
1

Determining Source-Destination Connectivity in
Uncertain Networks: Modeling and Solutions

Luoyi Fu1, Xinzhe Fu1, Zhiying Xu2, Qianyang Peng1, Xinbing Wang1,2, and Songwu Lu3

1Dept. of Computer Science, Shanghai Jiao Tong University, China.
Email:{yiluofu,fxz0114,az950512,xwang8}@sjtu.edu.cn.

2Dept. of Electrical Engineering, Shanghai Jiao Tong University, China. Email:{xuzhiying}@sjtu.edu.cn
3Dept. of Computer Science, University of California, Los Angeles, USA. Email:{slu}@cs.ucla.edu

Abstract—Determination of source-destination connectivity in
networks has long been a fundamental problem, where most
existing works are based on deterministic graphs that overlook
the inherent uncertainty in network links. To overcome such
limitation, this paper models the network as an uncertain graph
where each edge e exists independently with some probability
p(e). The problem examined is that of determining whether
a given pair of nodes, a source s and a destination t, are
connected by a path or separated by a cut. Assuming that during
each determining process we are associated with an underlying
graph, the existence of each edge can be unraveled through edge
testing at a cost of c(e). Our goal is to find an optimal strategy
incurring the minimum expected testing cost with the expectation
taken over all possible underlying graphs that form a product
distribution.

Formulating it into a combinatorial optimization problem,
we first characterize the computational complexity of optimally
determining source-destination connectivity in uncertain graphs.
Specifically, through proving the NP-hardness of two closely
related problems, we show that, contrary to its counterpart in
deterministic graphs, this problem cannot be solved in polynomial
time unless P=NP. Driven by the necessity of designing an
exact algorithm, we then apply the Markov Decision Process
framework to give a dynamic programming algorithm that
derives the optimal strategies. As the exact algorithm may have
prohibitive time complexity in practical situations, we further
propose two more efficient approximation schemes compromising
the optimality. The first one is a simple greedy approach with
linear approximation ratio. Interestingly, we show that naive as
it is, it enjoys significantly better performance guarantee than
some other seemingly more sophisticated algorithms. Second, by
harnessing the submodularity of the problem, we further design a
more elaborate algorithm with better approximation ratio. The
effectiveness of the proposed algorithms are justified through
extensive simulations on three real network datasets, from which
we demonstrate that the proposed algorithms yield strategies with
smaller expected cost than conventional heuristics.

I. INTRODUCTION

Source and destination connectivity of networks has sig-
nificant applications in real life. It concerns crucial issues
such as reliability, routing, information diffusion [1], [2], etc.
Hence, in the past few decades, a lot of research has been
dedicated to this problem [3], [4], [5] and there have been
many efficient algorithms proposed under various types of
networks. A common feature shared by all those works is that

The early version of this paper is to appear in the Proceedings of IEEE
INFOCOM 2017 [41].

the networks investigated are modeled as deterministic graphs
[4], [5] with the source-destination connectivity problems
transformed to the corresponding graph reachability problems.

However, as indeterminacy plagues in our life, deterministic
graph often fails to serve as a suitable model for networks
nowadays. Usually, we do not have certain knowledge of
existence of network links. For instance, in social networks,
due to the variability of social ties [6], the relations between
network nodes may not be known in advance; in communi-
cation systems, established connections between nodes may
frequently fail because of the unreliability of data links [7],
[8]. It has also been pointed out that more than 90% of
network links are observed to be unreliable [10]. Consequent-
ly, we may not obtain deterministic network configuration
from the predesigned topology; sometimes we even have to
intentionally blur the links for privacy reasons [11]. All those
factors impose a need to incorporate uncertainty into the
network, which can essentially be modeled as an uncertain
graph [11], where, instead of appearing deterministically, each
edge is associated with some prior existence probability. The
existence probabilities not only are symbols of uncertainty, but
also bear important attributes of network links. Take social
network again for example. These probabilities may represent
the confidence of link prediction [12], or the strength of the
influence that a node has on the other [2]. In communication
networks such as data center networks, these probabilities
reflect the failure frequency of communication links [7].

When the graph is uncertain, traditional methods such as
depth-first-traversal, breadth-first-traversal and graph labeling
are no longer suitable for determining the source-destination
connectivity of networks due to the lack of deterministic
information on edges’ existence. To hedge the uncertainty, we
need to test the edges to determine whether they truly exist or
not. However, such edge testing involves far more complicated
procedures than simply identifying uncertain links and thus
may turn out to be more costly. For example, in citation
networks, we can establish probabilistic relationships between
papers just by reference information. In contrast, to unravel the
genuine relation between papers, we have to apply advanced
data mining approaches which involves considerably more
intensive computation. Consequently, it is extremely desirable
to test the most cost-effective edges, i.e., to design a testing
strategy that determines the source-destination connectivity of

2

uncertain networks incurring minimum cost. Furthermore, to
fully utilize the results of previous tests, the strategy should be
adaptive, which means that we may determine the next edge to
test based on the edge existence information we have already
acquired through previous tests. And we defer a more detailed
explanation of how the problem of interest can be applied to
other realistic scenarios to the end of Section III-B.

In this paper, we are thus motivated to present a first
look into the problem of determining source-destination con-
nectivity in uncertain networks. Given a network modeled
as an uncertain graph with each edge associated with an
existence probability and a testing cost, together with two
network nodes s, t designated as source and destination, we
aim to derive efficient strategy specifying which edges to
test so that we can verify whether s and t are connected
by a path or separated by a cut with the minimum cost
incurred. Note that the source and destination connectivity
is also referred to as s-t connectivity. Comparing with s-t
connectivity in deterministic graphs that can be easily solved
by graph traversal methods in polynomial time, by proving the
NP-hardness of the problem, we find that the s-t connectivity
in uncertain graphs turns out to be far more complicated
and highly non-trivial. Driven by the necessity of pursuing
exact algorithms that can capture the features of the optimal
solutions, we proceed by converting our problem into an
equivalent Markov Decision Process (MDP) to give a dynamic
programming algorithm that yields optimal strategies but has
exponential running time. Considering that the prohibitive
time complexity of such exact algorithm renders it unsuitable
for practical applications, we therefore design approximation
schemes to compromise the optimality of computed strategy
for the efficiency of the algorithms. In doing so, we first put
forward a simple greedy approach that computes near optimal
solutions with linear approximation guarantee, which can be
further improved by a second algorithm we propose through
the exploration of submodularity in our problem.

Our key contributions are summarized as follows:
• Theory: We formally define the problem of determining
s-t connectivity in uncertain networks. We prove compu-
tational complexity-theoretic results of the problem show-
ing that it cannot be solved in polynomial time unless
P=NP. The results provide useful insights to the inherent
hardness and combinatoric nature of our problem.

• Algorithm: We derive an exact dynamic programming
algorithm by converting our problem into an equivalent fi-
nite horizon Markov Decision Process. To further counter
the problem, we design two approximation schemes. The
first one is a simple greedy approach and we show that
naive as it is, it can provide non-trivial performance
guarantee. More surprisingly, its performance is far better
than some other more complicated algorithms. Then, we
further improve the approximation ratio of the greedy
algorithm by utilizing the submodularity of the problem
in the second algorithm.

• Application: We demonstrate the effectiveness of our
algorithms on practical applications through extensive
simulations with real network datasets. It is shown that
our proposed algorithms are superior to the conventional

heuristics as they achieve better tradeoff between the
complexity of the algorithm and the optimality of the
solutions.

The rest of the paper is organized as follows. we review
related studies in Section II. In Section III, we formally
introduce the definitions and notations related to our problem.
In Section IV, we investigate the computational complexity
of the problem. We present our exact dynamic programming
algorithm based on Markov Decision Process framework in
Section V. In Section VI, we present the two approximation
algorithms and we evaluate our algorithms on real life data
in Section VII. We give concluding remarks as well as future
directions in Section VIII.

II. RELATED WORK

1) Uncertain Networks: Uncertain network has been under
intensive study for long. However, instead of verifying the
existence of some structures in uncertain networks, most
efforts have been devoted to calculating the existence prob-
ability of those structures. One of the fundamental problems
in that regard is the network reliability problem, which asks
the probability that uncertain networks are connected [1].
Following this, Jin et al. consider the distance-constrained
reachability, i.e., the probability that two nodes are connected
by a path shorter than a predefined threshold in an uncertain
network [13]. The work in [14] focuses on discovering sub-
graphs with high reliability measure. In recent years, other
types of study on uncertain networks (graphs) include reliable
topology design [15], extracting representative subgraphs for
the acceleration of various querying processes [16], perfor-
mance analysis of unreliable wireless networks [8] as well as
connectivity and resilience of secure sensor networks [9].

The modeling of uncertain networks in the present work is
similar to random graph which was first introduced by Erdös
and Renyi in [17]. Despite of this similarity, the problems
investigated are quite different. Specifically, previous works
on random graphs [17] [18] is dedicated to the analysis of
model property in an asymptotic sense where the number
of nodes goes to infinity. In contrast, our focus here lies in
the combinatorial optimization problem formulated from the
determination of source-destination connectivity in uncertain
networks, with the model serving as a mean to characterize
the uncertainty in networks and a parsimonious media for
extracting the essence of the problem.

2) Sequential Testing: The nature of our problem is analo-
gous to a class of sequential testing problems which involves
diagnosing a system by determining the states of its compo-
nents through a series of tests. The dependency of the whole
system on its components’ states can be given by explicit
function or via an oracle. Existing results include optimal
diagnosing strategies on series and parallel systems, double
regular systems, etc. See [19] for a comprehensive review. A
special class of sequential testing problems called Stochastic
Boolean Function Evaluation (SBFE) have close connection
to our problem. In SBFE, each component has two states
and thus can be considered as a Boolean variable and the
system is given by a Boolean function. The works in [20] and

3

1e
2e 3e1(

)
0.

2
p

e
=

2() 0.5p e =

3
()

0.6

p e
=

() 0.16Pr G =() 0.16Pr G = () 0.04Pr G =

() 0.04Pr G =

() 0.06Pr G =() 0.06Pr G = () 0.24Pr G =

() 0.24Pr G =

s

s

s

s

s

s

s

s

s

t

t

t

t

t

t

t

t

t

1 2 3

4 5

6 7 8

Fig. 1. An uncertain graph with three edges and its eight possible underlying
graphs. The existence probability of each edge is labeled beside it. For
clearance, we do not show the direction of each edge.

[21] propose approximate algorithms for evaluating DNF, CNF
and CDNF formulas. Deshpande et al. [22] propose a general
method called the Q-value approach to approximately solve
SBFE problems based on the adaptive submodular framework
proposed in [23].

We note that, there are no previous works that study the
same problem as ours except the two from Kowshik [24]
and Fu et al. [25] [26], respectively, but in more restrictive
settings. Particularly, Kowshik derive the optimal solution for
s-t connectivity problem in parallel-series and series-parallel
uncertain graphs [24]. Fu et al. [25] [26] propose an efficient
algorithm and prove its optimality in an ER graph, i.e, a
complete graph where each edge has the same probability of
existence and the cost of testing each edge is uniform. Our
work is the first attempt to consider whether optimality exists
in determination of s-t connectivity in a general uncertain
graph.

III. MODELS AND PROBLEM FORMULATION

A. Uncertain Graph Model

We denote an uncertain directed graph by G = (V,E, p, c),
where V is the set of vertices, E is the set of edges, p : E 7→
(0, 1] is a function that assigns each edge e its corresponding
existence probability, and c : E 7→ R+ represents the testing
cost of each edge.

Following the state of art [13], we assume the existence
probability of each edge to be independent. And we interpret
G as a distribution on the set {G = (V,EG), EG ⊆ E} of 2|E|

possible underlying deterministic graphs, where |·| denotes the
cardinality of a set. The probability of a deterministic graph
G(V,EG) being the underlying graph is:

Pr(G) =
∏
e∈EG

p(e)
∏

e∈E\EG

(1− p(e)).

We also use G ∈ G to represent that G is a possible underlying
graph for G. We define G to be s-t connected if there exists an
s-t path in the underlying graph of G. Figure 1 demonstrates
an example of a three-edge uncertain graph with its possible
underlying graphs.

B. Problem Formulation

Definition 1. (Temporary State) A temporary state s of an
uncertain graph G(V,E, p, c) is an |E|-dimension vector with

1e
2e 3e

1(
)

0.
2

p
e

=

2() 0.5p e =

3
()

0.6

p e
=

s t s t

1(
)

3
c

e
=

2() 5c e =

3
()

2
c e

=

1

2

3

2

3

1

1

1

1

1

1

{*,*,*}
{0,*,*}
{0,1,*}
{0,*,1}
{*,1,*}
{*,*,1}
{*,*,0}
{*,0,*}
{*,1,0}
{*,0,1}
{*,0,0}

e
e
e
e
e
e
e
e
e
e
e

1e 2e 3e

uncertain graph a possible underlying graph

a known edge
a known non - edge

a potential edge

Fig. 2. The table in the left demonstrates an adaptive testing strategy with
the action of terminating states omitted. The left entries denote the temporary
states and the right entries represent the corresponding testing edges. The right
part illustrates the transition of temporary states when the strategy is executed
on the underlying graph in the figure. Following the strategy on the left, when
the underlying graph is as shown on the right, the evolution of temporary state
is {*,*,*},{0,*,*},{0,1,*},{0,1,1}. Note that some non-terminating states are
not reachable during the testing process starting from the initial state, but we
still show them in the figure in accordance to the definition of adaptive testing
strategy, which is a mapping defined on the set of all temporary states. For
clearance, we do not show the direction of each edge.

element “0”, “1” and “*”. And we define S = {0, 1, ∗}|E| to
be the set of temporary states associated with G.

Each temporary state s ∈ S represents a set of outcomes
during the testing process, where “0” means the corresponding
edge has been tested and found not existing, “1” means
the corresponding edge has been tested and found existing
and “*” means the corresponding edge has not been tested.
Additionally, we denote the condition of edge e in state s as
se. As our goal is to determine the s-t connectivity of the
underlying graph for G, for a temporary state s, we define it
to be a terminating state if either the edge set {e | se = 1}
forms a superset of an s-t path in G or edge set {e | se = 0}
forms a superset of an s-t cut1 in G. We successfully determine
the s-t connectivity by reaching a terminating state.

Definition 2. (Adaptive Testing Strategy) An adaptive testing
strategy is a deterministic mapping π : S 7→ E∪{⊥}. Initially
starting from the all-∗ state, an adaptive testing strategy
specifies which edge to test (or terminate as denoted by ⊥)
based on the previous testing outcomes.

In the present work, we restrict our consideration to reason-
able strategies where all the terminating states are mapped to ⊥
and no state is mapped to any edge that has already been tested
in that state. Also note that some states may never be reached
but we still include them in the strategy for consistency.

During each determining process, we are associated with
an underlying graph. The outcome of tests are dictated by the
underlying graph and after each test the current temporary state
will evolve into a new state. Therefore, an adaptive testing
strategy may test different sets of edges before termination
when executed on different underlying graphs of G. For a
specific underlying graph G, we denote Eπ(G) as the set of
edges strategy π tests on it. Note that as G is deterministic,
Eπ(G) is also deterministic. It follows that the expected cost

1All the cuts in this paper are graph s-t cut, i.e., the minimal cut sets that
partition s and t into different subsets.

4

of π is given by:

Cost(π) =
∑
G∈G

[Pr(G)
∑

e∈Eπ(G)

c(e)],

where
∑
e∈Eπ(G) c(e) equals to the cost incurred by π when

the underlying graph is G, and the expected cost is the weight-
ed sum of the costs incurred on all the possible underlying
graphs. An example of an adaptive testing strategy on an
uncertain graph is illustrated in Figure 2.

Based on all the conditions above, now we give a formal
definition of our problem stated as follows.

Definition 3. (The Connectivity Determination Problem) Giv-
en an uncertain directed graph2 G(V,E, p, c) with two nodes
s, t ∈ V designated as source and destination, respectively,
the goal is to find an adaptive testing strategy π that incurs
the minimum expected cost.

Remark: Apart from deriving the strategy’s action in all
temporary states at once, an algorithm for the Connectivity
Determination problem can instead compute the strategy se-
quentially, only deciding the next edge to test based on the
current state. In algorithmic point of view, we consider the
time complexity of an algorithm for Connectivity Determina-
tion problem as the maximum time it takes to compute all the
relevant actions of a determining process. Therefore, finding
the optimal strategy in a sequential fashion, on the surface,
may appear to simplify the problem compared to computing it
holistically. However, we show in next section that the problem
is NP-hard regardless of in which way we compute the optimal
strategy. Table I summarizes the notations that will be used
throughout the paper.

Applicability of the model: We illustrate how to project our
model into real situations using several examples. Let us firstly
take communication networks for example, where the edge
existence probability corresponds to the reliability of network
links. The testing cost represents the probing costs of the links.
The connectivity determination problem asks for a minimum
cost probing strategy determining the source-destination con-
nectivity of the networks, allowing for the prevalent existence
of edge uncertainty. Other than communication networks, such
uncertain graph can also be projected into the structure of a
priced information, with each edge representing a piece of
information (data) and its testing cost corresponds to the price
of the data. Under such circumstance, the optimal strategy al-
lows us to successfully query the information paying minimum
price [30]. Another application is a social network graph where
an edge can be treated as a first cousin relationship, and the
object of interest is to determine whether two individuals from
a large population are distant cousins. Obviously, determining
whether an edge exists between two individuals is usually
very expensive, involving costly genetic testing that outweighs
any computational cost. An edge could of course represent
a variety of other relationships that are expensive to check,
for instance due to confidentiality or physical restrictions. In
those scenarios where users have no prior knowledge of the

2Without loss of generality, we assume the graph with vertex set V and
edge set E is s-t connected, i.e., G is s-t connected if all its edges exist.

whole network structure, it is reasonable to render the link
existence between nodes as a preassigned probability. And
the algorithm for the problem thus helps us more efficiently
discover the relationship between nodes, which manifests its
significant use in link prediction [31]. Moreover, the structure
of the social networks can also be revealed [32], [33] by
applying the algorithm to different node pairs. Last but not
least, more potential applications of the illustrated scenario
also include sensor networks [28], P2P networks [29] and Data
center networks [7].

IV. COMPUTATIONAL COMPLEXITY

In this section, we investigate the computational complexity
of the Connectivity Determination problem. By demonstrating
the hardness of two closely related problems, we show both
computing the testing strategy with the minimum expected cost
holistically and sequentially are NP-hard. More specifically,
we first convert our problem into its corresponding decision
version that asks for the existence of an adaptive testing
strategy with expected cost less than some value l for a given
uncertain graph. Then, we consider the problem of deciding
which edge to test first in the optimal strategy. The inherent
tension of the Connectivity Determination problem is therefore
disclosed through demonstrating the NP-hardness of these two
problems, as stated in Theorems 1 and 2, respectively.

Theorem 1. The decision version of Connectivity Determina-
tion Problem is NP-hard.

Proof: Inspired by [27], we prove the theorem by re-
duction from the s-t reliability problem [1]: Given a directed
graph G and two nodes s and t. The s-t reliability is to
compute the probability of s being connected to t assuming
the edges in G exist independently with probability 1

2 . As s-t
reliability problem is #P-hard [1]3, its decision version that
quests whether the probability of s being connected to t is
larger than some predefined value r0 is NP-hard.

The reduction works as follows. For a graph G(V,E), we
transform it to an uncertain graph G(V,E′, p, c) by adding an
edge M between s, t and set the rest of G is just the same
as G. Define n as the number of edges in G. We set the cost
of M as c(M) = n2n+1 and the cost of testing other edges
as 1. Then we assign the existence probability of all edges in
G as 1

2 . Finally, we designate s, t in G as the source and the
destination in the constructed instance.

Let r be the s-t reliability in G and l be the expected cost
incurred by the optimal testing strategy on G. We define a
generic G′ as a subgraph resulted from an underlying graph
of G with edge M removed. We will show that if we know l,
then we can efficiently compute r.

First, from the definitions, we have r = k
2n for some

integer k, and l must obey the following two constraints:
l ≥ (1 − r)c(M) and l ≤ rn + (1 − r)c(M) . Here, the
first inequality follows from the fact that we have to test M
whenever we find out that s and t is not connected in G′.
The second inequality holds since the expected cost of the

3#P is a complexity class for counting problems. #P-hard is at least as hard
as NP-hard [1].

5

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition
G uncertain directed graph
V vertex set of the uncertain graph
E edge set of the uncertain graph
p probability function indicating the existence probability

of edges in the uncertain graph
c cost function indicating the testing cost of edges in

the uncertain graph
G underlying deterministic graph
s, t source and destination
S set of temporary states
s, s′,a,b temporary states
se the element corresponding to edge e in state s
π adaptive testing strategy
Eπ(G) set of edges π tests before termination

when the underlying graph is G
Cost(π) the expected cost of strategy π
u utility function in the Markov Decision Process
g utility function in the Q-value approach
P the collection of s-t paths in G
C the collection of s-t cuts in G
Pe the subfamily of s-t paths in G that edge e lies on
Ce the subfamily of s-t cuts in G that edge e lies on
Q the goal value in the Q-value approach

optimal strategy is certainly no greater than that of a simple
strategy that first test all the edges in E and test M if no
s-t path is found. Combining the two inequalities, we have
2n c(M)−l

c(M) ≤ k ≤ 2n c(M)−l
c(M)−n . Consequently, k = b2n c(M)−l

c(M)−nc.
Therefore, if we have a polynomial time algorithm that solves
the decision version of Connectivity Determination problem,
then we can efficiently solve the decision version of s-t reli-
ability problem. Since the latter is NP-hard, we conclude that
the decision version of Connectivity Determination problem is
also NP-hard.

Theorem 2. Deciding the optimal first edge to test (the edge
tested by the optimal strategy in the intial state) is NP-hard.

Proof: We only present a proof sketch here and refer the
details to Appendix A. The proof is done by reduction from
set cover problem. Given a universe of elements, a family of
subsets of the universe and a predefined integer k, a cover
is a subfamily of sets whose union equals to the universe.
The set cover problem asks whether there exists a cover of
cardinality less than k. For a set cover instance, we construct
a corresponding uncertain graph as follows. We first create
a set vertex for each subset in the family and an element
vertex for each element in the universe. Next, we add three
special vertices: source s, destination t and a special set vertex
sM . Then, we add edges from s to each set vertex, from
each element vertex to t and from each set vertex to the
element vertices it contains in the original instance. Specially,
we add edges from sM to all the element vertices. By carefully
assigning the cost and probability of each edge, we prove that
the optimal first edge to test is the edge M from s to sM if and
only if there does not exist a cover of size smaller than k in
the original set cover instance. Figure 3 presents the uncertain
graph constructed for a set cover instance.

Remark: The two theorems characterize the complexity
of the Connectivity Determination problem from two aspects.

Theorem 1 establishes the NP-hardness of the decision version
of our problem, which implies the NP-hardness of computing
the optimal strategy in a holistic fashion. Theorem 2 shows
that even computing the optimal testing strategy sequentially
cannot be completed in polynomial time unless P=NP.

M

s t

1s

2s

3s

MS

1ε

2ε

3ε

4ε

1 1 3

2 1 4

3 2 3 4

{ , }
{ , }
{ , , }

s
s
s

ε ε
ε ε
ε ε ε

=
=
=

Fig. 3. The uncertain graph (right) constructed for the set cover instance
(left). We omit the probability and cost of edges in the uncertain graph and
refer them to the Appendix A.

V. MDP-BASED EXACT ALGORITHM

The NP-hardness analysis in the previous section implies
that solving the problem exactly may lead to a prohibitively
large cost. However, it is still essential to design an exact
algorithm to capture the features of the optimal solutions
and gain insights of our Connectivity Determination problem.
The main idea of seeking for an exact algorithm is through
converting our problem into an equivalent Markov Decision
Process (MDP). Adopting the notations in [34], in the sequel,
we will first show how the elements in our problem can be
naturally mapped to the components in a finite horizon MDP.

A. Mapping the Problem into MDP

As a mathematical framework for planning or navigating
uncertain systems, MDP models the way of a decision maker’s
choosing actions so that the system can perform optimally
with regard to some predefined criterion. The key components
of an MDP include decision epochs, state space, action sets,
transition probabilities, rewards, decision policy and optimality
criterion. Regarding this, now we show the mapping between
these components and the elements in our problem one by
one. The correspondence is also summarized in Table II.

TABLE II
THE CORRELATION BETWEEN CONNECTIVITY DETERMINATION

PROBLEM AND MARKOV DECISION PROCESS

Markov Decision Process Connectivity Determination Problem
state space set of temporary states S
state a temporary state s
action set testing or termination, E ∪ {⊥}
transition probability function P probability function p of edges
reward function r cost function c of edges
decision policy adaptive testing strategy π

• Decision Epochs: In an MDP, decisions are made at
points of time called decision epochs. In our problem the
decision epochs are the times we need to decide which
edge to test next or terminate. Since we at most need
to test |E| edges where |E| is the number of possible
edges in the uncertain graph, our corresponding MDP is
of finite horizon.

• State Space: The state space of an MDP represents
the possible states that a system can be in. It naturally

6

corresponds to the set of temporary states S in our
problem. We may also partition the state space S into
|E| disjoint subsets based on the number of edges having
been tested in the states as S = S0 ∪ S1 ∪ . . . ∪ S|E|. In
decision epoch i, the system can only be in a state in Si.

• Action Sets: For each state s ∈ S, there is a set of actions
that can be performed under it. We define the associated
action set As of state s as the set of edges that have
not been tested in s. Additionally, for terminating states,
their action set also contains the terminating action ⊥. As
a result, the whole action set A =

⋃
s∈S As = E ∪ {⊥}.

• Transition Probabilities and Rewards: The transition
probability function and reward function characterize the
result of choosing some action at some state. Generally
speaking, at each state, choosing an action will gain
some reward and the system will evolve into other states
probabilistically at the next decision epoch. Projecting
into our problem, the transition probability of action e
(testing edge e) is given by the existence probability
of edge e. Denote by s · e the temporary state evolved
from s by setting se as 1 and by s\e the temporary state
evolved from s by setting se as 0. Formally, the transition
probability function is given by:

P (s′|s, e) =

p(e) if s′ = s · e,
1− p(e) if s′ = s\e,
0 otherwise,

and

P (s′|s,⊥) =

{
1 if s′ = s,

0 otherwise.
Then it follows that the reward function is r(s, e) =
−c(e) and r(s,⊥) = 0. Note that the reward function is
negative, corresponds to the cost and the transition prob-
ability and reward function are independent with regard
to decision epochs or previous state, which demonstrates
the Markov property of our problem.

• Decision Policy: A decision policy is a mapping from
state space to action set. Therefore, in our problem, it is
equivalent to an adaptive testing strategy.

• Optimality Criterion: Obviously, in our case, the op-
timality criterion is the expected total reward criterion,
i.e., the decision policy with the maximum expected
total reward of the constructed MDP corresponds to the
optimal adaptive testing strategy.

B. Exact Dynamic Programming Algorithm

From the equivalence between our problem and an MDP,
it follows that our problem also satisfies the “Principle of
Optimality” in MDP [34], i.e., starting at any states, the
optimal adaptive testing strategy incurs the minimum expected
cost among all strategies. This enables us to define the optimal
utility function u of states assigning each temporary state
the expected reward (negative cost) of the optimal strategy
starting at that state. Similarly, we define a utility function uπ
associated with strategy π as the reward gained by π starting
from each state. By the Bellman equation [34], we have the
following lemma.

Lemma 1. For any state s ∈ S, the optimal utility function
satisfies
u(s) = maxa∈As{r(s, a) +

∑
s′∈S P (s′ | s, e)u(s′)}.

Particularly, if s is a non-terminating state, then
u(s) = maxe∈As{−c(e) + p(e)u(s · e) + (1− p(e))u(s\e)}

and for any terminating state, its utility is 0.

Based on the Lemma 1, we design an algorithm that
computes the optimal testing strategy π following the standard
dynamic programming paradigm, as shown in Algorithm 1.

Algorithm 1 The MDP-based Exact Algorithm
Input: Uncertain graph G(V,E, p, c), source s, destination t
Output: The optimal testing strategy π

1: Initialize: uπ(s) = 0, for all s ∈ S|E|
2: for i = |E| to 0 do
3: for All s in Si do
4: if s is a terminating state then
5: uπ(s) := 0, π(s) := ⊥.
6: else
7: e∗ := arg maxe∈As{−c(e) + p(e)uπ(s · e)

+(1− p(e))uπ(s\e)},
8: uπ(s) := −c(e∗) + p(e∗)uπ(s · e∗)

+(1− p(e∗))uπ(s\e∗),
9: π(s) := e∗.

10: return π

We prove the correctness of the dynamic programming
algorithm in the following theorem.

Theorem 3. For an uncertain graph G, Algorithm 1 yields
an optimal adaptive testing strategy and has a complexity of
O((|V | + |E|)3|E|), where |V | denotes the number of nodes
and |E| denotes the number of edges in G.

Proof: Denote an optimal testing strategy as π∗, the
strategy given by Algorithm 1 as π. By backward induction,
we prove that the utility function uπ of π is no less than the
optimal utility function uπ∗ = u on every state, which implies
that π is an optimal strategy.

First, for all s ∈ S|E|, obviously uπ(s) = uπ∗(s) = 0.
Suppose for all states s ∈ Si, i ≥ k, uπ(s) ≥ uπ∗(s), then we
prove that for all states s ∈ Sk−1, uπ(s) ≥ uπ∗(s). Indeed, by
the selection criterion of the algorithm, for a state s ∈ Sk−1
that is non-terminating, we have
uπ(s) = max

e∈As

{−c(e) + p(e)uπ(s · e) + (1− p(e))uπ(s\e)}

≥ − c(π∗(s)) + p(π∗(s))uπ(s · π∗(s))
+ (1− p(π∗(s)))uπ(s\π∗(s))
≥− c(π∗(s)) + p(π∗(s))uπ∗(s · π∗(s))

+ (1− p(π∗(s)))uπ∗(s\π∗(s)) (1)
=uπ∗(s),

where Inequality (1) follows from the induction hypothesis.
And if s is a terminating state, then also uπ(s) = uπ∗(s) = 0.
Hence, we prove that under every state s, following π is
optimal, and particularly from the initial all-∗ state, π returns
the maximum expected reward, or equivalently, incurs the
minimum expected cost.

7

The time complexity of the algorithm can be justified as
follows. There are in total 3|E| temporary states associated
with the uncertain graph. Qualifying whether a state s is a ter-
minating state can be realized by querying the s-t connectivity
on two deterministic graphs G1

s(V,E1) and G2
s(V,E2), where

E1 = {e | se = 1} and E2 = {e | se = 1 or se = ∗}. This is
implementable in O(|V | + |E|) time by depth-first traversal,
and selecting the optimal action for each state requires O(|E|)
time. Hence, the algorithm terminates and finds the optimal
solution in O((|V |+ |E|)3|E|) time.

Remark: Note that the exact algorithm computes the whole
testing strategy in one run, meaning that we can obtain the
corresponding action for all temporary states by invoking the
algorithm once. Therefore, on average, the exact algorithm
takes O(|E|) time to determine the optimal action for each
temporary state. However, as the time complexity we consider
here is the total time for an algorithm to determine all the
actions of a testing process and we have to execute the whole
algorithm at the beginning of each testing process, the exact
algorithm still has exponential time complexity. On the other
hand, the approximation algorithms presented in the following
section exploits the sequential way of computing the testing
strategy. Based on each temporary state, they use polynomial
time to determine the corresponding action, thus can be
categorized as polynomial time approximation algorithms.

VI. APPROXIMATION ALGORITHMS

As stated previously, it is unrealistic to pursue efficient exact
algorithm on general uncertain graphs due to the inherent
tension of the Connectivity Determination problem. Therefore,
in this section, we propose approximation schemes that have
both polynomial time complexity and good approximation
guarantee. Specifically, we focus on analyzing the approxima-
tion ratios of the two proposed algorithms. The readers may
refer to Appendix IV for more details of their time complexity.

A. A Simple Greedy Approach

An intuitive greedy algorithm is to test the edge with
the minimum cost (breaking ties arbitrarily). Surprisingly, we
show that this greedy algorithm has a non-trivial approxima-
tion ratio of O(|E|).

Theorem 4. Given an instance of our problem with uncer-
tain graph G(V,E, p, c) and two nodes s, t as source and
destination, let π be a strategy that tests the edges in G
according to their costs sorted in an increasing order. Then,
Cost(π) ≤ |E| · Cost(π∗), where π∗ is the optimal strategy.

Proof: Suppose that we know the underlying graph G
of G in advance. Denote Cert(G) as the certifier of G’s s-t
connectivity with the minimum cost. If s and t are connected
in G, then a certifier consists of an s-t path in G whose edges
exist in G. If s and t are disconnected in G, then a certifier
consists of an s-t cut in G whose edges do not exist in G.
Since π tests the edges from cheap to expensive, we must have∑
e∈Eπ(G) c(e) ≤ |E| · Cert(G) for any G. And due to the

fact that even the optimal strategy has no prior knowledge of
the underlying graph G, clearly

∑
e∈Eπ∗ (G) c(e) ≥ Cert(G).

Therefore, Cost(π) =
∑
G∈G [Pr(G)

∑
e∈Eπ(G) c(e)] ≤ |E| ·∑

G∈G [Pr(G)Cert(G)] ≤ |E| · Cost(π∗).
Strictly speaking, the greedy algorithm yields non-adaptive

strategies, i.e., the strategies it derives do not make decisions
based on previous results but tests the edges following a
predefined order. We can modify it into an adaptive version,
which omits the edges that do not effect the s-t connectivity,
e.g. the edges that do not lie on any of the s-t paths in the
current state. Although the adaptive version of the greedy
algorithm has better performance, Theorem 4 holds for both
the adaptive and non-adaptive version.

There are three further notes regarding the properties of
the greedy algorithm: (i) Although the proof of Theorem 4
is completed by comparing the performance of the greedy
algorithm to the minimum certifier cost, the resulting bound
is actually tight, (ii) The approximation ratio of an alternative
greedy algorithm based on the existence probability of edges
is far worse than O(|E|) and (iii) The greedy algorithm only
considers the testing cost of edges. However, it has significant-
ly better performance guarantee than some seemingly more
sophisticated algorithms that take into account the existence
probabilities of edges. The soundness of the above three
arguments is supported in our Appendices C.

B. Adaptive Submodular Algorithm

To further improve the approximation ratio, we adopt the
Q-value approach in Stochastic Boolean Function Evaluation
Problem (SBFE) proposed by [22]. Based on that, we utilize
the adaptive submodularity [23] in our problem and propose
the Adaptive Submodular Algorithm, of which the approxi-
mation ratio is logarithmic to the number of edges for most
uncertain graphs.

1) Preliminaries: The Q-value approach is proposed for
the SBFE problem, which has close connection with our
problem. The SBFE problem is that given a Boolean function
f : {0, 1}n 7→ {0, 1} on an unknown input x. Each bit xi
of x can only be determined by paying a cost ci. The prior
probability of the value of each bit being 1 is specified by a
probability vector p = (p1, p2, . . . , pn) and x is drawn from
the corresponding product distribution. The goal is to derive an
evaluation strategy minimizing the expected cost. The relation
between our problem and SBFE can be established by consid-
ering each edge as a Boolean variable and see the function as
implicitly given by the s-t connectivity of the uncertain graph.
However, as constructing such a function from a graph may
have exponential time complexity, we cannot directly use the
algorithms proposed for SBFE problems.

We then introduce some useful definitions for the Q-value
approach adapted for our problem. For two temporary states
a,b ∈ S, a is an extension of b, written as a ∼ b, if ai = bi
for all bi 6= ∗. A function g : S 7→ N is said to be monotone
if for s ∈ S and all s′ ∼ s, g(s′)− g(s) ≥ 0. g is submodular
if g(s · e) − g(s) ≥ g(s′ · e) − g(s′) and g(s\e) − g(s) ≥
g(s′\e)− g(s′) whenever s′ ∼ s and se = s′e = ∗. For a state
s ∈ S and edge e with se = ∗, the expected marginal gain
of the edge to the current state with respect to g is given by
p(e)g(s · e) + (1− p(e))g(s\e)− g(s).

8

The Q-value approach: The Q-value approach [22] states
that if we have a utility function g : S 7→ N that satisfies:
(1) g is monotone and submodular, (2) g(∗, ∗, . . . , ∗) = 0,
and (3) for any temporary state s ∈ S, g(s) = Q iff s is
a terminating state, then g is assignment feasible with goal
value Q for our problem. And by using the adaptive greedy
algorithm proposed in the Adaptive Submodular framework
in [23] that suggests testing the edge with the maximum ratio
between its expected marginal gain and cost each time, we
yield a solution that is within a factor of (lnQ + 1) of the
optimum. For completeness, we state the relevant result in the
following lemma.

Lemma 2. [23] Given a utility feasible function g, set of
states S and goal value Q, we are to select a certain action
on current states, and the state transition is governed by
the action. Our goal is to make the state evolve to some
terminating state s such that g(s) = Q. Then, the strategy
that maximize the ratio between the gain with respect to g
and the cost of the action is a (lnQ+1)-approximation of the
minimum cost strategy.

2) Applying the Q-value Approach: To harness the Q-value
approach, we need to choose appropriate utility function g.
And we present in the following the utility function that we
design for our algorithm.

Given an uncertain graph G(V,E, p, c), we denote by P
the collection of s-t paths in G, and by C the collection of
s-t cuts in G. For an edge e, we define Pe as the set of s-t
paths it lies on in G and Ce as the set of minimal s-t cuts4 it
lies on in G. Note that the above definitions interpret G as a
deterministic graph with vertex set V and edge set E. Then,
for each temporary state s, we define two auxiliary functions
gp and gc as:

gp(s) = |
⋃

e:se=0

Pe|, gc(s) = |
⋃

e:se=1

Ce|.

Our utility function g : S 7→ N is given by:

g(s) = |P||C| − (|P| − gp(s))(|C| − gc(s)).

The intuitive explanation for the functions gp, gc and g is that
if we view the determining process as a covering process, then
the non-existence of an edge can be regarded as covering the
paths it lies on and the existence of an edge is equivalent
to covering the cuts it lies on. If all the paths in G have
been covered in some state s, then we have gp(s) = |P| and
conclude that s and t in the underlying graph of G must be
disconnected and the converse is also true. The dual case holds
similarly. Therefore, when s is a terminating state, we must
have g(s) = Q. Theorem 5 demonstrates the validity of the
utility function that we construct.

Theorem 5. The utility function g is assignment feasible.

Proof: We prove the theorem by showing that g satisfies
the three conditions mentioned above. First, obviously both gp
and gc are monotone, it follows that g is also monotone. And
since gp and gc are easily verified to be submodular, we have

4An s-t cut is minimal if and only if no proper subset of it is an s-t cut.

gp(s · e)− gp(s) ≥ gp(s′ · e)− gp(s′),
gp(s\e)− gp(s) ≥ gp(s′\e)− gp(s′),
gc(s · e)− gc(s) ≥ gc(s′ · e)− gc(s′),
gc(s\e)− gc(s) ≥ gc(s′\e)− gc(s′),

whenever s′ ∼ s and s′e = se = ∗. Note that actually,
gp(s · e) − gp(s) = gc(s\e) − gc(s) = 0 for all s and e such
that se = ∗. Then, combining the fact that g(s · e) − g(s) =
(|P|− gp(s · e))(gc(s · e)− gc(s)) and g(s\e)− g(s) = (|C| −
gc(s\e))(gp(s\e)− gp(s)), we have g is submodular. Second,
since gp(∗, ∗, . . . , ∗) = gc(∗, ∗, . . . , ∗) = 0, g(∗, ∗, . . . , ∗) is
also zero. The third condition is explained above. Hence, g is
an assignment feasible utility function.

3) The Adaptive Submodular Algorithm: By applying the
Q-value approach [22] with our utility function, we have our
Adaptive Submodular algorithm shown in Algorithm 2. Note
that the algorithm computes the testing strategy sequentially,
i.e., in one iteration, it only determines the next edge to test
based on the current temporary state.

4) Performance Guarantee: By Lemma 2, the Adaptive
Submodular algorithm yields an approximation of O(lnQ) =
O(ln(|P||C|)). Since for most graphs, the number of paths
and the number of cuts are polynomial to the number of
edges, Algorithm 2 has logarithmic approximation ratio in
most cases. However, in some extreme cases, the number of
paths or cuts can be exponentially large, making the worst
case approximation ratio still turn out to be O(|E|). Also note
that in the algorithm we do not specify how to implement the
selection rule in line 3 of Algorithm 2, hence the algorithm
can be viewed as a framework that can embody any valid
greedy selection algorithm. Standard implementation of the
selection rule involves counting the number of paths and cuts
in graph G, which is #P-hard [1] in general. So, we may
use polynomial time approximate counting schemes [35], [36]
that can preserve an approximation ratio of O(ln(α|P||C|)),
if the scheme can guarantee that the expected marginal gain
of the selected edge is within a factor α of the optimal gain.
Furthermore, when the number of paths and the number of
cuts are polynomial to the number of edges, we can also use
efficient enumerating schemes [37] to select the next edge
to test following the criterion of our Adaptive Submodular
algorithm.

Algorithm 2 The Adaptive Submodular Algorithm
Input: Uncertain graph G(V,E, p, c), source and destination

nodes s, t.
Output: An approximate adaptive testing strategy

1: Initialize: Current state s := (∗, ∗, . . . , ∗), The set of
tested edges Eπ as an empty set.

2: Repeat until s becomes a terminating state.
3: e∗ := arg maxe∈E\Eπ{

p(e)g(s·e)+(1−p(e))g(s\e)−g(s)
c(e) }.

4: Eπ := Eπ ∪ {e∗}, test e∗ and observe the outcome.
5: if edge e∗ exists then
6: se∗ := 1
7: else
8: se∗ := 0

9

1 2 3 4 5 6

E
xp

ec
te

d
C

os
t

0

5,000

10,000

15,000

20,000

25,000

Dataset: Citation Networks
Greedy
OpSort
PeSort
IntSort
AdaSub

(a)
1 2 3 4 5 6 7 8 9

E
xp

ec
te

d
C

os
t

0

5,000

10,000

15,000

20,000

25,000 Dataset: Internet P2P Networks

Greedy
OpSort
PeSort
IntSort
AdaSub

(b)
1 2 3 4 5 6 7 8 9 10

E
xp

ec
te

d
C

os
t

0

50,000

100,000

150,000

200,000 Dataset: Twitter Ego Networks

Greedy
OpSort
PeSort
IntSort
AdaSub

(c)

Fig. 4. The expected cost of the adaptive testing strategies yielded by different algorithms. The x-coordinates of the figure follow the increasing order of
the size of the uncertain graphs.

VII. SIMULATIONS

In this section, we present our simulations on the perfor-
mance of the proposed algorithms on various datasets. We
first introduce our simulation environment in the following
and show the detailed results in subsequent sections.

A. Simulation Settings

1) Simulation Datasets: We adopt three real life datasets in
our simulations. The basic descriptions and statistics are listed
as follows:
• Citation Networks (from Microsoft Academic Graph

[40]): We extract six citation networks of different sub-
fields in Microsoft Academic Graph ranging from 749
nodes (1429 edges) to 273751 nodes (993025 edges) to
generate six uncertain graphs.

• Internet Peer to Peer Networks [38]: This dataset con-
tains a snapshot of the Gnutella peer-to-peer file sharing
network in August 2002. We extract nine subnetworks
ranging from 1000 nodes (1700 edges) to 5000 nodes
(16469 edges) to form nine uncertain graphs.

• Twitter Ego Networks [39]: This dataset consists of ego
networks in Twitter. We select 10 ego networks ranging
from 95 nodes (1376 edges) to 213 nodes (17930 edges)
to create 10 uncertain graphs. Note that the ego networks
we use have high density.

For each uncertain graph generated above, we use Jac-
card’s coefficient [12], which is an established metric for
link prediction in social networks, to assign the existence
probabilities of the edges. Specifically, for an edge e = (x, y)
in uncertain graph G, the existence probability of e is given as
p(e) = |Γ(x) ∩ Γ(y)|/|Γ(x) ∪ Γ(y)|, where Γ(·) denotes the
set of neighbors of a node in the graph. We construct the cost
function of the uncertain graphs by assigning the cost of each
edge from a Gaussian distribution with mean 50 and standard
deviation 10. The negative part of the distribution is truncated.

2) Calculation of the Performance Metric: The perfor-
mance metric in the simulations is the expected cost of the
strategies derived by the algorithms. However, to calculate
the exact expected cost of a strategy requires testing it on
all the possible underlying graphs of an uncertain graph, of
which the number is extremely large. Therefore, instead, we
first generate 1000 underlying graphs by sampling from the
distribution given by the uncertain graph and then use the
average cost of a strategy incurs on the 1000 underlying graphs

to approximate the expected cost of the strategy. To further
eliminate the random noise in data, we designate 10 pairs of
source and destination in each uncertain graph, and the final
results shown in the figures are the average costs incurred by
strategies among all pairs of source and destination.

3) Algorithms Involved in Performance Comparisons: To
evaluate the performance of our proposed algorithms, we
include three additional heuristics adapted from [19]. We
briefly introduce the algorithms as follows:
• Greedy Algorithm (Greedy): The greedy algorithm that

tests the edges from low cost to high cost proposed in
Section VI.

• Adaptive Submodular Algorithm (AdaSub): The
Adaptive Submodular algorithm based on the Q-value
approach proposed in Section VI.

• MDP-based Algorithm (MDP): The exact dynamic
programming algorithm applying the Markov Decision
Process framework proposed in Section 1.

• Optimistic Sort Algorithm [19] (OpSort): The algo-
rithm yields a strategy that tests the edges following
the increasing order of c/p. OpSort is optimal when the
uncertain graph is a parallel graph [19].

• Pessimistic Sort Algorithm [19] (PeSort): The algo-
rithm yields a strategy that tests the edges following the
increasing order of c/(1−p). PeSort is optimal when the
uncertain graph is a serial graph [19].

• Intersection Sort Algorithm [19] (IntSort): The algo-
rithm that tests the edge with the minimum cost that lies
on the intersection of a shortest s-t path and a minimum
s-t cut in the uncertain graph under the current state.

Due to the prohibitive time complexity of the MDP-based
algorithm, we only apply it to a sequence of subnetworks with
20 edges that are extracted from the citation networks.

B. Evaluation of Proposed Algorithms

We plot the expected costs of the strategies derived by
different algorithms on various uncertain graphs in Figures
4 and 5.

From Figure 5, we can see that the Adaptive Submodular al-
gorithm indeed yields near optimal testing strategies, of which
the expected cost is at most 8% higher than the minimum
expected cost achieved by the MDP-based algorithm. On the
other hand, although the Greedy algorithm is relatively simple,

10

1 2 3 4 5 6

Ex
pe

cte
d C

os
t

50

100

150

200

250

300

350
Greedy
OpSort
PeSort
IntSort
AdaSub
MDP

Fig. 5. Comparisons with the exact MDP-based algorithm on six small
subgraphs of the citation networks.

the expected costs of the transmission schemes it derives are
within a factor of 2.7 times the optimal ones.

As demonstrated in Figure 4, the Adaptive Submodular
algorithm derives the strategies with the minimum expected
cost among the five compared algorithms in all three data sets.
However, the gap between it and the Intersection Sort heuristic
is small. This can be attributed to the fact that in many cases,
the intersection of a shortest s-t path and a minimum s-t cut
is identical to the edge selected by the rule in the Adaptive
Submodular algorithm. However, as shown in Appendix C-D,
the Intersection Sort heuristic does not possess such theoretical
guarantee as the Adaptive Submodular algorithm.

For the other three compared algorithms, although it seems
that the Optimistic Sort and Pessimistic Sort utilize more in-
formation than the Greedy algorithm, as they take into account
the existence probabilities of edges. There exists no significant
gap between the Greedy algorithm and the other two. An
explanation to this is that the real life networks are mixed
with parallel and serial structures. So often the sole selection
criterion in OpSort or PeSort does not match the optimum.
Also, as demonstrated in Appendix C-C, surprisingly, the
worst case approximation ratios of both OpSort and PeSort are
far worse than the Greedy algorithm. Therefore, the Greedy
algorithm indeed achieves a desirable compromise between
OpSort and PeSort.

Finally, an important observation from our simulation re-
sults is that: larger size is not equivalent to higher cost.
Despite that the largest uncertain graph generated by the
citation networks has about one million edges, the cost of
determining s-t connectivity in it is still considerably lower
than in Twitter networks. This phenomenon results from the
fact that the Twitter networks are far denser than the other
two datasets, which means that there are significantly larger
number of edges that lie on the paths from source and
destination, influencing the s-t connectivity. Therefore, instead
of the total number of edges, it is the number of relevant edges
that determines the scale of the expected testing cost.

C. Characterization of the Adaptivity Gap
We investigate the significance of the adaptivity of testing

strategies by capturing the gap between the adaptive and
non-adaptive versions of the Greedy algorithm on different
datasets. Specifically, we define the adaptivity gap of the
Greedy algorithm as the ratio between the expected cost of the
strategies derived by the non-adaptive version and the adaptive

Datasets
Citation Internet P2P Twitter Ego

Ad
ap

tiv
ity

 G
ap

1

2

3

4

5

6

Fig. 6. The adaptivity gap of the Greedy algorithm on different datasets.

version. We calculate the adaptivity gap for each uncertain
graph in the three datasets and show the results in Figure 6.
It turns out that the adaptivity gap in Citation and Internet
Peer to Peer networks can be as large as two. For the dense
Twitter Ego network, the gap may even reach up to six. Hence,
harnessing the results of previous tests and making the strategy
adaptive bring significant gain in the testing costs.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we modeled the network as an uncertain graph
where each edge e exists independently with some probability
p(e) and examined the problem of determining whether a
given pair of source node and destination node are connected
by a path or separated by a cut. Assuming that during each de-
termining process we are associated with an underlying graph,
the existence of each edge can be unraveled through edge
testing at a cost of c(e). We aimed to find an optimal strategy
incurring the minimum expected cost with the expectation
taken over all possible underlying graphs. We have formulated
it into a combinatorial optimization problem and first in-
vestigated its computational complexity. Specifically, through
proving the NP-hardness of two closely related problems, we
have shown that this problem cannot be solved in polynomial
time unless P=NP. Then, we have applied the Markov Decision
Process framework to give an exact dynamic programming
algorithm with exponential time complexity. Moreover, we
have proposed two efficient approximation schemes: a simple
greedy approach with linear approximation ratio and a second
Adaptive Submodular algorithm with logarithmic approxima-
tion ratio for most uncertain graphs. Finally, we have justified
the effectiveness and superiority of our proposed algorithms
through theoretical analysis and extensive simulations on real
network datasets.

There remains a lot of future directions that can be explored.
For example, it is desirable to design an algorithm with better
approximation ratio and scalability, so that we can solve the
connectivity determination problem more efficiently and more
aptly apply it to large scale networks. Another interesting
work is to derive the theoretical bound of the adaptivity gap
of the Greedy algorithm and the approximation ratio of the
Intersection Sort Algorithm. Finally, it is also worthwhile to
investigate the approximation hardness of the Connectivity
Determination Problem.

11

ACKNOWLEDGEMENTS

This work was supported by NSF China (No. 61532012,
61325012, 61521062, 61602303 and 91438115).

REFERENCES

[1] M. O. Ball, “Computational Complexity of Network Reliability Analysis:
An Overview”, in IEEE Trans. on Reliability, Vol. 35, No. 3, pp. 230-239,
1986.

[2] D. Kempe, J. Kleinberg and E. Tardos, “Maximizing the Spread of
Influence through A Social Network”, in Proc. ACM SIGKDD, 2003.

[3] L. Roditty and U. Zwick, “A Fully Dynamic Reachability Algorithm
for Directed Graphs with an Almost Linear Update Time”, in SIAM J.
Comput., Vol. 45, No. 3, pp. 712-733, 2016.

[4] A. R. Khakpour and A. X. Liu, “Quantifying and Querying Network
Reachability”, in Proc. IEEE ICDCS, June, 2010.

[5] A. D. Zhu, W. Lin, S. Wang and X. Xiao, “Reachability Queries on Large
Dynamic Graphs: A Total Order Approach”, in Proc. ACM SIGMOD,
June, 2014.

[6] A. Sadilek, H. Kautz and J. P. Bigham, “Modeling The Interplay of
People’s Location, Interactions, and Social Ties”, in Proc. ACM IJCAI,
Aug., 2013.

[7] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures in
Data Centers: Measurement, Analysis, and Implications”, in Proc. ACM
SIGCOMM, Vol. 41, No. 4, pp. 350-361, 2011.

[8] S. Zhao and X. Wang, “Node Density and Delay in Large-scale Wireless
Networks with Unreliable Links”, in IEEE/ACM Trans. on Networking,
Vol. 22, No. 4, pp. 1150-1163, 2014.

[9] J. Zhao, “Probabilistic Key Predistribution in Mobile Networks Resilient
to Node-Capture Attacks”, to appear in IEEE Transactions on Information
Theory, 2017.

[10] S. Ji, R. Beyah and Z. Cai, “Snapshot and Continuous Data Collection
in Probabilistic Wireless Sensor Networks”, in IEEE Trans. on Mobile
Computing, Vol. 13, No. 3, pp. 626-637, 2014.

[11] P. Parchas, F. Gullo, D. Papadias and F. Bonchi, “Uncertain Graph Pro-
cessing through Representative Instances”, in ACM Trans. on Database
Systems (TODS), Vol. 40, No. 3, 2015.

[12] D. L. Nowell and J. Kleinberg, “The Link Prediction Problem for Social
Networks”, in J. of the American Society for Information Science and
Technology, Vol. 58, No. 7, pp. 1019-1031, 2007.

[13] R. Jin, L. Liu, B. Ding and H. Wang, “Distance-constraint Reachability
Computation in Uncertain Graphs”, in Proc. the VLDB Endowment, Vol.
4, No. 9, pp. 551-562, 2011.

[14] R. Jin, L. Liu and C. C. Aggarwal, “Discovering Highly Reliable
Subgraphs in Uncertain Graphs”, in Proc. ACM SIGKDD, Aug., 2011.

[15] M. Johnston, H. Lee and E. Modiano, “A Robust Optimization Approach
to Backup Network Design with Random Failures”, in IEEE/ACM Trans.
on Networking, Vol. 23, No. 4, pp. 1216-1228, 2015.

[16] P. Parchas, F. Gullo, D. Papadias, F. Bonchi, “The Pursuit of a Good
Possible World: Extracting Representative Instances of Uncertain Graph-
s”, in Proc. ACM SIGMOD, June 2014.

[17] P. Erdos, A. Renyi, “On Random Graphs. I”, in Publicationes Mathe-
maticae, Vol. 6, pp. 290-297, 1959.

[18] F. Chung and L. Lu, “Connected components in random graphs with
given expected degree sequences”, in Annals of combinatorics, Vol. 6,
No. 2, pp. 125-145, 2002.

[19] T. Unluyurt, “Sequential Testing of Complex Systems: A Review”, in
Discrete Applied Mathematics, Vol. 142, No. 1, pp. 189-205, 2004.

[20] H. Kaplan, E. Kushilevitz and Y. Mansour, “Learning with Attribute
Costs”, in Proc. ACM STOC, May, 2005.

[21] S. R. Allen, L. Hellerstein, D. Kletenik and T. Unluyurt, “Evaluation of
DNF formulas”, arXiv preprint arXiv:1310.3673, 2013.

[22] A. Deshpande, L. Hellerstein and D. Kletenik, “Approximation Al-
gorithms for Stochastic Boolean Function Evaluation and Stochastic
Submodular Set Cover”, in Proc. ACM SODA, Jan., 2014.

[23] D. Golovin and A. Krause, “Adaptive Submodularity: Theory and
Applications in Active Learning and Stochastic Optimization”, in J. of
Artificial Intelligence Research, Vol. 42, No. 1, pp. 427-486, 2011.

[24] H. Kowshik, “Information Aggregation in Sensor Networks”, PhD
Thesis in University of Illinois at Urbana-Champaign, 2011.

[25] L. Fu, X. Wang and P. R. Kumar, “Optimal Determination of Source-
destination Connectivity in Random Graphs”, in Proc. ACM MobiHoc,
Aug., 2014.

[26] L. Fu, X. Wang, P. R. Kumar, “Are we connected? Optimal Deter-
mination of Source-destination Connectivity in Random Networks,” in
IEEE/ACM Trans. on Networking, 2016.

[27] C. H. Papadimitriou and M. Yannakakis, “Shortest Paths without a Map”,
in Theoretical Computer Science, Vol. 84, No. 1, pp. 127-150, 1991.

[28] A. Y. Teymorian et al., “3D underwater sensor network localization,” in
IEEE Trans. Mobile Comput., Vol. 8, No. 12, pp. 1610-1621, 2009.

[29] L. Xiao, Y. Liu, and L. M. Ni, “Improving unstructured peer-to-peer
systems by adaptive connection establishment,” in IEEE Trans. Comput.,
vol. 54, no. 9, pp. 1091-1103, 2005.

[30] Charikar, Moses, et al. “Query Strategies for Priced Information”, in
Proc. of ACM STOC, 2000.

[31] J. Tang, T. Lou, J. Kleingerg and S. Wu, “Transfer Link Prediction
across Heterogeneous Social Networks”, in ACM Trans. on Embedded
Computing Systems, Vol. 9, No. 4, Article 39, 2010.

[32] F. Buccafurri, G. Lax, A. Nocera and D. Ursino.“ Discovering links
among social networks”, in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer Berlin Hei-
delberg, 2012.

[33] M. E. J. Newman, “The Structure of Scientific Collaboration Networks”,
in Proc. of the National Academy of Sciences, Vol. 98, No. 2, pp. 404-409,
2001.

[34] M. L. Puterman, “Markov Decision Processes: Discrete Stochastic
Dynamic Programming”, in John Wiley & Sons, 2014.

[35] D. Karger, “A Randomized Fully Polynomial Time Approximation
Scheme for the All-terminal Network Reliability Problem”, in SIAM Rev.,
Vol. 43, No. 3, pp. 499-522, 2001.

[36] R. Karp, M. Luby and N. Madras, “Monte-Carlo Approximation Algo-
rithms for Enumeration Problems”, in J. of Algorithms, Vol. 10, No. 3,
pp. 429-448, 1989.

[37] V. Vazirani and M. Yannakakis, “Suboptimal Cuts: Their Enumeration,
Wight and Number”, in Automata, Languages and Programming, Vol.
623, pp. 366-377, 1992.

[38] M. Ripeanu, I. Foster, and A. Iamnitchi, ”Mapping the gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design” arXiv preprint cs/0209028 (2002).

[39] J. McAuley and J. Leskovec. “Learning to Discover Social Circles in
Ego Networks”, in NIPS, 2012.

[40] Microsoft Academic Graph, https://www.microsoft.com/en-us/research/
project/microsoft-academic-graph/.

[41] X. Fu, Z. Xu, Q. Peng, L. Fu and X. Wang, “Complexity vs. Optimality:
Unraveling Source-Destination Connection in Uncertain Graphs”, to
appear in Proc. of IEEE INFOCOM, 2017.

APPENDIX A
PROOF OF THEOREM 2

The proof is done by reduction from the set cover problem,
which is a classic NP-complete problem. A set cover problem
instance consists of a universe U , a collection S of subsets
of U and an integer k, the question is whether there exists a
subfamily C ⊆ S such that

⋃
C∈C C = U and |C| ≤ k.

M
s t

1s

2s

3s

MS

1ε

2ε

3ε

4ε

1 1 3

2 1 4

3 2 3 4

{ , }
{ , }
{ , , }

s
s
s

ε ε
ε ε
ε ε ε

=
=
= MP

MC

sP
eP

eCsC

Fig. 7. The uncertain graph constructed for the set cover instance.

A. The Reduction Process

Given a set cover problem instance, we construct an instance
of our Connectivity Determination problem, specifically the
uncertain graph G(V,E, p, c) as follows. For each subset S ∈
S, we create a node for it and call the nodes created for all
S ∈ S as set nodes. For each element u ∈ U , we also create
a node for it and refer to the nodes created for all u ∈ U as
element nodes. Then, we add two new nodes s and t as source

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

12

and destination, respectively. After that, we add an edge from
each set node to all the nodes corresponding to the elements
contained in the set. These edges have existence probability 1,
which means that they do not need to be tested so their costs
are irrelevant. Next, We add an edge from s to each set node
and denote these as set edges. Similarly we add an edge from
each element node to t and denote these as element edges.
Finally, we create a special set node sM and add a special edge
M from s to sM , which is also referred to as a set edge. We
then add an edge of existence probability 1 from sM to each
element node. We finish the construction of G by assigning
proper probabilities and costs to edges. Each set edge except
M is assigned with the same probability Ps and cost Cs; Each
element edge is assigned with the same probability Pe and cost
Ce; The existence probability and cost of edge M are denoted
as PM and CM . Set m = |S| and n = |U|. The values of
Ps, Pe, PM , Cs, Ce and CM are given as follows:

Ps =1− 1

15mk
,

Pe =
1

2n
min{ (1− Ps)k

2
,

(
Ps

2k+1 − 1
)

(m+ k + 1) + 1
2

m+ k + 1
},

PM =
1

2
,

Cs =1,

Ce =
m+ CM

1
2 (1− Ps)m + (1− Pe)n − 1

,

CM =
1

2

(
1

(1− Pe)n P ks
− P k+1

s

)
m+

1

2

(
1− 1

2Ps
k

)
k

+
1

2

(
(1− Pe)n −

1

2

)
Ps

k+1(k + 1).

Note that all the probabilities and costs are rational numbers
and they can be represented in size polynomial to m + n.
Hence, the reduction process is polynomial to the size of the
instance. An example of the reduction process is demonstrated
in Figure 7.

B. Justification of the Reduction

In this section, we show the validity of the reduction, i.e. we
prove that the optimal edge to test initially is edge M if and
only if there does not exist a cover of size less than k in the
original set cover instance, thus implying the NP-hardness of
the problem of deciding the first edge to test in our problem.
The idea of the proof is as follows. We begin with defining
certain sequences of tests as trials. Then, based on trials, we
classify all the testing strategies into three categories. After
that, we show that the optimal strategy must come from one
category. Finally, we demonstrate that the optimal strategy in
the aforementioned category start with testing M if and only
if there does not exist a cover of size less than k in the set
cover instance.

First, we define a basic process of the testing strategy for
G. We define a process of testing with the following form as
a “trial”: a trial begins with testing some edge (a set edge or
element edge) first. If the edge does not exist, then the trial
ends; If the edge exists, then in the trial we test all the edges

that lie on a same path with the edge. If one of these edges
exists, then the entire determine process ends with verifying
the s-t connectivity in the underlying graph of G. And the
trial also ends if none of these edges exists. Note that for a
set edge, the edges that share some paths with it can only be
element edges and vice versa.

We now present the lemma, which serves as the basis of
classifying strategies with respeect to trials.

Lemma 3. The optimal testing strategy must (only) consist of
trials.

Proof: The reason is as follows. If we intend to find
out the non-existence of edges in an s-t cut to show s-t
disconnectivity, after verifying the existence of the first tested
edge, we need to test all the edges that lie on a same path
with the first tested edge to show the non-existence of edges
in an s-t cut. And if we intend to find a path to demonstrate
s-t connectivity, we have

Pe > PMPe, Ce < CM + Ce,

Pe > PsPe, Ce < Cs + Ce.

This means that conditioned on the existence of the first edge,
if we begin a trial with a set edge, the probabilities of the
existence are higher and the total testing costs are lower for
the paths that the first tested edge lie on than any other path.
We also have

PM > PMPe, CM < CM + Ce,

PM > PsPe, CM < Cs + Ce,

Ps > PMPe, Cs < CM + Ce,

Ps > PsPe, Cs < Cs + Ce.

Similarly, this means that, conditioned on the existence of the
first tested edge, if we begin a trial with an element edge, the
probabilities of the existence are higher and the total testing
costs are lower for the paths that the first tested edge lies
on than any other path. After testing all the paths that the
first edge lies on, the resulting uncertain subgraph still bears
the same structure as G and the same argument still holds.
Therefore, the optimal strategy is to continue to do such trials
until there is no set edge or element edge left untested, unless
the determining process comes to an end during a trial.

Based on the above lemma, we classify the strategies that
observe the above necessary condition for being optimal into
the following three sets

1) The strategies that begin all trials with testing a set edge.
We denote C1 as the minimum expected cost of the
strategies in this set.

2) The strategies that begin all trials testing an element
edge. We denote C2 as the minimum expected cost of
the strategies in this set.

3) The strategies that begin some trials starting with testing
a set edge and others starting with testing an element
edge. We denote C3 as the minimum expected cost of
the strategies in this set.

13

Following the classification, we establish the superiority of
the first set over the other two sets in the following lemma.

Lemma 4. The optimal testing strategy is in the first set.

Proof: We first show that the optimal strategy in the first
set is superior than that in the second set. The first set of
strategies test at most all the set edges when none of them
exists and at most all edges in other cases. And the second set
of strategies have to test all element edges when they are all
non-existing. Thus, we have the following inequalities:

C1 < (1− Ps)m (1− PM) (CM +mCs) ,

+ (1− (1− Ps)m (1− PM)) (CM +mCs + nCe)

C2 > (1− Pe)n (nCe) .

It follows that

C2 − C1 >nCe ((1− Ps)m (1− PM) + (1− Pe)n − 1)

−mCs − CM
After plugging in the values of Ps, Cs, Pe, Cn, we have that
C2 − C1 > 0, which means that the optimal strategy in the
first has smaller expected cost than the optimal strategy in the
second set. Note that if we just reduce m,n or remove the term
1 − PM and CM in the inequalities, we still have C1 < C2.
Hence, for any intermediate subgraph of G during the testing
process, we still have that the optimal strategy in the first set
has smaller expected cost than one in the second set.

Now, we proceed to show that the optimal strategy in the
first set also incurs smaller cost than the optimal strategy in
the third set. The testing strategies in the third set involve trials
that begin with testing element edges and in these trials, each
element edge and its corresponding untested set edges form a
subgraph of G. Then, from the above reasoning, it follows that
in any of these subgraphs, substituting the trial that begins with
testing an element edge with trials that begins with testing a
set edge would lead to a strategy with smaller expected cost.
Consequently, each strategy in the third set can be mapped to
a corresponding strategy in the first set with smaller expected
cost. It follows that C1 < C3. Therefore, the optimal strategy
for G consists of trials that all begin with testing a set edge.

Now the question remains that which is the optimal strategy
in the first set. Specifically, we need to determine which set
edge the first trial begins with in the optimal strategy. Again,
we partition the strategies in the first sets into two subcases:

1) The strategies that begin the first trial with testing M .
We denote Cset1 as the expected total cost spent on set
edges by the best strategy in this set and Celement1 as
the expected total cost spent on element edges by the
best strategy in this set.

2) The strategies that begin the first trial with testing some
set edge other than M . We define Cset2 and Celement2
here in a similar manner as in the first case.

The comparison between two sets of strategies is as follows.
Since the existence probabilities and costs of all the element
edges are the same, if we restrict our attention to the tests of
element edges, the two sets of strategies only differ in the order
of testing. Hence they lead to same expected cost on element

edges, i.e., Celement1 = Celement2. We also note that for the
second set of strategies, the size of the minimum set cover for
the “truncated” instance diminishes after the first trial if the
set edge exists but none of its corresponding element edges
exists. Under this circumstance, the next trial still begins with
a set edge other than M . For general cases, for strategies in the
second set, if some trial begins with a set edge other than M
and results in the existence of the set edge but non-existence of
its corresponding element edges, the next trial will still begin
a trial with a set edge except M . Suppose the minimum set
cover in the original instance has size l. Then we have

CM + l (1− PM) (1− Pe)n Cs + Celement1 < Cset1 <

CM + (1− PM)
(
lP ls +

(
1− P ls

)
m
)
Cs + Celement1,

(2)

l (1− Pe)n P lsCs + Celement2 < Cset2 <

l (1− Pe)n P lsCs +
(
1− (1− Pe)n P ls

)
(m+ CM)Cs

+ Celement2.

(3)

Inequality (2) holds because if the first trial fails (i.e., edge M
does not exist in the underlying graph) and none of the element
edge exists in the underlying graph, the optimal strategy in the
first subcase has to test at least the l set edges corresponding to
the sets in the minimum set cover, the cost of which, together
with Celement1, corresponds to the lower bound of Cset1. Also
if the first trial fails, when all the l edges corresponding to
the minimum set cover exist, the optimal strategy in the first
subcase needs to test just these set edges. And it at most
need to test all the set edges if some set edge in the cover
does not exist in the underlying graph. The total cost of these
together with Celement1 makes the upper bound of Cset1 in
inequality (2). Inequality (3) holds because if all set edges
corresponding to the sets in the minimum set cover exist and
none of the element edge exists, the optimal strategy in the
second subcase has to test exactly these l set edges, which,
together with Celement2, constitutes the lower bound of Cset2.
Otherwise, the optimal strategy in the second subcase needs to
test at most all the set edges, the total cost of which, combined
with the total cost of the previous part and Celement2, forms
the upper bound in Inequality (3).

Due to the special values we assigned for the parameters, it
follows that if l ≤ k, Cset1 < Cset2, and otherwise if l > k,
then Cset1 > Cset2. This means that if the original instance
permits a set cover of size less than or equal to k, then the
optimal strategy in the second set is better than the optimal
strategy in the first set and vice versa.

Therefore, if the optimal strategy is to test edge M first,
then there does not exist a set cover of size less than or equal
to k. On the other hand, if it first tests some edge other than
M , then the original instance has a set cover of size k or
less. As the set cover problem is NP-Complete, we conclude
that deciding the optimal first edge to test in our problem is
NP-hard.

APPENDIX B
TIME COMPLEXITY OF THE APPROXIMATION ALGORITHMS

In this section, we present analysis on the time complexity
of the two approximation algorithms proposed in Section VI.

14

Recall that the time complexity of an algorithm for Connec-
tivity Determination problem is defined as the maximum time
it takes to compute all the relevant actions associated with a
determining process.

A. Preprocessing Procedures

In both algorithms, before deciding the action of the current
state, we need to determine whether the state is a terminating
state. As mentioned before, for a temporary state s of uncertain
graph G(V,E, p, c), this can be implemented by querying the
s-t connectivity in two deterministic graphs G1

s(V,E1) and
G2

s(V,E2), with E1 = {e | se = 1} and E2 = {e | se =
1 or se = ∗}. If G1

s is s-t connected, then we conclude that s
and t are connected in the underlying graph of G; If G2

s is s-t
disconnected, then we conclude that s and t are disconnected
in the underlying graph. For the two cases above, we have that
s is a terminating state. However, if G1

s is s-t disconnected
and G2

s is s-t connected, then s is a non-terminating state.
Furthermore, we may also apply another preprocessing

procedure to filter out irrelevant edges and only keep the edges
that lie on some path from s to t for the current state. This
can be completed through reachability queries.

The above two procedures both take a time of O(|V |+|E|).
Therefore, the time complexity of the preprocessing procedure
is O(|V |+ |E|).

1 1/ 2 1np c ε= − = +

1/ 2 1np c= =

1/ 2 1np c= =
.
.
.s t

Fig. 8. A tight instance for the Greedy algorithm

B. The Greedy Algorithm
The non-adaptive version of the Greedy algorithm is imple-

mentable by sorting the edges according to their cost using the
quick sort algorithm. Hence, the time complexity of the non-
adaptive version is O(|E| log(|E|)). On the other hand, in the
adaptive version, we need to filter out irrelevant edges and sort
the unfiltered edges for each current state. Therefore, the time
complexity of the adaptive version of the Greedy algorithm is
O(|E|2 log(|E|)).

C. The Adaptive Submodular Algorithm
The time complexity of the Adaptive Submodular algorithm

relies highly on the method used for the selection rule. If we
use path and cut enumeration schemes (e.g. [37]), the next
edge to test specified by the algorithm can be determined in
time O(|E|(|P|+ |C|)). And the total time complexity of the
algorithm would be O(|E|2(|P|+|C|)). This is still polynomial
when the number of s-t paths and s-t cuts are polynomial to
the number of edges. When the number of paths and cuts in G
is super-polynomial, to guarantee that the algorithm still has
polynomial running time, we may use previously proposed
approximate counting schemes [35], [36] to select edges with
approximately maximum ratio between the expected marginal
gain and cost, while preserving the approximation ratio of

the whole algorithm. Note that if some approximate counting
scheme is guaranteed to select edges with α-optimal marginal
gain (as is the case of [35]), the approximation ratio of the
whole algorithm is preserved as O(α ln(|P||C|)).

APPENDIX C
ADVERSE INSTANCES FOR THE ALGORITHMS

In this section, we present the tight or adverse instances for
some algorithms mentioned in the paper. The analysis also
justify the argument in Section VI-A that the performance
guarantee of the Greedy Algorithm is far better than some
other more sophisticated algorithm.

A. Tight Instance for the Greedy Algorithm

An instance that matches the O(|E|) bound of the approx-
imation ratio of the Greedy algorithm is illustrated in Figure
8. The instance is a parallel uncertain graph with two nodes
(designated as source and destination) and n edges, of which
one has existence probability (1− 1/2n) and cost (1 + ε) and
the other (n− 1) edges have probability 1/2n and cost 1.

In this case, the Greedy algorithm yields a strategy π that
first tests the edges with cost 1 one by one. If such an
edge exists, the strategy terminates with verifying the s-t
connectivity. If none of the edges with cost 1 exists, then the
strategy tests the edge with cost 1+ε. However, obviously the
optimal strategy π∗ is to first test the edge with cost (1 + ε)
and then test the rest edges if the first one does not exist in
the underlying graph. Hence, for sufficiently large n, we have

Cost(π) = (1− 1

2n
)n−1(1 + ε) +

n−2∑
i=0

(1− 1

2n
)i

≥
n−2∑
i=0

(1− 1

2n
)i

≥
n−2∑
i=0

(1− i

2n
)

= n− 1− (n− 1)(n− 2)

2n+1
.

On the other hand, we also have

Cost(π∗) = (1 + ε) +
1

2n

n−2∑
i=0

(1− 1

2n
)i

≤ 1 + ε+
n

2n
.

If follows that Cost(π)
Cost(π∗) ≥

n−1−[(n−1)(n−2)]/2n+1

1+ε+n/2n = O(n).
Thus, there exists some instance where the gap between the
Greedy algorithm and the optimal reaches up to n (the number
of edges in the uncertain graph). Therefore, the bound in
Theorem 4 is actually tight.

B. Adverse Instance for the Alternative Greedy Algorithm

Now we proceed to present an instance where the approxi-
mation ratio of the alternative greedy algorithm which yields
strategies that test the edges following the decreasing order
of there existence probability is exponential to the number of
edges.

15

1/ 2 2p c= =

21/ 2 2p c= =

1/ 2 2np c= =
.
.
.s t s t. . .

1 1/ 2np = −

1c = 12nc −=

1/ 2np =

12nc −=

1 1/ 2np = −

1 1/ 2 1np c= − =

11/ 2 2n np c −= =

11/ 2 2n np c −= =

()a ()b ()c

.

.

.s t

Fig. 9. Adverse instances for the other heuristics: (a) Alternative Greedy Algorithm, (b) Optimistic Sort, (c) Pessimistic Sort.

The instance is illustrated in Figure 9(a), which is a simple
parallel uncertain graph that only consists of two nodes (des-
ignated as source and destination respectively) and n parallel
edges (labeled as e1, e2, . . . , en) between them. The cost of
edge ek is 2k for all 1 ≤ k ≤ n and the existence probabilities
of all edges are 1/2. The strategy π∗ that tests according to the
increasing order of edge cost (which is the optimal in this case)
has expected cost 2+22(1−1/2)+. . .+2n(1−1/2)n−1 = 2n.
On the other hand, the alternative greedy algorithm that tests
according to the decreasing order of existence probability may
generate a testing strategy π that follows the decreasing order
of edge cost since the existence probability of all the edges
are the same. It follows that the expected cost of π equals to
2n + 2n−1(1− 1/2) + . . .+ 2(1− 1/2)n−1 > 2n. Hence we
have Cost(π)

Cost(π∗) ≥ 2n−1/n, which is significantly larger than
O(n).

C. Adverse Instances for Optimistic Sort and Pessimistic Sort

Although superficially, the Intersection Sort and Pessimistic
Sort are more sophisticated than the Greedy algorithm, we
now show by two hard instances that, on the contrary, their
theoretical performance guarantees are much worse than that
of the Greedy Algorithm.

The adverse instance for the Optimistic Sort is demonstrated
in Figure 9(b), which illustrates a serial graph with n edges. In
such graph, one edge has an existence probability of 1/2n and
a testing cost of 1, while the other (n−1) edges have existence
probability 1 − 1/2n and cost 2n−1. As 2n−1

1−1/2n < 1
1/2n for

sufficiently large n, in this case the Optimistic Sort yields a
strategy π that first tests the edges with cost 2n−1 and tests the
edge with cost 1 in the end if needed. Therefore, its expected
cost is given as

Cost(π) = (1− 1

2n
)n−1 +

n−2∑
i=0

2n−1(1− 1

2n
)i

≥
n−2∑
i=0

2n−1(1− 1

2n
)i

≥ 2n−1
n−2∑
i=0

(1− i

2n
)

= 2n−1[n− 1− (n− 1)(n− 2)

2n+1
].

On the other hand, the optimal testing strategy π∗ firsts test

the edge with cost 1. Its expected cost equals to

Cost(π∗) = 1 +
1

2n

n−2∑
i=0

2n−1(1− 1

2n
)i

≤ 1 +
n

2
.

Thus, we have Cost(π)
Cost(π∗) ≥

2n−1[n−1−(n−1)(n−2)/2n+1]
1+n/2 ≥

2n−1 for sufficiently large n. Hence, the approximation ratio
of the Optimistic Sort is at least exponential to the number
of edges. Similarly, for the parallel uncertain graph shown in
Figure 9(c), the approximation ratio of the Pessimistic Sort
is also no less than an exponential value of the number of
edges. Therefore, theoretically, the Greedy algorithm enjoys
significantly better performance guarantee than the Pessimistic
Sort and the Optimistic Sort.

D. Adverse Instance for the Intersection Sort

Finally, we show that the approximation guarantee of the
Intersection Sort heuristic is worse than our proposed Adaptive
Submodular algorithm. The constructed instance is the same
as the one in Figure 8. Here, the strategy generated by the
Intersection Sort first tests the edges with cost 1 one by one.
If an edge exists, the strategy terminates by verifying the s-t
connectivity. If none of the edges with cost 1 exists, then the
strategy tests the edge with cost 1 + ε. From the analysis in
Section C-A, we have that the expected cost of the strategy is
approximately n times the optimal one. However, there are
only n s-t paths and one s-t cut in the graph. Therefore,
the approximation ratio of the Intersection Sort is worse than
O(ln(|P||C|)), i.e., the performance guarantee of our Adaptive
Submodular algorithm is better than the Intersection Sort.
However, as the Intersection Sort algorithm is more intuitive
and simpler than Adaptive Submodular algorithm, it would be
interesting to investigate its approximation ratio. This presents
an interesting future direction of our work.

Luoyi Fu received her B. E. degree in Electronic
Engineering from Shanghai Jiao Tong University,
China, in 2009 and Ph.D. degree in Computer Sci-
ence and Engineering in the same university in
2015. She is currently an Assistant Professor in
Department of Computer Science and Engineering
in Shanghai Jiao Tong University. Her research of
interests are in the area of social networking and
big data, scaling laws analysis in wireless networks,
connectivity analysis and random graphs.

16

Xinzhe Fu received his B. E. degree in Department
of Computer Science and Engineering at Shanghai
Jiao Tong University, China, 2017. During his under-
graduate study, he was working as an research intern
supervised by Prof. Xinbing Wang. His research in-
terests include combinatorial optimizationasymptotic
analysis and privacy protection in social networks.
He will pursue Ph. D. degree in the Massachusetts
Institute of Technology (MIT), Massachusetts, USA,
2017.

Zhiying Xu is an undergraduate student in Depart-
ment of Electronic Engineering at Shanghai Jiao
Tong University, China. She is currently working
as an research intern supervised by Prof. Xinbing
Wang. Her research interests include network topol-
ogy and asymptotic analysis in social networks.

Qianyang Peng received his B. E. degree in Com-
puter Science and Engineering from Shanghai Jiao
Tong University, China, in 2017, and will pursue
master degree in the University of Illinois at Ur-
banaCChampaign, Illinois (UIUC), USA in 2017.

Xinbing Wang received the B.S. degree (with hon-
s.) from the Department of Automation, Shanghai
Jiaotong University, Shanghai, China, in 1998, and
the M.S. degree from the Department of Comput-
er Science and Technology, Tsinghua University,
Beijing, China, in 2001. He received the Ph.D.
degree, major in the Department of electrical and
Computer Engineering, minor in the Department
of Mathematics, North Carolina State University,
Raleigh, in 2006. Currently, he is a professor in
the Department of Electronic Engineering, Shanghai

Jiaotong University, Shanghai, China. Dr. Wang has been an associate editor
for IEEE/ACM Transactions on Networking and IEEE Transactions on Mobile
Computing, and the member of the Technical Program Committees of several
conferences including ACM MobiCom 2012, ACM MobiHoc 2012-2014,
IEEE INFOCOM 2009-2017.

Songwu Lu is currently a professor of Computer
Science Department at University of California, Los
Angeles (UCLA), USA. He received his M.S. and
Ph.D. degrees from Electrical and Computer Engi-
neering Department at the University of Illinois at
Urbana-Champaign, in 1996 and 1999, respectively.
His research interests include wireless networking,
wireless network security, mobile systems and com-
puter networks. He received NSF CAREER award in
2001 and has been serving on the TPC or organizing
committees of premier networking conferences in-

cluding ACM MOBICOM, MOBIHOC, MOBISYS, IEEE INFOCOM, ICNP,
IPSN, etc. He is leading the WiNG research group at UCLA.

	introduction
	Related Work
	Uncertain Networks
	Sequential Testing

	Models and Problem Formulation
	Uncertain Graph Model
	Problem Formulation

	Computational Complexity
	MDP-based Exact Algorithm
	Mapping the Problem into MDP
	Exact Dynamic Programming Algorithm

	Approximation Algorithms
	A Simple Greedy Approach
	Adaptive Submodular Algorithm
	Preliminaries
	Applying the Q-value Approach
	The Adaptive Submodular Algorithm
	Performance Guarantee

	Simulations
	Simulation Settings
	Simulation Datasets
	Calculation of the Performance Metric
	Algorithms Involved in Performance Comparisons

	Evaluation of Proposed Algorithms
	Characterization of the Adaptivity Gap

	Conclusion and Future Work
	References
	Appendix A: Proof of Theorem 2
	The Reduction Process
	Justification of the Reduction

	Appendix B: Time Complexity of the Approximation Algorithms
	Preprocessing Procedures
	The Greedy Algorithm
	The Adaptive Submodular Algorithm

	Appendix C: Adverse Instances for the Algorithms
	Tight Instance for the Greedy Algorithm
	Adverse Instance for the Alternative Greedy Algorithm
	Adverse Instances for Optimistic Sort and Pessimistic Sort
	Adverse Instance for the Intersection Sort

	Biographies
	Luoyi Fu
	Xinzhe Fu
	Zhiying Xu
	Qianyang Peng
	Xinbing Wang
	Songwu Lu

