
Dynamic Data Forwarding in Low-Duty-Cycle
Sensor Networks

Yi Duan1, Xiaobing Wu1, Fan Wu2, and Guihai Chen1,2
1State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, 210093, China
2Shanghai Key Laboratory of Scalable Computing and Systems

Shanghai Jiao Tong University, Shanghai 200240, China

csduanyi@hotmail.com, wuxb@nju.edu.cn, fwu@cs.sjtu.edu.cn, gchen@nju.edu.cn

Abstract—In wireless sensor networks (WSNs), asynchronous
duty-cycle technique can significantly reduce energy consump-
tion. However, packets in low-duty-cycle networks suffer high
end-to-end (E2E) delay. Besides, recent experimental studies have
also shown that links in WSNs are highly unreliable and radio
irregularity has adverse impact on routing protocols. In this
work, we introduce a dynamic data forwarding (DDF) scheme
which combines a realistic link model with asynchronous duty
cycle. Different from most of other routing protocols, each node
in our solution first finds out a set of candidate nodes and
then forwards packet to the first waking up node in this set.
Our solution can reduce E2E delay, guarantee delivery ratio
and improve network lifetime. We evaluate this dynamic data
forwarding scheme with extensive simulations and the simulation
results demonstrate the efficiency of our solution.

Index Terms—Asynchronous, duty cycle, dynamic data for-
warding, realistic link model.

I. INTRODUCTION

Wireless sensor networks can be deployed for various appli-

cations. In most of these applications, sensor nodes are pow-

ered by energy-limited batteries and it is infeasible to change

batteries in some applications (e.g. environment monitoring in

untraversed place). In order to maintain longer operation, it

is important to save energy for sensor nodes while operating.

Duty cycle [1], [2], [3], [4] is such a mechanism to bridge

the gap between limited energy supplies and network lifetime.

In this technique, each sensor node turns its radio on for a

short time and then stays dormant for a long time, alternating

between active and sleeping states. A lot of MAC protocols

based on this technique have been proposed. There are two

categories of duty-cycle MAC protocols [1], [2], [3], [4],

synchronous and asynchronous. In synchronous approaches,

neighboring nodes synchronize their clocks and have the same

duty-cycle schedule. Asynchronous approaches on the other

hand, allow nodes to operate independently, with each node

on its own duty-cycle schedule. In this paper we focus on

routing problem over WSNs working on asynchronous duty-

cycle schedule, because asynchronous duty cycle is easy to

implement, consumes no energy required for synchronizing

and achieves excellent idle energy savings.

Routing in asynchronous duty-cycle WSNs results in a

time-varying latency, because the relay node discovery time

is varied. Packets under traditional routing protocols such as

ETX [13], may suffer high E2E delay in multi-hop duty-cycle

WSNs, since the next-hop node is predetermined. For example,

when the source node has data to transmit, it has to wait for

the predetermined relay node to wake up even though there

are nodes waking up earlier than the predetermined node. If

we choose the node that first wakes up as relay node, the

E2E delay can be greatly decreased, especially in low-duty-

cycle WSNs. However, nodes under this intuitional forwarding

method will consume much energy if the link quality between

source node and relay node is poor. So we should make a

tradeoff between delay and energy consumption.

Recent experimental studies have revealed quite a few inter-

esting results. Zhou et al. [11] show that radio irregularity on

WSNs has adverse impact on protocols, especially on routing

protocols. The most important result is that radio is non-

isotropic, i.e. radio signal from a transmitter has different path

loss in different directions. Zuniga et al. [12] give a detailed

analysis of the transitional region in WSNs. In transitional

region, link quality is highly dynamic. So, a good link metric

that can reflect this irregularity is essential in routing protocols.

In this paper we propose a dynamic data forwarding (DDF)

scheme which applies a realistic radio model to calculate

link quality and combines it with duty cycle technique. DDF

can achieve high delivery ratio, low E2E delay and prolong

network lifetime.

The rest of this paper is organized as follows. In Section II,

we review the related work. Section III describes the system

model. The detailed design of our protocol is given in Section

IV. The protocol is evaluated by simulation in Section V. We

conclude this paper in Section VI.

II. RELATED WORK

Routing in WSNs has attracted extensive attention in recent

years. Different applications need different routing protocols

since WSNs have special characters which are quite different

from traditional wired and wireless networks. No routing

protocol can be applied to all applications, so lots of routing

protocols have been proposed.

Routing paths in some routing protocols are predetermined

and are updated periodically or only when network topology

changes. De Couto et al. [13] propose a metric called expected

transmission count (ETX) to find out high throughput paths.

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.53

505

But ETX suffers high E2E delay in low-duty-cycle WSNs.

Karp et al. [5] introduce a geographic routing (GPSR) using

geographic coordinates. Fonseca et al. [6] present another

geographic routing using virtual coordinates. It does not need

localization hardware (e.g. GPS) or localization algorithms.

In geographic routing, packets are always forwarded to the

neighbor which is closest to the destination (e.g. sink). How-

ever, this geographic greedy routing is not efficient since it

may choose poor link quality node as relay.

All these routing approaches suffer high E2E delay in low-

duty-cycle WSNs. Moreover, routing paths in these routing

protocols are updated periodically or only when network

topology changes. So they can not reflect the link quality

change efficiently, especially in highly dynamic networks.

In other forwarding approaches, data forwarding path is time

varying. On-demand routing protocols, such as AODV [7],

and DSR [8], use broadcasting to find routing paths. These

approaches consume much energy in routing discovery. Gu et
al. [14] introduce a dynamic switch-based forwarding (DSF)

scheme, which combines delivery ratio, E2E delay and energy

consumption together. Though it shows good performance, it

consumes much energy in synchronization since it works under

synchronous duty-cycle schedule and the initialization and

update cost is also high. Anycast [9], [10] technique is another

kind of dynamic routing schemes which is proposed specially

for WSNs working on duty cycle. In anycast technique, each

sensor node forwards packet to the first node that wakes up

among candidate next-hop nodes. However, the first waken up

node might be a poor link quality node.

We note that a good link quality metric such as the one

proposed in [12] is necessary to reflect the highly dynamic link

quality. Choosing a high link quality node as relay node can

achieve high network performance (e.g. throughput). On the

other hand, to reduce E2E delay is also important in low-duty-

cycle WSNs. However, these two goals may not be reached

at the same time. Therefore, it is critical to make a tradeoff

between choosing optimal link quality relay node and reducing

E2E delay.

III. SYSTEM MODEL

In this section we introduce the asynchronous duty-cycle

network model and a realistic link model. We will give the

routing protocol based on these models in next section.

A. Network Model

DDF is a dynamic routing protocol designed for low asyn-

chronous duty-cycle WSNs. We assume that network has N
sensor nodes, each sensor node has two states at a given time:

active and dormant. When a node is in active state, it can sense

the environment, transmit and receive packets. When a node is

in dormant state, it turns all its function modules off except a

timer to wake itself up. A dormant node wakes up when timer

is expired or it has packets to transmit, but node can receive

packets only when it is in active state. Nodes decide their

schedules independently, and they do not synchronize their

clocks. In short, nodes work asynchronously and can transmit

at anytime but receive only when they are in active state. We

give a simple example about asynchronous duty cycle in Fig.

1 where node A and node B have different working schedules.

Note that the neighbor discovery latency is time varying since

nodes have different schedules.

Fig. 1. Asynchronous duty cycle

B. Link Model
Here we introduce the link model proposed in [12]. For

MICA2 node using the Chipcon CC1000 radio, the packet

reception rate (PRR) is given as follows:

PRR = (1− 1

2
exp−

γ
2∗0.64)8ρf (1)

where γ is the SNR (signal-to-noise ratio), ρ is the encoding

ratio and f is the frame length. However we can not get SNR

but RSSI (received signal strength indicator) from the mote.

If we know the noise floor and RSSI, we can use them to

calculate SNR. Since the noise floor is hard to determine, we

can simply assume the noise floor is constant (e.g. -105dBm

given in [12]).
Experiment studies have shown that links may be asym-

metric [11], [16], so we can denote the link quality between

two neighbor nodes as the sum of bidirectional ETX (expected

transmission count). Single direction ETX can be calculated

as follows:

ETX =
1

PRR
(2)

On the operating of a network, we use RSSI to calculate

ETX. For example, node i has to transmit a packet to a

neighbor node j, when node j receives this packet, it reads the

RSSI from radio with the received packet and replies an ACK

message with the RSSI it has read. Here we denote the RSSI

as RSSI(i, j) which means this RSSI is read with a packet

from node i to node j. Once node i receives this ACK, it can

read the RSSI about this ACK (denoted as RSSI(j, i)) from

radio and read the RSSI(i, j) from ACK packet. With these

two RSSIs, node i can calculate the link quality between node

i and node j. We denote the link quality between node i and

node j as follows:

LQ(i, j) = ETX(i, j) + ETX(j, i) (3)

where ETX(i, j) is the expected transmission count from

node i to node j. Therefore, the smaller LQ is, the better

the link quality is. In order to reflect the changes of network,

we also propose a scheme to update LQ. We will introduce

this scheme in section IV-B.

506

IV. DDF PROTOCOL DESIGN

In this section, We give a novel data forwarding scheme

based on the models given in previous section. The main idea

of DDF is shown in Fig.2. Here, node S is the source node

and it has to transmit packets to the sink via its neighbors.

All the nodes in the circle are node S’s neighbors and the

numerals are the waking up orders of these nodes. If node S

chooses the first waking up node A as the relay node (Anycast

case), it might consume much energy since the link quality

via node A to the sink is poor. If node S chooses the best

link quality node C as relay node (static routing protocol

case), it has to wait a little more time for node C to wake

up, this might increase the E2E delay. So our solution is to

select several candidate nodes which have relative good link

quality to the sink and transmit packet to these candidates one

by one according to their waking up time until certain one

candidate receives this packet, our solution makes a trade-off

between energy consumption and E2E delay. In Fig.2, node S

will choose node B, C and D as candidate nodes and transmit

packet to node B,C,D according to their waking up time until

one of them receives this packet.

S

B

D

A

C

sink

2

1

4

3

Poor link

The best link

Fig. 2. Main idea of DDF

In order to present a deep insight into the data forwarding

process, we give a brief introduction of X-MAC [4]. When a

node has data to transmit, it broadcasts short preambles with

target addresses (e.g. ID number of node) continuously until

it receives an early acknowledgement packet during the short

pause between two short preambles. After the sender receives

the ACK from the target node, it starts to send out data packet.

Fig.3 gives an example of the transmission process from node

A to node B.

Fig. 3. Transmission process (X-MAC)

In our protocol, each node first sets up a neighbor table,

then node uses this table to forward packets. Each node also

updates its neighbor table after successfully forwarding a

packet to its neighbor. Our protocol also solves the problems

of retransmission and routing loops. We give detailed design

of our protocol in following subsections.

A. Forwarding Strategy

In DDF, all sensor nodes maintain a table of its neighbors

(Table I offers an example of such a table), and sensors use this

table to forward packets. Each tuple of the table has two items,

one is the ID number of neighbor, and the other is < LQ, h >
where LQ is the link quality to the sink (see below) via this

neighbor node, and h is the hop distance from neighbor node

to the sink. The table is also sorted in descending order relative

to < LQ, h > and Definition 2 shows how to compare two

< LQ, h >s. We’ll present how to set up this table in section

IV-B in detail.

TABLE I
NEIGHBOR TABLE

neighbor < LQ, h >
N1 < 6.6560, 3 >
N2 < 7.5153, 3 >
N3 < 9.0758, 4 >
.

Definition 1 (Link Quality to Sink(LQ)): LQi(j) is the link

quality from node i to the sink via node j and can be calculated

as follows:{
LQi(j) = LQ(i, j) + L̂Qj

L̂Qj = mink∈N(j)\{i}(LQj(k))
(4)

where LQ(i, j) is the link quality from node i to node j, L̂Qj

is the best link quality to the sink that node j can achieve via

its neighbor except node i, and N(j) is the set of node j′s
neighbors whose hop-count is no more than node j’s one.

Definition 2: We say < LQi, hi > > < LQj , hj >, if

LQi < LQj or LQi = LQj and hi < hj . < LQi, hi >
= < LQj , hj >, if and only if LQi = LQj and hi = hj .

The Definition 2 conforms with our intuition, i.e. we prefer

higher link quality node as relay, and when LQi equals LQj ,

we prefer the shorter path to forward data.

When a node i has data to transmit, it first queries the table

and finds out the candidate nodes via which node i has a

better LQ to the sink than a threshold θ, i.e. we choose node

whose LQ is smaller than θ. Note that θ is not a constant but a

function of hop-count and α. The function is given as follows:

θ = 2h ∗ 1

α
(5)

where α is the lower bound of PRR we expect, h is the hop-

count from node i to the sink, and the factor 2 means that we

consider bidirectional link quality. The larger lower bound α
is, the smaller the threshold is and the less candidate nodes will

be chosen and vice versa. When a node finds out the candidate

507

nodes, it puts the IDs of these candidates in the preamble and

starts the data forwarding process.

Note that only next-hop and the same hop nodes can help

deliver packets towards the sink, so neighbor table only records

these nodes. We also note that some node may find no

candidates according to the threshold θ and retransmission is

important to achieve high delivery ratio. We will solve these

problems in section IV-C. We find that multi-candidates may

wake up and try to transmit early ACK packets at the same

pause between two preambles. These early ACKs will cause

collisions. In order to avoid collisions, each node backoffs a

random time before reply an early ACK packet. The longest

backoff time must be small so that after the longest backoff,

the node can still successfully reply an early ACK packet in the

rest time of the pause interval. We also note that the number

of candidates affects the E2E delay, the average E2E delay

will be reduced if we choose more candidate nodes. We will

show how the threshold θ (in fact, α) affects the E2E delay

through simulation in section V.

B. Table Initialization and Updating

After nodes have been deployed, sink starts the hop-count

value initialization process. In this procedure, sink broadcasts

a packet with hop-count value to the sink (sink’s hop-count

value is 0) and each node rebroadcasts the packet with hop-

count value to the sink when receives a broadcasting packet

for the first time. Each node only sends out one packet in this

procedure, and records the least hop-count value.

After hop-count initialization process finishes, each node

starts a neighbor discovery process. The detailed procedure is

given as follows:

• Node A broadcasts a neighbor discovery packet with its

ID number and hop-count value.

• When neighbor receives this packet, it reads the hop-

count from this packet and compares it with its own hop-

count. If its hop-count is smaller than or equal to node A’s

hop-count, it will backoff a random time in order to avoid

collisions and then reply an ACK with its hop-count, ID

number and RSSI value with the received packet.

• If node receives an ACK packet, it will calculate the LQ

(see section III-B) to the response node, and record the

ID number, hop-count value and LQ.

Note that only node whose hop-count is no more than node A’s

hop-count, replies an ACK packet, because we only choose

nodes with smaller or equal hop-count as relay. In order

to obtain accurate pairwise link quality, each node could

broadcasts several neighbor discovery packets. It also solves

the problem that some neighbors did not receive the neighbor

discovery packet or node A missed some ACKs. When all

nodes finish the neighbor discovery process, sink broadcasts

a table setting-up packet, it contains its L̂Q (L̂Q = 0 for

sink), ID number and hop-count value. When a node receives

a setting-up packet, it calculates the LQ to the sink using

Equation 4, and records it in its neighbor table. Once a

node has received all the setting-up packets from next-hop

neighbors, it broadcasts its setting-up packet with its L̂Q, ID

number and hop-count value. Each node will rebroadcast its

setting-up packet if its L̂Q to the sink changes after receiving

a setting-up packet from its neighbor. Each setting-up packet

can be broadcasted several times in order to make sure that

every neighbor can receive at least once the setting-up packets.

During the initialization period, all nodes are in the working

state. When neighbor table has been set up, a node starts to

operate according to its own schedule. To update the neighbor

table, each node contains its L̂Q and RSSI with the received

packet in every ACK if it is chosen as a relay node and receives

a packet from its neighbor. Each node receives an ACK can

use the L̂Q and RSSI to update the LQ value in its neighbor

table according to the following equation:

LQi(j) = (1− β) ∗ LQi(j)old + β ∗ (LQ(i, j) + L̂Qj) (6)

where LQi(j)old is the old value of LQi(j), and LQ(i, j) +

L̂Qj is the newly calculated LQi(j) value. β is a parameter

between [0, 1] which affects the convergence rapid of LQ.

Here, we let β = 0.8 in order to quickly reflect network

changes.

Note that the updating technique introduced previously only

affects good link quality nodes (because only relative good

link quality nodes can be chosen as relay nodes). In order

to reflect all link quality and network topology changes, each

node periodically send out neighbor discovery packet. Once a

neighbor with smaller or equal hop-count value receives one

such packet, it will reply a packet with its L̂Q, ID number

and hop-count value. If node receives these response packets,

it will update its neighbor table according to Equation 6.

C. Retransmission and Routing Loops

If we allow a node to endlessly retransmit a packet, it will

consume significant energy. Therefore, to set an upper bound

of the retransmission time is essential. We denote this upper

bound time as Δ. But in our data forwarding scheme, the

maximum retransmission time is determined by both Δ and

the number of candidate nodes. Equation 7 (given as follows)

shows how to determine the maximum retransmission time.

maxinum retransimission time = min(Δ, N − 1) (7)

where N is the number of candidate nodes. For example, we

assume that Δ = 3, and node A has 3 candidate nodes, then

the maximum retransmission time for node A is twice. We

give the transmission process in Fig. 4. Node A has three

candidate nodes C1, C2 and C3, when A has data to send, it

sends out preambles with the ID numbers of C1, C2 and C3.

C1 first wakes up and replies an early ACK, then A sends

C1 data packet. If node C1 fails to receive this packet, A will

start to retransmit packet to other neighbors (C2 and C3) and

C1 will go back to sleep immediately. For A’s retransmission,

it also begins with preambles. If the retransmission fails to

send packet to C2 and C3, A will drop this packet because

the maximum retransmission time is twice.

Note that the candidate nodes selection algorithm introduced

previously may find out less number of candidate nodes than

Δ or even no candidate. Less number of candidate nodes will

508

Fig. 4. Data Forwarding Process with Retransmission

reduce the delivery ratio and increase the E2E delay. We solve

this problem by choosing the top-Δ neighbor nodes in the

neighbor table as candidate nodes. If the number of neighbor

nodes in neighbor table is less than Δ, we will choose all the

neighbor nodes as candidate.

We note that the forwarding strategy introduced before may

cause routing loops, and we also note that routing loops only

happen between the same hop-count nodes. In order to detect

routing loop, we suppose each packet has a packet number,

if a node sends a packet to the same hop-count neighbor,

it will record the packet number and the ID number of the

original node in its buffer for a period of time. If it receives

a packet later has the same packet number and ID number, it

will detect that a routing loop happens. When a node detects

a routing loop, it will transmit packet only to the first node of

its neighbor table, then the first node will transmit packet to

the first node of its neighbor table until the packet reaches

a next-hop node. Then the next hop node recovers to the

DDF forwarding strategy. In short, when routing loop happens,

nodes will use ETX routing scheme to forward packet until it

reaches a next-hop node, and then recovers to DDF.

V. SIMULATION AND EVALUATION

In this section, we provide simulation results to evaluate

the performance of DDF. We deploy sensor nodes randomly

in a 200m*200m area and the node density is 8 nodes per
1000m2. A sink node is located at the center of the deployment

area and each node randomly generates packet and sends it to

the sink over multiple hops. We also set the threshold α = 0.6,

the duty cycle equals 5% and the initial energy of each node

equals 1 and the energy consumption of packet transmission

and reception equals 0.00015 and 0.0001, respectively. In order

to get more realistic performance, we use the link model

introduced in section III-B to determine link quality. We also

use the method proposed in [12] to calculate SNR and set the

parameters of the link model with respect to Chipcon CC1000

[15]. We compare the performance of DDF with ETX. Unless

otherwise specified, each experiment is repeated 40 times with

random node deployment under these parameters.

Fig. 5 shows the performance under different duty cycles.

Fig. 5(a) gives the average delivery ratio, we can see that

both DDF and ETX have steady delivery ratio under fixed

retransmission time. We denote the retransmission time Δ = 0,

Δ = 1, Δ = 2 for ETX and DDF as ETX0, DDF0, ETX1,

DDF1, ETX2 and DDF2, respectively. The average delivery

ratio for ETX0, ETX1, ETX2, DDF0, DDF1, DDF2 is 86.37%,

97.5%, 99.33%, 83.2%, 99.1% and 99.76%, respectively.

DDF achieves a little higher delivery ratio than ETX when

retransmission is allowed. This is because those packets who

meet routing loops have more chance to be retransmitted.

We observe that there are about 2-6% packets meet routing

loops. However, when we do not allow retransmission, the

average delivery ratio for ETX is higher than DDF. This is

because ETX always forwards data along the best routing path

while DDF forwards data along relative better routing path.

Fig. 5(b) gives the E2E delay of ETX and DDF, DDF can

reduce E2E delay about 38-55%. Fig. 5(c) shows the lifetime

improvement for DDF compared with ETX (the lifetime of

ETX is denoted as 1 for all duty cycle). We can see that the

lifetime improvement increases with the duty cycle increases,

from about 11% to 36%, because more nodes will wake up

at a short period of time with the increase of duty cycle, this

can balance energy consumption among these nodes.

We only provide the performance of DDF under different

threshold value of α in Fig. 6, since α has no impact on

ETX. The larger threshold α is, the higher link quality of

candidate nodes is and the smaller number of candidate nodes

is. So the delivery ratio (see Fig. 6(a)) and E2E delay (see Fig.

6(b)) increases when α increases. But the E2E delay under

α = 0.5 is higher than α = 0.6, because more retransmissions

are needed when the link quality of candidate nodes is low. The

lifetime improvement of DDF comparing with ETX is given

in Fig. 6(c). Lifetime improvement increases with the increase

of α when retransmission is allowed, because the larger α is,

the higher link quality is. Choosing high link quality nodes

as relay nodes can reduce the retransmission time, so more

energy is saved. But if we forbid retransmission, the lifetime

improvement will decrease, because the energy consumption

burden for those good link quality candidate nodes increases.

Fig. 7 presents the performance under different node den-

sities. The larger node density is, the more good link quality

candidate nodes will be found. So the delivery ratio (see Fig.

7(a)) increases and the E2E delay (see Fig. 7(b)) decreases

when node density increases. In order to compare lifetime im-

provement, we denote the lifetime for ETX under node density

of 6 nodes per 1000m2 as 1. From Fig. 7(c), we can see that

with the increase of node density, the lifetime improvement for

ETX0, ETX1 and ETX2 increases from 0 to 35.2%, 37.6% and

40%, respectively, while the lifetime improvement for DDF0,

DDF1 and DDF2 increases from 24.7%, 14% and 11.7% to

72%, 64.8% and 64.7%, respectively.

The results of our simulation demonstrate that our solution

DDF outperforms ETX. It delivers almost 100% of packets

when retransmission is allowed, reduces the E2E delay by

about 50% and increases the network lifetime by about 10-

35%.

VI. CONCLUSION

In this paper, we propose a dynamic data forwarding (DDF)

scheme for low-duty-cycle WSNs, which combines a realistic

509

0 5 10 15 20
0.8

0.85

0.9

0.95

1

Duty Cycle(Percentage)

A
ve

ra
ge

 D
el

iv
er

y
R

at
io

ETX0
DDF0
ETX1
DDF1
ETX2
DDF2

(a) Delivery Ratio vs. Duty Cycle

0 5 10 15 20

50

100

150

200

Duty Cycle(Percentage)

A
ve

ra
ge

 E
2E

 D
el

ay

ETX0
DDF0
ETX1
DDF1
ETX2
DDF2

(b) E2E Delay vs. Duty Cycle

0 5 10 15 20

1

1.1

1.2

1.3

1.4

Duty Cycle(Percentage)

Li
fe

 Im
pr

ov
em

en
t

DDF0
DDF1
DDF2

(c) Lifetime vs. Duty Cycle

Fig. 5. Performance under Different Duty Cycle

0.5 0.6 0.7 0.8 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold �

A
ve

ra
ge

 D
el

iv
er

y
R

at
io

DDF0
DDF1
DDF2

(a) Delivery Ratio vs. Threshold

0.5 0.6 0.7 0.8 0.9

20

22

24

26

28

30

32

Threshold �

A
ve

ra
ge

 E
2E

 D
el

ay

DDF0
DDF1
DDF2

(b) E2E Delay vs. Threshold

0.5 0.6 0.7 0.8 0.9

1

1.05

1.1

1.15

1.2

1.25

1.3

Threshold �

Li
fe

 Im
pr

ov
em

en
t

DDF0
DDF1
DDF2

(c) Lifetime vs. Threshold

Fig. 6. Performance under Different Threshold

6 7 8 9 10
0.8

0.85

0.9

0.95

1

Node Density(nodes/1000m2)

A
ve

ra
ge

 D
el

iv
er

y
R

at
io ETX0

DDF0
ETX1
DDF1
ETX2
DDF2

(a) Delivery Ratio vs. Node Density

6 7 8 9 10
20

25

30

35

40

45

50

Node Density(nodes/1000m2)

A
ve

ra
ge

 E
2E

 D
el

ay

ETX0
DDF0
ETX1
DDF1
ETX2
DDF2

(b) E2E Delay vs. Node Density

6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Node Density(nodes/1000m2)

Li
fe

 Im
pr

ov
em

en
t

ETX0
DDF0
ETX1
DDF1
ETX2
DDF2

(c) Lifetime vs. Node Density

Fig. 7. Performance under Different Node Density

link model with asynchronous duty cycle. To evaluate the per-

formance of DDF, we have performed extensive simulations.

The results show that DDF can reduce E2E delay, guarantee

delivery ratio and improve network lifetime compared with

ETX. In the future, we intend to extend this work into

large scale WSNs with multiple sinks and even with mobile

sinks. We also intend to implement DDF on real testbeds and

evaluate the performance.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their comments which were very helpful in improving the

quality of the paper. This work is partly supported by China

NSF grants (60825205, 60903179, 61073152, 61170236,

61133006).

REFERENCES

[1] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access
for Wireless Sensor Networks,” In Proceedings of the Second Inter-
national Conference On Embedded Networked Sensor Systems (SenSys
2004), p95-107, November 2004.

[2] W. Ye, John S. Heidemann, and D. Estrin, “An Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” In Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), p1567-1576, June 2002.

[3] T. Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” In Proceedings of the First
International Conference On Embedded Networked Sensor Systems
(SenSys 2003), p171-180, November 2003.

510

[4] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks,”
In Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems, p307-320, 2006.

[5] B. Karp and H.T. Kung, “Gpsr: Greedy Perimeter Stateless Routing for
Wireless Networks,” In Proceedings of the 6th Annual MOBICOM, ACM
Press, p243-254, 2000.

[6] R. Fonseca, S. Ratnasamy, J. Zhao, C.T. Ee, D. Culler, S. Shenker and
I. Stoica, “Beacon Vector Routing: Scalable Point to Point Routing
in Wireless Sensornets,” In Proceedings of the Second USENIX/ACM
Syposium on Networked Systems Design and Implementation (NSDI),
2005.

[7] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-demand Distance
Vector Routing,” 2003, RFC 3561.

[8] D.B. Johnson, D.A. Malz, and J. Broch, “DSR: the Dynamic Source
Routing Protocol for Multihop Wireless Ad Hoc Networks,” Ad hoc
networking. p139-172, 2001.

[9] J. Kim, X. Lin, and N.B. Shroff, “Optimal Anycast Technique for
Delay-Sensitive Energy-Constrained Asynchronous Wireless Sensor
Networks,” In Proceedings of the 28th Conference on Computer Com-
munications (INFOCOM), p612-620, 2009.

[10] R.R. Choudhury and N.H. Vaidya, “MAC-Layer Anycasting in Ad Hoc
Networks,” SIGCOMM Computer Communication Review, vol. 34, p75-
80, January 2004.

[11] G. Zhou, T. He, S. Krishnamurthy, and J.A. Stankovic, “Impact of Radio
Irregularity on Wireless Sensor Networks,” In Proceedings of the Second
International Conference on Mobile Systems, Applications and Services
(MOBYSIS), 2004.

[12] M. Zuniga, and B. Krishnamachari, “Analyzing the Transitional Region
in Low Power Wireless Links,” In Proceedings of the First Annual
IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks, IEEE SECON 2004, p517-526, 2004.

[13] D.S.J.D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High Through-
put Path Metric for Multi-Hop Wireless Routing,” In Proceedings of the
Annual International Conference on Mobile Computing and Networking,
MOBICOM, p134-146, 2003.

[14] Y. Gu, and T. He, “Data Forwarding in Extremely Low Duty-Cycle Sen-
sor Networks with Unreliable Communication Links,” In Proceedings
of the First International Conference On Embedded Networked Sensor
Systems(SenSys), 2007.

[15] Chipcon. CC1000 low power radio transceiver, http://focus.ti.com/.
[16] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S.

Wicker, “Complex Behavior at Scale: An Experimental Study of Low-
Power Wireless Sensor Networks,” In Technical Report UCLA/CSD-TR
p02-0013, 2002.

511

