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Abstract—In cognitive radio networks (CRNs), secondary
users (SUs) can flexibly access primary users’ (PUs’) idle spec-
trum bands, but such spectrum opportunities are dynamic due to
PUs’ uncertain activity patterns. In a multihop CRN consisting
of SUs as relays, such spectrum dynamics will further cause the
invalidity of predetermined routes. In this paper, we investigate
spectrum-mobility-incurred route-switching problems in both
spatial and frequency domains for CRNs, where spatial switching
determines which relays and links should be reselected and fre-
quency switching decides which channels ought to be reassigned to
the spatial routes. The proposed route-switching scheme not only
avoids conflicts with PUs but also mitigates spectrum congestion.
Meanwhile, tradeoffs between routing costs and channel switching
costs are achieved. We further formulate the route-switching
problem as the Route-Switching Game, which is shown to be a po-
tential game and has a pure Nash equilibrium (NE). Accordingly,
efficient algorithms for finding the NE and the –NE are proposed.
Then, we extend the proposed game to the incomplete-information
scenario and provide a method to compute the Bayesian NE.
Finally, we prove that the price of anarchy of the proposed game
has a deterministic upper bound.

Index Terms—Cognitive radio networks, game theory, routing,
spectrum dynamics.

I. INTRODUCTION

C OGNITIVE radio networks (CRNs) have been proposed
as a promising architecture for relieving spectrum short-

ages [1], where secondary users (SUs) can flexibly access
primary users’ (PUs’) idle channels. Such dynamic spectrum
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access (DSA) significantly improves spectrum utilization, but
brings new challenges to the design of CRNs at the same time,
one of which is spectrum mobility.
In CRNs, PUs can reclaim their licensed channels at any time

due to their high priority in occupying channels, and SUs must
cease their transmission1 on those spectrum bands. Hence, from
SUs’ perspective, spectrum availability is dynamic due to PUs’
uncertain channel reclamation behaviors, which further causes
the aforementioned spectrum mobility.
In the context of multihop CRNs where SUs act as relays,2

spectrum mobility may further cause the break of preestab-
lished routes of incoming data flows since the unavailability
of PUs’ channels disables the transmission over some links on
those routes. To avoid conflicts with PUs and resume routing,
each flow initiator can either inform intermediate SU relays
of switching their accessing channels or reselect a new spatial
route3 where channels are not reclaimed. However, the fol-
lowing tradeoff implies that two-dimensional route switching
(i.e., the combination of both channel switching and spatial
route reselection) is a better choice.
The advantage of channel switching is that it maintains the

original optimal spatial route (e.g., a route with the fewest
hops), which efficiently reduces routing costs, including
transmission delay, energy consumption, etc. Unfortunately,
frequent channel switching may cause significant switching
costs such as switching delay, additional wear and tear, etc.
By comparison, reselecting a new spatial route can yield fewer
switching costs. For instance, we can reselect a spatial route
that only consists of links whose assigned channels are not
reclaimed, which incurs zero switching cost. However, it may
lead to additional routing costs at the same time (e.g., the new
spatial route may consist of more hops). Consequently, there is
a tradeoff between the two costs, which must be achieved by
switching routes in both spatial and frequency domains.
Fig. 1 shows a simple example that motivates the proposed

two-dimensional route switching. The number next to each edge
indicates the corresponding costs. Suppose a certain flow has
source and destination . At the beginning, all channels are
available, so the optimal path is obviously with

1Such a method is also referred to as the spectrum overlay mode. An alterna-
tive way is to ensure that the amount of generated interference to PUs is below
a certain threshold, namely the spectrum underlay mode [9]. In this paper, we
only consider the overlay mode.
2Since we focus on routing in the secondary network, we will use “CRN” and

“secondary network” interchangeably in this paper.
3In the following, we will refer to the selections of intermediate nodes and

edges as spatial routes and the choices of channels used on the spatial routes as
frequency routes.
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Fig. 1. Example of two-dimensional route switching. (a) Original route and
channel assignment. (b) Channel 1 is reclaimed by PUs. (c) Strategy update
when switching costs are 1. (d) Strategy update when switching costs are 3.

costs 2 [Fig. 1(a)]. Now, suppose the channel used by link
is reclaimed by PUs [Fig. 1(b)]. Then, we can choose to

either switch the tuned channel on link to an idle one (say
channel 6) or select a new route . If channel
switching costs are 1 [Fig. 1(c)], then the former choice is
preferred since the total costs would be 3 (additional switching
cost 1 plus original routing cost 2). By comparison, the total
costs are 4 if we choose the new route .
However, if channel switching costs are 3 [Fig. 1(d)], then the
total costs incurred in the former case become 5, which implies
that rerouting is a better choice. Hence, depending on specific
contexts, we should flexibly choose between channel switching
and rerouting.
In this paper, we propose route-switching games to address

the above spectrum-mobility-incurred route-switching problem
in CRNs. The contributions of this paper include the following
aspects.
• To our best knowledge, this paper is the first to investigate
spectrum-mobility-incurred route-switching problems
in CRNs. Accounting for selections in both spatial and
frequency domains, our scheme not only avoids the con-
flicts with PUs, but also mitigates spectrum congestion
and achieves the tradeoff between routing and channel
switching costs.

• We formulate the proposed problem as the Route-
Switching Game, which is proved be a potential game.
Efficient algorithms for finding the Nash equilibrium (NE)
and the -NE are provided in this paper.

• We further study the game with incomplete information,
where players’ parameters are private. In such a scenario,
a Bayesian NE is proved to exist and an algorithm for cal-
culating the Bayesian NE is provided.

• We compare the NE of this game to socially optimal results
in terms of social costs, namely the price of anarchy, which
is upper-bounded by deterministic factors.

The remainder of this paper is organized as the follows. We
will first introduce the system model in Section II. Next, in
Sections III and IV, route-switching games with complete and
incomplete information will be demonstrated, respectively.
Then, we will analyze the price of anarchy in Section V with

Fig. 2. Example of the multihop and multiflow CRN. Note that the entire sec-
ondary network is within the transmission range of the PU base station, so the
spectrum opportunities perceived at each SU are identical.

some additional discussions in Section VI. Finally, simula-
tion results, related works, and conclusions will be given in
Sections VII–IX, respectively.

II. NETWORK MODEL

A. Architecture of MultiHop CRNs

We consider a multihop CRN where multiple SUs act as
routers for incoming data flows, and there are orthog-
onal and homogeneous channels accessible to SUs when
they are not occupied by PUs (each channel is denoted by

). For the simplicity of analysis, we
assume the entire secondary network lies in the same “collision
domain” with PUs,4 i.e., the perceived channel states (either
busy or idle) at each SU are identical in the entire network. This
assumption is valid for many geographically centric secondary
networks coexisting with powerful PU transceivers, like PU
base stations in cellular networks, as is shown in Fig. 2.
Formally, the entire secondary network can be characterized

by a topological graph . Here, is the set of
nodes (SUs) and is the set of edges, where an edge exists
between a pair of nodes iff they are within the transmis-
sion range of each other, so an edge corresponds with a data
link. However, for a link to be able to sustain data transmission,
it must be allocated a certain channel. As our focus is the
route-switching problem, we suppose each link was formerly
assigned a certain licensed channel (but these preassigned
channels may be reclaimed by PUs and become unavailable
now). Here, we denote matrix the indication of preassigned
channels on different links. Specifically, implies that
channel was preassigned to link , and otherwise.

B. Flow Model

Suppose there are concurrent data flows5 into the sec-
ondary network (each flow is denoted by

4Note that our scheme can also be modified to incorporate the spatial diversity
of PUs’ spectrums in secondary networks.
5We assume those data flows can last for a period of time like minutes or

hours, which is particularly suitable for characterizing multimedia streaming,
P2P downloading, etc.
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), and denote the source and destination of data
flow by a pair . For the efficiency and reliability
of transmission, flow segments its data into many smaller
packets, each with size . We denote the flow rate of by
and assume that those data flows are from different initiators,
each hoping to minimize its own costs. Moreover, we suppose
that nodes in the secondary network will always honestly
follow the routing plans developed by flow initiators. Cases
where “malicious” secondary nodes exist are left for our future
works.

C. Spectrum Mobility and Route Switching

When high-priority PUs reclaim their licensed channels, SUs
must cease their transmission on those spectrum bands, which
causes spectrum mobility. Here, we denote the set of channels
that are currently unavailable to SUs due to PUs’ reclamation.
In practice, can be obtained by flow initiators without incur-
ring significant overhead costs through our implementation (see
Section VI-B).
Unlike many earlier works that proposed statistical models to

characterize PUs’ reclaiming activities [9], [10], we do not pre-
dict PUs’ behaviors, i.e., our scheme is reactive, since the pre-
cision of predictions still remains a major problem. Moreover,
route-switching schemes should provide routing reliability as
much as possible, instead of probabilistic results, because the
focus of the proposed mechanism is exactly to handle the nega-
tives effects of spectrum uncertainty, which is the other reason
why we do not choose proactive models.
As is mentioned in Section I, in the face of spectrummobility,

routes must be switched in both spatial and frequency domains
so as to avoid conflicts with PUs, mitigate congestion, and bal-
ance routing costs and channel switching costs (see Section II-E
for the formal definitions). Here, we use a 3-D matrix to
characterize the new selection of spatial routes and channel as-
signment, which is also the decision variable in the considered
problem. Specifically, its element when link is in-
cluded in the new spatial route of data flow , and channel
is reassigned to this link ( otherwise).

D. Interference Model and Constraints

We use the protocol interference model [7], where the trans-
mission in channel over link succeeds if all potential inter-
ferers in the interference neighborhood of link remain silent in
channel for the transmission duration. Here, the interference
neighborhood of link , i.e., , is the set of links whose end
nodes have interference links or data links incident on the end
nodes of . Furthermore, when channel is perceived idle over
link , the contention window is activated, and link will con-
tend for the transmission opportunities with all interfering links
in (specifically, it is the transmitter on one end of link that
executes the contention). This model resembles CSMA/CA in
IEEE 802.11, based on an RTS-CTS-Data-ACK sequence.
Then, we introduce the set of constraints in our model. First

of all, any reclaimed channels cannot be assigned, i.e.,

(1)

Moreover, we assume that any channel can only be assigned to
at most one flow over the same link, considering the significant

co-channel collisions and interference incurred on the same link.
This yields the constraint

(2)

Additionally, we also have the following radio constraint:

(3)

where is the set of edges incident on node and is
number of radios that node equips. This constraint shows
that the number of channels to which a certain node (SU) tunes
should not exceed its radio limitation. By the above three con-
straints, the feasible set of this problem is defined to be the
set of possible solutions that satisfy (1)–(3).

E. Cost Model

We model the costs of each data flow by: 1) routing costs
incurred by relaying packets on the established route, and
2) switching costs consumed to change the tuned channels over
certain links.
1) Routing Costs: For flow , its routing costs are

modeled by

where corresponds to the costs incurred by end-to-end
delay from source to destination , and characterizes
the costs resulting from energy consumption used for relaying
the packets of .
We first characterize delay costs. Under the interference

model mentioned above, significant contention delay will be
incurred if channels are congested since SUs must contend
and wait for transmission opportunities. Note that there is no
queuing delay in our model because constraint (2) implies
different flows actually use different channels (thus different
queues) at the same node. Hence, if we further neglect other
minor delay like propagation delay, then contention delay can
be regarded as a rough estimation of the overall one-hop delay.
As is typical of many random access protocols [24], [25], we

make the following assumption: Within the contention window,
a certain link and all its interfering links have the same prob-
ability of winning the access to a certain channel . Fol-
lowing the methods provided in [29]–[31], we can obtain an ap-
proximate expression for the expected contention delay within
one hop, which characterizes the expected waiting time before
flow gets the opportunity to transmit one packet in channel
over link

(4)

where is a constant related to link and channel . Without
loss of generality, we can let in the rest of this paper,
but our analysis carries over arbitrary values of . More-
over, in (4), we define , i.e., the amount of time
required by flow for transmitting one packet. The deriva-
tion of (4) is beyond the scope of this paper, so we omit it for
brevity. The intuition behind (4) is explained as the following.
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in (4) represents the traffic demands (for trans-
mission time) in channel over link imposed by all passing
data flows, and thus (4) corresponds to the aggregate traffic de-
mands in channel from the entire interference neighborhood
of link . Generally speaking, reflects the congestion level
of channel perceived over link , so delay costs can also be
interpreted as the congestion costs in our model. As a result,
although (4) is only an approximation to one-hop delay, it pre-
cisely reflects the root of delay, namely network congestion. In
this sense, it is as desired as the precise delay expression that
may be difficult to characterize in reality.
For denoting simplicity, we introduce a 0–1 indicator to

imply the interference relationship. Specifically, indi-
cates that link is in the interference neighborhood of . Note
that for any and we consider mutual interfer-
ence, which means that . Moreover, interference
caused by one’s own transmission over other interfering links is
neglected for the tractability of analysis since recent literature
(e.g., [17] and [18]) has suggested such interference can be mit-
igated significantly by exploiting the self-interference cancella-
tion technology in relay systems. Therefore, we can rewrite the
expected one-hop delay perceived by when it is transmitting
in channel over link by

(5)

where . Furthermore, we can characterize the
expected end-to-end delay as the sum of hop-by-hop delay.
Then, the delay costs of flow are given by

(6)

which is proportional to the expected end-to-end delay. Here,
is a constant reflecting the revenue lost per unit of delay.
Next, we consider energy costs that characterize power

consumption used for relaying packets. Under our interfer-
ence model, when one SU transmits in channel over link ,
other SUs within must remain silent in channel , so the
signal-to-interference-plus-noise ratio (SINR) perceived at
each SU receiver is merely dependent on transmission power,
intrinsic channel quality, and geographical conditions (e.g.,
path loss). Noticing the above fact, we model power consump-
tion as a general function (and for short), which
neatly captures the influence of flow rates, channel quality, and
geographical conditions on power consumption. Note that
can be of different forms, depending on the features of wireless
networks.6 Then, the energy costs of flow are shown as

(7)

Similarly, is a constant reflecting the revenue lost per unit of
power consumption.

6For example, a possible expression of is based on the Shannon For-
mula in the presence of additive white Gaussian noise (AWGN), i.e.,

where is the bandwidth of channel ,
is the variance of AWGN in channel over link , is the distance between
the transmitter and the receiver, is the attenuation coefficient, and is the
corresponding transmission power. In this case, power consumption can
be readily obtained.

2) Switching Costs: Different from the above routing costs,
switching costs characterize the potential expense used for
channel handoff. Here, we use to indicate the overall revenue
lost per channel switching, which may include: 1) additional
energy consumption used for sensing and establishing new
connections; 2) switching delay; 3) increased wear and tear
during channel reconfiguration, etc. For example, in terms of
switching delay, many practical mobile systems like Qual-
comm’s MediaFLO, show switching delay around 1.5 s [26].
Note that includes the costs of both switching
(tearing down the old channel connection) and
switching (establishing the new channel connection), so the
two types of switching costs can be seen as being incurred
altogether in either switching scenario. In this paper, we as-
sume the overall switching costs are incurred only in the

transition. Therefore, the total channel switching
costs associated with ’s strategy are

(8)

where we define . Corresponding to the above
discussion, (8) implies that only when and
(i.e., link did not use channel in the past, but now this channel
is allocated to according to ’s strategy), switching costs are
incurred.
So far, we have defined two types of major costs in the

network: routing costs (i.e., delay costs plus energy costs)
and switching costs. In reality, the two types of costs conflict
with each other and cannot be simultaneously minimized
(see Section VI-A for the detailed discussion). Hence, when
designing the overall cost function, we aim at achieving the
tradeoff between the two types of costs. Specifically, we model
flow ’s overall cost function as

(9)

Here, and are two nonnegative system parameters char-
acterizing the relative importance of routing costs and switching
costs, respectively. For example, if nodes in the secondary net-
work are energy-constrained, we tend to set to be a large
value while keeping small; if the CRN is delay-tolerant and
energy-abundant but has a low tolerance for channel switching,
we prefer a small and a large . In fact, the two parame-
ters provide us with the flexibility of balancing routing costs and
switching costs. Particularly, if and , routing
costs are minimized; if and , switching costs
are minimized; if and , a tradeoff (of a certain
degree) is obtained.
Additionally, without loss of generality, we assume that

in the rest of this paper. With trivial changes, our anal-
ysis can be easily applied to the case where these parameters
take arbitrarily feasible values.

III. ROUTE-SWITCHING GAMES WITH COMPLETE
INFORMATION

From (5), we can obviously observe that a certain flow’s delay
costs are also dependent on others’ route-switching strategies,
so we formulate the above problem as routing-switching games,
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where players (i.e., flow initiators) distributively and selfishly
switch their two-dimensional routes in face of spectrum mo-
bility, aiming at minimizing their own overall cost functions.

A. Game Formulation

Under complete information, each player’s information (i.e.,
data rate and packet size , ) is known to others.We
can use a tuple to denote the route-
switching game with complete information. Here, the mean-
ings of , , and have been explained in Section II.

and are publicly known pa-
rameter vectors of flows. is the set of players’ cost functions,
shown in (9). is the two-dimen-
sional strategy space. In this paper, we consider the symmetric
game where all players have the same strategy space. Further-
more, we denote the strategy profile, where

is flow ’s strategy.7 Note that
the different kinds of costs of flow as well as the value of
depend on the strategy profile , so we denote them by ,

, , , , and , respectively.8

In addition, it is worth mentioning that the above formu-
lation does not impose any constraints on the connectivity of
switched routes, but such an omission will not influence any of
the following analytical results. Instead, we guarantee the con-
nectivity through our algorithm implementation (see Theorem 3
in Section III-C).
Finally in this section, we give the definition of the Nash equi-

librium,9 which will be frequently discussed.
Definition 1 (Nash Equilibrium, NE): A strategy profile

is a Nash equilibrium if for any player
( ) and its any strategy

where is the strategy profile excluding . By definition,
no player can reduce its own costs by unilaterally changing the
strategy at the equilibrium.

B. Potential Game

The potential game [33] is a relatively new game-theoretical
model that can characterize a wide range of games, including
the classical congestion game [32]. It has already demonstrated
its importance throughmany successful applications in practical
problems like spatial spectrum access [19], [20], gateway selec-
tions [21], etc.
In the rest of this section, wewill briefly introduce the concept

of the potential game and its properties, which will be further
exploited in this paper.

7In this paper, each player’s (say flow ’s) strategy can be expressed in two
forms: and the corresponding 0–1 indication . The two
forms are equivalent and will be used interchangeably in the following. Note
that if and only if .
8To be more specific, , , and are dependent on the entire

strategy profile ; is dependent on the entire profile expect ; and
are only relevant to flow ’s own strategy . For denoting simplicity,

they are uniformly expressed as the function of .
9We only consider the pure NE throughout this paper.

Definition 2 (Potential Game): A game is referred to as the
potential game if and only if there exists a potential function in
the game.
Definition 3 (Potential Function): A function is the po-

tential function for the minimum game10 if for any strategy
profile , any player ( ) and its any two strategies

That is, if any player can unilaterally reduce its costs, the value
of the potential function will also be reduced. Potential games
have many ideal properties, and we mainly use three of them.
Property 1: Every finite potential game11 has at least one pure

Nash equilibrium.
From the definition of the potential function, we can observe

that the minimum of the potential function corresponds to a pure
NE in the minimum game. That is, no player can unilaterally
decrease its costs at the minimum of the potential function, oth-
erwise the reduction of this player’s costs will also lead to the
reduction of the potential function, violating the definition of
the minimum.
Property 2: Every finite potential game has the finite im-

provement property (FIP).
The meaning of FIP is as follows. Initially, each player can

randomly select its own strategy. Then, every player rotates
to improve its strategy by reducing the potential function with
others’ strategies fixed. After finite improvement steps, the po-
tential function will reach the minimum, and thus an NE is de-
rived. FIP actually provides us with a feasible method to com-
pute an NE in the potential game, which will be further utilized
in Section III-C.
Property 3: Every finite potential game has at least one pure
-Nash equilibrium.
We temporarily skip the explanation of Property 3. Further

discussions will be given in Section III-D.
Proofs to the three properties can be found in [33].

C. Existence and Computation of the NE

In this section, we will first show that the proposed route-
switching game is essentially a potential game. Then, an algo-
rithm for computing the NE will be provided.
Theorem 1: Under complete information, the proposed route-

switching game is a finite potential game that has the following
potential function:

(10)
Proof: It is obvious that the proposed route-switching

game is finite, and we only prove that (10) is a potential func-
tion. Consider an improvement from strategy profile to . The
0–1 strategy indications corresponding to and are and

, respectively. The only difference between and is that

10A game is a minimum game if players tend to minimize their cost functions.
11A game is said to be finite when each player has a finite number of options

and the number of players is also finite.
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player improves its strategy from to , which implies
and

At the same time, we define

Thus, we can derive

(11)

For the first term in the above equation, we can further write out
its explicit expression

(12)

For the second term in (11), we first notice that for
any , i.e.,

(13)

Then, the second term can be equivalently written as

(14)

Note that the derivation of (14) exploits the fact that

since only ’s strategy changes while others’ strategies remain
the same in the strategy profiles and .
Interchanging the role of and together with (13) and the

assumption , we can rewrite (14) as

(15)

By summing (12) and (15), we finally obtain that

(16)

Hence, we have proved that (10) is a potential function of the
proposed game.
According to Theorem 1 and Property 1 of general potential

games, we can immediately conclude the following result.
Theorem 2: There exists a Nash equilibrium in the route-

switching game with complete information, and this NE min-
imizes the potential function in (10).
Next, we design an algorithm to reach the NE in Theorem

2, shown as Algorithm 1. Note that each player locally runs
this algorithm to determine its own best strategy at the NE, by
simulating other players’ possible actions (steps 3–18). This is
also referred to as the Fictitious Play Process in game theory
[33]. The accuracy of Fictitious Play is dependent on the degree
of known information about other players. Under complete
information, every player’s parameters are precisely known by
others, so the Fictitious Play Process will converge to the real
play process. However, Fictitious Play will deviate from the
reality under incomplete information (but it still converges),
as will be further demonstrated in Section IV. Essentially,
Algorithm 1 is an iterative algorithm following FIP. Its major
part is the strategy improvement (or update), which is done
by first converting the reduction of the potential function into
finding the shortest path in an undirected graph and then ap-
plying the well-known Dijsktra Algorithm to find such a path.
Step 9 in Algorithm 1 handles the three constraints mentioned
in Section II-D, where if letting will violate
any of the three constraints under the strategy profile in that
loop. Variable in the algorithm acts like a counter recording
the consecutive times for which players cannot reduce the
value of the potential function, and the stop condition (step 18)
indicates that all players cannot reduce the potential function
anymore, where the minimum point (i.e., the NE) is reached.
Note that a player’s strategy is updated only when it can reduce
the potential function (steps 12 and 13), otherwise its previous
strategy remains. Moreover, the expression of in step 7
when is improving its strategy is given by

(17)

where is the strategy profile of other flows obtained after the
previous iteration. Note that although is usually written as a
function the entire strategy profile , it actually only depends on
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Algorithm 1: Compute the best strategy of flow at the
Nash equilibrium under complete information (executed by the
initiator of flow , )

1: Initialize ;
, , , ;

2: For any , extend edge to parallel edges
(each extended edge is denoted by );

3: repeat
4: Update the iteration counter: ;
5: Update the index of flow: ;
6: for each do
7: Update edge weight according to (17);
8: end for
9: Set ;
10: Call Dijsktra Algorithm to find the shortest path from

to in the extended graph;
11: Compute according the shortest path;
12: if then
13: Update the action of flow accordingly;
14: Reset ;
15: else
16: , ;
17: end if
18: until
19: ;

. Here, we explicitly write as a function of to em-
phasize that only flow is updating its strategy while others’
actions are fixed. The correctness of (17) and Algorithm 1 is
shown in the proof to Theorem 3.
Theorem 3: Each improvement step (i.e., each iteration) in

Algorithm 1 can reduce the potential function to the maximum
extent and guarantee route connectivity in polynomial time with
the time complexity .

Proof: Suppose is updating its strategy in the Fictitious
Play Process shown in Algorithm 1. Then, we have

where

Here, (or equivalently, )
is the strategy profile of other flows obtained in the previous
iteration, which is fixed when player is updating its strategy.
Hence, reducing is equivalent to reducing

For the first term in

Note that we interchange the role of and and exploit the fact
that in the second equation. Hence, can be
written as

Therefore, when is updating its strategy, if we set the weight
of edge in the extended graph to be

then finding the shortest path in the extended graph will be
equivalent to reducing to the maximum extent, which
further reduces the potential function to the maximum
extent. Since weight , then Dijsktra Algorithm
can be applied to find the shortest path in the extended graph.
Moreover, route connectivity is guaranteed by the property of
Dijsktra Algorithm.
In terms of the time complexity, we investigate how it scales

with the number of players ( ) and the network scale ( and
). To compute , we can first calculate and store the

value of at the end of the current iteration such that it can
be readily used in the next iteration, which amounts to
time in each iteration. With the value of , computing
only needs time for every and . Thus, setting
weight on the extended graph will consume time
(note that can be regarded as a constant here) in each iteration
and Dijsktra Algorithm is of . Then, the overall time
complexity of each iteration is .

D. -Nash Equilibrium

Algorithm 1 provides us with a method to compute the exact
NE, where no players can reduce their own costs by unilater-
ally deviating from the NE. Unfortunately, Algorithm 1 is not
guaranteed to reach the minimum of the potential function in
polynomial time, even though simulation results show that the
convergence is very fast (see Section VII). Alternatively, we can
obtain an approximate NE or -NE in polynomial time, by mod-
ifying Algorithm 1. Firstly, we give the formal definition of the
-Nash equilibrium.
Definition 4 ( -Nash Equilibrium): A strategy profile

is an -Nash equilibrium if for any player
( ) and its any strategy

The above definition implies that no player can reduce its costs
by if it unilaterally violates the -NE. Particularly, when ,
the -NE becomes the exact NE.
As a corollary of Property 3 of general potential games, we

have the following theorem.
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Theorem 4: Under complete information, every route-
switching game has a unique -Nash equilibrium.
To compute the -Nash equilibrium, we only need to slightly

modify Algorithm 1 by setting the condition in step 12 to be
“ .” By such modification, we can conclude
Theorem 5.
Theorem 5: The computation of the -Nash equilibrium can

terminate in iterations.
Proof: It is obvious that

Define , , and
, where is the number of radios equipped by

node . Then, we have

where the last inequality is according to (3). In the modified ver-
sion of Algorithm 1, the value of will be reduced by at least
after every improvement steps, otherwise the algorithmwill
stop. Hence, noticing that , we can conclude that the
maximum number of improvement steps will be upper-bounded
by

That is, the computation of the -Nash equilibrium can terminate
in iterations.

IV. ROUTE-SWITCHING GAMES WITH INCOMPLETE
INFORMATION

In the previous sections, we assume that all players have the
exact information about others. However, obtaining exact pa-
rameters about other concurrent flows could be very difficult in
practice. As is often the case, obtaining statistical information
is much easier. In this section, we will extend our scheme to
the incomplete-information scenario, where players’ exact in-
formation is hidden while their statistics is known.
The proposed game with incomplete information can be in-

dicated by the tuple . The slight
differences between this definition and that of the complete-in-
formation game lie in two aspects. First, we introduce a type
space to indicate the possible rates and
packet sizes of data flows in the incomplete-information game,
where is the type space of data flow . Then, flow ’s
strategy is a mapping from to the strategy space , i.e.,

. Moreover, the flow rate would be , the
packet size would be , and the energy costs in channel
over link would be if data flow is of type . Sim-

ilarly, we define and denote
the type profile, where is the type of . Second, each player
only knows the type distribution of other data flows over the
type space , where . Note that the

probability density function will be used when the type distri-
bution is continuous. We assume the type distribution of each
data flow is independent

where is the probability that data flow is of type ,
shown by

(18)

Then, we define the concept of equilibria in incomplete-infor-
mation games, referred to as the Bayesian Nash equilibrium
(BNE).
Definition 5 (Bayesian Nash Equilibrium, BNE): A strategy

profile is a Bayesian Nash equilibrium if
for any data flow ( ) and its any type ,
satisfies

where is ’s expected costs
when it is of type and adopts strategy (note that is a
random vector).
Unlike Theorem 2 in the complete-information scenario, we

skip the direct proof to the existence of BNE. Instead, we’ll
first provide an algorithm to compute BNE and then prove its
correctness, shown in Algorithm 2 and Theorem 6.

Algorithm 2: Compute the best strategy ( ) of
flow at the Bayesian Nash equilibrium under incomplete
information (executed by the initiator of flow , )

1: for each do
2: Compute ;
3: Compute ( ) similarly;
4: end for
5: Compute the best strategy using Algorithm 1 by
replacing and with and ( ,

), respectively;
6: Set ( );

The idea behind Algorithm 2 is simple: Each player first com-
putes the expectations of parameters related to other players
(as a belief or prediction about them); then, each player calls
Algorithm 1 by taking in such a belief and derives an equilib-
rium. Theorem 6 demonstrates that the derived equilibrium is a
legitimate BNE.
Theorem 6: Algorithm 2 yields a Bayesian Nash equilibrium

of the route-switching game with incomplete information.
Proof: Without loss of generality, we assume

here. We consider the contradiction and suppose there exists a
data flow (of type ) whose strategy obtained by Algorithm 2
(i.e., ) is not its best response at the Bayesian NE.
Then, according to the definition of the Bayesian NE, can
change its strategy to ( ) so that

(19)
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’s expected costs when it is of type under are

(20)

Note that (20) is established on the fact that
since

only depends on others’ strategies and the
type distribution of each data flow is statistically independent.
Taking (20) to (19), we derive

(21)

Step 5 in Algorithm 2 corresponds to a new complete-informa-
tion game. To avoid the confusion of denotations, we will de-
note an arbitrary strategy profile in the new complete-informa-
tion game, and the corresponding 0–1 strategy indication is
( ). By comparison, the corresponding
strategy profile in the incomplete-information game is , which
is a mapping from the type space to the strategy space, and the
0–1 indication is ( ).
By this definition, in the new complete-information game

Here

The above equation is actually derived from step 2 of
Algorithm 2. By (18), we know that

Then, can be rewritten as

where the second equality holds because any other flows follow
Algorithm 2 and step 6 shows that (i.e.,

) for every and in the new com-
plete-information game. This further implies that

Taking the above equation to (21) and noticing that
for every , we can conclude that in the new

complete-information game formed in step 5 of Algorithm 2

which means that is not the NE in the corresponding com-
plete-information game, contradicting to the correctness of
Algorithm 1. Hence, Theorem 6 has been proved.
It should be mentioned that when the Bayesian -Nash equi-

librium is calculated, similar modification (see Section III-D)
should be made to Algorithm 1. Moreover, since statistical in-
formation is used in the Fictitious Play Process, each player
cannot precisely simulate others’ actions, which implies that
there are certain performance gaps between the BNE and the
NE (see Section VII for numerical demonstrations).

V. PRICE OF ANARCHY

In this section, we will compare the performance of the pro-
posed game to the socially optimal results obtained in central-
ized schemes. As for the complete-information game, price of
anarchy (PoA) [32] in terms of social costs will be analyzed.
In terms of the incomplete-information scenario, expected so-
cial costs as well as Bayesian price of anarchy (BPoA) will be
discussed.

A. Complete-Information Game

In the route-switching game with complete information, the
metric of our interests is social costs, defined as the following.
Definition 6 (Social Costs): Social costs are the sum of all

players’ overall costs, i.e.,

Then, we introduce the definition of price of anarchy in the
complete-information game.
Definition 7 (Price of Anarchy): Price of anarchy is the ratio

of social costs between the worst NE and the optimality in cen-
tralized schemes, i.e.,

where is the worst NE point of the proposed game. Here, we
regard as the equilibrium obtained by Algorithm 1.
The following theorem shows that PoA of the proposed game

has an upper bound.
Theorem 7: The upper bound of price of anarchy in the pro-

posed game is , where .
Proof: With loss of generality, we set . Let
denote the Nash equilibrium obtained by Algorithm 1 and
be the strategy profile that can minimize the social costs. At

the same time, we define and .
Thus, . We can rewrite the potential function as
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Similarly, we have

Since reaches the minimum, we have

For the simplicity of denotations, we define

Then, we can derive that

From the above inequality, we finally have

Theorem 7 implies that social costs under the NE will not ex-
ceed times of the minimum social costs even in the worst case.
Here, characterizes the heterogeneity of traffic demands from
incoming data flows. In practical communications systems, such
heterogeneity is not significant considering transmission effi-
ciency [31]. In a special case when flows are homogeneous (
is identical, ), the NE yields less than twice of the
minimum social costs ( ). Moreover, it should be men-
tioned that is a relatively loose bound, which means that the
real PoA could be much less than . The above two remarks
of imply that the obtained NE is actually close to the opti-
mality in practice (PoA is usually below 1.5 in our simulation;
see Section VII).

B. Incomplete-Information Game

As for the incomplete-information scenario, the corre-
sponding concept is referred to as the BPoA, which is defined
as the following.
Definition 8 (Bayesian Price of Anarchy): Bayesian price of

anarchy is the ratio of expected social costs between the worst
Bayesian NE and the optimal results obtained by centralized
schemes, i.e.,

where the expectations are over the entire type space . Sim-
ilarly, corresponds to the Bayesian NE obtained through
Algorithm 2. A deterministic upper bound of Bayesian price of
anarchy is given in Theorem 8.
Theorem 8: The upper bound of Bayesian price of anarchy in

the proposed game is , where , where
the expectations are over the type space of flows and ,
respectively.

The proof to Theorem 8 is similar to that of Theorem 7 ex-
cept some lengthy probabilistic calculations. Due to the limited
space, we omit the proof here. Theorem 8 implies that BPoA
in the proposed game is also related to the (statistical) hetero-
geneity of incoming data flows. Moreover, similar to the dis-
cussion of PoA, the real BPoA is not significant in practical
systems.

VI. DISCUSSION

A. Tradeoff Between Routing Costs and Switching Costs

In this section, we discuss the tradeoff between routing and
switching costs. Due to the limited space, a brief heuristic
demonstration is provided instead of a formal mathematical
analysis.
Suppose the flow of our interests is . For simplicity,

we assume each link only sustains one channel such that
the maximum number of channel switching is . De-
note the allowable number of channel switching in
’s route ( ). Then, roughly reflects

the total switching costs incurred to flow . Moreover,
suppose the set of channels reclaimed by PUs is , and
the set of invalid links due to such spectrum mobility is

.
When , i.e., switching costs achieve the minimum

(zero), the initiator of has to select a new spatial route in
the new graph . We denote the optimal routing
costs in as .
When , switching costs increase, but the initiator of
has the flexibility of switching one channel, where the re-

sulting new graph has two possibilities. In the first case,
the initiator of switches the channel over a certain edge

, and thus link is available again, which implies
and . Hence, denoting the op-

timal routing costs in as , we obtain ,
where “ ” only happens when resources (e.g., available chan-
nels and links) are abundant. In the second case, the initiator
of switches the channel over a certain edge .
This happens when this channel is perceived to be overly con-
gested over and routing costs can be significantly reduced if
we switch the assigned channel of to a less congested one,
where also holds. Therefore, regardless of the
switching choice, we always have when net-
work resources are limited.
Similar argument holds when we raise until .

Then, we can conclude that the increase of switching costs can
reduce routing costs. Conversely, we can similarly show that
the increase of routing costs also contributes to the reduction
of switching costs. Therefore, routing costs and switching costs
cannot be simultaneously minimized, and tradeoffs exists be-
tween them. In Section VII, we will further provide numerical
results to illustrate such tradeoffs adjusted by parameters
and .

B. Implementation of the Game

We briefly discuss the implementation of the proposed game.
Before flow transmission, nodes (i.e., SUs) will first perform
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spectrum sensing to obtain the states of channels.12 If the avail-
able channels cannot sustain existing routes, nodes where the
routes break will broadcast route-switching messages to flow
initiators through the flooding scheme. Each route-switching
message contains the indices of affected flows as well as the
indices of channels whose state changes so that each initiator
can obtain (i.e., the set of unavailable channels). Then, ini-
tiators will distributively play the route-switching game to res-
elect their two-dimensional routes and inform the intermediate
nodes of the new decisions. Here, initiators can include the new
route table in the header of packets like in the Dynamic Source
Routing (DSR) protocol. Finally, new routes are built and flow
transmission resumes.
Note that when PUs suddenly reclaim their licensed channels,

there might be some packets in the middle of delivery whose
old route breaks while the new route is still unknown to them.
In this case, there are several possible solutions. For example,
the simplest way is that intermediate nodes drop the undeliv-
ered packets and the source nodes retransmit the packets whose
ACK is not received. Alternatively, intermediate nodes can tem-
porarily resume the transmission of undelivered packets using
backup channels (e.g., [16]), until all undelivered packets are
cleared. Since we are considering constant flows and the fre-
quency of PUs’ channel reclamation is relatively low (e.g., in
TV whitespace, the time interval between two consecutive PUs’
activities is usually on order of minutes or hours [36]), such a
temporary state will not cause significant degradations to net-
work performances.
Moreover, our scheme also requires that each secondary

node has the complete topology information of the network,
which is challenging in practice. Fortunately, the draft of
IEEE 802.22 [37] points out that PUs can periodically send
beacon frames to SUs, which provides an option to contain the
locations of interfering SUs. Moreover, although the spectrum
occupancy in CRNs is time-varying, the underlying topology
(e.g., the locations of SUs and their interfering relationship)
can be relatively static (we do not consider node mobility in
this paper). In this case, even without aforementioned beacon
frames, it is also possible to statically maintain the topology in-
formation at each node (e.g., prestore the topology information
in the database of each secondary node [9], [16]).

VII. SIMULATION

A. Simulation Settings

In this paper, we use MATLAB as the simulation tool. As for
the network topology, we adopt the classical B-A algorithm to
generate a (random) scale-free network. We also randomly as-
sign a distance for each pair of nodes in the generated network
following the uniform distribution, with the distribution interval
[1, 20] m for the first-hop, [20, 40] m for the second-hop, etc.
The interference range of each node is 60 m. The number of
radios equipped by each SU is a random integer following the
uniform distribution between [1, 6]. Flow rates and packet sizes
are uniformly distributed in [0.8,1.2] Mb/s and [600, 800] B, re-
spectively. As for power consumption, we use the simple form

12To reduce sensing overheads, efficient sensing schemes like cooperative
sensing [13] and compressive sensing [14] can be adopted here.

Fig. 3. Finite Improvement Property of the proposed game.

mentioned in Section II-E. Moreover, the old channel assign-
ment (i.e., ) as well as the current state of
each licensed channel is 0 or 1 with an equal probability 0.5. In
the following, the numbers of total channels and nodes in the
network (i.e., and ) are fixed to be 5 and 10, respectively.
The marginal costs and the tradeoff parameters
are all set to be 1 unless particularly stated.

B. Simulation Results

We first simulate the Finite Improvement Property of the
route-switching game, shown in Fig. 3. Initially, each player
randomly picks a two-dimensional route, which incurs a large
potential value. After each improvement step, the potential is
gradually reduced and finally reaches the minimum (a very
small value but not zero, which might not be obvious in the
figure due to the numerical scale), where a pure NE is reached.
It also shows that games with more players require more im-
provement steps, but the minimum can still be quickly reached
(less than 30 iterations for 20 flows).
We then focus on the performance of the -NE, which sacri-

fices some precision in return for time efficiency. Fig. 4 shows
the average number of improvement steps under different
(note that corresponds with the exact Nash equilibrium).
Dotted lines show the confidence interval in 50 experiments.
We can apparently observe that the number of improvement
steps reduces significantly with the increase of . Moreover, we
also compare the precision of equilibria obtained with different
in Fig. 5, which reveals that the potential is raised almost

linearly with the increase of , i.e., the precision of the obtained
equilibrium drops. Therefore, in practice, careful design of
is required to achieve the balance between time efficiency and
precision.
In Fig. 6, we illustrate the comparison between the socially

optimal results (obtained by exhaustive search) and the Nash
equilibria of the proposed game in terms of social costs. We can
observe that the NE yield more social costs than the optimal
results, which is due to the lack of cooperation among different
flows. However, their performance gap is not significant, and
it turns out that the average PoA is below 1.6. By comparison,
Theorem 7 indicates that the theoretical bound of PoA is 2 under
our simulation settings. Hence, the practical performance of the
NE is usually better than the theoretical bound.
Next, social costs incurred under complete and incomplete

information are compared, as is shown in Fig. 7. Note that
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Fig. 4. Average number of improvement steps used for finding the -NE.
Dotted lines show the confidence interval in 50 experiments.

Fig. 5. Potential values of -Nash equilibria under different .

Fig. 6. Comparison between the socially optimal results and the Nash equi-
libria in terms of social costs.

under complete information, parameters of all flows (i.e., their
data rates and packet sizes) are publicly known. By comparison,
under incomplete information, these generated parameters are
no longer accessible to all players (expect their own param-
eters), and each player only knows that the data rate and the
packet size of other flows are uniformly distributed within
[0.8,1.2] Mb/s and [600, 800] B, respectively. We can observe
that social costs obtained in the complete-information scenario
are fewer than those in the incomplete-information game,
which demonstrates the advantage of full knowledge. However,

Fig. 7. Comparison of social costs between complete- and incomplete-infor-
mation games. Their performance gap (measured in the percentile form) is also
demonstrated.

Fig. 8. Tradeoffs between routing costs and switching costs. Note that routing
and switching costs cannot be simultaneously minimized. One type of costs can
be reduced by raising the other type of costs.

as is illustrated by the curve marked by triangles in Fig. 7, the
performance gap (measured in the percentile form and in terms
of social costs) between the two scenarios becomes less and
less significant with more and more flows into the network.
That is, the advantage brought by complete information is
gradually obscure since players’ real type distribution is closer
and closer to the probability distribution when more and more
players participate in the game.
Finally, we numerically investigate the tradeoffs between

routing costs and switching costs, shown in Fig. 8 ( ).
Here, we achieve different levels of tradeoffs by adapting the
values of parameters and . Specifically, when
and , switching costs are minimized while the corre-
sponding routing costs achieve the peak value. When is
still 1 but is raised to 0.5, we can observe that switching
costs increase in return for the significant reduction in routing
costs. Furthermore, when the ratio continues to grow,
routing costs are gradually reduced at the expense of switching
costs. Finally, when and , routing costs are
minimized, but switching costs reach the highest level. There-
fore, as is proved in Section VI-A, routing and switching costs
cannot be simultaneously minimized, and we can reduce one
type of costs by properly increasing the other type of costs, i.e.,
tradeoffs exist between them.

VIII. RELATED WORKS

As for two-dimensional routing, there has been some litera-
ture on the similar problem in conventional wireless networks.
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A joint channel assignment and routing protocol was inves-
tigated by Chiu et al. [2] for the IEEE 802.11-based mobile
ad hoc networks. A novel routing metric was introduce by
Wu et al. [3] to design distributed channel assignment and
routing in multihop wireless networks. Kodialam et al. [5]
and Alicherry et al. [6] jointly considered channel assignment
and multiflow scheduling in the mesh networks. Unfortunately,
most of these existing works are neither robust enough to handle
spectrum mobility in CRNs nor able to weigh the benefits and
costs of channel switching.
In the context of CRNs, spectrum dynamics have been

heatedly studied recently. For example, Southwell et al. [9]
proposed spectrum mobility games in CRNs in order to derive
a channel switching plan that minimizes the congestion level,
and Liang et al. [8] applied game-theoretical approaches to
spectrum selection problems in face of channel dynamics.
A robust channel assignment scheme in the multihop CRN
was provided by Zhao et al. [16] to handle PUs’ channel
reclaiming behaviors. Liu et al. [35] considered both the
benefits and prices of channel switching, where an optimal
channel access scheme was developed to improve transmission
opportunities and mitigate channel congestion. In the spatial
domain, Caleffi et al. [12] considered the diversity effects of
spatial routes and proposed the criterion for an optimal routing
metric in CRNs, and a connectivity-based routing scheme for
the cognitive ad hoc networks was introduced in the work of
Abbagnale et al. [15]. However, these schemes only considered
either the frequency or the spatial domain. Ding et al. [34]
proposed a two-dimensional algorithm in CRNs by jointly
considering routing, dynamic spectrum allocation, scheduling,
and power control scheme, which distributively maximizes
the throughput of the network while guaranteeing bounded bit
error rates. Unfortunately, the influence of channel switching
costs were not discussed in this paper. As far as we know,
there is still no major work investigating spectrum-mobility-in-
curred route-switching problems in both spatial and frequency
domains for CRNs.

IX. CONCLUSION

In this paper, we investigate the spectrum-mobility-incurred
route-switching problem in multihop CRNs, where a joint
scheme of channel reassignment and rerouting is explored. We
formulate the proposed problem as the Route-Switching Game
and prove that this game has a potential function. Then, an
iterative algorithm for finding the NE and a polynomial-time
algorithm for computing the -NE are provided in the paper.
The proposed game is further extended to the incomplete-infor-
mation scenario, and an algorithm for calculating the Bayesian
NE is provided. Finally, we show that price of anarchy of the
proposed game has a deterministic upper bound. Simulation
results validate our theoretical analysis and demonstrate the
tradeoffs between routing and switching costs.
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