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Abstract—Mobile phone sensing has become increasingly pop-
ular since it can collect and analyze real-time data anywhere
anytime, especially with the help of mobile phone users via
crowdsourcing. In order to stabilize the mobile crowdsourcing
at a massive scale, incentive mechanisms are needed not only to
stimulate the users of mobile phones to participate in sensing,
but also to incentivize the organizer of the sensing tasks with
maximum service time and payoff. In this paper, we study a
practical problem in mobile sensing, i.e., sensing time uncertainty,
which may lead to failures of existing incentive mechanisms. In
particular, we model this problem as a perturbed Stackelberg
game in which mobile phone users may actually conduct sensing
tasks during different periods of time rather than what they
intend, like through a trembling hand. We find that there exist
Trembling-Hand Perfect Equilibria (THP) given proper rewards.
After characterizing THPs in this game with rigorous analysis,
we design incentive mechanisms that can achieve a THP with the
maximum system wide total sensing time and maximum platform
utility. We finally verify the correctness and efficiency of our
proposed incentive mechanisms and algorithms through extensive
experiments.

I. INTRODUCTION

Ubiquitous smarthphones with sensing capabilities have

revolutionized the way people collect and analyze information.

The embedded sensors such as camera, GPS, and accelera-

tion sensors can provide first-hand surrounding information

in various forms in real-time [1]. This new paradigm of

pervasive data collection can boost the evolution of numerous

applications [2], [3], [4], [5], [6], such as medical research [5]

and the new targeted advertising in social networks [6]. Mobile

phone sensing can make even wider impact, when the scale

of sensing is greatly enlarged by crowdsourcing the sensing

tasks to a large group of people.

A major challenge in achieving a stable crowdsourcing

system for mobile phone sensing tasks is the incentive issue.

The mobile sensor owners need to be incentivized to contribute

to a sensing task, while the network platform (serving as

the sensing task initiator and organizer) also need properly

designed mechanisms to obtain the balance between good
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sensing performance and low cost. Yang et al. [7] designed

the first two incentive mechanisms for crowdsourcing to

smartphones. Both of the mechanisms require the platform

to pay the participating mobile phone users for their contribu-

tions, and guarantee desirable equilibria in the crowdsourcing

process modeled either as a platform-centric game or as an

user-centric auction. With the increasing scale of users, there

can be multiple platforms who are connected together via

networks, forming a cloud-based system. For example, Sheng

et al. [8] proposed the concept of Sensing as a Service for

cloud-based platforms and designed incentive mechanisms for

different scenarios.

However, to the best of our knowledge, no existing research

work so far has considered a critical issue in mobile crowd-

sourcing, i.e., the sensing time uncertainty. When the sensors

are interacting with the physical world, such as collecting

images or location information, data is often associated with

uncertainty due to reasons like sampling errors, inaccurate

measurements, etc. There are extensive crowdsensing appli-

cations leveraging data mining and learning techniques on

client terminals (i.e., smartphones) [9] [10] [11]. In order to

guarantee the successive data processing results, the sensing

behaviors of the client terminals can be significantly influenced

(e.g., repeating or extending sensing time), by some factors

such as data quality [12], data source diversity [13] and

interaction with big data [14]. In this way, the uncertainty

in data can further propagate to the uncertainty in sensing

behaviors. Although in the field of database, much research has

been focused on managing data uncertainty (e.g., [12] [15]), it

is not clear how sensing uncertainty affects the crowdsourcing

procedure and results. Moreover, how sensing time uncertainty

can impact the incentive mechanisms therein is also unknown.

There are also some significant mobile phone based sensing

time constraints, including the required initialization time

of the sensing application [16], the maximum sensing time

allowed by the battery charge [17], the reaction delay of the

sensor [9], etc. These constraints can also introduce sensing

time uncertainty.

With the consideration of sensing time uncertainty, incentive

mechanisms for crowdsensing need to be revisited. In fact,

in the presence of uncertainty, it is not clear how the users

need to adjust their strategy depending on the uncertainty

estimation for their own devices. For instance, if the sensing
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time uncertainty can bring significant perturbations to the

sensing duration, the user may refuse to offer the very short

sensing services. The reason is that he may end up with deficit

by unintentionally sensing much longer than planned, and the

cost of sensing is much higher than the amount of money

actually paid based on the plan. Then the problem of how to

stimulate the users and ensure the system performance in the

presence of sensing time uncertainty becomes a realistic and

challenging problem.

Our contributions are as follows:

• We are the first to investigate the impact of sensing

time uncertainty in the problem of crowdsourcing to

mobile phones. We model the crowdsourcing problem

with sensing time uncertainty as a perturbed game, and

find the expected best response of each user given others’

strategies, and prove that the strategy profile consisting of

the expected best responses is a Trembling-Hand Perfect

Equilibrium.

• We find that in the perturbed crowdsourcing game, there

will be no THP if the total reward is too small, and

show that our incentive mechanism guarantees THP given

sufficiently large total reward.

• We design the sensing time determination algorithm

for each user to calculate its strategy in THP, which

guarantees system-wide total sensing time. Our algorithm

achieves linear complexity on the number of users.

• We conduct extensive experiments on our proposed incen-

tive mechanisms. It verifies that our proposed incentive

mechanism is incentive-compatible, optimal and efficient.

We organize the rest of this paper as follows. In Section

II, we expatiate our proposed system models and the gen-

eral assumptions. In Section III, we propose the user-aspect

algorithm to calculate its own strategy. We demonstrate the

simulation results in Section IV. Finally we talk about the

related works in Section V and conclude this paper in Section

VI. Due to space limitation, please see [18] for the proofs of

the lemmas and theorems.

II. SYSTEM MODEL

In this section, we will introduce the general mobile phone

sensing system where our incentive mechanism is applied.

We will also model the crowdsourcing game with uncertainty

perturbations.

A. General Mobile Phone Sensing System

Fig. 1 shows the architecture of the general mobile phone

sensing system. The system consists of a platform and numer-

ous smartphone users. The platform may have some sensing

tasks that need to be crowdsourced to smartphone users to

leverage their distributed sensing resources. When planning the

sensing tasks, the platform strategizes a proper reward based

on its knowledge about each user, and publicizes the details

of the sensing tasks. Usually, there are more than one users

who will participate in the sensing tasks, and the participation

of each user will yield a cost (we will expatiate it later). In

order to compensate the cost, the platform gives a payment to

Fig. 1. General mobile phone sensing system

each user. Each participating user lets the platform know its

planned sensing time. After collecting the sensing plans from

all the users, the platform computes the payment for each user

and sends the payments to the users instantly. The users who

receive payments will execute the sensing tasks and send the

sensed results to the platform.

We assume each user and the platform are rational and

selfish. The users aim to earn as much reward as possible

considering their own competitions. For the platform, there

are two objectives: 1) to ensure the system can converge to a

desirable stable state; 2) to have the sensing tasks completed

with good quality and reasonably low payment.

Corresponding to the procedures described above and con-

sidering the phenomenon of sensing time uncertainty in the ex-

tensive existing crowdsourcing techniques, we provide a new

model in this paper to approach the problem. Our incentive

mechanism should ensure sufficient incentive for each member

in our sensing system.

B. Crowdsourcing Game with Uncertainty Perturbations

We model the crowdsourced mobile sensing problem as a

perturbed Stackelberg game [19], in which the platform is

the leader and the users are the followers. There are two

phases in the game. The platform publicizes the reward R
and sensing task descriptions in the first phase. The amount

of the reward R from the platform is a positive monetary

incentive given by the platform. For the second phase, each

user strategizes its own intended sensing time (strategy ti)
to achieve maximized utility, based on the reward and other

users’ conditions (including costs and perturbations). Thus,

the actual sensing time of user i is ti = ti + εi, where εi is

the uncertainty perturbation, a bounded random variable. The

perturbed game indicates that no user can predict its actual

sensing time exactly. In game theory, we have a concept, the

Totally Mixed Strategy Profile, to describe the scenario here.

Definition 1. (Totally Mixed Strategy Profile) A strategy

profile t = {ti}
n
i=1 is totally mixed if any action of any user

owns a positive probability2.

2In this paper, n denotes the number of all the users, and we do not
distinguish the terms strategy and action.
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We assume each perturbation εi is distributed within its

bounded support interval, and the middle point of the interval

is the mean of the perturbation, since the results in [20] and

[21]. The support interval I of the perturbation εi should

guarantee the actual sensing time is positive. That is, if the

strategized sensing time is ti, its support interval should be

(max {0, ti −Ai}, ti+Ai), in which Ai denotes the maximum

amplitude of εi, and its mean is the middle point of the

interval.

We denote by κi user i’s cost unit, the cost per time unit.

Provided the actual sensing time ti = ti + εi of user i, its

utility ui is the payment pi distributed by the platform minus

the sensing cost κiti.

ui = pi − κiti, ∀i ∈ U , (1)

where U denotes the set of all the users. We let the platform

distribute the reward R proportionally to each user’s expected

sensing time. That is pi = E(ti)∑
j∈U E(tj)

R. Then the expected

utility of user i is:

E(ui) =







ti
ΩR− κiti ti > Ai,
ti+Ai

2Ω R− κi
ti+Ai

2 0 < ti ≤ Ai,

0 ti = 0.

(2)

where ti is the strategized sensing time of user i, and Ω is the

sum of expected sensing time of the users:

Ω =
∑

i∈U

E(ti + εi) =
∑

j∈S1

tj +Aj

2
+

∑

j∈S2

tj . (3)

Here S1,S2 are the sets of the users such that ∀i ∈ S1, 0 <
ti ≤ Ai and ∀i ∈ S2, ti > Ai. S = S1 ∪ S2. Since the

existence of uncertainty makes the crowdsourcing system a

perturbed game, we have to consider expected utility rather

than the pure utility. The utility of the platform is (4).

u0 = λ log (1 +
∑

i∈U

E(ti + εi))−R (4)

where λ > 1 is the revenue coefficient, and the log term shows

the diminishing return of the platform on the sum of expected

sensing time of users [7].

Trembling-Hand Perfect Equilibrium (THP) [22] is a refine-

ment of Nash Equilibrium (NE). We give the related definitions

as follows.

Definition 2. (Expected Best Response Strategy) Given

the strategies of all the users except i, a strategy is user

i’s expected best response strategy, denoted by βi(t−i), if it
maximizes user i’s utility E(ui).

Definition 3. (Trembling-Hand Perfect Equilibrium) The

strategy profile te = {tei}
+∞
i=1 with uncertainty perturbation

ε = {εi}
+∞
i=1 is a Trembling-Hand Perfect Equilibrium of

the perturbed game if there exists a sequence of totally

mixed strategy profiles {ti}+∞
i=1 s.t. limi→+∞ ti = te and

ti = βi(t
e
−i) for any user i. Here βi is user i’s expected best

response.

Algorithm 1 Computation of the THP

Input: R: reward of the platform; κ: unit costs of all users; A:
maximum perturbation amplitudes of all users.

Output: te: the strategy profile, if any.
1: M ← 0, k = 0;

2: if R <
minj∈U Ajκj

2
then return te = (0, 0, · · · , 0).

3: end if
4: Sort users based on their unit costs: κ1 ≤ κ2 ≤ · · · ≤ κn;
5: Ck ← {1, 2}, i← 3;

6: while i ≤ n and κi <
κi+

∑
j∈S κj

|Ck|
do

7: Ck ← Ck ∪ {i}, i← i+ 1;
8: end while
9: while true do

10: Sort users in Ck based on their unit costs in ascending order:
κs1 ≤ κs2 ≤ · · · ≤ κs|Ck |

;

11: Ck+1 ← Ck and then k ← k + 1;
12: if |Ck| = 0 then
13: Break while loop.
14: end if
15: if |Ck| = 1 then
16: i← s1 + 1, Ck ← {i};

17: while i ≤ n and κi <
κi+

∑
j∈Ck

κj

|Ck|
do

18: Ck ← Ck ∪ {i}, i← i+ 1;
19: end while
20: end if
21: if |Ck| > 1 then

22: if ∀i ∈ Ck,
(|Ck|−1)R∑

j∈Ck
κj

(1 − (|Ck|−1)κi∑
j∈Ck

κj
) > Ai

2
and ∀i ∈

U \ Ck, (

√

|Ck|−1∑
j∈Ck

κjκi
− |Ck|−1∑

j∈Ck
κj

)R ≤ Ai

2
then

23: if M <
|Ck|−1∑
j∈Ck

κj
then

24: M ← |Ck|−1∑
j∈Ck

κj
;

25: te = CalculateStrategy(Ck, R, κ, A);
26: if k = 1 then
27: return te = (te1, t

e
2, · · · , t

e
n).

28: end if
29: end if
30: end if
31: i← maxj∈Ck

j + 1, Ck ← Ck \ {maxj∈Ck
j};

32: while i ≤ n and κi <
κi+

∑
j∈Ck

κj

|Ck|
do

33: Ck ← Ck ∪ {i}, i← i+ 1;
34: end while
35: end if
36: end while
37: if M = 0 then
38: return No THP.
39: else
40: return te = (te1, t

e
2, · · · , t

e
n).

41: end if

THP can guarantee that, even though the user cannot control

its own sensing time accurately, it will gain nothing by

choosing another strategy unilaterally in the long term. That

means, the expected utility of any user is maximized given

other users’ strategies.

III. DETERMINING USER SENSING TIME WITH

UNCERTAINTY PERTURBATION

The classical game model with Nash Equilibrium has signif-

icant limitations when considering sensing time uncertainty in

the crowdsensing game. To address this problem, we model the
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Algorithm 2 CalculateStrategy

Input: Ck: support set of the strategy profile; R: reward of the
platform; κ: unit costs of all users; A: maximum perturbation
amplitudes of all users.

Output: te: the strategy profile based on Ck.
1: for i ∈ U do
2: if i ∈ Ck then
3: tei ←

(|Ck|−1)R∑
j∈Ck

κj
(1− (|Ck|−1)κi∑

j∈Ck
κj

);

4: if tei < Ai then
5: tei ← 2tei −Ai;
6: end if
7: else
8: tei ← 0;
9: end if

10: end for
11: return te = (te1, t

e
2, · · · , t

e
n).

crowdsourcing system as a perturbed Stackelberg game with

the solution concept Trembling-Hand Perfect Equilibrium as

described in Section II-B. In this section, we will show how

to find a THP strategy profile that optimizes the total sensing

time of the perturbed game. Theorem 1 shows the sufficient

condition to obtain THP in the game. Lemma 1 presents a

trivial THP, in which no sensing happens. Theorem 2 shows

how to calculate the non-trivial THP without the knowledge

of other user’s strategies. Based on our theoretic results, we

propose Algorithm 1 to determine the user strategy profile that

can achieve the maximum total sensing time.

A. Trembling-Hand Perfect Equilibrium for Crowdsourcing

Game with Uncertainty Perturbation

The Trembling-Hand Perfect Equilibrium is a proper solu-

tion to adapt to the perturbations introduced by the uncertainty.

Theorem 1 reveals that a strategy profile t s.t. ∀i ∈ U ,

ti = βi(t−i) as defined in Definition 2 suffices that t is THP.

Theorem 1. For a strategy profile t of the perturbed game, if

ti = βi(t−i) for any user i, t is THP.

We first discuss a trivial case of THP, in which no user

will offer sensing service as stated in Lemma 1. Since there

is no sensing work for trivial THP at all, we should avoid

this case in our incentive mechanism design by letting the

platform choose a proper reward. In Lemma 1, S denotes the

set of users with positive sensing time.

Lemma 1. 1) If R <
minj∈U Ajκj

2 , there is a unique trivial

THP te s.t. ∀i ∈ U , tei = 0. 2) For non-trivial THPs, |S| > 1.

In order to find the non-trivial THP, based on Theorem

1, we convert the equilibrium problem to the calculation of

each user’s expected best response strategy based on other

users’ strategies. By letting the equilibrium be the best strategy

profile, we finish the calculation.

Theorem 2 shows how to determine a THP profile without

knowledge of each user’s strategy. Equation 5 gives the sum

of the user strategies under THP. Equation 6 gives the user

strategies only with costs κ, reward R and perturbations A as

parameters.

Theorem 2. Let tei be non-trivial THP (|S| ≥ 2) of the

perturbed game. Then the following equations hold:

Ω =
∑

j∈S1

tej +Aj

2
+

∑

j∈S2

tej =
|S| − 1
∑

j∈S κj

R, (5)

tei =











2(|S|−1)R∑
j∈S κj

(1 − |S|−1∑
j∈S κj

κi)−Ai i ∈ S1,

(|S|−1)R∑
j∈S κj

(1 − |S|−1∑
j∈S κj

κi) i ∈ S2,

0 i /∈ S.

(6)

And
(|S|−1)R∑

j∈S κj
(1 − |S|−1∑

j∈S κj
κi) >

Ai

2 for any user i ∈ S, and

(

√

|S|−1∑
j∈C1

κjκi
− |S|−1∑

j∈C1
κj
)R ≤ Ai

2 for any user i ∈ U \ S.

B. Determining the Optimized THP

We propose Algorithm 1 to find the THP that can achieve

the maximum sum of expected sensing time Ω. In fact, if

we can achieve the maximized Ω, we can also achieve the

maximized platform utility u0. This is because based on (3)

and (4), we have u0 = λ log (1 + Ω)−R and it is easy to see

u0 strictly increases as Ω increases. The main idea of this

algorithm is to check each THP and find out the optimized

solution. Each THP has a subset of users whose strategies

(sensing time) are positive. Such user subset is called the

support set of the equilibrium. Within the outer loop starting

at line 9, Algorithm 1 keeps checking the members of the

support set in order to find THPs. If our algorithm fails to

find such a correct support set, the perturbed game actually

does not have any THP. [18] shows that provided the proper

reward R, the complexity of Algorithm 1 can be O(n log n)
with the number of users. Solid theoretic analysis verifies that

Algorithm 1 can efficiently find the THP to optimize the total

sensing time given the reward R.

Theorem 3 shows the correctness of Algorithm 1.

Theorem 3. We assume there exists a THP of the game. Then

we have:

1) The strategy profile te = (te1, t
e
2, · · · , t

e
n) computed by

Algorithm 1 is a THP of the game.

2) The strategy profile te computed by Algorithm 1 maxi-

mizes system-wide total sensing time Ω.

C. Discussions on Algorithm 1

Distributedness Algorithm 1 is highly distributed. That is,

every user can compute Algorithm 1 independently. There

is no required central coordination. However, since there

are multiple THPs, the users may have inconsistence when

choosing THP. To address this issue, instead of centralized

algorithms, we use indirect control, for example, a proper

reward to let the users agree on the optimized THP. This

practice does a favor for the platform and makes the system-

wide equilibrium unique, and Algorithm 1 can be computed

efficiently. If any of the users unilaterally choose another sub-

optimized THP, they will take their own risk of utility loss.

Complexity If the game only has the trivial THP, Algorithm 1

exits at line 2 and it takes O(n) time to locate the minimized

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3549



Aiκi. If C1 is the support set of THP, Algorithm 1 returns at

line 27. The time complexity is O(n logn) due to the sorting

at line 10. In [18], we will show that a proper reward R can

guarantee such scenario.

R and non-trivial THP existence Since each user’s utility

function is not continuous at the point ti = 0, our perturbed

game is a discontinuous game. Thus our game does not have

THP for some certain R according to [23]. Algorithm 1 will

return no THP if we cannot find the support set of THP. If

there is no THP, the platform can increase the reward R to a

certain value in order to satisfy the non-trivial THP conditions.

This is because for any such game, there exists a positive R0

that for any R > R0, there exists a non-trivial THP profile.

Theorem 4. For any game with more than 2 users, there exists

a positive reward R0 that for any reward R > R0, there exists

a non-trivial THP strategy profile te.

Sufficiently large reward can guarantee a non-trivial THP.

However, too much reward will cause deficit to the platform. In

fact [18], the platform can choose a proper R before initiating

the sensing work to ensure there exists at least one THP profile.

We will elaborate it later.

IV. SIMULATION

In order to evaluate the performance of our system, we

implemented the incentive mechanism for the crowdsourcing

game with uncertainty perturbation. We have the following

performance metrics: 1) running time, 2) average user utility,

3) platform utility and 4) the number of participating users.

A. Simulation Setup

For the crowdsourcing game with uncertainty perturbation,

we assume the cost unit κ of each user was distributed

uniformly over [1, κmax], and |Ai| of any user i was distributed

uniformly over [0, Amax]. There are four variables: a) number

of users n (from 100 to 1000 with the increment of 100), b)

the revenue coefficient λ (from 10 to 100 with the increment

of 10), c) κmax (from 1 to 10 with the increment of 1) and d)

Amax (from 0 to 1 with the increment of 0.1). If we need to

fix some variables, the default values are: n = 1000, λ = 50,

κmax = 5 and Amax = 0.5. The simulations were run on a

Linux workstation (2.0 GHz CPU and 32 GB memory). Each

result is averaged over 1000 instances.

B. Simulation of the Crowdsourcing Incentive Mechanism with

Uncertainty Perturbation

• Running Time: The running time of the incentive mecha-

nism includes strategizing the reward and the THP profile.

Fig. 2 shows the impact of the number of users on running

time. The running time increases linearly with the number

of users, and it is less than 5.00 ms for 1000 users.

• Platform Utility u0: We analyze the impact of Amax,

Kmax on u0. Fig. 3 shows: 1) If κmax is fixed, u0 re-

duces greatly when the uncertainty perturbations get more

diverse; 2) Without sensing uncertainty perturbations, u0

diminishes when κmax increases, as [7] demonstrated.

• Average User Utility: We analyze the impact of Amax,

Kmax on average user utility u = 1
n

∑

i∈U ui. Fig. 4

shows u increases when the cost units and uncertainty

characteristics get more diverse. In this case, the platform

will release more reward [18]. Thus u will increase as

well.

V. RELATED WORKS

For the crowdsourcing with each user determines its own

sensing time, Yang et. al [7] proposed the first incentive

mechanism using Nash Equilibria to maximize the users

and the platform’s utilities. As Nash Equilibrium has strong

assumptions on the complete information, it derives several

refinements, such as Bayesian Perfect Equilibrium [24] and

Trembling-Hand Perfect Equilibrium [25][26][27][28]. Azar

et al. [29] designed auction-based incentive mechanism by

modeling the crowdsourcing as a Bayesian game. To the best

of our knowledge, there is not yet any incentive mechanism

using Trembling-Hand Perfect Equilibrium for crowdsourcing.

Besides, many other existing works focused on auction-based

and strategy-proof incentive mechanism of crowdsourcing [30]

[31] [32] [33] [34] [35]. The objective of auction-based incen-

tive mechanism is to stimulate the participating users at the

finest granularity [30]. Afuah et al. [31] studied local search-

based auction for crowdsourcing, giving local search algorithm

to solve crowdsourcing problems efficiently. Lev et al. [32]

researched the case of bidder collusion in all-pay auction and

found several positive effects of collusion on crowdsourcing.

On the other hand, researchers used strategy-proof incentive

mechanism to avoid cheating in bidding, i.e. false-reporting

sensing costs [36]. Huang et al. [33] studied strategy-proof

and privacy preserving spectrum auction mechanism. Babaioff

et al. [34] modeled crowdsourcing as multiple buyers and the

single seller with limited supply, and proposed strategy-proof

mechanism to defend against buyers’ collusion and privacy

leakage. Koutsopoulos [35] gave a detailed theoretic treatment

on truthful crowdsensing incentive mechanisms. Clearly the

researchers are considering more and more real-world issues of

crowdsourcing, such as truthfulness and privacy preservation.

VI. CONCLUSION

In this paper, we have designed incentive mechanisms for

crowdsourcing with sensing time uncertainty. Our contribu-

tions have filled the void of the research of crowdsourcing with

uncertainty. We have introduced the perturbed game model

and used Trembling-Hand Perfect Equilibria to maximize each

user’s utility. We have proposed the algorithm to calculate

THP of the perturbed game, if it exists. Extensive experiments

have rigorously verified our incentive mechanism is incentive-

compatible, optimal and efficient.
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