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Abstract—One fundamental question for wireless power transfer technology is the energy provisioning problem, i.e., how to provide
sufficient energy to mobile rechargeable nodes for their continuous operation. Most existing works overlooked the impacts of node
speed and battery capacity. However, we find that if the constraints of node speed and battery capacity are considered, the continuous
operation of nodes may never be guaranteed, which invalidates the traditional energy provisioning concept. In this paper, we propose
a novel metric — Quality of Energy Provisioning (QoEP) — to characterize the expected portion of time that a node sustains normal
operation by taking into account node speed and battery capacity. To avoid confining the analysis to a specific mobility model, we study
spatial distribution instead. As there exist more than one mobility models corresponding to the same spatial distribution, and different
mobility models typically lead to different QoEPs, we investigate upper and lower bounds of QoEP in 1D and 2D cases. We derive tight
upper and lower bounds of QoEP for 1D case with single source, and tight lower bounds and loose upper bounds for general 1D and
2D cases with multiple sources. Finally, we perform extensive simulations to verify our theoretical findings.

Index Terms—Quality of energy provisioning, wireless power transfer, mobility.
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1 INTRODUCTION

THE past few decades witnessed the major success of
wireless communication networks and pervasion of

wireless and portable mobile devices. Among hot issues
like capacity, robustness in wireless communication, con-
serving energy is particularly important because mobile
devices are typically powered by batteries with limited
energy. When batteries are used up, they need to be
replaced or charged by a wired power plug, which is
laborious and sometimes impossible (such as charging
batteries of implanted devices). This problem can be
overcome by recent advances in wireless power transfer
technology [1], which allows energy to be transferred
from one storage device to another wirelessly with
reasonable efficiency. Without the hassle of wires, this
promising technology revolutionizes the way energy is
transferred and has been applied to recharge mobile
devices such as sensors [2], RFIDs [3], laptops [4], cell
phones [5], vehicles [6] and unmanned planes [7]. Ac-
cording to a recent report, the wireless power trans-
fer market is expected to grow to US$23.7 billions in
2015 [8].

Generally, the purpose of adopting wireless power
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transfer technology in typical applications is to guaran-
tee the working performance of mobile devices (we call
nodes hereafter for abstraction). Since energy sources (or
called wireless chargers in some literature) are expen-
sive, it is not cost-effective to deploy a dense network of
stationary sources to provide sufficient power to mobile
nodes at every location in the interested area. Instead,
as pointed out by He et al. [9], we can exploit mobility
of nodes to reduce the number of required sources.
This is mainly based on the intuition that a mobile
node can harvest and store superfluous energy in its
battery within power-rich areas, and then use the energy
to sustain its normal working in power-deficient areas.
In other words, mobility nature of nodes allows the
existence of power-deficient areas and thus leaves room
for possible optimization of deployment of sources. The
goal of work in [9] is to make nodes energy provisioned,
i.e., to guarantee nodes harvesting enough energy for
continuous operation, while minimizing the number of
sources. This is also termed the energy provisioning
problem.

As a pioneer work studying the energy provisioning
problem, He’s research [9] is mainly confined to trian-
gular deployment and omnidirectional charging model.
In addition, it simply requires that the accumulated
recharged energy during the node’s movement should
be no smaller than the total energy consumption of
the node in the long run, which completely overlooks
the impacts of node speed and battery capacity. We
relax restrictions on deployment and charging model in
this paper. We further show that after considering the
constraints of node speed and battery capacity, the con-
tinuous operation of a node may never be guaranteed,
which invalidates the energy provisioning concept.
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Fig. 1: An example showing how node speed affects the
Quality of Energy Provisioning. The lengths of trajectory
in Region A and Region B are 10m (meter) and 20m,
respectively. The tag has battery capacity 50mJ , and its
working power is 10mW .

We use a simple example to illustrate this issue. We
consider a tag worn by a man with working power
10mW and battery capacity 50mJ (note that all parame-
ter values in this example are arbitrarily calibrated). The
man first moves within a power-rich area, Region A as
shown in Fig. 1(a), for 10m (meter) with constant charg-
ing power 20mW (typically, charging power is not uni-
form across space. We use the uniform assumption here
to simplify the analysis), and then transfers to a power-
deficient area Region B with constant charging power
5mW , and continues to move within it for 20m. Suppose
the moving speed v of the man is constant and is equal
to 1m/s. Obviously, the tag is energy provisioned as its
cumulative charging energy (20mW ∗10 s+5mW ∗20 s =
300mJ) is exactly equal to the total required energy for
normal working (10mW ∗ 30 s = 300mJ).

Notwithstanding, the amount of energy the tag can
store is only 50mJ . We plot the relation between the
battery energy status of tag and time in Fig. 1(b). It can be
observed that up to 50mJ is wasted at the time interval
[5 s 10 s]. As a result, after leaving Region A, the tag
depletes all its stored energy and forced to switch off
when t = 20 s in Region B, and works in an intermittent
working mode until t = 30 s. However, if we double the
speed of man to v = 2m/s, which implies the dwelling
time of the tag in each region will be cut in half, the
recharge energy loss in Region A can be avoided, as Fig.
1(c) illustrates. The tag can thus keep working during
the time period [0 s 15 s]. Likewise, we can image that
if the battery capacity of the tag is enlarged to 100mJ ,
the tag can keep working all the time, when the moving
speed is 1m/s.

In fact, given the constraints of battery capacity and
node speed, it is always possible for a mobile node obey-
ing some mobility model with stochastic properties, such
as Random Waypoint Mobility Model [10], to deplete
its energy and suspend work whenever it happens to
linger too long in power-deficient areas with charging
power being less than the node’s working power. Now
that continuous working of a node can never be guar-
anteed under the existence of power-deficient areas, the
rigorous energy provisioning becomes invalid.

To evaluate the performance of energy provisioning
for mobile nodes when continuous operation of nodes
cannot necessarily be guaranteed, we define Quality of
Energy Provisioning (QoEP) as the expected portion of
time that a node can sustain normal operation in the
long run. It captures the characteristics of energy provi-
sioning performance even when the node works in an
intermittent mode. As it reveals the long term working
performance of the node itself, QoEP is essential for
many monitoring applications. For example, the health
monitoring devices carried by the potential or high-risk
patients and powered by deployed wireless chargers [11]
are expected to work as much as possible, which calls for
a high QoEP. In general, QoEP serves as a useful metric
and can be incorporated into many system designs.

In this paper, we prefer to investigate QoEP of a
node based on its spatial distribution, i.e., with what
probability the node will stay at a specific location, rather
than a specific mobility model in that the former is more
general, practical and tractable. Accordingly, our work
turns to pursuing upper and lower bounds of QoEP
given the spatial distribution, as there exist multiple
mobility models with different QoEPs obeying the same
spatial distribution. Theoretical results provide insights
to many applications, e.g., deploying energy sources to
meet requirements for energy provisioning performance,
striking a good tradeoff between sensing quality and
monitoring time (note that lower sensing rate will lead
to lower sensing quality and lower working power, and
thus longer monitoring time), and even guiding the
movements of nodes.

We make the following main contributions.
• We are the first to study the quality of energy

provisioning for mobile nodes given a network of
stationary sources. We disclose the impacts of node
speed and battery capacity on energy provisioning
and present a new metric — Quality of Energy
Provisioning (QoEP). Our work is done in such a
manner that all its results are applicable to general
mobility models, deployment of sources and charg-
ing models.

• We obtain tight upper and lower bounds for 1D
case with a single source. In particular, we propose
a novel analytical approach — flow pattern anal-
ysis — by drawing an analogy to flow in physics
to facilitate our analysis. This approach not only
enables us to design the optimal mobility model,
which achieves the maximum QoEP, but also allows
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an effective algorithm to calculate the tight upper
bound.

• We further extend the results to general 1D and 2D
cases with multiple sources, and derive tight lower
bounds and loose upper bounds in both cases.

• We conduct extensive simulations to verify our the-
oretical findings. Simulation results show that our
upper and lower bounds perfectly hold, and are
more practical than existing works.

Our prior work has aimed to derive the upper and
lower bounds for the 1D case with single/multiple
sources for wireless rechargeable sensor networks [12].
In contrast, we consider the problem in more general
scenarios using wireless power transfer technology, and
obtain theoretical results for the 2D case with multiple
sources as well as useful insights into the 3D case.

The rest of the paper is organized as follows. In Section
2, we review the related work. Section 3 presents the
problem definition and related conceptions. Section 4
contains our results including tight upper and lower
bounds for 1D case with single source. We extend our re-
sults to 1D and 2D cases with multiple sources in Section
5 and 6, respectively. Further discussions is presented in
Section 7. In Section 8, we give the simulation results
to support our theoretical findings. Finally, we conclude
this work in Section 9.

2 RELATED WORK

In this section, we briefly review the related work about
wireless power transfer technology and energy provi-
sioning problem.

In recent years, Intel developed the wireless identifi-
cation and sensing platform (WISP) by integrating RFID
tags with sensing and computing components [13]. The
RFID tags can be wirelessly charged by readers. Buettner
et al. explored this technology to recognize human activ-
ities [14]. Exploiting wireless power transfer technology
to replenish sensor nodes has also been studied for years.
In [15], Powercast developed a wireless power platform
to work with wireless sensor network in order to help
monitor temperature and humidity at a zoo without
disrupting the animal exhibit. In [16], Wicaksono et al.
studied the problem of how to deploy stationary energy
sources and allocate frequency bands considering the
power interference to charge sensor nodes in buildings.
Different from the works solely considering the charging
efficiency, Dai et al. [17] paid attention to controlling the
detrimental effect of electromagnetic radiation.

In view of the expensive cost of energy sources, much
recent literature proposed to mobilize single or multiple
energy sources to recharge sensor nodes. [18] and [19]
studied the problem of how to jointly mobile chargers
and schedule sensor nodes to enhance the data routing
performance of the entire sensor network. [20] and [21]
employed a mobile charger to improve the data gath-
ering efficiency. In [22] and [23], a mobile charger was
used not only as an energy transporter, but also as a data

collector. Besides, Xie et al. [24] investigated the problem
of co-locating the mobile base station on the wireless
charging vehicle to minimize energy consumption of
the network while ensuring none of the sensor nodes
depletes its energy. Still other works concentrated on
stochastic event capture issues. Dai et al. [25] consid-
ered the problem of selecting sensors for charging and
scheduling the sensors’activation schedules to maximize
the overall quality of monitoring. Most recently, scien-
tists focused on utilizing multiple mobile energy sources
to charge a large-scale sensor network considering their
energy constraint. Zhang et al. [26] aimed to maximize
the energy efficiency of charging, while Dai et al. [27]
attempted to minimize the number of required mobile
chargers to guarantee continuous operation of all nodes.

For energy provisioning problem, He et al. [9] pro-
posed the first scheme to the energy provisioning prob-
lem. In [11], Chiu et al. exploited the mobility of end-
devices to deploy wireless chargers with partial cover-
age, with an objective to maximize the survival rate of
end-devices.

3 PROBLEM STATEMENT

3.1 Network Model, Mobility Model and Energy Con-
sumption Model
Suppose there is a network of sources and a mobile
node (e.g., it is worn by a human user for activity mon-
itoring) in a region of interest. Sources are responsible
for recharging the node via wireless. The node harvest
wireless energy and store it in its battery for normal
operations like sensing and logging data. Moreover, the
data reporting process is supposed to be delay-tolerant
and occur in a batch manner, thus can be ignored. This
wireless recharge infrastructure is generic and can be
reused for diverse types of different applications such as
WISP [13] and Powercast wireless power platform [15].

Suppose that the node is attached to a mobile object,
and thus its movement is largely determined by the
object and dictated by a mobility model. In addition,
suppose the speed of the node is no more than vmax.
The node’s power consumption for working, such as
sensing and logging data, is constant and independent of
its motion, which we denote as ps. Note that the node
spends no energy on movement as it is driven by the
object that it is attached to.

The node has a battery capacity of Eπ , and its power
leakage of battery is negligible. Moreover, it keeps work-
ing with a nonzero residual energy until depletion, and
then it suspends its work. As long as the node absorbs
any amount of energy, it resumes work immediately. The
energy cost for switching on or off is typically much
smaller than the working energy cost, and therefore
is ignored in this paper. Though the last assumption
is somewhat unrealistic, it makes the problem much
easier to solve. Besides, we can fill the gap between this
assumption and the reality by designing more intelligent
switching policies (such as setting an energy threshold
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TABLE 1: Notations

Symbol Definition
vmax The maximum speed of the node.
ps The constant nodal power consumption for

working.
Eπ The battery capacity of the node.

pr(t) (pr(x)) The cumulative charging power node receives
at time t (location x).

Ere(t) (Ere(x)) The residual energy at time t (location x).
fdis(x) The spatial distribution at location x.

λc(x) (Λc(Ω′)) The expected battery energy consumption rate
for location x (subregion Ω′).

λh(x) (Λh(Ω′)) The expected battery energy harvest rate for
location x (subregion Ω′).

pep(x) The energy providing ability for location x.

and letting the node to switch on if and only if the stored
energy level exceeds the threshold) to avoid frequent
switching operations and thereby save energy. We will
take into account practical concerns in future work.

In some applications, nodes are scheduled to sense
and log date for some time, and sleep regularly to save
energy in a cycled fashion. We then treat the average
energy power ps in one schedule period as ps.

For clarity of presentation, we list the main notations
used in this paper in Table 1.

3.2 Charging Model

The typical charging model adopted in most prior work
is proposed by [9]. This empirical model assumes that
the charging power of sources is omnidirectional, i.e.,
any node with the same distance to the source receives
the same amount of power. This assumption, however,
is not applicable for sources with directional antennas,
such as TX91501 power transmitters produced by Pow-
ercast [2] with 60◦ beam pattern. In this paper, we
basically make no specific assumptions with respect to
recharging model (except for the 1D case with single
source, in which we make an assumption to simplify
the analysis), and therefore, our work is general enough
to accommodate different recharging models. After all,
we assume that the charging power distribution pr(x)
has already been determined by some charging models
or even statistics of charging power data.

3.3 Concept of Quality of Energy Provisioning

As we mentioned before, the sustainable operation of
a node can never be achieved whenever there exist
power-deficient areas with insufficient charging power
to support the node’s normal working, thus it is im-
perative for us to propose a new metric to evaluate the
performance of energy provisioning in this case. Before
formally stating our metric, we introduce the following
definitions in advance.

Definition 3.1: Instantaneous Quality of Energy Provi-
sioning (IQoEP) of a node at time t is defined as follows:

IQoEP (t) =

{
pr(t)
ps

, Ere(t) = 0 and pr(t) < ps

1, otherwise
(1)

where pr(t) is the cumulative charging power the node
receives at time t, and Ere(t) is the residual energy at
that moment.

The above equation is directly derived from the third
assumption. Next, we propose our new metric.

Definition 3.2: Quality of Energy Provisioning (QoEP)
of a node in the region Ω is defined as the expected
portion of time in the long run that the node can sustain
normal operation. Hence

QoEP = lim
t→∞

1

t− t0

∫ t

t′=t0

IQoEP (t′)dt′. (2)

We note that this concise form of QoEP not only
simplifies our following analysis, but also captures the
characteristics of energy provisioning performance, even
when the node works in an intermittent mode.

As QoEP in Eq. (2) is a function of time, it is rather
difficult to compute. We thus attempt to transform this
time-dependent expression to a space-dependent one.
Before that, we give the following definition.

Definition 3.3: Quality of Energy Provisioning at Lo-
cation x (LQoEP) of a node is defined as the expected
proportion of cumulative time that the node sustains
normal operation to that the node spent at x.

LQoEP (x) = lim
t→∞

∫ t
t′=t0

IQoEP (t′)I(t′, x)dt′∫ t
t′=t0

I(t′, x)dt′
(3)

where I(t′, x) is an indicator function with value 1 when
a node appears at location x at time t′, or 0 otherwise.

With LQoEP (x), Eq. (2) can be rewritten as:

QoEP = lim
t→∞

1

t− t0

∫ t

t′=t0

IQoEP (t′)dt′

= lim
t→∞

1

t− t0

∫
Ω

∫ t

t′=t0

IQoEP (t′)I(t′, x)dt′dx

= lim
t→∞

∫
Ω

LQoEP (x)

∫ t
t′=t0

I(t′, x)dt′

t− t0
dx

=

∫
Ω

LQoEP (x)fdis(x)dx. (4)

By expressing the QoEP in the space domain rather
than in the time domain, we are able to analyze the QoEP
in a much easier way.

3.4 Problem Description
In this paper we prefer to investigate the QoEP of a
node based on its spatial distribution, i.e., with what
probability the node will stay at a specific location, rather
than a specific mobility model since the analysis based
on the former is more general, practical and tractable
(See Section 1 in the supplemental file).

Intuitively, there may exist multiple mobility models
obeying the same spatial distribution fdis(x). We use P
to denote the set of all those qualified mobility models.
As different mobility models usually lead to different
values of QoEP, our task in this paper turns to pursuing
upper and lower bounds of QoEP given the spatial
distribution. Such theoretical results are beneficial for
real applications in many aspects, such as providing
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insights into how to effectively deploy energy sources to
meet requirements for energy provisioning performance.
We define the lower bound of QoEP with respect to
spatial distribution fdis(x) as QoEPmin, which is less
than or equal to any QoEP of mobility models in P .
We define the upper bound of QoEP by QoEPmax in a
similar way. Now we present our problem as follows.

Quality of Energy Provisioning Problem: Assume
that there is a single source (multiple sources) and a
mobile node in an 1D (2D) region Ω. The charging
power at location x ∈ Ω is pr(x). Given the node’s
spatial distribution fdis(x), maximum speed vmax, bat-
tery capacity Eπ and working power ps, the quality of
energy provisioning problem is to determine QoEPmin
and QoEPmax.

4 1D CASE WITH SINGLE SOURCE

In this section, we investigate the QoEP in 1D case
with a single source. Though this case appears rather
simple, it is not an easy job to derive its upper and
lower bounds. Apart from its significance in theory, we
emphasize that the consideration of this case also has
practical meanings. For example, using a 6 dBi receive
antenna, the RF harvester designed in [28] was shown
to operate at a distance of 10.4 km from a 1 MW UHF
television broadcast transmitter, and over 200 m from a
cellular base transceiver station. Within such a distance,
the transmitter or station serves as the primary wireless
power charger, which can be modeled as 1D or 2D
cases with single source (1D case may correspond to the
scenario when the harvester moves on a straight road).

Suppose the source is placed at the origin, and the
node’s movement is confined to a line segment defined
by [−xm, xm], as shown in Fig. 2(a). Moreover, the
node spatial distribution fdis(x) is symmetric, namely
fdis(x) = fdis(−x) for any x ∈ [−xm, xm].

4.1 Lower Bound Analysis

As Fig. 2 shows, the whole area is divided into two
regions, Ωi and Ωo by xT and −xT , such that a node
in the region Ωi is guaranteed to receive a power no
less than ps, while that in Ωo is not. Hence we have
pr(xT ) = ps. Notice that to simplify the analysis, we
implicitly assume that the charging power is symmetric
with respect to the origin over the line segment for
this special case, i.e., pr(x) = pr(−x). We relax this
assumption for general cases as will be discussed later,
namely, 1D and 2D cases with multiple sources.

Theorem 4.1: The tight lower bound of QoEP in 1D
case with single source is

QoEPmin = 2(

∫ xT

x=0

fdis(x)dx+

∫ xm

x=xT

fdis(x)
pr(x)

ps
dx). (5)

Proof: See Section 2 in the supplemental file.
We can immediately get the following corollaries for

two special cases.

mx mx0 sx dx

(a) Illustration of 1D Movement

mx mx0
source

TxTx

io o

ZxZx

(b) Illustration of Region Partition

Fig. 2: Illustrations of 1D Case with Single Source

Corollary 4.1: For the single source case, if pr(xm) ≥
ps, QoEP = 1.

Corollary 4.2: For the single source case, if pr(0) < ps,
QoEP = 2

∫ xm

x=0
pr(x)
ps

fdis(x)dx.

4.2 Upper Bound Analysis
In this section, we will first propose some novel con-
ceptions to facilitate our further study, and derive a
loose upper bound. Then, we investigate the tight upper
bound by introducing a new analytical approach.

Due to symmetry of the spatial distribution, we only
need to consider subregion [0, xm], and still use Ωi and
Ωo to denote the area [0, xT ] and [xT , xm] respectively.

4.2.1 Related Conceptions and Theoretical Results
In this subsection, we will introduce some conceptions
first to facilitate the following theoretical analysis in the
space domain rather than in the time domain. Then we
derive several useful theoretical results, which relate to
loose and tight upper bounds.

First of all, we associate location x ∈ Ωo with the
expected battery energy consumption rate, i.e., the average
consumption of nodal battery energy over time at x,

λc(x) = lim
t→∞

t1(x)

t− t0
· 0 + lim

t→∞

t(x)− t1(x)

t− t0
(ps − pr(x))

≤ lim
t→∞

t(x)

t− t0
(ps − pr(x)) (ps − pr(x) > 0)

= fdis(x)(ps − pr(x)) = λmaxc (x) (6)

where t1(x)(≥ 0) is the cumulative time the node stays
at location x when its residual energy is 0. Accordingly,
the expected battery energy consumption rate Λc(Ω

′) for
some subregion Ω′ ⊆ Ω can be written as

Λc(Ω
′) =

∫
Ω′
λc(x)dx ≤ Λmaxc (Ω′) =

∫
Ω′
λmaxc (x)dx. (7)

Similarly, the expected battery energy harvest rate for
location x ∈ Ωi is defined by

λh(x) = lim
t→∞

t2(x)

t− t0
· 0 + lim

t→∞

t(x)− t2(x)

t− t0
(pr(x)− ps)

≤ fdis(x)(pr(x)− ps) = λmaxh (x) (8)

where t2(x)(≥ 0) is the cumulative time the node stays
at location x when it is fully recharged. And Λh(Ω′) for
some subregion Ω′ ⊆ Ωi is

Λh(Ω′) =

∫
Ω′
λh(x)dx ≤ Λmaxh (Ω′) =

∫
Ω′
λmaxh (x)dx. (9)
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Lemma 4.1: Λc(Ωo) = Λh(Ωi).
Proof: See Section 3 in the supplemental file.

Theorem 4.2: QoEP in 1D case with single source is
given by

QoEP = QoEPmin +
2Λc(Ωo)

ps
. (10)

Proof: See Section 4 in the supplemental file.
Besides, we continue to define energy providing ability

of location x as the average energy a node brings into
the area [x, xm] (xT ≤ x ≤ xm)

pep(x) = lim
t→∞

1

t− t0
(Σ

M(t)
m=1(Ei,mre (x)− Eo,mre (x))) (11)

where Ei,mre (x) (or Eo,mre (x)) is the residual energy of a
node upon its mth traveling across location x to region
[x, xm] (or [0, x]) during the time interval [t0, t], and M(t)
is the number of times of the node’s crossing to different
direction.

Denote by Ω≥x the region [x, xm]. Based on the prin-
ciple of energy conservation, the providing energy from
location x must be fully converted into the energy con-
sumed in region Ω≥x.

Lemma 4.2: pep(x) = Λc(Ω
≥x) (x ∈ Ωo).

Further we have a related lemma as follows.
Lemma 4.3: For any location x ∈ Ωo, its energy pro-

viding ability pep(x) is subject to

pep(x) ≤ max{0, 1

2
fdis(x)vmax(Eπ −

∫ x

y=xT

(ps − pr(y))

vmax
dy)}.

Proof: See Section 5 in the supplemental file.
For convenience, we refer to the maximum value of

pep(x) as p̃maxep (x). The proof of Lemma 4.3 reveals that
the faster a node moves, the larger pep(x) it may gain. In
essence, the faster speed accelerates the energy exchange
between the region Ωi and Ωo, and finally leads to an
improvement of QoEP.

Next, we present a lemma as follows.
Lemma 4.4: For any x ∈ Ωo (xT ≤ x < xm),

Λc(Ωo) = Λc(Ωo − Ω≥x) + pep(x)

and
Λc(Ωo) ≤ Λmaxc (Ωo − Ω≥x) + p̃maxep (x)

where
p̃maxep (x) = max{0, 1

2
fdis(x)vmax(Eπ − 2

∫ x

y=xT

(ps − pr(y))

vmax
dy)}.

Proof: See Section 6 in the supplemental file.

4.2.2 Loose Upper Bound
Based on the proposed conceptions and theoretical re-
sults, we can derive a loose upper bound of QoEP for
1D case with single source.

Let x = xT in Lemma 4.2 and Lemma 4.3, and combine
them with Theorem 4.1 and Theorem 4.2, we have the
following theorem.

Theorem 4.3: The loose upper bound of QoEP in 1D
case with single source is

QoEP ≤ QoEPmin +
vmaxEπ
ps

fdis(xT ). (12)

1
c 2

c 3
c 4

c 5
c1

h 2
h 3

h 4
h 5

h

source

Fig. 3: Illustration of 1D Case with Multiple Sources

4.2.3 Tight Upper Bound
In this subsection, we intend to derive the tight upper
bound of QoEP in 1D case with single source. It is an
extremely challenging task since we have to find the
optimal mobility model that achieves the upper bound
of QoEP in order to prove the tightness of the bound. To-
wards this goal, we present a novel analytical approach
— flow pattern analysis to facilitate our analysis. Due to
space limit, we only present the main result of the tight
upper bound as follows, and refer the reader to Section
7 in the supplemental file for details.

Theorem 4.4: The tight upper bound of QoEP in 1D
case with single source is

QoEPmax = QoEPmin + 2
min{Λoptc (Ωo),Λ

opt
h (Ωi)}

ps
. (13)

where Λoptc (Ωo) and Λopth (Ωi) are the maximum expected
battery energy consumption rate for region Ωo and the
maximum expected battery energy harvest rate for the
region Ωi, respectively.

5 1D CASE WITH MULTIPLE SOURCES
In this section, we attempt to extend the results to
multiple sources case.

For this case, we assume that there is a 1D network
consisting of N sources, as illustrated in Fig. 3. The
whole area is partitioned into multiple regions, which
can be classified into two types according to whether
nodes within the regions can receive a power no less
than ps or not, as depicted in dark color and light
color blocks respectively. We denote them as Ωph (p =
1, 2, 3, . . . , P ) and Ωqc (q = 1, 2, 3, . . . , Q) respectively.
Similar to Theorem 4.1, we have the lower bound as
follows.

Theorem 5.1: The tight lower bound of QoEP in 1D
case with multiple sources is

QoEPmin =

P∑
p=1

∫
Ω

p
h

fdis(x)dx+

Q∑
q=1

∫
Ω

q
c

fdis(x)
pr(x)

ps
dx. (14)

Proof: Since the proof is similar to Theorem 4.1, we
omit it here.

Nevertheless, the calculation of upper bound in this
case turns to be much more complicated. For example,
suppose that the optimal expected battery energy con-
sumption rate for region Ω2

c in Fig. 3 is Λopt+c (Ω2
c) in

its left side and Λopt−c (Ω2
c) in its right side, which are

obtained by launching main flows from the left end
point and the right end point into Ω2

c . Then we have
the following theorem.

Theorem 5.2: The loose upper bound of QoEP in 1D
case with multiple sources is

QoEP ≤ QoEPmin +min{
P∑
p=1

Λopth (Ωph) +

Q∑
q=1

Λoptc (Ωqc)} (15)
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where Λopth (Ωph) = min{Λopt+h (Ωph) + Λopt−h (Ωph),Λmaxh

(Ωph)} and Λoptc (Ωqc) = min{Λopt+c (Ωqc) + Λopt−c (Ωqc),
Λmaxc (Ωqc)}.

Proof: The spirit of the proof is similar to Theorem
4.4, we omit it here.

6 2D CASE WITH MULTIPLE SOURCES

In this section, we are dedicated to analyze the upper
and lower bounds of QoEP in general 2D case with
multiple sources.

For the lower bound of QoEP, we have the following
theorem.

Theorem 6.1: The tight lower bound of QoEP in 2D
case with multiple sources is

QoEPmin =

∫
Ω

fdis(x, y)J(
pr(x, y)

ps
)dxdy (16)

where J(x) = x for 0 ≤ x ≤ 1 and 1 for x > 1.
Proof: See Section 8 in the supplemental file.

Similarly, for the upper bound of QoEP, we have
Theorem 6.2: The loose upper bound of QoEP in 2D

case with multiple sources is

QoEP ≤ QoEPmin +
vmaxEπ

2ps

∑
`∈L

∫
`

fdis(x, y)ds (17)

where L is the set of curves in the 2D plane with each
point (x, y) on it satisfying pr(x, y) = ps.

Proof: See Section 9 in the supplemental file.

7 DISCUSSION

From Theorem 4.3 and Theorem 6.2, we observe that
node speed and battery capacity have the same impacts
on the upper bounds of QoEP in both 1D and 2D
cases. Actually, we have a more general finding as the
following theorem discloses.

Theorem 7.1: Node speed vmax and battery capacity
Eπ have the same influence on QoEP.

Proof: See Section 10 in the supplemental file.
In addition, we can easily extend the results for 1D and

2D cases to the 3D case. By using the similar analysis
for the 2D case with multiple sources, we can derive
the tight lower bound and the loose upper bound for
the 3D case. In particular, for the tight lower bound, we
need to take the integral of the whole 3D space similar
to Eq. (16). Further, for the loose tight bound, compared
with Eq. (17), the second term is indeed the integration
of all surfaces with each point (x, y, z) on it satisfying
pr(x, y, z) = ps.

8 SIMULATION RESULTS

In this section, we present simulation results to verify
our findings. Throughout the simulations, we adopt
the empirical charging model proposed by [29]. In this
model, the received power pr(d) by a node can be
quantified by pr(d) = α

(d+β)2 , where d is the distance
from the source to the node, and α and β are known
constants. Table 2 lists the default simulation parameters.

TABLE 2: Simulation Parameters

Parameter Value
α(W ·m2) 4.328× 10−4

β(m) 0.2316
ps(W ) 1× 10−3

ratio (= vmax/vmin) 1, 2, 10, 100

8.1 1D Case with Single Source

We consider two mobility models for this case.

8.1.1 Random Waypoint Mobility Model
The spatial distribution of the Random Waypoint Mo-
bility Model (RWMM) in 1D case is given by fdis(x) =
− 3

4x3
m
x2+ 3

4xm
for −xm ≤ x ≤ xm [10], as is illustrated in

Fig. 4(a). Comparison of the simulation data points on
the dotted curve with the theoretical data points on the
solid curve shows they are in good agreement, when we
set xm = 1 and randomly choose speed between [0.01, 1].

As shown in Fig. 4(b), when Eπ decreases, the sim-
ulation results of QoEP approach to the lower bound
0.8519. The ratio in Fig. 4(b) refers to vmax/vmin while
vmax is kept constant and equals 0.1. Note that the speed
of a node for each movement is randomly selected from
[vmin, vmax], then different ratios actually lead to differ-
ent instances of RWMM. We observe that with different
ratios, QoEPs are always bounded by the upper and
lower bounds (note that QoEP is obtained by cutting the
trajectory of the node into tiny pieces and regarding the
charging power as constant for each piece). Specifically,
for ratio=1, 2, 10 and 100, the difference between their
QoEPs and the upper bound rises from 0.19% to 4.47%
near 10−3, and from 0.01% to 7.29% at 10−2. Moreover,
the RWMM of ratio=1, which implies that the node
moves with an invariable speed vmax, yields a QoEP
very close to the upper bound.

Likewise, the QoEPs increase monotonically with vmax

when Eπ = 0.001 as Fig. 4(c) shows. In addition, the
observation that the influence of maximum speed on
QoEP is the same as that of battery capacity corroborates
Theorem 7.1.

8.1.2 Random Multi-State Mobility Model
We proceed to evaluate our findings in a more
complicated case. Suppose that a node moves within the
region [−0.9, 0.9] following a so-called Random Multi-
State Mobility Model (RMSMM). In particular, it turns
to the positive direction of the x axis with probability
p(x) = 1 (or 0.2, 0.8, 0.2, 0.8, 0.2, 0.8, 0.2, 0.8, 0)
when it reaches location x = −0.9 (or
−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 0.9), or turns
to the opposite direction with the remaining probability.
Meanwhile, the node changes its speed to a value
randomly selected within the range of [vmin, vmax]. At
the other locations, the node moves with a constant
direction and speed.

Apparently, the node’s transition between spatial re-
gions can be cast as a Markov chain with nine subregions
regarded as nine states. The spatial distribution sketched
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Fig. 4: Simulation Results of Random Waypoint Mobility Model in Single Source Case

-0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

x(m)

S
pa

tia
l D

is
tr

ib
ut

io
n

 

 

(a) Spatial Distribution of RMSMM

10
-4

10
-3

10
-2

10
-1

0.75

0.8

0.85

0.9

0.95

1

Energy Capacity(J)

Q
oE

P

ratio=1
ratio=2
ratio=10
ratio=100
Lower Bound
Upper Bound

(b) QoEP Vs. Energy Capacity (vmax = 0.1)

10
-4

10
-3

10
-2

10
-1

0.75

0.8

0.85

0.9

0.95

1

v(m/sec)

Q
oE

P

ratio=1
ratio=2
ratio=10
ratio=100
Lower Bound
Upper Bound

(c) QoEP Vs. Maximum Speed (Eπ = 0.1)

Fig. 5: Simulation Results of Random Multi-State Mobility Model in Single Source Case
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Fig. 6: Simulation Results of Random Walk Mobility Model in Multiple
Sources Case

0 0.2 0.4 0.6 0.8 1

x 10
-3

0

10

20

30

40

p
s
(W)

D
is

ta
nc

e(
m

)

 

 

Path Eenegy Provisioning
Lower Bound

Upper Bound (E

=0.01,vmax=0.01)

Upper Bound (E

=0.01,vmax=0.1)

Upper Bound (E

=0.1,vmax=0.01)

Fig. 7: Illustration of Distance Com-
parison for Triangular Placement

in Fig. 5(a) resembles a square wave with minimum
and maximum value 0.2083 and 0.8333. The QoEPs with
varying battery capacity and speed are demonstrated
in Fig. 5(b) and Fig. 5(c) respectively, which departure
from upper bound a larger distance compared with that
in RWMM. In Fig. 5(b), for example, when the energy
capacity is about 10−2, the difference between QoEP and
the upper bound increases from 12.30% to 19.20% when
the ratio increases from 1 to 100. This is because the
higher tendency of the node to move locally reduces the
opportunity of sufficient energy exchange.

8.2 1D Case with Multiple Sources

For 1D case with multiple sources, we are concerned
with the Random Walk Mobility Model when sources
are equidistantly distributed with distance interval d.
Due to uniform spatial distribution of this mobility
model and symmetry of the sources, we can consider
only a subregion [−d/2, d/2] with a reference source

placed at the origin. Accordingly, the mobility model
we concerned is converted into the Random Walk with
Reflection Mobility Model (RWRMM) proposed in [30].
For this mobility model, each movement of a node occurs
in a constant distance traveled l = 0.4 d, at the end of
which a new direction and speed are calculated. If the
node reaches a boundary, it “bounces” off the border
and continues along this new direction. It is obvious that
RWRMM also follows uniform distribution.

To evaluate the performance of our work, we compare
it with that presented in [9]. Specifically, we adapt the
approach in [9] to 1D case, by applying the following
equation to determine the distance d between adjacent
sources: 1

d

∫ d
r=0

[ α
(r+β)2 + α

(d−r+β)2 ]dr = ps. Solving this
equation we obtain d = 2α

βps
− β. Indeed, this is exactly

the maximum distance to guarantee path energy provi-
sioning, whose QoEP equals 1 as [9] implies.

In Fig. 6(a) and 6(b), we plot the QoEP to varying
energy capacity and maximum speed. It shows that the
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QoEP always equals 1 for path energy provisioning,
which is referred to as PEP in these figures, as we
set d = 2α

βps
− β = 3.5059. In contrast, the QoEPs of

real cases, and even that of upper bound are much
smaller, especially with a relatively low energy capacity
or maximum speed.

We proceed to evaluate the gap between our solu-
tion and path energy provisioning. We vary the nodal
working power ps and compute the maximum distance
between adjacent sources in triangular placement to
guarantee the QoEP equals 1 according to the upper
and lower bounds as well as that for path energy provi-
sioning [9]. It can be seen from Fig. 7 that the distance
for upper bound increases as Eπ or vmax increases, and
Eπ and vmax have the same impact on distance. We
conclude that our proposed upper and lower bounds
are more practical than path energy provisioning as it
takes into consideration the constraints of node speed
and energy capacity. The results of upper bound and
lower bound can be used to better estimate the distance
between sources for deployment.

8.3 2D Case with Multiple Sources

For 2D case with multiple sources, we are con-
cerned with the Random Direction Mobility Model
(RDMM) [31].

Suppose there are four sources {s1, s2, s3, s4} deployed
on a 4m ∗ 4m region with coordinates (1, 2), (1.5, 2.6),
(3, 2.8) and (3.5, 0.2), respectively. Moreover, a node
obeying RDMM travels to the border of the region at
constant speed, and then randomly chooses another
angular direction and continues the process. This simple
mobility model is proven to yield a uniform spatial
distribution. We thus compute the upper and lower
bounds using this result.

Fig. 8 depicts the relation between the simulation
results of QoEP and the upper and lower bounds with
respect to battery energy capacity and node speed. Again
in the figure the upper and lower bounds strictly hold,
and battery capacity and node speed have the same
impact on QoEP.

9 CONCLUSION

In this paper, we have studied the quality of energy
provisioning for wireless power transfer technology. Our
work mainly focuses on analyzing upper and lower
bounds of QoEP in 1D and 2D cases. The theoretical
results show that the lower bounds in both cases have
nothing to do with node speed and battery capacity. In
contrast, both of the factors affect the upper bounds to
the same extent.

In future work, we will attempt to extend the flow
pattern analysis approach to general 1D and 2D cases,
and thereby pursue the tight upper bounds accordingly.
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