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Abstract—This paper studies the problem of source detection,
which is to infer the source node out of an aftermath of a
cascade, i.e., the observed infected graph GN of the network at
some time. Prior arts have adopted various statistical quantities
such as degree, distance or infection size to reflect the structural
centrality of the source. In this paper, we propose a new metric
which we call the infected tree entropy (ITE), to utilize richer
underlying structural features for source detection. Our idea
of ITE is inspired by the conception of structural entropy [1],
which demonstrated that the minimization of average bits to
encode the network structures with different partitions is the
principle for detecting the natural or true structures in real-world
networks. Accordingly, our proposed ITE based estimator for the
source tries to minimize the coding of network partitions brought
by the infected tree rooted at all the potential sources, thus
minimizing the structural deviation between the cascades from
the potential sources and the actual infection process included in
GN . On polynomially growing geometric trees, with increasing
tree heterogeneity, the ITE estimator remarkably yields more
reliable detection under only moderate infection sizes. In contrast,
for regular expanding trees, we still observe guaranteed detection
probability of ITE estimator even with an infinite infection size,
thanks to the degree regularity property. We also algorithmically
realize the ITE based detection that enjoys linear time complexity
via a message-passing scheme, and further extend it to general
graphs. Experiments on various network topologies confirm the
superiority of ITE to the baselines. For example, ITE returns an
accuracy of 75% ranking the source among top 5%, far exceeding
45% of the classic algorithms on scale-free networks.

I. INTRODUCTION

The ubiquity of many types of online/offline and so-
cial/physical networks has fundamentally changed the land-
scapes of information spreading, nowadays. Unfortunately, the
same channels can be utilized to amplify isolated risks such as
rumors, malware or an isolated failure in a power grid network
that cause pernicious effects. Therefore, inferring the initiator
of the malicious information is critical whether for forensic
use or insights to prevent future epidemics.

Because of the wide range of applications, the source
detection problem has gained a lot of attention during the
past decade. The seminal work belongs to Shah and Zaman
[2], which, along with numerous following efforts [3]–[10],
investigates the problem in a common paradigm: given an
observation O of the graph G at some time, the goal is to find
the node v̂ that maximizes the correct detection probability,
given by P(O|v̂). Many of those prior arts try to utilize
network topological features, and accordingly adopt various

statistical quantities to describe the influence of nodes on
propagation. Typical examples include (i) degree [3], where it
is simply believed that the source node is the one surrounded
by the most infected neighbors, (ii) distance [4]–[6], that
select the potential source based on the minimum infection
eccentricity, or (iii) infection size [2], [7]–[10], where the
estimators select the node that highly balances the infection
size of each neighboring subtree. Despite those significant
efforts, we notice that there may still remain some potential
room of topology utilization for source detection. In addition,
the side information such as infection timestamps, propagation
directions or queries to culprits [11]–[17] are often hard to
obtain in reality due either to the privacy concern or to the
unreliability of the truth. Hence, it is a natural way to exploit
the structural features available inside the graph as much as
possible to enhance the detection performance.

To this end, we present a new metric to seek for richer
topological features mentioned above for source detection. Our
design of the new metric is mainly inspired by the structural
entropy [1], where a principle for detecting the natural or
true structures in real-world networks is proposed. The key
point of structural entropy is to partition a given graph into
different modules, where an exogenous process is launched
to continuously collect the message delivery (named a call)
between nodes uniformly at random. In this manner, the
structural entropy provably [1] captures the average number of
bits needed in two-dimensional code to encode the receivers
of the calls in a lossless way, which fully characterizes
the corresponding structural information. (A more detailed
introduction can be referred to Section II-C). Accordingly,
in our problem, given a snapshot of the graph G = (V, E),
including the knowledge of the infected graph GN = (VI , EI)
and beyond, the question becomes how can our proposed
metric, by virtue of structural entropy, leverage more available
topology to detect the true infection structure in GN , thus
inferring the source node more accurately?

To answer this question, we first note that on a tree network,
for the infected tree rooted at any potential source, the informa-
tion will eventually spread to the adjacent branches of the root.
This provides an intrinsic structure of the infected tree, which
is distinguished only by the location of the potential source
in the infected tree. Since the structural entropy provides
the minimum encoding principle to find the true structure



inside a graph, analogously we partition the structure of the
infected tree into modules in terms of different propagation
branches for any potential source. Considering the message
calls both between intra-module nodes and inter-module ones,
we encode this two-dimensional structure based on the proba-
bility distribution of all infected nodes as the receivers of the
calls, thus characterizing the extent to which the constructed
structure deviates from the actual infection process. We name
this proposed metric as Infected Tree Entropy (ITE). As can
be seen, our ITE based estimator for the source is indeed able
to capture more structural features in following aspects. (i)
The natural substructures in the infected graph, we call them
different modules. (ii) The mutual connections between the
nodes inside a module. (iii) The inter-connections between
modules. (iv) And the connections to uninfected nodes on the
boundary. These features integrally lead to the complete form
of the spreading cascade, and, as we will provably demonstrate
in later sections (Section IV and V), bring about improved
source detection performance. Then, we extend this framework
in general graphs by a BFS heuristic. To the best of our
knowledge, we are the first to apply structural entropy in this
problem. We summarize our main contributions as follows:

• We propose a new structural entropy based approach for
source detection, called the ITE estimator, which utilizes
more underlying structural features. In a tree graph, the
estimator can be efficiently solved via a message passing
algorithm, whose complexity scales linearly with the infec-
tion size. In general graphs, a BFS heuristic is incorporated
to approximate the ITE estimator.

• We derive the performance of the ITE estimator on different
networks. For geometric trees, with increasing heterogeneity
of the subtrees, our estimator remarkably yields more reli-
able detection under only moderate infection sizes, which
effectively prevents the isolated risks spreading to a wide
range. In contrast, for regular expanding trees, the ITE
estimator can still guarantee a non-trivial detection even
when the infection size goes to infinity.

• Numerical results on both synthetic and real-world networks
confirm the superiority of ITE to other different source
estimators. For example, the 5% accuracy of ITE is close
to 75%, which is significantly higher than that of other
algorithms on a scale-free network.

Related works. It is known that source detection problem is
highly challenging. In the seminal work [2], Shah and Zaman
studied the single source inference problem, and proposed
rumor centrality, a newly defined centrality quantity, which
was proved to be the maximum likelihood estimator on reg-
ular trees under susceptible-infected (SI) model. This work
was extended in [18] for random trees, where the detection
probability was quantified. Later, the rumor centrality has been
further studied under different models or assumptions [7]–[10].

Besides the rumor centrality, several other algorithms based
on a single snapshot of the network have been proposed. Zhu
and Ying [4] proposed a sample path based approach to detect
the single source under susceptible-infected-recovered (SIR)

model, while a message passing algorithm was proposed under
the same scenario by Lokhov et al. [19]. In [20], Lappas
et al. analyzed the detection problem under the independent
cascade (IC) model [21] by minimizing the distance between
the expected states and the observed states of the nodes.
Prakash et al. [22] proposed a minimum description length
based algorithm called NETSLEUTH, which used an eigen-
vector based metric to rank nodes under SI model. Similarly,
Fioriti and Chinnici [23] utilized the correlation between the
eigenvalue and the age of a node, and introduced the dynamic
age algorithm for the single source detection. In addition, there
exist several other algorithms which utilized side information
for source detection problem, such as timestamps of the
infected nodes [11]–[15], or directions from which a node gets
infected [16], [17]. All these methods are unable to exploit the
structural characteristics as much as possible.

The measures of graph entropy have been extensively stud-
ied in [24]–[27], where each of them is a specific form of
the Shannon entropy [28] for different types of distributions.
While Li and Pan [1] proposed the structure entropy mini-
mization principle to detect the natural structure in a network.
Our proposed metric is based on this idea.

Organization. The rest of this paper is organized as follows.
We introduce the ITE estimator in Section II. For tree-type
networks, we propose an efficient algorithms for its evaluation
in Section III. Section IV summarizes the main theoretical
results. The simulation based performance evaluations will be
presented in Section V, and all the proofs are provided in
Section VI. We conclude the paper in Section VII.

II. INFORMATION SOURCE ESTIMATOR

A. Spreading Model

We model the network as an undirected graph G = (V, E),
where V is the set of nodes, and E is the set of edges of the
form (i, j) for some i and j in V . In this paper, we limit our
attention to the case where there is only one source node v∗.

We use the susceptible-infected (SI) epidemic model for
the information spreading, where the infected nodes are not
allowed to recover. In the SI model, once a node i receives the
information, it is called infected, and it independently attempts
to infect each of its susceptible neighbors j. The spreading
times associated with edges are independent random variables
with identical exponential distribution with rate λ. Without
loss of generality, we take λ = 1.

B. Source Detection Problem

Given the above spreading model, we observe the infected
graph GN = (VI , EI) at some time t, where |VI | = N . We
have no prior knowledge of the value of t or the spreading time
on each edge e ∈ EI . All that we can utilize is the structure of
the infected graph GN , including the infected nodes VI ∈ V
and edges VI×VI∩E between them, as well as those edges on
the boundary between infected and uninfected nodes, totally
denoted by EI . Assuming a uniform prior probability of the



source node, the source detection problem can be formulated
as the maximum likelihood (ML) estimation problem given by

v̂ ∈ argmax
v∈GN

P(GN |v) . (1)

C. Structural Information of a Network

Recall that we hope to make full use of structural features
to infer the source. Also, as we have noted earlier in Section
I, structural entropy [1] is a measure that could fully capture
the topological information of a network. Thus, we first briefly
reproduce its main technical idea to facilitate our later usage
of it for the derivation of our proposed source estimator.

In practice, there exist rich substructures in a complex net-
work G, such as various modules, components or communities,
which form a partition P of the vertices. To characterize the
structural information contained in G relative to P , it makes
sense to inquire the information content of the substructure P
in G. Imagine that messages can be delivered between nodes
through edges. A call is a flow of message from a sender m
to a receiver n, where {m,n} ∈ E , and an exogenous process
is launched to continuously collect such calls uniformly at
random. Hence, at any moment, the probability that a node v
is the message receiver is dv/2|E|, where dv is the degree of v.
The authors [1] focused on the encoding of the network based
on this probability distribution, committed to distinguishing
the order from disorder in a noisy structure and detecting the
true structure, which is defined as follows.

Definition 1. (Structural Information of a Network by a
Partition): Given an undirected and connected graph G =
(V, E), suppose that P = {X1, X2, . . . , XL} is a partition of
V , the structural information of G by P is as follows:

HP(G) =
L∑
j=1

Vj
2|E|

H
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, . . . ,

d
(j)
nj

Vj

)
−
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log2
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(j)
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Vj
log2

d
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i
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−
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log2
Vj
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,

where Vj is the volume of module Xj which is the sum of
degrees of nodes in Xj , similarly, 2|E| is the volume of G, nj
is the number of nodes in Xj , d

(j)
i is the degree of the i-th

node in Xj , and gj is the number of inter-edges, which are
the edges with exactly one endpoint in module Xj .

The structural information of a module Xj consists of two
levels: (a) from a module level, the information of the entire
Xj as the receiver of messages, and (b) from a node level,
the information of each single node i ∈ Xj as the receiver.
Critically, we can omit the module level code when the sender
and receiver belong to the same module. Hence, for (a), the
information of Xj as the receiver is − log2

Vj

2|E| with proba-
bility gj

2|E| since we only need consider the deliveries whose
senders are not in Xj . For (b), the information for all nodes

in Xj as receivers is H(
dj1
Vj
, . . . ,

djnj

Vj
) with probability Vj

2|E| ,
where H(·) is the entropy function. Therefore, the structural
entropy indeed captures the average number of bits needed

Infected

Uninfected

Fig. 1. Illustration of Partition of the Infected Tree.

to encode the receivers of the calls in a lossless way, which
fully characterizes the structural information of a network with
corresponding partitions.

D. ITE based Source Estimator: Tree Networks

Since the structural entropy captures the structural infor-
mation of a graph G with any partition of the nodes, in
this section, we introduce the structural entropy based source
estimator for tree networks, which we name as the infected
tree entropy based source estimator (ITE estimator in short).

Recall that our goal is to find the most likely source node
given an observation of the infected tree GN at some time
t. To this end, we try to minimize the structural deviation
between the cascades from all the potential sources v ∈ GN
and the actual infection process. In this way, a natural and
reasonable partition of the GN is needed to characterize the
structure of spreading from any potential source. As mentioned
earlier, there exists such an intrinsic structure of the infected
tree, which is specified as follows. Suppose the g neighbors
of the node v ∈ VI are v1, v2, . . . , vg , in which dv(inf)
nodes are infected. For the fact that there exist no cycles in
tree networks, the information starting from v will spread to
dv(inf) disjoint subtrees, which form a spreading trajectory
to construct GN together with the node v itself. We call the
trajectory determined by any potential source node v ∈ GN a
partition of the infected tree, which is defined as follows.

Definition 2. (Partition of the Infected Tree by a Node): For
any potential source v ∈ GN , the partition of the infected tree
GN by the node v is that

Pv =
(
v, T vv1 , . . . , T

v
vdv(inf)

)
,

which satisfies the following properties.

1) Given GN , Pv is determined only by the location of v.
2) The modules in Pv are disjoint from each other.

where T vvj is the subtree rooted at the node vj and away from
the potential source node v.

To illustrate this definition, a simple example is shown in
Fig. 1, where we consider the potential source v. Since v
has two infected neighbors, v1 and v2, the infected nodes are
partitioned into three modules: the node v itself, the infected
subtree rooted at v1 and the infected subtree rooted at v2, that
is, Pv =

(
v, T vv1 , T

v
v2

)
.



Now that we have a partition of the infected nodes given
a potential source node v, we can derive the structural infor-
mation of the infected tree rooted at v, which we define for
simplicity as the infected tree entropy of v as follows.

Definition 3. (Infected Tree Entropy): Considering that the
information spreads in a tree network G(V, E), we observe the
infected tree GN at some time. Then, the infected tree entropy
of any infected node v ∈ GN , H(v,GN ), is defined by the
structural information of GN relative to Pv , that is

H(v,GN ) = HPv (GN ) = −dv
V

log2
dv
V
−
dv(inf)∑
j=1

gj
V

log2
Vj
V

−
dv(inf)∑
j=1

nj∑
i=1

d
(j)
i

V
log2

d
(j)
i

Vj
, (2)

where dv is the degree of v in G, V is the volume of the
infected tree GN , gj , Vj and nj are the number of inter-edges,
the volume and the size of j-th subtree of v, respectively, and
dv(inf) is the number of infected neighbors of the node v.

Take the node v in Fig. 1 as an example. Since the two
neighbors of v, v1 and v2 are both infected, we have dv(inf) =
2. As for the module T vv1 , there are two infected nodes with
degree 3, then V1 = 6. Meanwhile, as we can see, the number
of inter-edges of T vv1 are 4, hence, g1 = 4. Similarly, we
obtain V2 = 9, g2 = 5;V3 = 2, g3 = 2, and the volume of
GN is V = V1 + V2 + V3 = 17. Therefore, the infected tree
entropy of v will be

H(v,G6) = −
2

17
log2

2

17
− 4

17
log2

6

17
− 5

17
log2

9

17

− 2× 3

17
log2

3

6
− 3× 3

17
log2

3

9
≈ 2.179 (bits).

As the structural entropy described in Section II-C, the in-
fected tree entropy H(v,GN ) captures the average number of
bits needed to encode the two-dimensional structure of GN by
the partition Pv , however, the code itself is beyond our concern
in this work. Since Pv is only determined by the location of
node v, any potential source node v ∈ GN will determine a
structural information of the infected tree. The smaller value
of the ITE H(v,GN ), the lower extent to which the structure
constructed by Pv deviates from the actual infection process
starting from the source, hence the probability that the node
v is the actual source of the information will be higher. As
such, we denote the source of our estimator by v̂, then the
ITE estimator can be formulated as:

v̂ ∈ argmin
v∈GN

H(v,GN ) , (3)

with ties broken uniformly at random.

E. ITE based Source Estimator: General Graphs

For general graphs, owing to the lack of knowledge of the
underlying spanning tree corresponding to the first time that
each node gets infected, we use the breadth first search (BFS)
heuristic to deduce a tree network in the infected graph GN .

Algorithm 1: Equivalent ITE Message Passing Algo-
rithm
Input: Infected graph GN
Output: Equivalent ITE for each node u ∈ GN

1 Randomly choose a root node v∗ ∈ GN
2 for u in GN do
3 if u is a leaf node then
4 lupu→par(u) = [1, deg(u)]

5 else if u is the root node v∗ then
6 Lall =

∑
v′∈child(v∗) l

up
v′→v∗ + [1, deg(v∗)]

7 H(v∗, GN ) =

Lall[1]
2|child(v∗)| ·

∏
y∈child(v∗) f(l

up
y→v∗)

8 else
9 lupu→par(u) =

∑
y∈child(u) l

up
y→u + [1, deg(u)]

10 ppar(u) = Lall − lupu→par(u)
H(u,GN ) = Lall[1]

2[|child(u)|+1] · f(ppar(u)) ·∏
y∈child(u) f(l

up
y→u)

11 return H(u,GN ) for u ∈ GN

We assume that if the node v ∈ GN was the source, then the
infection process was along the BFS tree rooted at v, TBFS(v).
The intuition is that the BFS tree would correspond to all
the closest neighbors of v being infected as soon as possible.
We should notice that the removed edges by BFS will not be
counted in the degree of both end nodes. With this heuristic,
we obtain the following source estimator for a general graph.

v̂ ∈ argmin
v∈GN

H(v, TBFS(v)) . (4)

As we will empirically show in Section V, this estimator
indeed outperforms the baselines on different networks.

III. ALGORITHM FOR TREES

In order to efficiently find the potential source node with the
minimum ITE, we propose a message-passing algorithm for
tree networks. To do this we first try to simplify the expression
of H(v,GN ).

H(v,GN ) = −dv
V

log2
dv
V
−
dv(inf)∑
j=1

gj
V

log2
Vj
V

−
dv(inf)∑
j=1

nj∑
i=1

di
(j)

V
log2

di
(j)

Vj

=
1

V
log2

[
1∏

v′∈GN
dv′

dv′
· H2(v,GN )

]
. (5)

Note that the first term in the real number of the logarithmic
function is a constant for each node v, so the value of



H(v,GN ) is only determined by the second term H2(v,GN ),
where

H2(v,GN ) = V dv+
∑dv(inf)

j=1 gj ·
dv(inf)∏
j=1

Vj
Vj−gj . (6)

Moreover, the following Proposition states a structural prop-
erty of the inter-edges in an infected tree.

Proposition 1. In an infected tree, for any two infected nodes
v1 and v2, we have

dv1(inf)∑
j=1

gj(v1)−
dv2(inf)∑
j=1

gj(v2)

= [dv1(inf) − dv1(un)]− [dv2(inf) − dv2(un)],

(7)

where dv(un) denotes the number of uninfected neighbors of
the node v.

The intuition is that the difference of the sum of inter-edges
between two nodes is only determined by the respective
number of infected and uninfected degrees, which is easily
obtained. Based on Proposition 1, we can further simplify
H2(v,GN ) by omitting the constant term as follows:

H(v,GN ) = V 2dv(inf) ·
dv(inf)∏
j=1

Vj
2(nj−1). (8)

Therefore, the ITE estimator is transformed into finding the
potential source node v̂ with the minimum value of H(v̂, GN ),
which we call the equivalent ITE. To calculate the equivalent
ITE for each infected node u, we first traverse all infected
nodes and record their degrees to obtain the volume V of GN
for the preparation step with a complexity of O(N + |EI |). In
the next step, we select any node v∗ as the root and calculate
the size nj and the volume Vj of all of its subtrees. This can be
done by having each infected node u pass a tuple to its parent
node, denoted by lupu→par(u). The first item of the tuple is the
size of u’s subtree, and the second item is the corresponding
volume. The parent node adds the lupu→par(u) tuples to obtain
the size and volume of its own subtree. These tuples are then
passed upward until the root node v∗ receives all its children’s
tuples, by which it will calculate its equivalent ITE.

Meanwhile, adding all tuples of its children and the tuple
of itself, [1, deg(v∗)], the root node can obtain a global tuple
Lall that records the size N and the volume V of GN . With
Lall, each infected node u will then obtain the tuple of its
parent’s subtree by lupu→par(u) subtracted from Lall, which we
call ppar(u) and helps to calculate their equivalent ITEs. The
complexity of this step is O(N). Thus, the message-passing
algorithm is able to calculate the equivalent ITE for each node
in GN using only O(N + |EI |) computations, which is still
the same order as the infection size even in the graphs whose
scale grows exponentially with the diameter. The pseudocode
for this message-passing algorithm is included in Algorithm 1
by omitting the preparation step, where f(x) = x[1]2(x[0]−1).

IV. MAIN RESULTS

In this section, we present the main theoretical results of
the ITE estimator under different graph structures.

A. Trivial Detection on Line Graphs

We start from a trivial structure which is a line. Defining Pc
as the correct detection probability of the ITE estimator under
the infection size N , we will establish the following result.

Theorem 1. Suppose the information spreads on a line graph
where the degree of each node is 2 as per the SI model. Then
we have

Pc = O(
1√
N

).

We can see that the correct detection probability scales as
N−1/2 on the line graph, which is trivial when N goes to
infinity. The intuition for this result is that the structure of the
line graph is so trivial that the ITE estimator could provide
very little structural information of the source. This is a special
case for regular trees, so we omit the proof of this theorem.

B. Performance Guarantee on Regular Expanding Trees

We next consider the detection performance on regular
expanding trees, where each node has degree d ≥ 3. In this
case, the tree expands quickly with the increase of the depth,
and the structure is more complex than a line. We obtain the
following result of our estimator.

Theorem 2. Suppose the information spreads on a regular
tree with degree d ≥ 3 as per the SI model. Then

0 < lim
N→∞

Pc ≤
1

2
.

Due to the degree regularity and enough structural complexity
in the network, our estimator could capture the structural
features inside, and still perform the detection with a strictly
positive probability even when the infection size N goes to
infinity. Such is not the case for one randomly selecting an
infected node. The above result also says that the detection
probability is bounded by 1/2. Therefore, the performance of
ITE estimator is guaranteed on regular trees with d ≥ 3. This
theorem is proved in Section VI-A.

C. Advantages with Heterogeneity of Geometric Trees

Geometric trees are first introduced in [18], which grow
polynomially in size with the diameter of the tree. They are
parameterized by constants α, b and c, with α ≥ 0, 0 < b ≤ c.
Let ni(r) denote the number of nodes in the i-th subtree of
the root node v∗ at distance exactly r from the subtree’s root
node, and the degree of v∗ is dv∗ , then for all 1 ≤ i ≤ dv∗

brα ≤ ni(r) ≤ crα. (9)

The condition of (9) describes that each of the subtrees of the
root node should satisfy polynomial growth with parameter
α ≥ 0. The parameter α characterizes the growth of the
geometric trees, while the ratio c/b describes the heterogeneity
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Fig. 2. Performance on tree networks.

of the subtrees. When c/b ≈ 1, the subtrees are somewhat
regular, whereas for c/b large enough, there is substantial
heterogeneity in the subtrees.

We consider the scenario where the information starts
spreading from the root node of the geometric tree, and obtain
the following result, which demonstrates a further advantage
of our estimator with the increasing tree heterogeneity.

Theorem 3. For a geometric tree with parameters α > 0, 0 <
b ≤ c, and the root node v∗ with degree dv∗ ≥ 3. Let α,
b and dv∗ be fixed, then as the value of c (or to say c/b)
increases, the ITE estimator will yield more reliable detection
compared to those centrality based algorithms under only
moderate infection sizes.

Remark: A more reliable detection under moderate infection
sizes means that our estimator has a better chance to detect
the source before the infection spreads to a wide range, which
is of importance in reality. Intuitively, with the increasing
heterogeneity in geometric trees, it is generally harder to
correctly detect the source for any algorithm due to the more
complex structures of the infected tree, where most centrality
based algorithms [2]–[4] will probably be fooled to select
the nodes with large degrees. In contrast, as we will prove
in Section VI-B, the ITE estimator will not be completely
dictated by the centrality of the potential source.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the ITE
estimator on different networks.

A. Baseline Algorithms

For comparison, we choose the algorithms proposed in the
same SI model, requiring a single observation of the network
and no side information, which are summarized as below.
• RUM: Find the node with maximum rumor centrality [2].

This classic algorithm is proved to be the maximum likeli-
hood estimator on regular trees under the SI model.

• DA: Find the node with maximum dynamic age [23], which
is defined as the absolute difference between the maximum
eigenvalue of the adjacency matrix and the maximum eigen-
value of the adjacency matrix after the node is removed.

• NETSLEUTH: Find the node with maximum value in
the smallest eigenvector of the submatrix constructed by

infected nodes in the graph Laplacian matrix. This is a
spectral graph theory based approach proposed in [22].

B. Tree Networks
We first provide simulation results on trees to corroborate

the theoretical results in Section IV. For each simulation, we
select the source node uniformly at random and synthesize
the spreading as per the SI model. We conduct 500 simulation
runs for each configuration on each network.

The detection probability of the ITE estimator versus the
infection size on different trees is shown in Fig. 2. As can be
seen, the detection rate scales as N−1/2 as derived in Theorem
1 for line graphs. While for regular expanding trees with d ≥
3, the estimator has a non-trivial detection probability, which
is less than 1/2 and does not decay to 0 as predicted.

Figs. 2(b)-2(d) present the results on geometric trees under
different settings of c/b, where we fix α = 1, b = 5 and
dv∗ = 12. We have the following two observations. Firstly, by
comparing these three subgraphs, we can explicitly see that
ITE is less affected with the increasing ratio of c/b. Secondly,
the gap of detection probabilities between ITE and the other
three algorithms becomes wider under the same infection size,
thus, our estimator has more advantages when there exists
more heterogeneity in geometric trees which is guaranteed by
Theorem 3.

C. Graph Networks
We next perform experiments on small-world networks [29],

scale-free networks [30] and the US power grid (PG) networks
[29]. The small-world network is generated by rewiring edges
and contains 5000 nodes and 25000 edges, while the scale-
free network is generated by preferential attachment with 5000
nodes and 9996 edges. The PG network is the electrical power
grid of the western United States which contains 4941 nodes
and 6594 edges. We vary the infection size from 100 to
400 and run each simulation 300 times. In each simulation,
the source node is chosen uniformly across node degree to
avoid the bias towards small degree nodes. We evaluate the
performance of the algorithms with following metrics.
• Distance is the average number of hops from the estimated

source to the actual source, which is an often used metric
for source detection problem.

• γ%-accuracy versus the rank percentage describes the prob-
ability that the actual source is ranked among top γ percent.
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Fig. 3. Performance on the small-world network.
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Fig. 4. Performance on the scale-free network.

For example, RUM ranks the nodes in an descendant order
according to their rumor centrality, whereas ITE ranks the
nodes in an ascendant order of their infected tree entropy.
We wish that the actual source lies in the top ranked nodes
with a high probability.

Figs. 3-5 show the performance on the three networks
mentioned above respectively. For all the plots of γ%-accuracy
versus the rank percentage γ, we pick the infection size
400. From the perspective of distance, we observe that ITE
performs better than the other three algorithms in almost
all cases. The improvement is more obvious in small-world
network than in scale-free network and PG network. For the
small-world network used here, the average ratio of edges to
nodes is 5, whereas for the scale-free network and PG network,
the average ratio is 2 and 1.3 respectively. Thus, the small-
world network is less tree-like. This may explain why ITE
outperforms more apparently than the other three algorithms.
From the perspective of γ%-accuracy, ITE has similar or better
performance compared to all other algorithms. Particularly on
the scale-free network, the 5%-accuracy of ITE is 75%, which
is significantly higher than that of other algorithms, e.g., 45%
for RUM and DA, 29% for NETSLEUTH. The reason behind
may be the existence of many large degree hubs in the scale-
free network, then the network has more heterogeneity than
the other two networks.

VI. PROOFS

A. Proof of Theorem 2

Before giving the proof of the result on regular expanding
trees, we first simplify the equivalent ITE in (8) by the
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Fig. 5. Performance on the power grid network.

regularity of the trees. On a regular tree with degree d ≥ 3, it
is easy to see that V = d ·N and Vj = d · nj , then

H(v,GN ) = d2(N−1)N2dv(inf) ·
dv(inf)∏
j=1

n
2(nj−1)
j . (10)

By omitting the constant term d2(N−1), we denote the equiv-
alent ITE on regular trees by Hr(v,GN ). That is,

Hr(v,GN ) = N2dv(inf) ·
dv(inf)∏
j=1

n
2(nj−1)
j . (11)

To establish that on regular trees with d ≥ 3, the probability
of correct detection of the source using ITE estimator is strictly
positive and upper bounded by 1/2, irrespective of N , we
need to find out under what conditions the source node v∗ has
the minimum Hr(v∗, GN ). Denote the d neighbors of v∗ by
v1, v2, . . . , vd, and let the random variable Ti(t) be the number
of infected nodes in the i-th subtree of v∗ at time t. To find
the lower bound, we first define a special case Sn(t), under
which the source node v∗ is proved to be correctly detected.
After that, we state that Sn(t) is lower bounded by a strictly
positive constant.

Define Sn(t) as the event when all the d subtrees of the
source have between n and (d− 1)n infected nodes. That is,

Sn(t) =

d⋂
i=1

{n ≤ Ti(t) ≤ (d− 1)n}, for n > 0. (12)

We shall make sure that Hr(v∗, GN ) is the minimum among
all the infected nodes under this event. Considering that as
t goes to infinity, n will be large enough, and the first term
N2dv(inf) only increases with the power of dv(inf), such that
1 ≤ dv(inf) ≤ d. In this case, the value of the equivalent
ITE of each infected node v is mainly determined by the
exponential term, denoted by

H∗r(v,GN ) =

dv(inf)∏
j=1

n
2(nj−1)
j . (13)

To begin with, we state the following Lemma which charac-
terizes the general form of the function in (13) for the further
analysis. We present its proof later in this section.



Lemma 1. For the function g(x) =
∏b
j=1 xj

2xj−2, object
to

∑b
j=1 xj = c (a constant), and xj > 0, for any j =

1, 2, . . . , b, then we have the following results:
1) g(x) is strictly convex.
2) g(x) has the minimum value as x1 = x2 = · · · = xb =

c
b .

Next, we note that under the event Sn(t), we have Ti = n+ci
(t is omitted for simplicity) where 0 ≤ ci ≤ (d − 2)n, for
1 ≤ i ≤ d. Suppose w.l.o.g. that cd = max(c1, c2, . . . , cd).
Therefore,

T vdv∗ = (d− 1)n+

d−1∑
i=1

ci + 1 > (d− 1)n ≥ Td. (14)

Then the remaining d − 1 subtrees of vd have n + cd − 1
infected nodes in all. Since 0 ≤ cd ≤ (d− 2)n, we have

n+ cd − 1

d− 1
≤ n− 1

d− 1
< n. (15)

Based on the Lemma 2 stated below, to ensure the value of
H∗r(vd, GN ) is as small as possible, the sizes of remaining
d−1 branches should satisfy the nearest integer point from the

minimum point (
n+ cd − 1

d− 1
,
n+ cd − 1

d− 1
, . . . ,

n+ cd − 1

d− 1︸ ︷︷ ︸
d−1

) as

presented in Lemma 1. Considering (15), thus the sizes of vd’s
subtrees will be (n − a1, n − a2, . . . , n − ad−1, T vdv∗ ), where
a1, a2, . . . , ad−1 are all non-negative integers.

Lemma 2. For the function g(x) =
∏b
j=1 xj

2xj−2, object
to

∑b
j=1 xj = c (a constant), and xj ∈ N+, for any

j = 1, 2, . . . , b. Then g(x) has the minimum value when
(x1, x2, . . . , xb) reaches the nearest integer point from the
minimum point Q0(c/b, c/b, . . . , c/b︸ ︷︷ ︸

b

).

Different from Lemma 1, the variables xj ′s in Lemma 2 are all
positive integers, and we present its proof later in this section.
Further, the following Lemma states a property of the strictly
convex function which can be easily derived.

Lemma 3. If f(x) is positive, strictly convex and monotoni-
cally increasing, then we have that

f(x1) · f(x2) · · · f(xk) <f(x1 − b1) · f(x2 − b2)
· · · f(xk−1 − bk−1) · f(xk +B).

where x1 ≤ x2 ≤ · · · ≤ xk, bi ≥ 0, and
∑k−1
i=1 bi = B,

Combining (14) (15) and the Lemma 3, we obtain that
H∗r(v∗, GN ) < H∗r(vd, GN ). Next, in the same way, for other
neighboring nodes of v∗, it can be proved that, as N →∞,

H∗r(vi, GN ) > H∗r(vd, GN ) > H∗r(v∗, GN ), for 1 ≤ i ≤ d−1.

From the proof of Lemma 2, we can see that for an infected
node v, with the infection size of each subtree as an integer
coordinate (x1, x2, . . . , xd), denoted by C(v), its Euclidean
distance to Q0 is a critical factor of H∗r(v,GN ), which is
also the variance of C(v). In other word, H∗r(v,GN ) will be

smaller with high probability when C(v) has lower variance.
Though we cannot derive a complete conclusion due to the
asymmetry property of g(x), this is an obvious trend because
of the convexity of g(x). Therefore, for other non-neighboring
nodes v′, as N goes to infinity, the variance of C(v′) will
be much greater than that of the actual source v∗, hence we
conclude that, as N →∞,

H∗r(v∗, GN ) < H∗r(v′, GN ).

To sum up, we obtain that under Sn(t), the ITE estimator
correctly detects the source when N goes to infinity. Moreover,
the probability of the event Sn(t) was proved in Theorem 2
in [2] that is lower bounded by a strictly positive constant.
As for the upper bound 1/2, we can easily derive from the
regularity of the tree and the symmetry between the source
and the first infected neighboring node. This completes the
proof of Theorem 2.

Proof of Lemma 1. Firstly, we transform the expression of
g(x) as follows.

g(x) =

b∏
j=1

x
2xj−2
j = e(2x1−2) ln x1+(2x2−2) ln x2+···+(2xb−2) ln xb .

Denoting

h(x) = (2x1−2) lnx1+(2x2−2) lnx2+· · ·+(2xb−2) lnxb,

then we can obtain the Hessian matrix of h(x):

A =


2x1+2
x1

2 0 · · · 0

0 2x2+2
x2

2 · · · 0
...

...
. . .

...
0 0 · · · 2xb+2

xb
2

 . (16)

Since xj > 0, for j = 1, 2, . . . , b, the matrix A is positive-
definite, we derive that h(x) is strictly convex. Considering
the convexity of ex, we obtain that g(x) = eh(x) is strictly
convex, which completes the first part of the proof.

Due to the monotonicity of ex, g(x) has the minimum value
when h(x) does. Based on the Lagrange Multipliers, we first
define the Lagrange function as follows,

z(x) , h(x) + λ(c− x1 − x2 − · · · − xb).

Then we obtain,

∂z

∂x1
= 2 lnx1 + 2− 2

x1
− λ = 0,

∂z

∂x2
= 2 lnx2 + 2− 2

x2
− λ = 0,

...
∂z

∂xb
= 2 lnxb + 2− 2

xb
− λ = 0,

x1 + x2 + · · ·+ xb = c.

(17)



Denote by p(x) = 2 lnx + 2 − 2
x , then p′(x) = 2x+2

x2 > 0,
so p(x) is strictly increasing. As such, we observe the first b
equations in (17). Since the parameter λ remains the same, it
can be concluded that p(x1) = p(x2) = · · · = p(xb). Then
the solution to the equations, that is, the condition when g(x)
has the minimum value becomes:

x1 = x2 = · · · = xb =
c

b
,

which completes the second part of the proof.

Proof of Lemma 2. (1) If c/b is an integer, the conclusion is
directly obtained from Lemma 1.

(2) If c/b ∈ (a, a + 1), where a is an integer,
we assume that the nearest integer point from the min-
imum point Q0(c/b, c/b, . . . , c/b︸ ︷︷ ︸

b

) stated in Lemma 1 is

Q1(a, a, . . . , a︸ ︷︷ ︸
n

, a+ 1, · · · , a+ 1︸ ︷︷ ︸
b−n

), which satisfies:

na+ (b− n)(a+ 1) = c.

Bringing the coordinate of the point Q1 into g(x), we have

gQ1
(x) = a2n(a−1) · (a+ 1)2a(b−n).

Suppose Q2(a, a, . . . , a︸ ︷︷ ︸
n+1

, a+ 1, . . . , a+ 1︸ ︷︷ ︸
b−n−2

, a + 2). Denote the

distance between two points Qi and Qj by dQiQj
. Then it is

easy to see that dQ0Q2
> dQ0Q1

, and

gQ2
(x) = a2(n+1)(a−1) · (a+ 1)2a(b−n−2) · (a+ 2)2(a+1).

Then we have,

gQ2
(x)

gQ1
(x)

=
a2(a−1)(a+ 2)2(a+1)

(a+ 1)4a
> 1.

Hence, gQ2
(x) > gQ1

(x).
Similarly, for Q3(a− 1, a, . . . , a︸ ︷︷ ︸

n−2

, a+ 1, a+ 1, . . . , a+ 1︸ ︷︷ ︸
b−n+1

), we

have dQ0Q3
> dQ0Q1

and gQ3
(x) > gQ1

(x).
The same conclusion can be obtained for
Q4(a, . . . , a︸ ︷︷ ︸

n

, a − 1, a+ 1, . . . , a+ 1︸ ︷︷ ︸
b−n−2

, a + 3), and Q5(a −

2, a, . . . , a︸ ︷︷ ︸
n−2

, a+ 2, a+ 1, . . . , a+ 1︸ ︷︷ ︸
b−n

).

By induction, we conclude that gQ1(x) is the minimum
value of g(x), which completes the proof.

B. Proof of Theorem 3

We assume that the source node v∗ first infects its neighbor
vi (1 ≤ i ≤ dv∗) with degree dvi . For the memoryless property
of exponential distribution, the spreading is then divided into
two processes: (a) τ1: starting from v∗ and away from vi with
rate (dv∗−1)λ, and (b) τ2: starting from vi away from v∗ with

rate (dvi−1)λ. Based on the definition of geometric trees, we
obtain the expectation of the degree of vi as follows.

E(dvi) =
(b+ c)

2
+ 1. (18)

From (18) we can see that if we fix the parameter b, then
E(dvi) ∝ c. This indicates that the spreading rate of τ2 will
be higher with the increase of c, hence the information will
be inclined to spread to the neighbors of vi. As a result, vi
will have a larger infected degree.

Recall that the first term in (8), V 2dv(inf) , grows with the
power of dv(inf), while the second term grows exponentially.
Unlike the limiting case when the infection size goes to infinity
in Theorem 2, when the infection size is only moderate,
however, we cannot overlook the difference of V 2dv(inf) for
any v ∈ GN . Furthermore, for c/b large enough, then w.h.p.
we have that

V 2dv∗(inf) � V 2dvi(inf) (19)

In addition, as mentioned in Section VI-A, the second term
is highly related to the variance of each subtree’s size, hence
it characterizes the structural centrality of the potential source
in a way. In this case, the source v∗, which, second to the
node vi, will have more balanced sizes of subtrees compared
to those of other remaining infected nodes due to the spreading
property.

Combining the above two factors, as the ratio of c/b
increases, we will obtain that H(v∗, GN ) < H(vi, GN ) with
higher probability and the source v∗ will have the minimum
ITE in GN .

On the other hand, owing to the large infected degree of
vi, most centrality based estimator will probably be fooled to
choose vi as the source. By contrast, the ITE estimator will
not be completely dictated by the centrality of each potential
source as mentioned, and will correctly find the source with
higher probability. This derives a more reliable detection.

VII. CONCLUSION

In this paper, we propose a structural entropy based ap-
proach named ITE estimator for source detection under the
SI model. Theoretically, we prove that on geometric trees, the
ITE estimator remarkably yields more reliable detection under
moderate infection sizes with the increasing tree heterogeneity,
which has important practical significance. Besides, a non-
trivial detection is guaranteed as the network grows to infinity
on regular expanding trees. To improve the efficiency, we
propose a message passing algorithm with a complexity of
O(N + |EI |), faster than most prior arts. By incorporating
the BFS strategy on general graphs, experiments with different
metrics show that the ITE estimator outperforms other baseline
algorithms on both synthetic and real-world networks.
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