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Abstract—Social recommendation has been widely applied to
offer users suggestions on who to connect to, where most existing
strategies overlook the existence of multi-type connections among
users. To overcome such limitation, we characterize each type of
connections by a corresponding network layer and then propose
a novel algorithm for joint recommendations in cross-layer social
networks. Particularly, two types of results are presented in the
paper. (i) Our proposed algorithm, named as Cross-layer 2-hop
Path (C2P) algorithm, implements the joint recommendation by
suggesting a user establish connections to his cross-layer two-hop
neighbors, i.e., those who link to the user by two-hop paths with
the two hops belonging to two different layers, respectively. In
doing so, each produced recommendation item is a combination
of user relationships in both two layers and thus can better meet
user demands. (ii) By analytical derivations, along with further
empirical validation on real datasets, we give the performance
evaluation on our proposed algorithm. Firstly, we prove that the
algorithm is efficiently implementable with a constant complexity
in each recommendation. Then, we evaluate its recommendation
performance by two metrics, i.e., acceptance and diversity, where
the former metric measures recommendation accuracy and the
latter one measures an algorithm’s capability to provide diverse
recommendation items. Our results show that C2P algorithm is
optimal in terms of acceptance and for diversity, its performance
is in the same order of the theoretical upperbound. And finally,
the effectiveness of the proposed algorithm is validated by our
simulations on three real datasets, where it outperforms baseline
algorithms with an up to 38% acceptance gain and obtains an
around 0.5 diversity ratio to the theoretical upperbound.

I. INTRODUCTION

Social recommendation [1]–[3] has been proved to be an
effective method to overcome information overload, i.e., diffi-
culty in making decisions with too much related information.
Specifically, recommendation algorithms regularly offer users
some personalized suggestions on who to connect to, through
providing a list that contains recommendation items for users
to browse and select from according to their own wills. Many
different recommendation algorithms have been proposed and
two basic types are relationship-based [4], [5] and similarity-
based [6], [7] recommendation, where the former one works
based on user relationships and the latter one recommends a
user who shares common features with him. In addition, some
variants are developed, including caching-aware [8], context-
aware [9], package-group recommendation [10], etc. However,
all these algorithms are designed for single-layered networks
that overlook the layered structure of realistic networks.

Many realistic networks can be regarded as cross-layer ones,
where all the layers have the same node set but each of them
contains a certain type of connections among nodes [11], [12].
A typical example comes to academic networks, where any

Fig. 1. An illustration on layered recommendations in academic networks.

two authors are related if they have some common published
papers, or alternatively, do research on the same topics. In this
way, two types of author connections are naturally formed as
illustrated in Figure 1. In cross-layer networks, recommenda-
tion is also an essential issue, which, however, suffers from a
negative performance since most of existing algorithms only
consider a particular layer of the network. To illustrate, let us
continue to the example of academic networks. When make
recommendations for authors, most existing applications only
extract paper-based connections among authors, i.e., connec-
tions between two authors who collaborate common papers.
We note that this strategy results in information loss, where
the users’ demands are not fully satisfied since they may also
want to connect to some topic-related friends. To summarize,
the recommendation algorithms that only exploit single layer
cannot work well in cross-layer networks. Then, the following
questions arise naturally: What are distinctive features of user
demand in cross-layer networks? How to design an effective
recommendation algorithm under this condition?

The answer is that each recommendation item should be an
instinct combination of the user’s wills in both layers rather
than a simple mixture. Specifically, let us consider a method
that gives recommendations by mixing the items in two layers
together. In this case, though it simultaneously contains user
information in two layers, each item is produced from either of
the two layers and thus the whole performance is a linear com-
bination of that of the two basic ones, which therefore results
in an unsatisfactory performance. Based on this fact, we put
forward a novel idea that whether the algorithm’s performance
can be improved if every recommendation item contains cross-
layer user information? Obviously, the answer is positive since
such joint recommendation is more attractive for users, which
is also validated in our experimental measurements.

To achieve this aim, we propose a novel algorithm named
Cross-layer 2-hop Path (C2P) algorithm. The core idea of the



algorithm is inspired by a prior commonly involved recom-
mendation method [4], [5], which recommends a user his two-
hop neighbors with the basic idea that a user is likely to be
interested in the friends of his friends. While this method has
been proved to be effective with better acceptace [1], it fails
to work well in cross-layer networks due to its exclusive focus
on singer-layered user relations. To overcome this limitation,
we design an algorithm that makes joint recommendation by
utilizing cross-layer two-hop paths, defined as two-hop paths
whose two hops belong to the two different layers respectively.
The algorithm recommends with a probability proportional to
the number of cross-layer two-hop paths between the user and
the candidate and thus, each item returned by it is an instinct
combination of user relationships in both two layers.

Moreover, we conduct the performance evaluation on C2P
algorithm in both theoretical analysis and experimental mea-
surements. Firstly, we prove that the algorithm is an efficiently
implementable one. The computational complexity of it is in
constant order for each recommendation if the average node
degree is a constant, which holds in most of realistic networks.
Then, we evaluate the recommendation performance of C2P
algorithm by two metrics, i.e., acceptance and diversity, where
the former one measures the recommendations accuracy and
the latter one measures the algorithm’s capability to generate
diverse recommendations among users. Our results show that
the performance of our proposed algorithm is the optimal one
in terms of acceptance and for diversity, its performance is in
the same order of the theoretical upperbound. Besides theo-
retical analysis, we also conduct experimental measurements
based on three datasets extracted from Microsoft Academic
Graph [13]. Results show that C2P algorithm outperforms the
single layer based ones and the mixture one.

Our main contributions are summarized as follows:
• Design: We propose a novel algorithm, i.e., C2P algorithm,

that makes joint recommendation in cross-layer networks
by fully utilizing user relationships among layers.

• Analysis: We theoretically analyze the performance of our
proposed algorithm and results show that the algorithm is
efficiently implementable, optimal in acceptance and in the
same order of theoretical upperbound in diversity.

• Validation: We make experimental measurements on three
real datasets to show the outperformances of C2P algorithm,
with an up to 38% acceptance gain and an approximately
0.5 diversity ratio to the theoretical upperbound.
Different from prior art that adopt sophisticated data mining

techniques, this paper provides analysis primarily from proba-
bilistic manner. It ensures two-folded superiorities: theoretical
tractability and data independence. On one hand, our results is
theoretically tractable in the sense that the influential factors
and their impacts on results are directly given in mathematical
expressions. On the other hand, performance of techniques in
data mining is often unstable and sensitive to data fluctuation,
which can be solved in our work due to the data independence.
To our best knowledge, this work is the first attempt towards
cross-layer recommendations with systematic theoretical sup-
port, and we believe that it can stimulate more creative works.

II. RELATED WORK

Recommendation systems have been adopted in many real-
istic applications. Various algorithms [14]–[16] are proposed
and according to their intuitions, the algorithms can be clas-
sified into two main types: relationship-based and similarity-
based recommendations, where the former one [4], [5] makes
recommendations based on the idea that a user is more likely
to be interested in the one sharing common friends with him,
and the latter one [6], [7] extracts recommendations for a user
from those owning the same content, interest, or other features
as him. Though the algorithms have been exhaustively studied,
most of them are designed for single-layered networks and
thus cannot work well in cross-layer social networks.

Many realistic networks can be regraded as cross-layer ones
due to the fact that more than one type of connections may
exist among users. Due to the typical structures, applications
in cross-layer networks [12], [17]–[20] often reveal distinctive
properties and it is the same for recommendations, since that
user demand is often reflected in multiple layers of the network
simultaneously [11]. To study recommendations in cross-layer
networks, we should first select an appropriate mathematical
model. Bródka et al. [21] define a basic multi-layered network
where each layer includes a fixed set of nodes with edges that
may vary from layer to layer. Magnani et al. [22] propose a
more flexible model that allows different nodes sets for each
layer. Hao et al. [23] emphasize the relationships among layers
by measuring the influence of one layer on the other layers. In
additional, another model named as Affiliation Network Model
[24] is established by utilizing user’s attributes such as gender,
interest and residence. Exploiting such information can help to
make recommendations more precise [3], [25], [26] since that
attributes represent the inherent relationships among users, and
thus we select this model in our work.

We note that studying recommendation algorithms in cross-
layer networks is an essential issue and to our best knowledge,
this work is the first attempt towards this purpose.

III. SYSTEM MODEL

In this section, we first give the underlying network model.
Then, we introduce two metrics on recommendation systems,
i.e., acceptance and diversity, that will be used in later perfor-
mance evaluation. And finally, we discuss and model users’
demands on making friends in cross-layer networks.

A. Network Modeling for Recommendation Systems

The network model we used in this work is an extension
of Affiliation Network Model [24] that is widely adopted in
modeling evolving networks with affiliation relationships. The
reasons that we choose this model are two folded:
• The model is a good capture of realistic networks with prop-

erties such as power-law degree distribution, densification
(the ratio of number of edges to that of nodes grows over
time) and shrinking diameter (the network diameter reduces
over time to a constant).
• The model is a mathematically tractable one that guarantees

theoretical analysis.



In our modeling of network structure, we make some exten-
sions on this model in order to make it fit in characterizing
cross-layer networks. We note that all the network properties
generated by the original model still hold in our extension.
The extended model is illustrated as follows.

1) Network Structure: We use two basic structures, i.e.,
bipartite graph and generated graph, to characterize the rela-
tionships between users and attributes, and that among users,
respectively. The two graphs are modeled as follows:
• Bipartite Graph B(V0, Vi): Let V0 denote the set of users

and Vi, i ∈ {1, 2}, denote the set of i-th types of attributes.
B(V0, Vi) is a bipartite graph composed of the node sets V0
and Vi, and a set of edges characterizing the relationships
between them.

• Generated Graph G(V0|Vi): The graph G(V0|Vi) charac-
terizes the social relationships among users in V0, which is
generated from B(V0, Vi) following the rule that an edge
exists between v1, v2 ∈ V0 in G(V0|Vi) if and only if they
share a common neighbor u ∈ Vi in B(V0, Vi).

In our model, we set parameter i ∈ {1, 2} and thus the network
is two-layered. Under this assumption the connections among
nodes in V0 can be classified into two types:
- Type 1: Connections in G(V0|V1) generated from B(V0, V1).
- Type 2: Connections in G(V0|V2) generated from B(V0, V2).
Therefore, the network of nodes in V0 is two-layered, and we
denote it as G(V0) = [G(V0|V1), G(V0|V2)].

The model has its applicability to massive realistic scenar-
ios. Take academic networks for example. Denoting authors,
papers and topics by V0, V1 and V2, respectively, the model
can be intuitively interpreted as follows. For the bipartite graph
B(V0, V1), an edge exists between nodes v ∈ V0 and u ∈ V1
indicates that the author v published the paper u, and edges in
B(V0, V2) have a similar physical meaning. For the generated
graph G(V0|V1), any two authors have a common neighbor in
B(V0, V1) indicates that they collaborate a paper and thus are
correlated in the generated network, which is also known as
co-author network. Combing G(V0|V1) and G(V0|V2) together
we obtain a two-layered network G(V0) that can characterize
two types of relationships among authors simultaneously.

2) Evolving Process: In our model, the two graphs jointly
evolve following the preferential attachment manner [27] [28].
The evolving process of bipartite graph is given in Algorithm
1, according to which that of generated graph can be obtained
and thus we omit it here for concision.

Figure 2 illustrates an example of the evolving process of
B(V0, V1) and B(V0, V2) with a new node arrival in V0. In this
example, the new arrived node picks node v1 as the prototype
in B(V0, V1) with probability 1

2 and randomly copies c01 =
1 edge of the prototype. Similarly, node v2 is picked as the
prototype in B(V0, V2) and its c02 = 2 edges are copied. And
finally, the two graphs B(V0, V1) and B(V0, V2) evolve from
the left one to the right one during this time slot.

B. User Demand for Social Recommendation
User demand is an essential issue in recommendation sys-

tems since it reflects the user’s own wills on who to connect to.

Algorithm 1: Evolution of B(V0, V1) and B(V0, V2)

Fix parameters α0, α1, α2 ∈ (0, 1) and c01, c02, c10, c20 > 0.
At time t = 0:

Give two initial bipartite graphs B(V0, V1) and B(V0, V2).
At time t > 0:

(Evolution of V0)
Arrival: A node v arrives with probability α0 and is added to
the node set V0.
Preferential Attachment: In bipartite graph B(V0, V1), a node
u ∈ V0 is chosen as the prototype for the new node with a pr-
obability proportional to its degree. Then, c01 edges are copied
from u, that is, c01 neighbors of u, denoted by i1, ..., ic01 , are
chosen uniformly and randomly (without replacement), and the
edges (v, i1), ..., (v, ic01) are added to the graph. In B(V0, V2),
c02 edges are created following the same way.
(Evolution of V1 and V2)
A node v is added to V1 with probability α1 and c10 edges are
created in B(V0, V1) following a symmetrical process. And si-
milarly, c20 edges are created in B(V0, V2).

Fig. 2. An example of the evolving process of B(V0, V1) and B(V0, V2).

Particularly, it reveals some distinctive features in cross-layer
networks that we will discuss in this subsection.

Many empirical studies [1], [2] have verified that in social
networks, a user is more likely to connect to a popular user,
i.e., the user with large degree. This is an intuitive result since
that celebrities such as famous singers, actors and politicians
are often attractive to ordinary users. Based on this fact, many
existing works assume that a user’s demand on making friends
with user u is proportional to its degree Du. In cross-layer
networks, since information can exchange between layers, a
user’s demand on user u is determined by its degrees in both
two layers. Denote the demand of user v by E(v) and we have
• P(E(v) = u) ∝ Du1 and P(E(v) = u) ∝ Du2.

In addition to the degrees of node u, we note that a user’s
demand may also relate to the characteristics of itself. Though
a user v with large degree can attract users to connect to it,
its own demand for making new friends is negative in reverse.
The reasons of this phenomenon are three folded:

1) The number of existing friends of user v is large and thus
his demand on making friends has been greatly satisfied.

2) Since user v has been recommended to a variety of users,
he can make friends by accepting requests from others
instead of taking the initiative to add friends.

3) For user v, there are few popular users with larger degree
than him that user v may be interested in.

Similarly, to illustrate it, let us consider an example in aca-
demic networks. It is an obvious fact that most of researchers
are willing to build connections with experts who are author-



itative in the field. However, for the experts, their demands to
make new friends are negative since they have owned a large
number of friends and few new ones can attract them. Based
on this observation, the demand of user v should be in inverse
proportion to its own degrees, that is,
• P(E(v) = u) ∝ 1

Dv1
and P(E(v) = u) ∝ 1

Dv2
.

Furthermore, the above two conditions should be considered
simultaneously. In other words, the probability that user v has
the demand to connect to user u is proportional to the degree
of node u and is inversely proportional to its own degree in
this layer. Therefore, the probability can be formulated as

P(E(v) = u) ∝
1
Dv2

1
Dv1

+ 1
Dv2

Du2 +
1
Dv1

1
Dv1

+ 1
Dv2

Du1,

where the effects of Dv1 and Dv2 are normalized to 1. Then,
make the normalization among all user u and we have

P(E(v) = u) =
Dv1Du2 +Dv2Du1

2|E2|Dv1 + 2|E1|Dv2
,

where |Ei| denote the total number of edges in the i-th layer.

C. Metrics on Recommendation Systems

We evaluate the performance of recommendation algorithms
by two metrics: acceptance and diversity, where the former one
measures recommendation accuracy and the latter one makes
measurements on an algorithm’s capability to provide diverse
or idiosyncratic recommendation items.

1) Acceptance: A fundamental objective of recommenda-
tion algorithms is to provide accurate recommendations, which
is evaluated by the metric acceptance defined as follows.

Definition 1 (Acceptance). With the recommendation list R(v)
of user v in network G(V0), the acceptance is defined as

AG(v) =
1

|R(v)|
∑

u∈R(v)
P(E(v) = u).

The acceptance of a recommendation algorithm is defined as
the average value of acceptances of all users, that is,

AG =
1

n

∑
v∈V0

AG(v).

2) Diversity: The performance of recommendation algo-
rithms can be evaluated from different aspects, and considering
acceptance along may be biased. In particular, another impor-
tant goal of recommendation algorithm is to provide user with
highly idiosyncratic or personalized recommendations, which
can help to enrich the user’s friendships. We use the metric
diversity to evaluate the algorithm’s performance towards this
goal. This metric is firstly proposed in [29] and we represent
it in the following definition.

Definition 2 (Diversity). Assume that each node v owns a list
containing all his recommended friends and denote the list as
R(v). The aggregate diversity is defined as

DG = |∪v∈V0R(v)| .

For convenience, we present Table I to list all notations that
will be used in later analysis, proofs and discussions.

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

L (H1, H2)
Two-hop path with the first hop H1 and the
second hop H2.

B(V0, Vi) Bipartite graph with node sets V0 and Vi.
G(V0|Vi) Generated graph of V0 obtained from B(V0, Vi).

G(V0)
Two-layered network consisting of the graphs
G(V0|V1) and G(V0|V2).

Dvi(t) Degree of node v ∈ V0 in G(V0|Vi) at time t.
dvi(t) Degree of node v ∈ V0 in B(V0, Vi) at time t.
αi Arrival probability of nodes in Vi.

γij
Parameter of degree growth of node v ∈ Vi in
B(Vi, Vj).

R(v) Recommendations list for user v.
E(v) Friendship demands of user v.
AG Acceptance of the algorithm in network G.
DG Diversity of the algorithm in network G.

Puv
Probability that an edge exists between node u
and node v.

IV. THE PROPOSED RECOMMENDATION ALGORITHM:
CROSS-LAYER 2-HOP PATH (C2P) ALGORITHM

In order to better meet the user demand as illustrated before,
we propose a novel algorithm named as Cross-layer 2-hop
Path (C2P) algorithm. Before the detailed description on the
algorithm, we first introduce the cross-layer two-hop path.

Definition 3 (Cross-layer two-hop path). For a two-hop path
L (H1, H2) starting from X0 with the first hop H1 = (X0, X1)
and the second hop H2 = (X1, X2), we call it a cross-layer
one if either of the following two cases is satisfied

Case 1: H1 ∈ G(V0|V1), H2 ∈ G(V0|V2)

Case 2: H1 ∈ G(V0|V2), H2 ∈ G(V0|V1).

With the above definition, we now come to the implemen-
tation of C2P algorithm and then analyze its complexity.

A. Implementation of C2P Algorithm

Algorithm 2 describes the implementation of C2P algorithm,
where for a given node v, the algorithm produces a list R(v)
that contains k recommendation items based on the topology
of network G(V0). Specifically, line 1 in the algorithm con-
ducts the initialization. Then, operations in line 2 to line 10 use
a flooding method to find out all cross-layer two-hop paths that
start from node v and update each node’s weight as the number
of paths between it and node v. And finally, k nodes are added
in the recommendation list with probabilities proportional to
their weights, as shown in line 11.

An example of the implementation process of C2P algo-
rithm is given in Figure 3. Note that when conduct recommen-
dations for node v, the algorithm floods over all cross-layer
two-hop paths that start from node v. And thus to facilitate
understanding, we use a two-hop paths tree to characterize all
these paths, where node v acts as the root of the tree and all
two-hop neighbors of node v are placed as the leafs connected
to the root by relay nodes wi, i = {1, 2, 3}. From the tree we



Algorithm 2: Implementation of C2P Algorithm
Input: Network G(V0) = [G(V0|V1), G(V0|V2)];

Parameter k > 0.
Output: Recommendation list of node v, i.e., R(v).

1 Set weight(u) = 0 for all u ∈ V0 that u 6= v.
2 for w in neighbors of v do
3 if the hop H1 = (v, w) ∈ G(V0|V1) then
4 for u in neighbors of w do
5 if the hop H2 = (w, u) ∈ G(V0|V2) then
6 weight(u)← weight(u) + 1

7 else
8 for u in neighbors of w do
9 if the hop H2 = (w, u) ∈ G(V0|V1) then

10 weight(u)← weight(u) + 1

11 Select k nodes with the probabilities proportional to their
weights and add them to the recommendation list R(v).

Fig. 3. An example of the implementation of C2P recommendation algorithm.

can find that there are total 3 cross-layer two-hop paths, i.e.,
v − w1 − u1, v − w2 − u2 and v − w3 − u2, where 2 of
them connect to node u2 and only 1 of them connects to node
u1. Then, node u1 and node u2 are selected as the candidates
and are recommended to node v with probabilities 2

3 and 1
3 ,

respectively. In addition, we note that though node u3 is also
connected to node v by a two-hop path v−w3 − u3, it is not
selected as a candidate since both two hops belong to layer 1.

B. Complexity

We now come to analyze the complexity of C2P algorithm.
The result is provided in Theorem 1 and we note that in most
cases the complexity can achieve Θ(1), which indicates that
the algorithm is an efficiently implementable one.

Theorem 1. The complexity of conducting recommendations
for a node v through C2P algorithm is O

(∑dv
i=1 dwi

)
, where

wi denotes the i-th neighbor of node v.

Proof. The implementation of C2P algorithm has been given
in previous part, and in the following we prove the results by
analyzing operations in Algorithm 2 line by line.

Line 1 makes the initialization and the corresponding com-
plexity is Θ(1). Operations in line 2 to line 10 include two
“for” loops, where the outer one traverses all the neighbors
of node v, denoted by wi, with loop times dv and the inner
one traverses part of neighbors of relay node wi. Note that
the inner loop does not need to search all the neighbors of
node wi since that some of them do not own cross-layer two-
hop paths to node v. Then, note that the operation within two

loops is an assignment with complexity Θ(1) and thus we
have that the implementation complexity is upper bounded by
Θ
(∑dv

i=1 dwi

)
. Line 11 selects recommendation items based

on nodes’ weights with complexity Θ(1). Combing the above
three parts together, we complete the proof.
Remark 1. In most cases, the implementation complexity
of C2P algorithm is Θ(1). This result can be obtained by
considering the average complexity, which can be calculated
as E

[∑dv
i=1 dwi

]
= E [dv]E [dwi ] = d2, where d denotes

the average node degree. In most realistic networks d is a
constant, and thus the average complexity is Θ(1).

V. PERFORMANCE ANALYSIS

In this section, we first present some useful lemmas on
network properties, based on which we then show the influ-
ence of node degrees on recommendations for a given node
(Theorem 2). And finally, we give the performance evaluation
on acceptance and diversity (Theorem 3 and Theorem 4).

A. Impact of User Degrees on Recommendations
Since the network is an evolving one, node degrees are time

dependent. In the following lemma we discuss how the node
degree in bipartite graph grows over time.

Lemma 1. For a node v ∈ V0 in B(V0, Vi) where i = {1, 2},
given the condition that node v is added to the network at
time tv with degree dv(tv), the degree of node v at time t is

dv(t) = dv(tv)

(
t

tv

)γ0i
,

where γ0i = αici0
α0c0i+αici0

is a constant. And similarly, for a
node u ∈ Vi that is added to the network at time tu, we have

du(t) = du(tu)

(
t

tu

)γi0
,

where γi0 = α0c0i
α0c0i+αici0

.

Proof. We start the proof by calculating the degree of node
v ∈ V0 in B(V0, V1). According to the evolving process, the
degree of node v increases only in the case that a new node
u ∈ V1 is added to the network and one of its edges points to
node v. Note that in this process, each endpoint of nodes in
V0 is selected with equal probability as the destination of the
new created edge. Consequently, a new created edge connects
to node v with probability dv(t)

e01(t)
, where e01(t) = (α0c01 +

α1c10)t is the number of edges in B(V0, V1). Then, we have

dv(t) = dv(t− 1) + α1c10
dv(t− 1)

e01(t− 1)
.

Using the Chernoff bound we have

dv(t) =dv(t− 1)

(
1 +

α1c10
(α0c01 + α1c10)(t− 1)± o(t)

)
=dv(tv)

t−1∏
k=tv

(
1 +

γ01
k

)
=dv(tv)

(
t

tv

)γ01
,



where γ01 = α1c10
α0c01+α1c10

. Using the same method we can
calculate the node degree in other cases and obtain a similar
result, which completes the proof.

Besides the node degree in bipartite graph B(V0, Vi), the
degree in generated graph G(V0|Vi) is also an important one
that will be used in the following analysis. Lemma 2 gives the
relationship between them and consequently we can obtain the
node degree in G(V0|Vi) from that in B(V0, Vi).

Lemma 2. For a node v ∈ V0 in G(V0|Vi) where i = {1, 2},
its degree satisfies

Dvi(t) = cidvi(t),

where ci = α0c0i+αici0
αi

− 1 is a constant.

Proof. According to the generation rule, every neighbor of
node v in B(V0, Vi), denoted by u, provides du(t)− 1 edges
connecting to node v in G(V0|Vi). Considering all the possible
values of du(t) and using the law of total probability, we have

Dvi(t) =
∑α0t

k=1
dvi(t)(k − 1)P(du(t) = k)

= (E(du(t))− 1) dvi(t),

where E(du(t)) = (α0c0i+αici0)t
αit

.

Then, we calculate the existence probability of an arbitrary
edge in the graph G(V0|Vi) as given in Lemma 3.

Lemma 3. In the graph G(V0|Vi) at time t, the probability
that node u and node v are connected is

Puv =
Dui(t)Dvi(t)

2|Ei(t)|
,

where Dui(t) denotes the degree of node u in G(V0|Vi) at
time t, Dvi(t) denotes that of node v and |Ei(t)| is the total
number of edges in G(V0|Vi).

Proof. According to the evolving process, node u and node v
are connected if and only if they share a common neighbor
w ∈ Vi in B(V0, Vi). Based on this fact, we make the proof
by calculating the probability that at least one node w ∈ Vi in
B(V0, Vi) connects to node u and node v simultaneously.

Assume that node u and node v are added to the network at
time tu and tv . Without loss of generality, we assume tu > tv .
Thus, at the time t > tu, every newly added node w ∈ Vi may
connect to them. Using the law of total probability, we have

Puv =

t∑
k=tu

αi
du(k)

e0i(k)

dv(k)

e0i(k)
.

This equality holds since each node w ∈ Vi that is added to the
network at time k ∈ [tu, t] connects to node u with probability
du(k)
e0i(k)

. Then, according to Lemma 1, we have

Puv =

t∑
k=tu

αi

(e0i(k))
2 du(tu)

(
k

tu

)γ0i
dv(tv)

(
k

tv

)γ0i
=αi

du(tu)dv(tv)

(α0c0i + αici0)
2

(
1

tv

)γ0i( 1

tv

)γ0i t∑
k=tu

k2γ0i−2.

Then, according to the result in Lemma 1, we have

Puv =
αi

α0c0i + αici0

du(t)dv(t)

e0i(t)
.

According to Lemma 2, we know dv(t) = 1
ci
Dv(t), where ci

is a constant that is independent of node v. Consequently, the
probability Puv satisfies Puv ∝ Du(t)Dv(t). Then, since it is
satisfied that ∑

u∈V0

∑
v∈V0

Puv = 2|Ei(t)|,

we can normalize Puv to the expression given in the Lemma.
And consequently, we complete the proof.

With the above lemmas in hand, we are now ready to prove
the recommendation probabilities of our proposed algorithm.

Theorem 2. For a fixed node v in the network G(V0) =
[G(V0|V1), G(V0|V2)], let R(v) denote a recommendation for
node v returned by C2P algorithm. Then, we have

P(R(v) = u) =
Dv1(t)Du2(t) +Dv2(t)Du1(t)

2|E2(t)|Dv1(t) + 2|E1(t)|Dv2(t)
,

where the probability captures both randomness in the network
structure and that in the recommendation algorithm.

Proof. For convenience of illustration, we use some interme-
diate random variables as listed below:
- X0, X1 and X2 ∈ V0: source node, relay node and destina-

tion node of a two-hop path.
- H1: the first hop that starts from X0 and ends at X1.
- H2: the second hop that starts from X1 and ends at X2.
Given the above variables, we come to calculate the recom-
mendation probability. According to C2P algorithm, the prob-
ability that node u is recommended to node v is proportional
to the number of cross-layer two-hop paths between them, i.e.,

P(R(v) = u) =
|{L|X0 = v,X2 = u}|
|{L|X0 = v}|

, (1)

where |{L|X0 = v,X2 = u}| denotes the number of cross-
layer two-hop paths that start from node v and end at node u,
and |{L|X0 = v}| denotes the number of the paths that start
from node v. In the remaining part of the paper, we omit the
parameter t for convenience of notations. For example, we use
Ei and Dui instead of Ei(t) and Dui(t), respectively.

Then, according to the results in Lemma 3, we can calculate
Equation (1) as

|{L|X0 = v}|

=
∑
u∈V0

∑
w∈V0

|{L|X0 = v,X1 = w,X2 = u}|

=
∑
u∈V0

∑
w∈V0

Dv1Dw1

2|E1|
Dw2Du2

2|E2|
+
Dv2Dw2

2|E2|
Dw1Du1

2|E1|

=
∑
w∈V0

Dw1Dw2 ·
Dv1 ·

∑
u∈V0

Du2 +Dv2 ·
∑
u∈V0

Du1

4|E1||E2|

=
∑
w∈V0

Dw1Dw2 ·
|E2|Du1 + |E1|Du2

2|E1||E2|
.



And similarly, we also have

|{L|X0 = v,X2 = u}|

=
∑
w∈V0

|{L|X0 = v,X1 = w,X2 = u}|

=
∑
w∈V0

Dw1Dw2 ·
Dv1Du1 +Dv1Du2

4|E1||E2|
.

Plug above two expressions into Equation (1) and we have

P(R(v) = u) =
Dv1Du2 +Dv2Du1

2|E2|Dv1 + 2|E1|Dv2
,

which completes the proof.

Results in Theorem 2 indicate that C2P algorithm considers
cross-layer user relationships. We note that this characteristic
promotes good performances in both acceptance and diversity,
which we will discuss in details in the next part.

B. Performance Analysis on Acceptance and Diversity

We now come to analyze the performance of our proposed
algorithm on two metrics – acceptance and diversity. We start
from the acceptance and results show that our algorithm is the
optimal one, as given in Theorem 3.

Theorem 3. When make recommendations in the two-layered
network G(V0) = [G(V0|V1), G(V0|V2)], C2P algorithm is the
optimal one in terms of the metric acceptance.

Proof. According to Definition 1, acceptance of the proposed
algorithm can be calculated as

AG =
1

|V0|
∑
v∈V0

∑
u∈V0

P(R(v) = u)P(E(v) = u).

The determination of the optimal algorithm in acceptance can
be formulated as a optimization problem, that is,

max AG

s.t.

{∑
u∈V0

P(R(v) = u) = 1,

P(R(v) = u) ≥ 0.

As previously defined, we have

P(E(v) = u) =
Dv1Du2 +Dv2Du1

2|E2|Dv1 + 2|E1|Dv2
.

Then, we search for P(R(v) = u) that can maximize AG.
According to Hölder’s Inequality, it is satisfied that

n∑
i=1

aibi ≤

(
n∑
i=1

ai
p

) 1
p
(

n∑
i=1

bi
q

) 1
q

,

where 1
p + 1

q = 1 and the above equality holds if and only if
∃c1, c2 > 0 that satisfy c1ai = c2bi. Moreover, this summation
is maximized when p = 2 and q = 2.

Consequently, we have that
∑
u∈V0

P(R(v) = u)P(E(v) =
u) is maximized when P(R(v) = u) = P(E(v) = u), and it
is satisfied that∑

u∈V0

P(R(v) = u)P(E(v) = u) ≤
∑
u∈V0

P2(E(v) = u).

Since the above result holds for all node v ∈ V0, the metric AG

is maximized when P(R(v) = u) = P(E(v) = u). With the
result in Theorem 2, we have that in C2P algorithm P(R(v) =
u) = P(E(v) = u) and thus we complete the proof.

In addition to the optimality in acceptance, C2P algorithm
can also achieve a good performance in diversity. The corre-
sponding results and proofs are given in Theorem 4 as below.

Theorem 4. When make recommendations in the two-layered
network G(V0) = [G(V0|V1), G(V0|V2)], the diversity of C2P
algorithm satisfies

DG = Θ(n),

where n is the number of nodes in network G(V0).

Proof. According to the results in Theorem 2 and Lemma 2,
the recommendation probability in C2P algorithm can also be
expressed as

P(R(v) = u) =
dv1du2 + dv2du1
e2dv1 + e1dv2

.

In C2P algorithm, the recommendations for all nodes v ∈ V0
are independent of each other. Based on this fact, the average
number of recommendations of node u in all n recommenda-
tions can be calculated as∑

v∈V0

P(R(v) = u) =
∑
v∈V0

dv1du2 + dv2du1
e2dv1 + e1dv2

=
n

e2 + e1
1
n

∑
v∈V0

dv2
dv1

du2 +
n

e1 + e2
1
n

∑
v∈V0

dv1
dv2

du1.

Using the result in Lemma 1, we have

∑
v∈V0

dv1
dv2

=
∑
v∈V0

dv1(tv)
(
t
tv

)γ01
dv2(tv)

(
t
tv

)γ02 = Θ(n).

For convenience, we denote c3 = 1
n

∑
v∈V0

dv1
dv2

. From the
above equation we know that c3 is a constant. In the following
part, we conduct the calculation in order sense and thus the
specific value of c3 has no influence on the final result. Then,
the average number of recommendations generated for node
u can be expressed as∑

v∈V0

P(R(v) = u) =
n

e2 + e1
1
c3

du2 +
n

e1 + e2c3
du1

=c4du1 + c5du2.

The second equality holds since e1 = Θ(n) and e2 = Θ(n).
And similarly, the specific values of constants c4 and c5 have
no influence on the final result.

Recall that
∑
v∈V0

P(R(v) = u) is the average number of
recommendations of node u. If the average number is greater
than one, node u is recommended at least once among all
n recommendations, which indicates that u ∈ ∪v∈V0R(v).
Consequently, we have

P (u ∈ ∪v∈UR(v)) =P

(∑
v∈V0

P(R(v) = u) > 1

)
=P (c4du1 + c5du2 > 1) .



If γ10 > γ20, we have c4du1 > c5du2 and the latter one can
be omitted compared to the former one. In this case, we have

P (u ∈ ∪v∈UR(v)) =P

(
c4du1(tu)

(
t

tu

)γ01
> 1

)
=P

(
tu <

t

(c4du1(tu))
1
γ01

)
=(c4du1(tu))

1
γ01 ,

(2)

where the last equality holds since tu is randomly and uni-
formly distributed in (0, t). Equation (2) gives the result that
P (u ∈ ∪v∈UR(v)) = Θ(1) is a constant. We have obtained
the probability that node u is included in the recommendation
lists. Then, consider all nodes u ∈ V0 and we have

|∪v∈UR(v)| =
∑
u∈V0

P (u ∈ ∪v∈UR(v)) = Θ(n).

And thus we complete the proof.

VI. EXPERIMENTAL MEASUREMENTS

In this section, we conduct experimental measurements on
three real datasets and empirically validate our results.

A. Dataset Description

We conduct our experimental measurements on three fields
of academic networks: Data Mining (DM), Machine Learning
(ML) and Computer Vision (CV). All the three datasets are
collected from Microsoft Academic Graph [13] – a heteroge-
neous graph containing publication records, citation relation-
ships between the publications, as well as authors, institutions,
journals, conferences, and fields of study. In each dataset, there
are three types of entities: authors, papers and topics, denoted
by the node sets A, P and T , respectively. Moreover, every
entity in the dataset has a timestamp recording the time it joins
the network, ranging from the year 1801 to 1976.

B. Simulation Setting

1) Network Construction: In each dataset, publication re-
lationships between authors and papers are recorded and thus
the graph B(A,P ) is naturally constructed. And we can obtain
the graph B(A, T ) in a similar way. Then, according to the
generation rule described in Section III-A, we can construct
a two-layered network of authors, where one layer is paper-
based, denoted by Lp; the other one is topic-based and we
denote it by Lt. The statistical properties of the three networks
are summarized in Table II.

2) Calculation of the Metrics: In the calculation of accep-
tance, an essential issue is how to quantify a user’s demand.
In our simulation, we model it by the user’s future behaviors.
Specifically, we involve the network topology in a particular
year as the input information and conduct recommendations
according to it. Then, we quantify a user’s demand by the
new connections created in the following year. For example,
if the algorithm works on the network of year 1975, we use
the new connections generated in year 1976 to calculate the
user’s demands. We note that it is reasonable since the new
connections are spontaneously created by the user according to

TABLE II
STATISTICAL PROPERTIES OF DATASETS.

# of Nodes # of Edges in Lp # of Edges in Lt

DM 47, 634 41, 321 873, 664
ML 51, 339 44, 009 12, 158, 310
CV 67, 972 76, 460 12, 105, 641

his own will, and consequently can well represent his demand.
Additionally, diversity can be directly calculated according to
the users’ recommendation lists.

3) Baseline Algorithms Involved in Performance Compari-
son: To evaluate the performance of our proposed algorithm,
we include three additional algorithms to make the compari-
son. We briefly introduce them as follows:
• Friend of Friend algorithm in Paper-based layer (FOF-P):

An algorithm that works in Lp by making recommendations
from all the two-hop neighbors of the user with probabilities
proportional to the number of paths connecting to it.
• Friend of Friend algorithm in Topic-based layer (FOF-T):

A recommendation algorithm that has a similar implemen-
tation principle as that in FOF-P but works in Lt.
• Mixed algorithm (MIX): An algorithm that provides recom-

mendation by mixing the items returned by FOF-P and that
returned by FOF-T together.

In the simulation, for our proposed algorithm and all the above
ones, we set the length of recommendation list as k = 1.

C. Performance Analysis

Performance on Acceptance: We conduct the simulation at
5 test points, ranging from the year 1955 to 1975 with internal
5. In each test point, we generate recommendations items by
our proposed algorithm and three additional ones. Simulation
results are given in Figure 4. Someone may wonder that why
the value of acceptance decreases with test years. This is due
to the reason that with the increase of test years, network
size grows and network structure becomes more complicated,
which makes recommendation more difficult. However, we can
still observe from the results that, C2P algorithm outperforms
the other three ones at all test points. Particularly, the accep-
tance gain achieves 38% in the ML dataset at year 1975.

Performance on Diversity: Similarly, the measurements on
the metric diversity are also conducted at 5 test points, ranging
from year 1955 to 1975. To evaluate the performance, we
make the comparison between our proposed algorithm and the
other two cases. The first case is theoretical upperbound that
corresponds to the maximum value of diversity. This case can
only be achieved if and only if all the recommendation lists
are different, and the corresponding diversity equals to n, i.e.,
the number of users in the network. The second one is random
case, where we randomly and uniformly recommend user an
item. We include this case since that the theoretical upper-
bound is an ideal one that cannot be achieved in most cases.
The results are given in Figure 5, where y-coordinates denote
the diversity ratio of C2P algorithm to the upperbound/random
case. We can observe that the two ratios are both in the order
of constant, which exactly verifies our theoretical results.
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Fig. 4. Average acceptance of different algorithms, where x-coordinates are test years followed by an increasing order of network sizes.
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Fig. 5. Diversity ratios under two cases, where C2P-Upperbound denotes the diversity ratio of C2P to the theoretical upperbound, C2P-Random denotes that
of C2P to random recommendations, and x-coordinates are test years followed by an increasing order of network sizes.

VII. CONCLUSION

In this paper, we propose a novel algorithm named Cross-
layer 2-hop Path (C2P) algorithm. The algorithm recommends
a user’s cross-layer two-hop neighbors to him and thus, each
recommendation item is a combination of user relationships in
both two layers that can better meet user demands. The pro-
posed algorithm is proved to be efficiently implementable. We
evaluate its performance by two metrics, i.e., acceptance and
diversity, and the results show that C2P algorithm is optimal
in terms of acceptance and for diversity, it is in the same order
of theoretical upperbound. And finally, the effectiveness of the
algorithm is validated on three real datasets.
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