement is normally in long term (e.g.,
years). Hence, S can be used in FIWEX.
To combine compressive sensing and strong channels’ fea-

ture, we define new Binary Index Matrix Bs and Direct Sen-
sory Matrix Ds considering the influence of S:

Bs(i, j) =

{
1 if S(i, j) = 1,

B(i, j) otherwise.

Ds(i, j) =

{
aveij if S(i, j) = 1,

D(i, j) otherwise.

Here aveij is the average relative signal strength of channel
j at location i in the training set. In this way, formula (9)
can be rewritten as

Minimize ‖Bs ◦ (LRT )−Ds‖2F + λ(‖L‖2F + ‖R‖2F ). (10)

4.3 Introducing Location-Channel Dependence
The channel dependence and location dependence (Sec-

tion 2) represent the channel/location structure of indoor
white spaces, and can be utilized to improve the perfor-
mance of FIWEX. Taking compressive sensing, strong chan-
nels, channel dependence and location dependence into con-
sideration, we expand (10) as follows:

Minimize ‖Bs ◦ (LRT )−Ds‖2F + λ(‖L‖2F + ‖R‖2F )
+‖P (LRT )− P0‖2F + ‖(LRT )C − C0‖2F ,

(11)

where P and P0 are the location dependence constraint ma-
trices, while C and C0 represent the channel dependence
constraint matrices. Since different choices of P , P0, C, and
C0 yield different performance of FIWEX, we discuss how
to choose these matrices in the following section.

4.3.1 Choice of location-channel dependence con-
straint matrices

Choice of P(67×67) and P0(67×45): Matrix P and P0 rep-
resent the location dependence in relative location-channel
matrix (X) and express the linear relationship between dif-
ferent rows of X(67×45). We propose an innovative way to
find appropriate P and P0. For each row Xi of X, loca-
tion dependence means that we can approximate Xi as a
linear function of other K most correlated rows Xik (k =
1, 2, ...,K and ik �= i) of Xi. We will discuss the proper val-
ue of K in Section 4.3.2. The correlation between different
rows is measured by the sum of Pearson product-moment
correlation coefficient [32]. Then we perform multivariate
linear regression to find a set of weights wik , such that Xi

can be best approximated by a linear function of Xik :

Xi ≈ wi0X0 +

K∑
k=1

wikXik , (12)

where X0 is a row vector (1 × 45) equals to (1, 1, 1, ..., 1).
Initially, every element of P is set to be 0. For the i-th row
of P , we set P (i, i) = 1, P (i, ik) = −wik , for k = 1, 2, ...,K.
We also set P0(i, j) = wi0 for j = 1, 2, ..., 45. In this way,

P (LRT )− P0 =

⎡
⎢⎢⎢⎣

X1 −∑K
k=1 w1kX1k − w10X0

X2 −∑K
k=1 w2kX2k − w20X0

...

...

X67 −∑K
k=1 w67kX67k − w670X0

⎤
⎥⎥⎥⎦ ,

and it describes the difference between each row and its lin-
ear representation. Since Xi ≈ wi0X0 +

∑K
k=1 wikXik , the

value of ‖P (LRT )−P0‖2F is expected to be small. Therefore,
the existence of ‖P (LRT ) − P0‖2F in minimizing (11) guar-
antees the location dependence in X and this really improve
the reconstruction accuracy.
Choice of C(45×45) and C0(67×45): Matrix C and C0 rep-
resent the channel dependence in relative location-channel
matrix (X), and express the linear relationship between dif-
ferent columns of X(67×45). Actually, the way to find C and
C0 is almost the same as that of finding P and P0, except
that C and C0 consider the columns of X instead of rows.
In this way, the channel dependence in X is guaranteed by
‖(LRT )C − C0‖2F in (11).

4.3.2 Stability of location-channel dependence
In this part, we study the stability of the location-channel

dependence based on the short-time indoor sensing results,
and then find the proper value of K. In Section 2.3, a total
of 14 short-time sensing data sets were collected and we
can get 14 relative location-channel matrices (RLCM) X(1),



X(2), ..., X(14). We calculate P , P0, C, and C0 based on one
of these 14 RLCMs. If the location dependence and channel
dependence are stable over time, then P , P0, C, and C0

we get can approximately represent the location dependence
and channel dependence of other 13 RLCMs.
We calculate P , P0, C, and C0 based on X(1) in the way

described in Section 4.3.1. As we mentioned before, the val-
ue of ‖PX(1) − P0‖2F and ‖X(1)C − C0‖2F is expected to

be small. If the value of ‖PX(i) − P0‖2F (‖X(i)C − C0‖2F )
(i = 2, 3, ..., 14) is close to ‖PX(1) −P0‖2F (‖X(1)C −C0‖2F ),
then the four matrices (P , P0, C, C0) can approximate-

ly represent the location-channel dependence in X(i) (i =
2, 3, ..., 14). As a result, the location dependence and chan-
nel dependence are stable over time.
We compare ‖PX(1) −P0‖2F and the average of ‖PX(i) −

P0‖2F (i = 2, 3, ..., 14), and set

DIFFP =
[ 1
13

∑14
i=2 ‖PX(i) − P0‖2F ]− ‖PX(1) − P0‖2F

‖PX(1) − P0‖2F
.

Similarly, we set

DIFFC =
[ 1
13

∑14
i=2 ‖X(i)C − C0‖2F ]− ‖X(1)C − C0‖2F

‖X(1)C − C0‖2F
.

If the values ofDIFFP andDIFFC are small, then the loca-
tion dependence and channel dependence are stable. Figure
5 shows the value of DIFFP and DIFFC , when K varies
from 1 to 30. DIFFP gets its minimum value (1.54) when
K = 1 and DIFFC gets its minimum value (1.28) when
K = 2. It means that we would obtain very similar P ,
P0, C, and C0 using different X(i) as input, indicating that
the location-channel dependence is consistent across differ-
ent days. Since DIFFP and DIFFC get their minimum
value when K = 1 and K = 2, respectively, we set K = 1
when calculating P and P0 and K = 2 when calculating C
and C0.
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Figure 5: Stability of location dependence and channel
dependence

4.4 Data Reconstruction Algorithm
Data reconstruction part aims to find X̃ = L̃R̃T that op-

timize (11). We design an algorithm to get L̃ and R̃ based
on alternating least squares method. Before solving (11),
we should scale P , P0, C, and C0 so that ‖P (LRT )−P0‖2F ,
‖(LRT )C − C0‖2F and ‖Bs ◦ (LRT ) − Ds‖2F in (11) are of
similar order of magnitude, otherwise they may overshadow
each other during the optimization process [7].
As shown in Algorithm 1, L is randomly initialized. Then

we fix L and find proper R to optimize (11) by finding its
derivative with respect to RT and making the derivative be
equal to zero. Next we fix R and find the proper L in a
similar way. We repeat this process until convergence. In
Algorithm 1, we repeat for t times (t = 100 by default).
We now explain the alternating least squares method in

detail. First, we assume that L is fixed and find proper R

Algorithm 1 Compressive sensing

Input:
Ds: DM with strong channels, Bs: BM with strong channels,
λ: Lagrange multiplier, t: iteration times, r: rank bound,
ṽ: initially a sufficiently large number.
Output:
X̃: estimation matrix

1: L ← random matrix(67, r)
2: for 1 to t do
3: R ← findDer(Bs, Ds, L, λ, r);
4: L ← findDer(BT

s , D
T
s , R, λ, r);

5: v ← ‖Bs ◦ (LRT )−Ds‖2F + λ(‖L‖2F + ‖R‖2F )
+‖P (LRT )− P0‖2F + ‖(LRT )C − C0‖2F

6: if v < ṽ do
7: L̃ ← L; R̃ ← R; ṽ ← v
8: end if
9: end for
10: X̃ ← L̃R̃T

11: return X̃;

to minimize (11). It seems that we should set the derivative
of (11) with respect to RT to 0, but it’s difficult to directly
find this derivative. Thus, we try another way to solve this
problem. We alternatively use (10) as the objective function
and ‖P (LRT )− P0‖2F , ‖(LRT )C −C0‖2F as constraints just
like [8]. That means in every iteration, we find the L and
R through making the derivative of (10) to be 0 (line 3-4 in
Algorithm 1), then we compare the new value of (11) (v) to

the current smallest value (ṽ). If v < ṽ, we update L̃ and

R̃ , otherwise, we do nothing (line 5-8 in Algorithm 1). The
evaluation results in Section 5 show that Algorithm 1 really
performs well.

Algorithm 2 describes the detailed derivation process. Let

f(L,RT ) = ‖Bs ◦ (LRT )−Ds‖2F + λ(‖L‖2F + ‖RT ‖2F ),
and L be fixed. The value of R can be obtained by solving:
∂f

∂RT = 0. Let Θ = RT , we have

∂f(L,Θ)
∂Θ

=
∂(‖Bs◦(LΘ)−Ds‖2F+λ(‖L‖2F+‖Θ‖2F ))

∂Θ

=
∂(

∑45
j=1 ‖Diag(bj)Lθj−dj‖2F+λ‖θj‖2F )

∂Θ

(13)

where bj , dj , and θj represent the jth column of Bs, Ds and
Θ, respectively, and Diag(bj) refers to a diagonal matrix

with elements of bj on its main diagonal. ∂f(L,Θ)
∂Θ

= 0 is
equal to that for every j from 1 to 45

∂f(L,Θ)

∂θj
= 0,

which means

∂(‖Diag(bj)Lθj − dj‖2F + λ‖θj‖2F )
∂θj

= 0. (14)

Equation (14) is a linear least squares problem and we have

θj = (QT
j Qj + λIr)

−1(QT
j dj),

where Qj = Diag(bj)L. At last, the value of R can be
calculated by R = ΘT . When R is fixed, L can be found in
a similar way.

4.5 Sensor Deployment
As mentioned before, different deployments of sensors lead

to different performance of FIWEX. Although brute-force



Algorithm 2 Derivation

ΘT=findDer(Bs,Ds,L,λ,r)

1: [m,n] =size(Bs);
2: for j = 1 to n do;
3: Qj ← Diag(bj)L;
4: θj = (QT

j Qj + λIr)
−1(QT

j dj);
5: end for
6: return ΘT ;

enumeration of indoor locations can find the best deploy-
ment solution, the computation overhead is unacceptable
(CN

67 − 1 comparisons are needed given N sensors). In this
section, we propose a novel sensor deployment method based
on location dependence and the clustering technique.
As we mentioned in Section 2, there exists linear depen-

dences between different locations. In section 4.3, we utilize
the location dependence to improve the performance of FI-
WEX by representing the channels strength at one location
in form of the linear combination of those at other K most
correlated locations. Given N sensors, FIWEX can collect
the channels strength of N locations, and then reconstruct
channels strength of all locations based on them. Further-
more, if the channels strength in every location can be ap-
proximated by the combination of these N locations, the
reconstruction accuracy would be high. Hence, deploying
sensors at “independent” locations is a good choice as every
one of them can represents a set of correlated locations.
Clustering is a useful method to deploy sensors at “inde-

pendent” locations. Our sensor deployment algorithm can
be briefly divided into two steps: (i) Cluster all locations in-
to N groups (N is the number of sensors here). (ii) Deploy
one sensor in each center of these N groups. In particular,
we choose k-mediod [13] technology to do the clustering and
use the sum of Pearson product-moment correlation coeffi-
cients of one row as the similarity metric. In Algorithm 3
line 2, kmedoids(X,N) divides the rows of X into N cluster-
s, the centers of which are stored in SL. v stores the sum of
all distances between every row and the center of cluster it
belongs to, and a smaller v means a better clustering result.
Considering the truth that k-medoids clustering algorithm
may find the local optimization, we run kmedoids for 100
times and select the best result. Then we deploy N sensors
in the N cluster centers.
At last, we consider the stability of the clustering results.

In Section 4.3.2, we show that the location dependence is
stable over time, as a result, the clustering algorithm based
on location dependence is also stable. That means, if we de-
ploy sensors according to different relative location-channel
matrices, the results would be similar.

Algorithm 3 Sensor deployment

Input:
X: relative location-channel matrix
N : the number of given sensors
vopt: initially a sufficiently large number.
Output:
SLopt: a list of sensor locations

1: for 1 to 100 do
2: [SL, v] = kmedoids(X,N);
3: if v < vopt do
4: SLopt = SL; vopt = v;
5: end if
6: end for
7: return SLopt;
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Figure 6: Average FA rate, WS Loss Rate and CDF
curves.

5. PERFORMANCE EVALUATION
In this section, we perform experiments to evaluate the

performance of FIWEX. To the best of our knowledge, WIS-
ER is the most efficient indoor white space exploration sys-
tem till now, and we examine the cost-efficiency of FIWEX
by comparing it to WISER. First, we evaluate the perfor-
mance of FIWEX and WISER in the scenarios of 10 sensors
and 30 sensors. Then we compare the FA Rates andWS Loss
Rates of FIWEX and WISER in different number of sensors,
and we calculate the ratio of extra white spaces identified by
FIWEX. The evaluation results show that FIWEX is better
than WISER.

5.1 Methodology
To evaluate FIWEX’s performance, we build a prototype

of it on the third floor of a building. We set the white
space threshold to be -84.5dBm/8 MHz as WISER does,
and a total of 14 short-time sensing data sets were collected.
We divide these 14 data sets into two parts: one part of 7
data sets for training FIWEX, the other part for evaluations.
From the training set, we get 7 relative location-channel
matrices, and we use the average of these 7 relative location-
channel matrices to find P , P0, C, C0 and to deploy sensors.
Then we evaluate the performance of FIWEX based on the
other 7 datasets. We choose FA Rate and WS Loss Rate as
the metrics of system’s performance. Their definitions are
as follows.

• False Alarm Rate (FA Rate): the ratio between
the number of channels that a system mis-identifies as
vacant and the total number of vacant channels iden-
tified by the system.

• White Space Loss Rate (WS Loss Rate): the ra-
tio between the number of channels that a system mis-
identifies as occupied and the total number of actually-
vacant channels.

Since we use 7 datasets for evaluation, we get 7 sets of FA
Rates and WS Loss Rate, then we use their average in the
following part of evaluation.

5.2 Performance Comparison With WISER
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Figure 7: Evaluation results on the number of indoor sensors

We first run FIWEX and WISER using two different num-
bers of sensors: 10 and 30, and compare their FA Rates and
WS Loss Rates. As shown in Figure 6(a), when there are 10
sensors, the FA Rate and WS Loss rate of FIWEX are 1.8%
and 22.3% while WISER performs an FA rate 3.6% and a
WS Loss Rate 31.3%. The result shows that FIWEX has
lower or better FA Rate and WS Loss Rate compared with
WISER when 10 sensors are used. We also depict the CDF
(Cumulative Distribution Function) curves of WS Loss Rate
after calculating the WS Loss Rate for each location. Figure
6(c) shows the CDF curves of WS Loss Rate of FIWEX and
WISER with 10 sensors. In WISER, 83.6% locations suffer
a WS Loss Rate that is higher than 30%. The number is
26.9% in FIWEX. In WISER, 71.6% locations suffer a WS
Loss Rate which is higher than 40% while the number is
only 1.5% in FIWEX. Figure 6(b) shows the FA Rates and
WS Loss Rates in the scenario of 30 sensors and the corre-
sponding CDF curves are shown in Figure 6(d). These two
figures shows that FIWEX also outperforms WISER in 30
sensors scenario.

5.3 Performance on The Number of Indoor
Sensors

In a general indoor scenario, there exists a tradeoff be-
tween system performance and the number of indoor sensors
that are deployed. To understand this tradeoff, we vary the
number of sensors from 1 to 66 (when there are 67 sensors,
FA Rate and WS Loss Rate of FIWEX and WISER are both
0), and evaluate the performance of FIWEX and WISER.
In this experiment, we define the following four metrics to
describe the FIWEX’s performance improvement compared
to WISER.

• Absolute FA Rate improvement: the difference
between FA Rates of WISER and FIWEX.

• Relative FA Rate improvement: the ratio between
absolute FA Rate improvement and the corresponding

FA rate of WISER. (If the FA Rate of WISER is 0
while the absolute FA Rate improvement is not 0, we
set the relative FA Rate improvement to be -1.)

• Absolute WS Loss Rate improvement: the differ-
ence between WS Loss Rates of WISER and FIWEX.

• Relative WS Loss Rate improvement: the ratio
between absolute WS Loss Rate improvement and the
corresponding WS Loss rate of WISER. (If the WS
Loss Rate of WISER is 0 while the absolute WS Loss
Rate improvement is not 0, we set the relative WS Loss
Rate improvement to be -1.)

In Figure 7(a), we compare the FA Rates. It is clear that the
FA Rates of FIWEX are lower than those of WISER in most
cases. Actually, the average FA rate (from 1 sensor to 66
sensors) of WISER is 1.25% while this number is 0.77% for
FIWEX. FIWEX has an average absolute FA Rate improve-
ment of 0.48% and an average relative FA Rate improvement
of 38.4% compared with WISER.

Figure 7(d) shows the WS Loss Rate of FIWEX and WIS-
ER with different number of indoor sensors. The average
WS Loss Rate (from 1 sensor to 66 sensors) of WISER is
20.3% and for FIWEX, this number is 10.6%. FIWEX has
an average absolute WS Loss Rate improvement of 9.7% and
an average relative WS Loss Rate improvement of 47.8%
compared to WISER. Figure 7(b) and Figure 7(e) show the
absolute and relative WS Loss Rate improvement versus the
number of indoor sensors, respectively, and they demon-
strate the amount of extra white spaces FIWEX can identify
compared with WISER.

We depict the CDF curves of FIWEX regarding to the FA
Rates and WS Loss Rates of all locations. Figure 7(c) shows
the 6 CDF curves (10,20,...,60 sensors) about FA rate, and
considering the attributes of FA rate (the value of FA rate
is small), we change the range of axes to [0:0.2] and [0.7:1].
The CDF curve is “higher”when more sensors are used, and
this means that the number of locations with high FA Rates



decreases as the increasing number of sensors. In addition,
50 sensors and 60 sensors share the same CDF curve, so we
can only find 5 CDF curves in Figure 7(c). The CDF curves
of WS Loss rate of different number of sensors are shown in
Figure 7(f).

6. RELATED WORK
Most of the existing works on TV white space focus on

outdoor scenarios. For example, in [24], the authors design
a Wi-Fi like AP system constructed on top of UHF white
spaces and a dynamic spectrum allocation network system is
proposed in [25]. Spectrum sensing and geo-location database
are two main approaches for white space exploration, and
have been widely studied these years [26, 27, 29].
The outdoor white space exploration methods cannot be

directly applied to indoor scenarios because of the compli-
cated indoor environment. In [2], the authors propose the
first indoor white space identification system, called WISER.
WISER utilized the channel-location clustering based algo-
rithm to explore indoor white spaces, and obtained great
improvement compared to the baseline approaches. Howev-
er, the property that different locations have different strong
channels and the linear dependence of locations and chan-
nels are not considered by the authors. Based on these ob-
servations, we present FIWEX, a compressive sensing based
cost-efficient indoor white space exploration mechanism.
These years, compressive sensing theory has been widely

studied and utilized in a lot of fields. For instance, [6] pro-
posed the robust network compressive sensing and proved
its efficiency based on a large amount of evaluation, and
compressive sensing technology has been utilized for net-
work traffic estimation [7], localization in mobile networks
[9], soil moisture sensing [10] and data gathering [11, 12]. In
FIWEX, we combine compressive sensing with indoor white
space exploration in an innovative way and efficiently ex-
plore indoor white spaces with a high accuracy.

7. CONCLUSIONS
In this paper, we performed indoor white space measure-

ments in a real building to study the characteristics of indoor
white spaces. The measurement results confirmed the exis-
tence of strong channels and location-channel dependence.
Motivated by these observations, we proposed a cost-efficient
indoor white space exploration mechanism, called FIWEX.
Given the same number of sensors, FIWEX can identify
more indoor white spaces with an average less false alarm-
s compared to the existing indoor white space exploration
systems.
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