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Abstract—This paper studies the problem of connectivity main-
tenance in adversarial uncertain networks, where a defender pre-
vents the largest connected component from being decomposed
by an attacker. In contrast with its deterministic counterpart,
connectivity maintenance in an uncertain network involves addi-
tional testing on edges to determine their existence. To this end,
by modeling a general uncertain network as a random graph with
each edge associated with an existence probability and a testing
cost, our goal is to design a general adaptive defensive strategy
to maximize the expected size of the largest remaining connected
component with minimum expected testing cost and, moreover,
the strategy should be independent of the attacking patterns. The
computational complexity of the connectivity maintenance prob-
lem is unraveled by proving its NP-hardness. To accurately tackle
the problem, based on dynamic programming we first propose
an optimal defensive strategy for a specific class of uncertain
networks with uniform testing costs. Thereafter multi-objective
optimization is adopted to generalize the optimal strategy for
general uncertain networks through weighted sum of normalized
size and cost. Due to the prohibitive price of an optimal strategy,
two approximate defensive strategies are further designed to
pursue decent performance with quasilinear complexity. We first
derive a heuristic approach by quantifying the edge vulnerability
through an analogy from the degree centrality in deterministic
networks to the probability degree and connectivity weight in
uncertain networks. For performance guarantee, we then devise
an adaptive greedy policy incorporating the minimax rule from
game theory, which minimizes the possible loss suffered by the
defender in a worst-case scenario caused by the attacker and
has an approximation ratio of (1− 1/e). Extensive experiments
on both synthetic and real-world network datasets under diverse
attacking patterns demonstrate the superiority of the proposed
strategies over baselines.

I. INTRODUCTION

Connectivity has long been the focus of concern in the
field of networking. The investigation of network connectiv-
ity has a wide range of applications in real-life scenarios.
In communication networks, the connectivity among devices
reflects the reliability of data links and facilitates the design of
wise routing strategies for efficient message transmission [1].
In social networks, the connectivity among users reflects the
tightness of relation and is utilized to infer preference similar-
ities for accurate recommendation [2]. In academic networks,
the connectivity among scholars and papers is conducive to
the analysis of collaboration and dependency among various
research fields [3].

Despite the importance of connectivity, networked systems
are vulnerable to adversarial attacks that aim to destroy the
network connectivity. In these attacks, failure of nodes and
links are caused by the attacker to compromise the network’s

ability to meet its quality-of-service (QoS) [4]. Recently,
emerging works have been focusing on characterizing the
impact of different attacking patterns on network connectivity,
most of which assuming the network to be deterministic [5],
[6], [7]. A variety of connectivity maintenance strategies have
also been proposed based on the analysis of crucial nodes and
links in maintaining the network connectivity under specific
attacking strategies.

Unfortunately, a deterministic network fails to serve as a
suitable model for most real-life networks, which are usually
uncertain. Affected by multiple factors, the existence of links
in an uncertain network is usually unfixed and full knowledge
of the existence of all links at some point is usually unavail-
able. For instance, in a data center, due to the unreliability of
data links, connection between a pair of nodes may frequently
fail [8]. In a metropolitan localization network, communication
between smartphones is restricted by their relative locations
[9]. In an outdoor sensor network, connection between devices
strongly depends on climatological conditions within the field
[10]. In fact, over 90 percent of links in wireless sensor
networks are unreliable [11]. All these observations motivate
the modeling of an uncertain network as a random graph
where each edge is assigned an existence probability, which
can be estimated a priori through link detection over time or be
generated from various probability models concerning specific
types of networks and applications [12].

Compared with its deterministic counterpart, the major
technique of designing efficient connectivity maintenance
strategies in an uncertain network differs greatly. The main
difference lies in that to eliminate the uncertainty of the
network, we have to test the edges to find out whether they
exist or not. However, such testing may involve far more
complicated procedures than merely identifying the existence
of an uncertain link. For example, in social networks, to
unravel the genuine relation between a pair of users, we may
need to apply advanced approaches such as graph matching
or data mining to reinforce the judgement [13], which may
incur large computational cost. Hence, it is desirable to design
a strategy that maintains the connectivity of the network
with minimum expected testing cost. Furthermore, a wise
strategy should be adaptive, implying that the previous testing
outcomes should be fully utilized for future edge selections.

In this paper, we are thus motivated to present a first look
into the problem of connectivity maintenance in uncertain
networks under adversarial attacks. Given a general uncertain



network modeled as a random graph with each edge associated
with an existence probability and a testing cost, our goal is
to design a general adaptive defensive strategy that incurs the
maximum expected size of the largest remaining connected
component with minimum expected testing cost. Moreover,
the defensive strategy should be independent of the attacking
patterns. To this end, we first investigate the computational
complexity of the problem. By proving its NP-hardness, we
show the difficulty of connectivity maintenance in an uncertain
network. To characterize the features of an optimal solution,
based on dynamic programming we first design an optimal
defensive strategy for uncertain networks with uniform costs
and thereafter generalize the strategy for general networks
through weighted sum of normalized size and cost. Consider-
ing the prohibitive price of computing an optimal strategy,
we further design two approximate defensive strategies to
pursue decent performance with quasilinear complexity, in
which the first one is a heuristic approach that quantifies the
edge vulnerability through an analogy from degree centrality
of nodes in deterministic networks to connectivity weight
of edges in uncertain networks, and the second one is an
adaptive greedy policy incorporating the minimax rule from
game theory, which minimizes the possible loss suffered by
the defender in a worst-case scenario caused by the attacker
and has theoretical performance guarantee.

Our key contributions are summarized as follows:
• We formally define the problem of connectivity mainte-

nance in adversarial uncertain networks by clarifying the
general uncertain network model and the actions taken by
the attacker and the defender, respectively. We prove the
NP-hardness of the connectivity maintenance problem.

• We derive an optimal defensive strategy which gives us
insights into the nature of the problem and the char-
acteristics of the optimal solution. We further design
two approximate strategies which, as concluded from
experimental results, can both derive decent solutions
with quasilinear computational complexity.

• All the proposed strategies are general and are indepen-
dent of the attacking patterns. We validate the superi-
ority of the proposed strategies over baselines through
extensive experiments on both synthetic and real-world
network datasets, under diverse attacking patterns.

The rest of this paper is organized as follows. Section II
states related work. In Section III, we introduce network and
adversary models and formulate the connectivity maintenance
problem. In Section IV, we investigate the computational com-
plexity of the problem. We propose the dynamic programming-
based optimal defensive strategies in Section V. In Section
VI, we propose two approximate defensive strategies and we
evaluate the proposed strategies in Section VII. We conclude
the paper in Section VIII.

II. RELATED WORK

A. Uncertain Networks
Uncertain networks characterize the properties of most

real-life networks, whose topologies may dynamically vary

with time. The past few years have seen intensive studies
focusing on different aspects of uncertain networks. Wu et
al. investigates the robustness issues of a set of distributed
optimization algorithms over uncertain network graphs [14].
Yu et al. proposed a distributed algorithm to accomplish local
broadcast services in abstract MAC layer in dynamic networks
[15]. Saha et al. devised a sampling-based algorithm with
accuracy guarantee to compute the most probable shortest path
in uncertain networks [16]. Cheng et al. studied the top-k
vulnerable nodes detection problem in uncertain graphs and
proposed a sampling-based approach [17]. In recent years,
other types of works on uncertain networks include reliable
topology design [18], performance analysis of unreliable wire-
less networks [19], and representative subgraphs extraction for
acceleration of different querying processes [20].
B. Network Connectivity

As a fundamental yet essential problem in the field of
networking, abundant works have made an effort to investigate
network connectivity. Piltyay et al. performed the analysis
of connectivity of wireless sensor network in heterogeneous
5G mobile systems [21]. Fukunaga et al. presented an adap-
tive algorithm with theoretical performance guarantee to find
connected dominating sets in uncertain graphs [22]. Fu et
al. proposed an optimal algorithm for source-destination con-
nectivity determination in general uncertain networks [12].
For connectivity in adversarial networks, Abuzainab et al.
studied the network connectivity in an adversarial internet of
battlefield things [6]. Flaxman et al. analyzed the influence on
network connectivity caused by adversarial deletion of partial
nodes in a scale-free network [23]. Du et al. investigated the
robustness of coupled networks under different targeted-attack
strategies [5]. Nugraha et al. addressed cyber security issues
considering connectivity on resilient graphs [7].

Although much effort has been devoted in both uncertain
network and connectivity investigation, when it comes to
connectivity analysis in adversarial networks, two deficiencies
of prior art from our perspective are listed as follows:
• Most existing works model the adversarial network as

a deterministic graph, while the rest mainly focus on
uncertain networks with specific topologies. Such works
are valuable to particular classes of networks (e.g. bipar-
tite and scale-free graphs), but may lack the ability of
generalization to general uncertain networks. Moreover,
the heterogeneous testing cost is always ignored.

• Existing studies concentrate on the influence on connec-
tivity caused by mere attack rather than a joint considera-
tion of attack and defense which may generate general de-
fensive strategies for effective connectivity maintenance.

To our best knowledge, this work is the first attempt to deign
general defensive strategies for connectivity maintenance in
general uncertain networks under adversarial attacks.

III. MODELS AND PROBLEM FORMULATION

A. Uncertain Network Model
An uncertain network is denoted by a random graph
G(V,E, p, c), where V is the set of vertices, E is the set of



edges, p : E 7→ [0, 1] and c : E 7→ R+ are the functions that
assign each edge e its existence probability and testing cost
respectively. The existence probabilities of different edges are
independent [12].

A state of an uncertain network G at some point is char-
acterized by an |E|-dimensional vector s representing the
underlying deterministic network of G at that moment. The
elements of s consist of 0 and 1, respectively implying the
inexistence and the existence of the corresponding edge. We
define si as the i-th component of state s. The set of all possible
states associated with G is denoted as S|E| = {0, 1}|E|. During
the whole process of connectivity maintenance, the state of G
is assumed to be fixed unless edges are attacked.

B. Adversary Model
We define sa and sd as the network states observed by the

attacker and the defender, respectively. The elements of both sa
and sd consist of 0, 1 and *, where * implies the corresponding
edge is untested.

Considering the nature of connectivity maintenance and
following the state of the art, we cast the adversarial process as
a multistage two-player zero-sum game, where at each stage
the attacker acts as a leader and the defender acts as a follower
[6]. The detailed actions made by the attacker and the defender
are listed as follows.

1) Attacker: At stage t, the attacker selects at edges and
tests their existence. For those inexistent chosen edges, the
attack fails. For those existent chosen edges, the attack suc-
ceeds and the attacker destroys them permanently. An attack
is observable if the defender is fully aware of its location and
outcome. The goal of the attacker is to decrease, as many as
possible, the existing edges in the uncertain network in order
to destroy the connectivity of the whole network.

Based on the amount of prior knowledge of the uncertain
network, the attacking strategies are classified into two general
patterns:

• Oblivious Attack. The attacker has few knowledge of
functions p and c in network G. Hence, the attacker
randomly selects each edge with equal probability at
each stage, independent of the previous actions. Such an
attacker is said to move by nature in game theory.

• Adaptive Attack. The attacker has some or much knowl-
edge of functions p and c in network G. With these
information at hand, the attacker makes selections based
on previous actions and the current state sa at each stage,
resulting in an organized attacking strategy.

2) Defender: The defender has full prior knowledge of
functions p and c in network G. At stage t, the defender selects
dt edges and tests their existence. For those inexistent chosen
edges, the defender makes no further action. For those existent
chosen edges, the defender applies sophisticated techniques
(i.e. burst transmission on data links in communication net-
works and encryption of messages in military networks) to
‘conceal’ the existing edge from being attacked until the end
of adversary. The goal of the defender is to hinder the attacks

and to maintain the connectivity of the network as much as
possible with minimum testing cost.

With perfect knowledge of the network, the defender always
tends to follow an adaptive defensive strategy, which is a
mapping π that maps a state sd to an edge e in the set
of untested edges in sd, indicating that the defender should
select and test edge e when confronted with state sd. For
completeness, we define that if all edges in a state sd has
been tested, then strategy π maps sd to ⊥, which indicates the
end of defense.

An illustrative example of an adversarial process is shown
in Figure 1. The notations that will be used throughout the
paper are summarized in Table I.
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Fig. 1. An adversary example. Top: An uncertain network and its state before
adversary. Medium: The edges selected by the attacker/defender at each stage
and the respective outcome. Bottom: The evolution of network state during
the process of adversary. The largest connected component is marked in red.
In this example, the attack is observable and the size of the largest remaining
connected component is 3.

C. Metrics and Problem Formulation
To characterize the network connectivity and to quantify the

effect of the defense, we define the metric to be optimized and
formulate the problem of connectivity maintenance as follows.
Definition 1. (Largest Remaining Connected Component) The
largest remaining connected component is the connected com-
ponent with maximum number of vertices (i.e., the connected
component of maximum size) at the end of adversary.
Definition 2. (The Connectivity Maintenance Problem) Given
a general uncertain network G(V,E, p, c) and an attacker
with arbitrary attacking strategy, the goal is to design a
general adaptive defensive strategy π that incurs the maximum
expected size of the largest remaining connected component
with minimum expected testing cost.

IV. COMPUTATIONAL COMPLEXITY

Before elaborating the defensive strategy, we first investigate
the computational complexity of the problem. We will show
that, even if without the existence of an attacker, it is NP-
hard for the defender to discover a connected component of



TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions

G uncertain network
V vertex set
E edge set
p existence probability function
c testing cost function
s network state
sa, sd state observed by attacker/defender
si i-th component of state s
s · e, s \ e evolved state from s with e existent/inexistent
S set of network states
Si set of network states with |i| tested edges
Es
u set of untested edges in state s

at, dt number of edges attacked/defended at stage t
π adaptive defensive strategy
u, f, Flc utility functions

certain size with a constrained testing cost. To this end, we
first convert the connectivity maintenance problem into its
decision version that asks for the existence of a defensive
strategy with expected testing cost at most l and with the size
of the discovered largest connected component at least k for
a given uncertain network. We then prove in Theorem 1 that
this decision version is NP-hard.

Theorem 1. The decision version of the connectivity mainte-
nance problem is NP-hard.

Proof: We prove the NP-hardness by reduction from s-t
reliability problem [24], which asks whether the probability
of a node s being connected to a node t is larger than some
value r in a graph G where all edges exist independently with
probability 1

2 .
Given an instance of s-t reliability problem, we transform

the graph G into an uncertain network G(V,E, p, c) through
the following steps. We first traverse nodes in G assuming
all edges exist and keep the size of the largest connected
component no larger than k by edge deletion. Then, we assign
each edge in G its corresponding existence probability 1

2 and
cost 1. Finally, We add an extra path P in G between node s
and node t. Path P consists of k different nodes, including s
and t. We set the existence probability of each of the k − 1
edges on P as 1

2 and the cost of each edge as 2|E|/(k − 1).
Denote r as the s-t reliability in G and l as the expected

cost incurred by the optimal defensive strategy on G. We will
show that we can efficiently compute r if we know l and vice
versa. Without loss of generality, we focus on the connected
component consisting of nodes s and t. If s and t are not
connected in G, then the defender has to at least test and con-
ceal the connected component P , leading to the first constraint
l ≥ (1 − r)2|E|. The other constraint l ≤ r|E| + (1 − r)2|E|
holds since the expected cost of the optimal strategy will not
exceed that of a clumsy strategy that first tests all the edges
in G and then tests and conceals all the edges in P if nodes s
and t are not connected in G. Combining these two constraints,
we conclude that an s-t reliability r = m/2|E| exists if and
only if there exists a strategy with expected cost l satisfying

2|E|−l ≤ m ≤ 2|E|−l
1−1−|E|/2|E| , where m is an integer. We notice

that the gap (2|E| − l)
(
|E|/2|E|

1−|E|/2|E|

)
≤ |E|

1−|E|/2|E| = O(|E|)
is linear with |E|.

Since the transformation and verification can both be done
in polynomial time, we conclude that the decision version of
connectivity maintenance problem is NP-hard.

V. OPTIMAL DEFENSIVE STRATEGY

Despite the NP-hardness, in order to gain some insights
into the connectivity maintenance problem, it is still necessary
and worthwhile to investigate the optimal solution. To this
end, we first utilize Dynamic Programming (DP) to derive
an optimal defensive strategy for a specific class of uncertain
networks with uniform costs and thereafter generalize the
optimal strategy for general uncertain networks through Multi-
Objective Optimization (MOO).

A. Uncertain Networks with Uniform Costs
In uncertain networks where all the edges have the same

testing cost, the only focus of the defender when designing
defensive strategy is to choose the edge that maximizes the
expected size of the largest remaining connected component.
To this end, we consider dynamic programming [25] as an
effective approach that directs the defender to compute the
optimal strategy in a bottom-up fashion.

We first make some preliminary definitions and notations.
For a given uncertain network observed by the defender, we
divide the network state space S into |E| disjoint subsets
Si(i = 0, 1, · · · , |E|) based on the number of tested edges
in the state. We name the states in the set S|E| as terminating
states and the states in the sets Si(i = 0, 1, · · · , |E| − 1) as
temporary states. Given a temporary state s and a selected
edge e to test, s · e and s \ e respectively denote the evolved
state after finding e existent and inexistent.

In addition, we define an optimal utility function u that
computes, for each temporary state, the expected size of
the largest remaining connected component generated by the
optimal defensive strategy starting from that state. For each
terminating state, u computes the exact size of its largest
connected component. For a defensive strategy π, uπ denotes
its corresponding optimal utility function.

Algorithm 1 Optimal Defensive Strategy
Input: Uncertain network G(V,E, p, c) with constant c
Output: An optimal defensive strategy π

1: Initialize Compute uπ(s) for all s ∈ S|E|
2: for i = |E| − 1 to 0 do
3: for all s ∈ Si do
4: Es

u := the set of untested edges in s
5: e∗ := argmaxe∈Es

u
{p(e)uπ(s·e)+(1−p(e))uπ(s\e)}

6: uπ(s) := p(e∗)uπ(s · e∗) + (1− p(e∗))uπ(s \ e∗)
7: π(s) := e∗

8: end for
9: end for

10: return π



According to the Bellman equation [25], we presents an
optimal defensive strategy based on dynamic programming in
Algorithm 1. The following theorems prove its correctness and
investigate its time complexity.
Theorem 2. For an uncertain network G(V,E, p, c) with
constant c, Algorithm 1 yields an optimal defensive strategy.

Proof: We prove the theorem by backward induction.
Denote the optimal defensive strategy by π∗, and denote the
defensive strategy generated in Algorithm 1 by π. For all states
s ∈ S|E|, it is obvious that uπ(s) = uπ∗(s). Now suppose
that for all states s ∈ Si, i ≥ k, uπ(s) ≥ uπ∗(s). To verify
the optimality of π, we have to show that for all states s
∈ Sk−1, uπ(s) ≥ uπ∗(s).

According to Algorithm 1, for a state s ∈ Sk−1, we have

uπ(s) = maxe∈Eu{p(e)uπ(s · e) + (1− p(e))uπ(s \ e)}
≥ p(π∗(s))uπ(s · π∗(s)) + (1− p(π∗(s)))uπ(s \ π∗(s))
≥ p(π∗(s))uπ∗(s · π∗(s)) + (1− p(π∗(s)))uπ∗(s \ π∗(s))
= uπ∗(s),

where the second inequality follows from the induction hy-
pothesis. We have now shown that under every state s, the
defensive strategy π is optimal, which completes the proof.

Theorem 3. For an uncertain network G(V,E, p, c) with
constant c, the time complexity of Algorithm 1 is O(|V |2|E|+
|E|3|E|), where |V | and |E| respectively denote the number
of vertices and edges in G.

Proof: The total number of possible network states ob-
served by the defender is 3|E|, including 2|E| terminating
states and 3|E| − 2|E| temporary states. To find the largest
connected component of a terminating state, we have to loop
through all the vertices, implementing either breadth-first or
depth-first search whenever the loop reaches a vertex that has
not already been included in a previously found connected
component. This is implementable in O((|V | + |E|)) time.
Also, selecting the optimal edge for each temporary state
requires O(|E|) time. Consequently, Algorithm 1 generates the
optimal defensive strategy in O((|V |+ |E|)2|E| + |E|(3|E| −
2|E|)) = O(|V |2|E| + |E|3|E|) time.
Remark: Algorithm 1 is perfectly suitable for Erdős-Rényi
network (ER graph), the most commonly studied uncertain
network topology. In an ER graph denoted by G(n, p), any
pair of n vertices are connected with an edge which exists
independently with uniform probability p and the testing cost
of each edge is uniform.

B. General Uncertain Networks

Now we generalize the optimal defensive strategy for
general uncertain networks. In general networks, we aim to
optimize two objectives simultaneously. On the one hand, we
hope to maximize the expected size of the remaining largest
connected component. On the other hand, we wish to minimize
the total expected testing cost incurred by the strategy.

To design an exact algorithm that takes into account both
objectives, we adopt the weighted sum method for Multi-
Objective Optimization Problems (MOOP) [26]. We combine

the two objectives into a single one by adding each objective
pre-multiplied by a defender-supplied weight. The weights
reflect the preference, for larger weight on cost implies the de-
fensive strategy being economy-oriented, while larger weight
on size implies the strategy being result-oriented.

Since cost and size differ in dimension, we first normalize
them through min-max normalization, where a variable x is
normalized to x∗ = (x − xmin)/(xmax − xmin), x∗ ∈ [0, 1].
We define Flc as a utility function that computes for each
terminating state the size of its largest connected component
and define the optimal utility function u for each temporary
state s as

u(s) = max
e∈Es

u

{−α c(e)− cmin
cmax − cmin

+p(e)u(s·e)+(1−p(e))u(s\e)},

whereas for each terminating state,

u(s) = β
Flc(s)
|V |

.

Parameters cmax and cmin denote the maximum and minimum
cost of all edges, |V | denotes the total number of vertices
in G (the maximum possible size of connected component),
and α, β denote the positive weights given by the defender.
Since we aim to decrease the cost, negative normalized cost
is included.

Denote π as the defensive strategy adopted by the defender,
and uπ as the optimal utility function associated with π.
Algorithm 2 states the optimal weighted defensive strategy.

Algorithm 2 Optimal Weighted Defensive Strategy
Input: Uncertain network G(V,E, p, c), weights α and β
Output: An optimal weighted defensive strategy π

1: Initialize: Compute uπ(s) = β Flc(s)
|V | for all s ∈ S|E|

2: for i = |E| − 1 to 0 do
3: for all s ∈ Si do
4: Es

u := the set of untested edges in s
5: e∗ := argmaxe∈Es

u
{−α c(e)−cmin

cmax−cmin
+ p(e)uπ(s · e)

+ (1− p(e))uπ(s \ e)},
6: uπ(s) := −α c(e

∗)−cmin

cmax−cmin
+ p(e∗)uπ(s · e∗)

+ (1− p(e∗))uπ(s \ e∗),
7: π(s) := e∗.
8: end for
9: end for

10: return π

The computational complexity of Algorithm 2 is also
O(|V |2|E|+|E|3|E|). Proofs of the optimality (under the same
weights) and complexity of Algorithm 2 directly follow from
that of Algorithm 1.
Remark: It is noteworthy that, the proposed two DP-based
algorithms generate the optimal defensive strategies regardless
of the attacking strategies. In other words, the optimality of
the two proposed strategies are independent of the attacking
patterns adopted by the attacker. Bellman’s Principle of Opti-
mality takes credit for such independence, which indicates that
starting from arbitrary state, the optimal strategy performs best
among all defensive strategies.



VI. APPROXIMATE DEFENSIVE STRATEGY

While the two DP-based algorithms precisely characterize
the features of the optimal defensive strategy, applying it
into practice may generate huge computational complexity
due to the NP-hard nature of our problem. Thus, it is of
great necessity to design approximation algorithms that largely
reduce the complexity while achieve comparable performance
with regard to the optimal solution. In this section, we propose
two approximate defensive strategy to strike a balance between
optimality and complexity.

A. Heuristic Approach

We first present a heuristic approach that quantifies the edge
vulnerability through an analogy from the centrality metrics of
nodes in deterministic networks to that of edges in uncertain
networks. In graph theory, the degree of a vertex v in a
deterministic network, deg(v), is the number of edges incident
upon v. In uncertain networks, we generalize this concept
through the following definitions on probability degree of
nodes and connectivity weight of edges.

Definition 3. (Probability Degree) In an uncertain network
G(V,E, p, c), the probability degree of a vertex v, pdeg(v),
is the sum of the existence probabilities of all edges incident
upon v.
Definition 4. (Connectivity Weight) In an uncertain network
G(V,E, p, c), the connectivity weight of an edge e, wcon(e),
is the sum of the probability degrees of its two endpoints.

In the heuristic approach, the defender selects edges in
a decreasing order of a ranking metric which combines the
connectivity weight, existence probability and testing cost. We
detail the procedure in Algorithm 3.

Algorithm 3 The Heuristic Approach
Input: Uncertain network G(V,E, p, c).
Output: An approximate defensive strategy π.

1: Initialize: Network state s := (∗, ∗, · · · , ∗), number of
edges selected per stage dt, set of untested edges Es

u := E,
set of edges selected by the attacker Ea := ∅.

2: Compute r(e) = wcon(e)p(e)/c(e) for each e ∈ E.
3: repeat at each stage:
4: Update Ea and set se := 0 for each e ∈ Ea.
5: Es

u := Es
u \ Ea.

6: for i = 1 to dt do
7: π(s) := argmaxe∈Es

u
r(e).

8: sπ(s) := 1 if π(s) exists and 0 otherwise.
9: Es

u := Es
u \ {π(s)}.

10: end for
11: until the end of adversary
12: return π

We now argue the rationality of the ranking metric r(e).
To start with, the definition of connectivity weight is quite
straightforward, since the connectivity weight of an edge can
be regarded as the expected number of edges connected to
that edge. The edge with a larger connectivity weight tends
to be more vulnerable (therefore crucial) in the network

connectivity. In other words, if we conceal an edge with
larger weight, we are likely to maintain a larger remaining
connected component. Besides, a high existence probability
of an edge is bound to increase the chance of a selected edge
being existent, so that the defender will not likely ‘miss the
shot’ when testing. In the contrary, the testing cost of an edge
contributes negatively to the ranking, since the defender aims
to minimize the total testing cost. An overall consideration
of the aforementioned three factors results in the proposed
ranking metric.

Compared with the two optimal strategies, the heuristic
approach reduces the time complexity to O (|E| log |E|), since
we only need to precompute and rank r(e) for all edges
initially. Despite the simplicity of implementation, as demon-
strated in the experiments, this heuristic approach exhibits
surprising superiority over other baselines.

B. Minimax-based Adaptive Greedy Policy

A weakness of the heuristic approach is the lack of perfor-
mance guarantee. To design an approximate defensive strategy
with theoretical approximation ratio, we combine the minimax
rule from game theory with the adaptive greedy policy for
adaptive stochastic maximization.

1) Adopting Minimax Rule: Since the connectivity mainte-
nance problem can be cast as a two-player zero-sum game, it is
intuitive to efficiently solve the problem by adopting the idea
from game theory [27]. Considering the feature of our model,
i.e., uncertainty of the network, we refer to the minimax rule,
which is a decision rule for minimizing the possible loss for
a worst-case (maximum loss) scenario.

To begin with, we introduce the notion of the Largest
Potential Connected Component (LPCC) to quantify the loss
suffered by the defender.
Definition 5. (Largest Potential Connected Component) The
largest potential connected component of a temporary state s
observed by the defender is the largest connected component
formed by the untested edges and the edges successfully
destroyed by the attacker (if observable).
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tested edge
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Fig. 2. An LPCC example. Left: The network state observed by the defender
at current stage. Right: Four possible outcomes of changes in LPCC depending
on the edge tested at next stage. In this example, edge 5 should be tested at
next stage to decrease the size of the LPCC from 5 to 3.

For the defender, the worst-case scenario starting from a
temporary state s is that the attacker has destroyed sufficient
existing edges after multiple stages to make the largest con-
nected component formed by the destroyed edges match the
initial LPCC in size, indicating that the network connectivity



is destroyed to the maximum extent. Therefore, at each stage,
the defender needs to minimize the size of the LPCC in order
to minimize the possible loss for a worst-case scenario. An
example to illustrate the selection rule for the defender is
shown in Figure 2.

2) Applying Adaptive Greedy Policy: To implement the
minimax rule, we apply the adaptive greedy policy for the
adaptive stochastic maximization problem [28] which aims to
maximize a utility function f : S → R≥0 that depends on
which edges we select and which state each edge is in. To start
with, we introduce the following preliminaries in the language
of the connectivity maintenance problem.

Definition 6. (Subrealization) A state s is a subrealization
of a state s′ if se =s′e for all se 6= ∗. Equivalently, s is a
subrealization of s′ if and only if, when viewed as relations,
s ⊆ s′.
Definition 7. (Conditional Expected Marginal Benefit) Given
a state s, an untested edge e and a utility function f , the con-
ditional expected marginal benefit of e conditioned on having
observed s is ∆(e|s) := p(e)f(s·e) + (1−p(e))f(s\e)−f(s).
Definition 8. (Adaptive Monotonicity) A utility function f :
S → R≥0 is adaptive monotone if the conditional expected
marginal benefit of any untested edge in any state is nonneg-
ative, i.e., for all s ∈ S and all e ∈ Es

u we have ∆(e|s) ≥ 0.
Definition 9. (Adaptive Submodularity) A utility function f :
S → R≥0 is adaptive submodular if the conditional expected
marginal benefit of any fixed edge does not increase as more
edges are tested. Formally, f is adaptive submodular if for all
temporary states s and s′ such that s is a subrealization of s′
(i.e., s ⊆ s′), and for all e ∈ Es′

u , we have ∆(e|s) ≥ ∆(e|s′).
The goal of adaptive stochastic maximization is to find

a policy π that maximizes the expected value of the utility
function f which is both adaptive monotone and adaptive
submodular, subject to limitations on the accumulated cost
when selecting edges following π. To incorporate the idea of
minimax, we define our utility function f : S → R≥0 on state
s as the difference between the initial size of the LPCC and
the size of the LPCC in s. We further notice that, due to the
definition of LPCC, for a state s and an untested edge e in s
observed by the defender, we must have f(s·e) = f(s\e) and
the conditional expected marginal benefit is thus simplified
to ∆(e|s) := f(s\e) − f(s). Theorem 4 demonstrates the
adaptive monotonicity and the adaptive submodularity of the
utility function f we defined.

Theorem 4. The utility function f is both adaptive monotone
and adaptive submodular.

Proof: The adaptive monotonicity of f can be easily
proved by noticing that the size of the LPCC in a state s will
never increase when the defender selects an untested edge e,
regardless of the existence of e.

To prove the adaptive submodularity of f , we consider three
cases categorized by the position of the selected edge e. If e
does not belong to the LPCC, then the removal of e will make
no difference to the conditional expected marginal benefit,

regardless of the stage where e is selected. If e belongs to
the LPCC, then either the removal of e makes no difference
to the size of the LPCC or the removal of e divides the LPCC
into two components, in which case the conditional expected
marginal benefit is the smaller size of the two. Obviously,
if edge e is selected after multiple stages instead of at the
current stage, the conditional expected marginal benefit will
never increase, which completes the proof.

3) Minimax-based Adaptive Greedy Algorithm: According
to the Adaptive Greedy Policy, at each stage the defender se-
lects untested edges in descending order of ∆(e|s)/c(e). Under
the same constraint on cost, such a policy has an approxima-
tion ratio of (1−1/e), namely f(π) > (1−1/e)f(π∗), where
f(π) and f(π∗) denote the the final value of f when following
policy π and optimal policy π∗ respectively. We present the
minimax-based adaptive greedy policy in Algorithm 4, which
has a time complexity of O(|E| log |E|) due to the sort of
untested edges at each stage.

Algorithm 4 The Minimax-based Adaptive Greedy Policy
Input: Uncertain network G(V,E, p, c).
Output: An approximate defensive strategy π.

1: Initialize: Network state s := (∗, ∗, · · · , ∗), number of
edges selected per stage dt, set of untested edges Es

u :=
E, set of edges selected by the attacker Ea := ∅, utility
function f .

2: Compute the initial size of LPCC in s.
3: repeat at each stage:
4: Update Ea and set se := 0 for each e ∈ Ea.
5: Es

u := Es
u \ Ea.

6: for i = 1 to dt do
7: π(s) := argmaxe∈Es

u
{ f(s\e)−f(s)

c(e) }.
8: sπ(s) := 1 if π(s) exists and 0 otherwise.
9: Es

u := Es
u \ {π(s)}.

10: end for
11: until the end of adversary
12: return π

Remark: The utility function f we define relaxes the model
constraint in that the defender may not need to acquire full
prior knowledge of function p in the network. In effect, we
view Algorithm 4 as a framework for devising defensive
strategies for a wide range of network models through the
selection of sophisticated scenario-specific utility functions.

VII. EXPERIMENTS

We now evaluate the performance of the proposed defensive
strategies through extensive experiments on various datasets.

A. Experimental Setup

1) Datasets: We adopt one synthetic and two real-world
datasets to construct the uncertain networks. The two real-
world datasets respectively reflect the characteristics of social
networks and communication networks, which are networks
that are apt to adversarial attack in real-life scenarios. De-
scriptions of these datasets are listed as follows:



• Erdős-Rényi Networks: Two uncertain networks are
constructed by ER graph models G(6, 0.2) and
G(100, 0.02). The uniform testing cost of each edge in
both networks is set to 1.

• Facebook Ego Networks [29]: This datasets consists of
ego network (friends lists) with 333 nodes and 5038 edges
from Facebook. We extract 18 ego networks, each with
100 nodes, to construct 18 uncertain networks.

• EU Email Networks [30]: This datasets consists of email
data network with 265214 nodes and 420045 edges gener-
ated in a large European research institution from October
2003 to May 2005. We extract 18 email networks, each
with 100 nodes, to construct 18 uncertain networks.

We turn the initial directed email network into an undirected
one by creating an edge between nodes i and j if either there
is a directed edge from i to j or from j to i in the initial
dataset. For each uncertain network constructed from real-
world datasets, Jaccard’s coefficient [31] is adopted to assign
each edge its existence probability. Specifically, for an edge
e = (u, v), p(e) = |N (u)

⋂
N (v)|/|N (u)

⋃
N (v)|, where

N (u) denotes the set of neighbors of node u. The testing cost
of each edge is generated from a Gaussian distribution with
mean 30 and standard deviation 10 (negative part truncated).

2) Methodology: To measure the performance of different
defensive strategies, for each uncertain network we generate
100 deterministic networks by sampling from the distribution
of existence probabilities of edges. On each deterministic
network, different defensive strategies are run 10 times, each
time under a certain attacking strategy which is either an
oblivious attack that randomly selects edges and is observable
by the defender or an adaptive attack that selects edges in
a decreasing order of their existence probabilities and is
unobservable by the defender. The defense ends when the size
of the largest remaining connected component stabilizes. The
metrics of a strategy in an uncertain network, i.e., the expected
size of the largest remaining connected component and the
expected total testing cost, is approximated by the average of
size and cost incurred by the strategy through 1000 trials.

3) Strategies in Comparison: We evaluate the performance
of the proposed defensive strategies against two baselines,
namely random defensive strategy and no-defense strategy. All
strategies in comparison are listed as follows:

• Optimal Defensive Strategy (OPT): The optimal strat-
egy generated by Algorithm 1 proposed in Section V.

Due to its prohibitive computational complexity, OPT is
simulated only for a 6-node Erdős-Rényi network.

• Heuristic Approach (HEU): The heuristic strategy gen-
erated by Algorithm 3 proposed in Section VI.

• Minimax-based Adaptive Greedy Policy (MAG): The
adaptive greedy approach incorporating minimax rule
generated by Algorithm 4 in Section VI.

• Random Defensive Strategy (RAND): The defender
randomly selects edges to test at each stage of adversary.

• No-defense Strategy (NOD): The defender takes no
defensive action during the whole process of adversary.

Due to the requirement of subjective defender-supplied
weights, the optimal weighted defensive strategy generated by
Algorithm 2 is not included in the comparison.

B. Performance Analysis

The optimality of OPT in ER networks is demonstrated in
Figure 3(a), with an expected size 1.592 of the remaining
largest connected component compared to NOD with size 1,
HEU with size 1.526 and MAG with size 1.587. For large
ER networks, Figure 3(b) shows the superiority of MAG
over other baselines. We further notice that, HEU degrades to
RAND in this case since all the edges in an ER network have
the same existence probability and testing cost. Therefore,
for uncertain networks with near uniform parameter setting,
we speculate that it is relatively effective to maintain its
connectivity through equal treatment of edges.

Tables II and III list the detailed outcomes in two real-
world datasets under both oblivious and adaptive attack. The
results are in the form of a/b where a denotes the ratio of the
expected size of the largest remaining connected component to
the average size of the initial largest connected component and
b denotes the expected total testing cost. Bold and underlined
figures are respectively the best results for a and b in a
network. For a straightforward illustration, Figures 3(c) and
3(d) plot the process of an adversary in EU Email network
under oblivious attack and an adversary in Facebook ego
network under adaptive attack.

Under oblivious attack that is observable by the defender,
HEU achieves superiority in both size and cost despite its ease
of implementation. Such a phenomenon validates the notion
of connectivity weight. The reason probably lies in that this
heuristic approach fully utilizes the accessible knowledge of
parameters in the uncertain network, which is unavailable for
the attacker. MAG, on the other hand, also performs well in

(a) G(6, 0.2) (b) G(100, 0.02) (c) EU Email Network (d) Facebook Ego Network

Fig. 3. Experimental results with x-coordinate indicating the number of stages and y-coordinate indicating the expected size of largest remaining connected
component. (a) Results in G(6, 0.2) under oblivious attack with at = 1 and dt = 1. (b) Results in G(100, 0.02) under oblivious attack with at = 1 and
dt = 1. (c) An adversary process in EU Email network under oblivious attack. (d) An adversary process in Facebook ego network under adaptive attack.



TABLE II
EXPERIMENTAL RESULTS IN FACEBOOK EGO NETWORKS

Oblivious
at = 40, dt = 1 at = 50, dt = 1 at = 60, dt = 1

Attack 1 2 3 4 5 6 7 8 9

HEU 0.427/2569 0.298/4299 0.140/3240 0.199/2137 0.354/2136 0.268/2356 0.204/1808 0.160/2805 0.201/2041
MAG 0.254/3680 0.148/7126 0.129/3994 0.138/3064 0.194/2943 0.201/2926 0.109/2612 0.133/4823 0.138/2536
RAND 0.124/3640 0.079/6808 0.071/4068 0.063/3113 0.102/2963 0.107/2947 0.056/2683 0.072/4496 0.085/2701
NOD 0.016/—— 0.017/—— 0.018/—— 0.017/—— 0.016/—— 0.016/—— 0.017/—— 0.019/—— 0.024/——

Adaptive
at = 3, dt = 1 at = 5, dt = 1 at = 10, dt = 1

Attack 1 2 3 4 5 6 7 8 9

HEU 0.112/6371 0.086/5053 0.144/5115 0.102/3166 0.078/2823 0.090/3627 0.043/1340 0.045/856 0.042/828
MAG 0.210/10712 0.165/6975 0.182/7310 0.153/5868 0.125/5316 0.145/6129 0.090/3617 0.072/2769 0.078/2874
RAND 0.103/10655 0.108/6951 0.118/7522 0.079/5698 0.068/5207 0.081/6229 0.047/3679 0.048/2734 0.046/2951
NOD 0.016/—— 0.019/—— 0.020/—— 0.018/—— 0.017/—— 0.019/—— 0.017/—— 0.018/—— 0.017/——

TABLE III
EXPERIMENTAL RESULTS IN EU EMAIL NETWORKS

Oblivious
at = 40, dt = 1 at = 50, dt = 1 at = 60, dt = 1

Attack 1 2 3 4 5 6 7 8 9

HEU 0.145/1761 0.196/4340 0.143/4353 0.154/3398 0.278/2068 0.072/1112 0.087/1210 0.082/800 0.203/1636
MAG 0.113/4147 0.146/6750 0.105/7052 0.104/5074 0.178/3015 0.087/3166 0.103/2744 0.087/2707 0.147/2365
RAND 0.054/4098 0.078/6690 0.059/6756 0.051/5269 0.094/2903 0.049/3091 0.049/2709 0.044/2772 0.077/2400
NOD 0.014/—— 0.018/—— 0.016/—— 0.016/—— 0.017/—— 0.015/—— 0.016/—— 0.015/—— 0.016/——

Adaptive
at = 3, dt = 1 at = 5, dt = 1 at = 10, dt = 1

Attack 1 2 3 4 5 6 7 8 9

HEU 0.072/3833 0.075/4556 0.109/4618 0.052/2118 0.054/3262 0.044/1415 0.035/1451 0.045/902 0.041/751
MAG 0.151/6220 0.191/6778 0.145/7503 0.111/4514 0.136/6218 0.092/2552 0.070/3688 0.063/2266 0.060/2105
RAND 0.079/6256 0.116/6732 0.094/7229 0.062/4438 0.080/6036 0.058/2760 0.041/3600 0.046/2289 0.044/2253
NOD 0.017/—— 0.020/—— 0.017/—— 0.017/—— 0.016/—— 0.020/—— 0.014/—— 0.020/—— 0.018/——

preserving the largest connected component, but is liable to
incur more cost than HEU.

Under adaptive attack that is unobservable by the defender,
the advantage of HEU in preserving the network connectivity
is largely weakened. In some drastic cases, the remaining size
of HEU is even smaller than that of a trivial random strategy,
which is likely due to the fact that the attacker is fully aware
of the parameters of the network and thus each attack is well-
targeted. Under these severe circumstances, MAG outperforms
other strategies in size, which verifies that the incorporation
of minimax rule serves its purpose of minimizing the loss in
a worst-case scenario.

In general, we conclude that both HEU and MAG achieve
decent performance in various datasets. For scenarios where
the network knowledge of the defender far outweighs that of
the attacker, HEU functions as a better approach that is both
economic and efficient. For scenarios where the attacker is
knowledgeable and tricky, MAG serves as a preferable policy
which is both secure and effective.

VIII. CONCLUSION

In this paper, we investigate the problem of connectivity
maintenance in adversarial uncertain networks. Given a gen-
eral uncertain network modeled as a random graph with each

edge associated with an existence probability and a testing
cost, our goal is to design general adaptive defensive strate-
gies to maximize the expected size of the largest remaining
connected component at the end of adversary with minimum
expected testing cost, regardless of the attacking strategies.
The complexity of our problem is clarified by proving its
NP-hardness. To address the problem, we first design opti-
mal defensive strategies based on dynamic programming and
multi-objective optimization. Due to the prohibitive complex-
ity of computing an optimal strategy, we then design two
approximate strategies respectively based on heuristic analogy
of centrality metrics from deterministic networks to uncertain
networks and adaptive greedy policy combined with minimax
rule from game theory. The superiority of the proposed strate-
gies over baselines is justified through extensive experiments.
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