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Abstract—The advent of social networks poses severe threats
on user privacy as adversaries can de-anonymize users’ identities
by mapping them to correlated cross-domain networks. Without
ground-truth mapping, prior literature proposes various cost
functions in hope of measuring the quality of mappings. However,
their cost functions, whose minimizers may remain algorithmical-
ly unknown, usually bring imponderable mapping errors when
the true mapping cannot minimize these cost functions.

We jointly tackle above concerns under a more practical
social network model parameterized by overlapping communities,
which, neglected by prior art, can serve as side information
for de-anonymization. Regarding the unavailability of ground-
truth mapping to adversaries, by virtue of the Minimum Mean
Square Error (MMSE), our first contribution is a well-justified
cost function minimizing the expected number of mismatched
users over all possible true mappings. While proving the NP-
hardness of minimizing MMSE, we validly transform it into the
weighted-edge matching problem (WEMP), which, as disclosed
theoretically, resolves the tension between optimality and com-
plexity: (i) WEMP asymptotically returns a negligible mapping
error in large network size under mild conditions facilitated by
higher overlapping strength; (ii) WEMP can be algorithmically
characterized via the convex-concave based de-anonymization
algorithm (CBDA), effectively finding the optimum of WEMP.
Extensive experiments further confirm the effectiveness of CBDA
under overlapping communities: 90% users are re-identified
averagely in a series of networks when communities overlap
densely, and the re-identification ratio is enhanced about 70%
compared to non-overlapping cases.

I. INTRODUCTION

With the mounting popularity of social networks, the privacy
of users has been under great concern [1]–[3], as information
of users in social networks is often released to public for wide
usage in academy or advertisement [4]. Although users can be
anonymized by removing personal identifiers such as names
and family addresses, it is not sufficient for privacy protection
since adversaries may re-identify these users by correlated side
information.

Such user identification process in social networks resort-
ing to auxiliary information is called Social Network De-
anonymization. Initially proposed by Narayanan and Shi-
matikov [5], this fundamental issue has then gained increasing
attention, leading to a large body of subsequent works [4],
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[6]–[11]. Particularly, this family of works embarked on de-
anonymization under a common framework, as will also be the
framework of interest in our setting. To elaborate, in the frame-
work there is an underlying network G which characterizes the
relationship among users. We can then observe two different
networks G1 and G2 who contain the full node set of G and
whose edges are sampled with probabilities s1 and s2 from G.
The published network G1 is anonymized by removing users’
identities but preserves the structural information, while the
users’ identities in the auxiliary network G2 are considered
to be available for the public. The aim of de-anonymization
is to discover the correct mapping between V1 and V2, the
node set of G1 and G2, which corresponds the same user
in two networks, with the network structure as the only side
information available to the adversaries.

Regardless of the considerable efforts paid to the de-
anonymization problem, there are still some deficiencies re-
maining unsolved. It can be accounted for from three aspects.
(i) Analytically, despite a variety of existing works [6], [7]
that proposed several cost functions in measuring the quality
of mappings, the theoretical devise of those costs functions
bases on the condition that the unique true mapping minimizes
these cost functions. When this condition is not established, the
mapping error will become unpredictable. (ii) Algorithmically,
previous works [6], [7] failed to provide any algorithm to
demonstrate that the optimal solution of proposed cost func-
tions can indeed be effectively obtained. (iii) Experimentally,
due to the destitution of real cross-domain datasets, state-of-
the-art research [9], [10] simply evaluated the performance
of proposed algorithms on synthetic datasets or real cross-
domain networks formed by artificial sampling, falling short
of reproducing the genuine social networks.

The above limitations motivate us to shed light on
de-anonymization problem by jointly incorporating ana-
lytical, algorithmic and experimental aspects under the
common framework noted earlier. As far as we know, the
only work that shares the closest correlation with us belongs
to Fu et al. [36], [37], who investigated this problem on social
networks with non-overlapping communities and derived their
cost function from the Maximum A Posterior (MAP) manner.
However, we remark that the assumption of disjoint commu-
nities fails to reflect the real situation where a user belongs to
multiple communities, as observed in massive real situations.
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For example, in social networks of scientific collaborators [11],
actors and political blogospheres [12], users might belong to
several research groups with different research topics, movies
and political parties respectively. For this concern, by adopting
the overlapping stochastic block model (OSBM), we allow the
communities to overlap arbitrarily, which can well capture a
majority of real social networks.

Meanwhile, though MAP enables adversaries to find the
most possibly correct mapping, it relies heavily on a prereq-
uisite, i.e., a hypothetically underlying true mapping between
the given published and auxiliary networks. However, once
the MAP estimation fails to exactly find this “true” mapping,
the mapping error becomes unpredictable, with the probability
that the estimation deviates largely from the real ground-
truth. Therefore, we derive a new cost function based on
Minimum Mean Square Error (MMSE), which minimizes the
expected number of mismatched users by incorporating all
the possible true mappings between the given published and
auxiliary networks. Incorporating the two adjustments, from
an average perspective, the result of our MMSE estimator is
kept from significant deviation with any possible hypothetic
true mapping.

Hereinafter we unfold our main contributions in analytical,
algorithmic and experimental aspects respectively as follows:

1. Analytically, we are the first to derive cost function based
on MMSE, which justifiably ensures the minimum expected
mapping error between our estimation and the ground-truth
mapping. Then we demonstrate the NP-hardness of solving
MMSE, whose intractability stems mainly from the calculation
of all n! possible mappings (n is the total number of users). To
cope with the hardness, we simplify MMSE by transforming
it into a weighted-edge matching problem (WEMP), with
mapping error negatively related to weights.

2. Algorithmically, in terms of solving WEMP, we theo-
retically reveal that WEMP alleviates the tension between
optimality and complexity: Solving WEMP ensures optimality
since its optimum, in large network size, negligibly deviates
from the ground-truth mapping under mild conditions where
on average a user belongs to asymptotically non-constant com-
munities. Meanwhile, it reduces complexity since perfectly
deriving its optimum only entails a convex-concave based de-
anonymization algorithm (CBDA) with polynomial time. The
proposed CBDA serves as one of the very few attempts to ad-
dress the algorithmic characterization, that has long remained
open, of de-anonymization without pre-identification.

3. Experimentally, we validate our theoretical findings that
minimizing WEMP indeed incurs negligible mapping error in
large social networks based on real datasets. Interestingly, we
also observe significant benefits that community overlapping
effect brings to the performance of CBDA: (i) in notable
true cross-domain co-author networks with dense overlapping
communities, CBDA can correctly re-identify 90% nodes on
average; (ii) the overlapping communities bring about an
enhancement of around 70% re-identification ratio compared
with non-overlapping cases.

Unlike de-anonymization with pre-identified seed nodes, to
which a family of work pays endeavor, no prior knowledge
of such seeds complicates this problem, thus leaving many

aspects largely unexplored. Meanwhile, theoretical results on
such seedless cases in prior art is short of experimental
verification. Our work is, as far as we are concerned, the initial
devotion to theoretically dissecting seedless cases with over-
lapping communities, under real cross-domain networks with
more than 2000 nodes. With novel exploitations of structural
information, future design of more efficient mechanisms will
be expected to further dilute the limitation of network size.

II. RELATED WORKS

Social network de-anonymization problem, initially pro-
posed by Narayanan and Shmatikov [5], has been in the
dimelight for decades. A major classification of this problem
depends on whether the anonymized network is supported with
side information, such as seed nodes [16]–[18] or community
structures [20], [36], [37], etc. Mostly, it is considered to be
difficult for the adversaries to obtain side information before
the de-anonymization process due to their limited access to
user profiles. In this case, a major methodology is to propose
cost functions and realize an estimation of the correct mapping
between two networks by optimizing these cost functions.
Pedarsani and Grossglauer [6] first study this problem under
Erdös-Rényi networks and set their cost function as the
number of mismatched edges. This cost function still makes
sense in a more general situation where the nodes in two
networks are partially overlapping [7]. Further, Cullina and
Kiyavash [8] investigated the information-theoretic threshold
for exact identification in [6]. However, this cost function en-
sures optimality only when the true mapping has the smallest
number of mismatched edges, while the mapping errors are
imponderable if the structures of the observed networks do
not suit for the high requirements raised by these works. To
improve the robustness of the optimal solution, another cost
function based on Maximum A Posterior (MAP) has also been
justified by state-of-the-art literature. The validity of MAP is
theoretically proved in [4] and approximation algorithms [36],
[37] have been proposed to solve this problem.

Still in some cases, the side information is considered to
be accessible to the adversaries. For instance, in the seeded
de-anonymization, a handful of nodes will be pre-identified as
seeds. As the pioneering work [5] has done, a well-known ap-
proach to solve this problem is to design algorithms based on
bootstrap percolation, which means that the re-identification
process starts from the seed nodes and identifies the neighbors
of all identified nodes iteratively until all the nodes are de-
anonymized. Yartseva et al. [16], Kazemi et al. [17] and
Bringmann et al. [18] study the seeded case under the Erdös-
Rényi network model, among which the de-anonymization
process can be achieved as fast as a quasilinear (O(n log n))
computational complexity. Meanwhile, some other works such
as [19] also shed light on the preferential attachment model
and propose correspondingly efficient algorithms. However,
this series of methods may bring cumulative errors once a
node is mismatched at early stage.

Another concern for the side information is the communi-
ties. A large volume of literature [5]–[8], [16]–[19], either in
seeded or seedless situations, studies this problem considering
only the topological structure of two networks, i.e., the edge
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sets in two networks. However, the clustering effect exists in
real social networks, which has not been seriously considered
in these works. On the one hand, to incorporate the clustering
effect, Nilizadeh et al. [20] detect the community structure
before solving the seeded de-anonymization problem and find
the superiority of clustering with respect to the noise, the
number of seeds and the network size. Meanwhile, clustering
is claimed to bring double-edged impact [21], which may
dramatically reduce the required seed nodes but make the
algorithm more fragile to errors. On the other hand, the side
information of communities is also proved to make for higher
accuracy of the algorithms intended in seedless case [36],
[37]. However, the communities in real-world social networks
are more likely to be overlapped with one another [22],
[23], which, as far as we know, has not been concerned by
existing works in the de-anonymization area. In this paper, we
focus on the omnipresent overlapping communities in social
networks, and de-anonymize these networks with a universal
cost function based on the MMSE estimation.

III. MODELS AND DEFINITIONS

In this section, we will introduce the fundamental model and
the social network de-anonymization problem along with some
related definitions. After that, we list some basic notations
frequently used in our later analysis.

A. Social Network Models
The social network model considered in this paper is

composed of three parts, i.e., the underlying network G, the
published network G1 and the auxiliary network G2. G1

and G2 can be viewed as the incomplete observations of
G, which represents the underneath relationship among all
users. For instance, in reality G may characterize the true
underlying relationship among a group of people, while G1

might represent the online network in Facebook of this group
of people and G2 might represent the communication records
in the cell phones of them, both of which are observable.

1) Underlying Social Network: Let G = (V,E,U), where
V is the node set, E is the edge set and U is the adjacent
matrix. We regard G as undirected with |V | = n nodes. To
reflect the property of overlapping communities, we suppose G
is generated based on the overlapping stochastic block model
(OSBM) [12], whose idea can be interpreted as follows:

Suppose there are Q communities and each community q
contains a subset of nodes. For a generic node i, we introduce a
latent Q-dimensional column vector Ci, in which all elements
are independent boolean variables Ciq ∈ {0, 1}, with Ciq
being the qth row in Ci. Ciq = 1 means that node i is
in community q and Ciq = 0 otherwise. We denote pq to
be the probability of any node in G belonging to commu-
nity q, thus we have: Pr(Ci = {Ci1, Ci2, · · · , CiQ}T ) =∏Q
q=1(pq)

Ciq (1 − pq)1−Ciq . We call Ci the community rep-
resentation of node i, since Ci shows to which communities
node i belongs exactly.

OSBM can measure the overlapping property of communi-
ties, allowing one node to belong to multiple communities,
which is more realistic than the traditional SBM model.

Further, the SBM is actually a special case of the OSBM if
requiring |Ci| = 1 for all i.

In OSBM, the probability of edge existence between nodes i
and j in G relies on Ci and Cj , where the communities can be
detected with varied methods such as [23]–[25]. For instance,
we can simply divide the nodes into different communities by
k-cliques, where the nodes belong to one community if every
of them connects to at least k nodes in this community.

Given Ci, i = 1, . . . , Q, we denote VCi as the node set of
Ci and ECiCj as the set of edges between nodes in Ci and
nodes in Cj . Hence, the edge existence probability pCiCj for
1 ≤ i, j ≤ n can be estimated as follows:

pCiCj =


|ECiCj |
|VCi ||VCj |

, if i 6= j,

|ECiCi |(|VCi |
2

) , if i = j.

2) Published Network and Auxiliary Network: The two
observed networks are sampled from the underlying network
G, which have same node set with G. In details, we denote
G1(V1, E1,A) as the published network, whose nodes may
be labeled from 1 to n in a casual order and edges are
independently sampled from G with probability s1. In contrast,
an auxiliary network, denoted by G2(V2, E2,B), has identical
node labels with the underlying graph G, and the edges are
independently sampled from G with probability s2. Mathemat-
ically, we have |V | = |Vk| = n, Pr ((i, j) ∈ Ek|(i, j) ∈ E) =
sk and Pr ((i, j) ∈ Ek|(i, j) /∈ E) = 0 for k ∈ {1, 2}. A and
B, respectively, represent the adjacency matrices of G1 and
G2. In correspondence to real situations, G1 characterizes the
anonymized network where users’ identities are removed for
privacy concern. On the contrary, G2 characterizes a sanitized
network where users’ identities are available for adversaries.

Adversaries can leverage G2 to identify nodes in G1 based
on the edge relationship and community information: (i) For
edge relationship, adversaries can harness the degree similarity
that a node of high degree in G1 should be inclined to match
a node of high degree in G2; (ii) For community information,
adversaries can exploit the community representation simi-
larity that nodes in G1 and G2 with the same community
representation should be matched with higher probability.

Furthermore, we should clarify that we render each node
pair (i, j) a weight wij , which, quantified in Section III-B,
is the cost of mistakenly matching the node pair (i, j) and is
contingent on pCiCj , s1 and s2. As we will show in Section
IV-B, wij is negatively proportional to the number of commu-
nities nodes i and j co-exist in, evincing the cost reduction
arose from higher overlapping strength of communities.

In fact, G, G1 and G2 are all random variables under the
provided settings. We directly use G, G1, G2 as notations for
the realizations of these random variables when there is no
loss of clearance. Moreover, we set θ = {{pCiCj |1 ≤ i, j ≤
n}, s1, s2} as the parameter set incorporating all pre-defined
parameters in the model.

B. Social Network De-anonymization

The goal of social network de-anonymization problem is to
find a mapping π : V1 7→ V2, which finds a corresponding
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node in G2 for every node in G1. π(i) = j means that node
i in network G1 is mapped to node j in network G2 and
π(i) = 0 when no nodes in network G2 can be mapped
with node i in G1 (this may happen if |V1| 6= |V2|). We can
equivalently express this mapping by forming a permutation
matrix Π ∈ {0, 1}n×n, where Π(i, j) = 1 if π(i) = j and
Π(i, j) = 0 otherwise (If |V1| 6= |V2|, Π will be a non-square
matrix which could be still in accordance with our analysis and
algorithm design). By denoting Π0(π0) as the true permutation
matrix (mapping) between G1 and G2, we can formally define
the social network de-anonymization problem in Definition 1
along with an illustrative instance in Fig. 1. But in the process
of achieving this goal, we have no prior knowledge of Π0 and
no access to the underlying graph G, which triggers that our
estimated permutation, Π̂, may deviate from the ground-truth
Π0. To quantify this difference, we introduce a metric called
“node mapping error (NME)” as Definition 2.

Definition 1. (Social Network De-anonymization Problem)
Given the published network G1(V1, E1,A), the auxiliary net-
work G2(V2, E2,B) and the parameter set θ = {{pCiCj |1 ≤
i, j ≤ n}, s1, s2}, social network de-anonymization problem
aims to construct the true mapping π0 : V1 7→ V2 that correctly
maps all nodes in G1 to their correspondences in G2.

Definition 2. (Node Mapping Error, NME) Given the estimat-
ed Π̂ and ground-truth Π0, the node mapping error (NME)
between Π̂ and Π0 is defined as d(Π̂,Π0) = 1

2 ||Π̂−Π0||2F .

Obviously d(Π̂,Π0) equals to 0 if and only if two permuta-
tions are identical. If k nodes are mapped mistakenly, the NME
equals to k, which means that NME is well-defined. Thus we
can transform the goal of de-anonymization to minimize NME.

Moreover, since adversaries are uncertain about the true
mapping between the given G1 and G2, Π0 can be viewed
as a random variable whose probability distribution is condi-
tioned on G1 and G2 in adversaries’ perspectives. Naturally
adversaries prefer an estimation of Π0 keeping from severe
NME on average. To this end, we consider selecting Π̂ in the
light of “Minimum Mean Square Error (MMSE)” criterion,
which, formally presented in Definition 3, is the minimizer of
the expected NME in the form of mean square.

Definition 3. (The MMSE Estimator) Given G1, G2 and θ,
the MMSE estimator is an estimation of Π0 minimizing the
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Fig. 1: An example of G, G1 and G2. The edges of G1(2) are sampled
independently from G with probability s1(2). C1, C2, C3 denote 3 different

communities in OSBM. The true mapping
π0 = {(1, 1), (2, 6), (3, 3), (4, 4), (5, 5), (6, 2), (7, 8), (8, 7), (9, 9)}.

TABLE I: Notions and Definitions
Notation Definition
G Underlying social network
G1, G2 Published and auxiliary networks
V, V1, V2 Vertex sets of graphs G, G1 and G2

E,E1, E2 Edge sets of graphs G, G1, G2

s1, s2 Edge sampling probabilities of graphs G1, G2

n Total number of nodes
wij The weight of node pair (i, j)
Ci Community representation of node i
pCiCj Edge existence probability between nodes i and j in G
θ Parameter set, including pCiCj for 1 ≤ i, j ≤ n, and s1, s2
W The weight matrix whose elements are determined by θ
U,A,B Adjacency matrices of G, G1, G2

Π0(π0) The true permutation matrix (true mapping) between V1 and V2

Π(π) A permutation matrix (A mapping) between V1 and V2

Π̂(π̂) The solution of MMSE estimator (the corresponding mapping)
Π̃(π̃) The optimal solution of WEMP (the corresponding mapping)
Πn The set of all n× n permutation matrices
GΠ the set of all feasible underlying networks w.r.t. G1, G2 and Π

number of mistakenly matched nodes in expectation, which is

Π̂ = arg min
Π∈Πn

EΠ0{d(Π,Π0)}

= arg min
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2FPr(Π0|G1, G2,θ),
(1)

where Πn is the set of n× n permutation matrices.

Remark: Recall that prior effort [4] has leveraged Maxi-
mum A Posterior (MAP), which provides the solution with
the highest probability being exactly identical to the true
permutation. MMSE and MAP characterize different aspects
of minimizing NME. As far as we know, no previous work
has learned de-anonymization under MMSE, which, however,
is also of great significance as MAP in reducing NME.

C. Preliminary Notations

The main notations in our work are summarized in Table 1.
We also introduce some terms that could be useful in the

derivations of Section IV as follows.
(i) Expectation Over Matrix. Given a random matrix

variable A and a function f(A), the expectation of f(A) on
matrix A is denoted as EA(f(A)) =

∑
A f(A)p(A).

(ii) Frobenius Norm. Given an m × n matrix X, the
Frobenius norm of X is ||X||F =

√∑m
i=1

∑n
j=1(X2

ij), where
Xij is the element at the ith row and jth column of X.

(iii) Hadamard Product. Given two n×n matrices Y and
Z, The Hadamard Product between Y and Z is defined as
∀i, j ∈ {1, 2, ..., n}, (Y ◦ Z)ij = YijZij . In operation, the
matrix multiplication is prior to the Hadamard Product.

IV. ANALYTICAL ASPECT OF DE-ANONYMIZATION
PROBLEM

In this section, we start to provide analysis of the social
network de-anonymization problem that we have defined ear-
lier. First, we briefly prove that this problem is NP-hard. To
facilitate the problem analysis, we then transform it into a
matrix form and give an approximation to the MMSE estimator
and verify it under the expectation of different possible net-
work structures. Furthermore, we validate this approximation
by proving that the approximation ratio is no less than one
half in an average sense.
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A. NP-hardness of Solving the MMSE Estimator
Since we have proposed the MMSE estimator, we are

interested in whether there exists a polynomial-time algorithm
that can solve the MMSE problem. However, as we will
prove in the sequel, this problem is NP-hard, meaning that
no polynomial time (pseudo-polynomial time) approximation
algorithm exists for solving the MMSE estimator.

Proposition 1. Solving the MMSE estimator is an NP-hard
problem. There is no polynomial time or pseudo-polynomial
time approximation algorithm for this problem with any mul-
tiplicative approximation guarantee unless P=NP.

Proof. To begin with, we first introduce the linear assignment
problem (LAP) as follows:

LAP: max
Π∈Πn

tr(CΠT ). (2)

Here C is a cost matrix. Since this problem in (2) is known
to be NP-hard [32], [33], we can then reduce it to our MMSE
problem to prove the NP-hardness of the MMSE problem.

Given ‖Π−Π0‖2F = ‖Π‖2F + ‖Π0‖2F − 2tr(Π0ΠT ) = 2n−
2tr(Π0ΠT ), Eqn. (1) can be reshaped as

Π̂ = arg min
Π∈Πn

∑
Π0∈Πn

(2n− 2tr(Π0ΠT ))Pr(Π0|G1, G2,θ)

= arg max
Π∈Πn

tr

(( ∑
Π0∈Πn

Π0Pr(Π0|G1, G2,θ)

)
ΠT

)
.

(3)

We denote C =
∑

Π0∈Πn Π0Pr(Π0|G1, G2,θ). Regard-
less of the Ω(n!) complexity to compute the value of matrix
C, the problem in Eqn. (3) is an LAP which has been proved
to be an NP-hard problem.

The NP-hardness of MMSE estimator shows the impos-
sibility to pursue an exact algorithm or any approximation
algorithm with multiplicative guarantee. Thus we need to
simplify this problem by conducting reasonable approximation
to make it possible to solve this problem, with certain tolerance
of mapping error. In the following, we transform it into a
matrix form and propose one way to approximate this problem,
the analysis of which will indicate that the error arose by this
approximation can be bounded.

B. Transformation of MMSE Estimator
As can be seen from the definition of MMSE estima-

tor (Eqn. (1) in Section III-B), the posterior probability
Pr(Π0|G1, G2,θ) still needs to be expressed more explicitly.
Inspired by the derivation in [4], we have the following
theorem about the transformation of MMSE estimator.

Theorem 1. Given the published graph G1, the auxiliary
graph G2 and the parameter set θ, the MMSE estimator can
be equivalently transformed into

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F ||W ◦ (Π0A−BΠ0)||2F

(4)
where in the metric W, W (i, j) = W (j, i) =

√
wij , wij =

log
(

1−pCiCj (s1+s2−s1s2)

pCiCj (1−s1)(1−s2)

)
is weight between nodes i and j,

and “◦” denotes the Hadamard product.

We shall provide here a sketch of the proof of Theorems
1. The complete proof, including all mathematical details, can
be found in Appendix A.

Proof. Since the underlying network G is unknown in the de-
anonymizing process, we first figure out the set of all feasible
underlying networks. Given the two observed networks G1

and G2 as well as the true permutation matrix Π0, we can
reshape the simplest underlying network G which is formed
by the union of G1 and G2. Further, an arbitrary number
of new edges can be added into network G to form another
potential underlying network. In order for the convenience of
illustration, we denote GΠ as the set of all possible realizations
of the underlying network which can be sampled to form the
observed networks G1, G2 given the mapping matrix Π. Then
the MMSE estimator in Eqn. (4) can be transformed into
Π̂ = arg min

Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F
∑
G∈GΠ

Pr(G,Π0|G1, G2,θ). (5)

Focusing on Pr(G,Π0|G1, G2,θ) in Eqn. (5), we derive that
Pr(G,Π0|G1, G2,θ) ∼ Pr(G)Pr(G1|G)Pr(G2|G,Π0) (6)

by Bayes formula as well as the independency of the sampling
process of G1 and G2. What’s more, a ∼ b means that a and
b are positively correlated and their difference appears only
in the parameters unrelated to Π0, which will not change the
value of arg min in Eqn. (5).

To further analyze Pr(G)Pr(G1|G)Pr(G2|G,Π0), we de-
fine G∗π0

as the graph which has the smallest number of
edges in GΠ, i.e., G∗π0

= (V,E1 ∪ π0(E1)), where π0(E1) =
{(π0(i), π0(j))|(i, j) ∈ E1} and set E∗π0

as the edge set of
G∗π0

, and E∗ijπ0
as the indicator variable between nodes i and

j. By these definitions, we explicitly express that∑
G∈GΠ

Pr(G)Pr(G1|G)Pr(G2|G,Π0)

∼
n∑
i<j

E∗ijπ0
log

(
pCiCj (1− s1)(1− s2)

1− pCiCj (s1 + s2 − s1s2)

) (7)

Ultimately, by analyzing the parameter E∗ijπ0
, we derive that

Π̂ = arg min
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F
∑
G∈GΠ

Pr(G,Π0|G1, G2,θ)

∼ arg min
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F ·

n∑
i<j

E∗ijπ0
log

(
pCiCj (1− s1)(1− s2)

1− pCiCj (s1 + s2 − s1s2)

)
= arg max

Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F ||W ◦ (Π0A−BΠ0)||2F .

(8)

Remark: Additionally, to simplify the form of ||W ◦
(Π0A − BΠ0)||2F , we use Π0Â to represent W ◦ Π0A,
and B̂Π0 to represent W ◦BΠ0

1. Therefore we can rewrite

1We should clarify that we only provide a simpler form to represent W ◦
Π0A and W ◦ BΠ0, and it does NOT imply that W ◦ A = Â and
W ◦ B = B̂ all the time. But some operations under this new notation
still hold, for example, multiplying a permutation matrix does not change the
value of the Frobenius norm, i.e., ||Π0Â − B̂Π0||2F = ||W ◦ (Π0A −
BΠ0)||2F = ||W ◦ΠT

0 (Π0A−BΠ0))||2F = ||W ◦ (A−ΠT
0 BΠ0)||2F

and ||Π0Â−B̂Π0||2F = ||Π0ÂΠT
0 −B̂||2F . In Section V-A and Appendix

D, we will discuss the condition under which W◦A = Â and W◦B = B̂.
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the MMSE estimator in Eqn. (4) as

Π̂ = arg max
Π∈Πn

g(Π), (9)

where g(Π) =
∑

Π0∈Πn ||Π−Π0||2F ||Π0Â− B̂Π0||2F .

C. Approximation of the MMSE estimator

As we have just stated above, the NP-hardness of MMSE
problem urges us to find proper approximation for the original
problem. Recall that MMSE involves all the possible true
mappings, the number of which is n!, thus leading to fairly
prohibitive computational cost. To tackle the difficulty, we
firstly transform the original MMSE problem into a weighted-
edge matching problem (WEMP), which, as we will define
and present more details later, simplifies the form of objective
function of the original MMSE problem and makes it tractable.
Then we demonstrate that this transformation is valid, meaning
that the solution of WEMP will not deviate much from
the solution of the original MMSE problem by proving its
high approximation ratio. Definition 4 provides the formal
statement of WEMP.

Definition 4. (Weighted-Edge Matching Problem) Given the
adjacent matrices of G1 and G2, denoted as A and B
respectively, we set W ◦ΠA = ΠÂ and W ◦ BΠ = B̂Π
where W is the weight matrix, then the weight-edge matching
problem is to find

Π̃ = arg min
Π∈Πn

||ΠÂ− B̂Π||2F .

Hereinafter we discuss the following two aspects of WEMP:
• How do we transform from the original MMSE problem

into WEMP?
• How is the validity of this transformation?
1) The Idea of Transformation: We intend to transform the

original problem of solving the MMSE estimator into WEMP.
The idea of this transformation can be interpreted in the fol-
lowing sense: for any fixed Π, define a set Sk(Π), 0 ≤ k ≤ n,
any element of which is an n × n permutation matrix Π0

such that d(Π,Π0) = k. When k = 0, d(Π,Π0) = 0, thus
Π = Π0 and S0(Π) = {Π0}. What’s more, if Π 6= Π0,
at least one node pair will be mismatched, thus k ≥ 2 and
S1(Π) = ∅. Then we can transform the original problem as

Π̂ = arg max
Π∈Πn

n∑
k=2

k

 ∑
Π0∈Sk(Π)

||Π0Â− B̂Π0||2F

 . (10)

Based on Eqn. (10), we propose our idea of transforming
it into WEMP. To present our idea clearly, we divide our
analysis into three parts; First we analyze a single term,
||Π0Â− B̂Π0||2F , where Π0 ∈ S2(Π); Then we analyze
Π0 ∈ Sk(Π) based on the analysis of Π0 ∈ S2(Π); Finally
we analyze the R.H.S of Eqn. (10) based on Sequence Inequal-
ity. The detailed analysis of these three parts are unfolded in
Appendix B and in the sequel we provide the sketch of them:

i. Analysis of ||Π0Â− B̂Π0||2F where Π0 ∈ S2(Π).
Note that any permutation in S2(Π) only causes matching

error on one pair of nodes. We consider one specific Π0 ∈
S2(Π̃), which differs from Π̃ only in the ith and jth rows.

Since G1 and G2 are independently sampled from G, A and
B are conditionally independent. Thus, we can derive that

EA,B(||Π0Â−B̂Π0||2F−||Π̃Â−B̂Π̃||2F ) = 2

n∑
k 6=i,j

∆i,j,k,π0
,

where
∆i,j,k,π0 = (wik − 2wiks2 − wjk)s1pCiCk
−(wik − wjk + 2wjks2)s1pCjCk + 2(wik + wjk)s1s2pCiCkpCjCk .

This reflects that the difference between matrices Π0Â−B̂Π0

and Π̃Â − B̂Π̃ is composed of the differences between
community pairs {i, k} and {j, k}. We further denote ∆̂ =
Ei,j,π0

(∆i,j,π0
) and note that EA,B(||Π0Â − B̂Π0||2F −

||Π̃Â − B̂Π̃||2F ) > 0 since Π̃ is the minimizer of ||Π0Â −
B̂Π0||2F . Therefore ∆̂ = Ei,j,π0(∆i,j,π0) > 0.

ii. Analysis of
∑

Π0∈Sk(Π) ||Π0Â− B̂Π0||2F .
We first focus on Sk(Π0), and count the number of elements

in Sk(Π0), denoted as |Sk|. We can obtain the relationship
between |Sk| and |Sk−1| when k ≥ 2 as

|Sk| = Ckn|Tk| ≥ (k−1)
Ckn

Ck−1
n

|Sk−1| = (1− 1

k
)(n−k+1)|Sk−1|,

where the detailed derivation is deferred to Appendix B.
Then we consider Π0 ∈ Sk(Π). Note that for any Π0 ∈

Sk(Π), there are k rows and columns that may cause the dif-
ference between ||W◦(Π0AΠT

0 −B)||2F and ||W◦(Π̃AΠ̃T−
B)||2F . We can discover that for any Π0 ∈ Sk(Π), the
number of node pairs (i, j) which may influence the difference
between ||W◦(Π0AΠT

0 −B)||2F and ||W◦(Π̃AΠ̃T−B)||2F
is approximately

∑
i=1(n − i) = (2n−k−1)k

2 . Thus, denoting
Nk as the number of such node pairs for all Π0 ∈ Sk(Π), we
can obtain

Nk =
(2n− k − 1)k

2
|Sk| ≥ (n− k + 1)

2n− k − 1

2n− k
Nk−1.

Therefore on average, we have∑
Π0∈Sk

||Π0Â− B̂Π0||2F = Nk∆̂

≥ (n− k + 1)
∑

Π0∈Sk−1

||Π0Â− B̂Π0||2F ,
(11)

where k ≤ n and ∆̂ = Ei,j,π0(∆i,j,π0).
Thus, we can claim that in average sense, if k1 > k2, then∑
Π0∈Sk1

||Π0Â− B̂Π0||2F >
∑

Π0∈Sk2

||Π0Â− B̂Π0||2F . (12)

iii. Maximum Value Under Sequence Inequality.
Based on the analysis above, we set Π = Π̃, if Π0 ∈

S0(Π̃), ||Π̃ − Π0||2F is the minimum value. Moreover,∑
Π0∈S0(Π̃) ||Π0Â− B̂Π0||2F = ||Π̃Â− B̂Π̃||2F is also the

minimum value in the set
∑

Π0∈S0(Π̃)

||(Π0Â− B̂Π0)||2F ,
∑

Π0∈S2(Π̃)

||(Π0Â− B̂Π0)||2F ,

∑
Π0∈S3(Π̃)

||(Π0Â− B̂Π0)||2F , ...,
∑

Π0∈Sn(Π̃)

||(Π0Â− B̂Π0)||2F

 .

Thus according to sequence inequality, we know that in
average case, by setting Π in the original MMSE objective
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function of Eqn. (9) to equal to Π̃, the minimizer of WEMP,
this original MMSE objective function reaches its largest value
2 under Sequence Inequality.

However, as we noted earlier, we can only transform the
original MMSE problem into WEMP in an average case of
network structures. This implies that the transformation is
not necessarily the best approximation of a single network
structure. In the following we further analyze the validity of
this transformation in a possible network structure by showing
the approximation ratio of our transformation is large (at least
larger than 0.5).

2) The Validity of Transformation: As we have stated
above, Π̃ does not necessarily achieve the maximum of the
original MMSE problem for a specific network structure. It
indicates that there may exist error in g(Π̃) and g(Π̂), where
g(Π̂) is the maximum value of the original MMSE objective
function and g(Π̃) is the value of MMSE objective function
when Π equals to the minimizer of WEMP. Theorem 2 shows
that under the mild condition indicated by Inequality (11),
we can get approximation ratio g(Π̃)/g(Π̂) larger than 0.5,
which, to some extent, makes our estimation reasonable.

Theorem 2. Given the published graph G1, the auxiliary
graph G2, the parameter set θ and the weight matrix W,
in average case we have the approximation ratio g(Π̃)/g(Π̂)
larger than 0.5.

Proof. We present the sketch of the proof here and defer the
complete version to the Appendix C.

First we derive the upperbound of g(Π̂)−g(Π̃)

g(Π̃)
:

g(Π̂)− g(Π̃)

g(Π̃)
≤

2βn
∑

Π0∈Πn ||Π0Ã− B̃Π0||2F∑
Π0∈Πn ||Π̃−Π0||2F ||Π0Ã− B̃Π0||2F

.

(13)
where ||Π̃−Π̂||2F = 2βn and β ∈ [0, 1] is the ratio between

the number of mistakenly matched nodes and that of all the
nodes.

Then we divide
∑

Π0∈Πn ||Π0Â− B̂Π0||2F into two parts:

D1 =
∑
k≤ρn

∑
Π0∈Πn

||Π0Â− B̂Π0||2F ;

D2 =
∑

ρn<k≤n

∑
Π0∈Πn

||Π0Â− B̂Π0||2F .

where ρ is any real number in [0, 1] and we assume that ρn is
an integer, since if it is not an integer, we can easily modify
it by rounding operation.

For D1 and D2, in average case we can obtain D1 ≤ (2n)ρn

and D2 ≥ (1− ρ)n n!
((1−ρ)n)! = n!

((1−ρ)n−1)! .
Note that if we set ρ = c0 → 1−, the parameter (1 − ρ)n

can be upper bounded by a constant c1 and

D2 ≥
n!

(c1 − 1)!
= cn! ∼ c

√
2πn(

n

e
)n,

2We set k1 > k2, then
∑

Π0∈Sk1
||Π0Â− B̂Π0||2F >∑

Π0∈Sk2
||Π0Â− B̂Π0||2F , and ||Π̃ − Π0||2F where Π0 ∈

Sk1 (Π̃) is larger than ||Π̃ − Π0||2F where Π0 ∈ Sk2 (Π̃).
Thus,

∑
Π0∈Πn ||Π − Π0||2F ||W ◦ (Π0A − BΠ0)||2F =∑n

k=0 2k
∑

Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F reaches its largest value.

where c is a constant and the last step holds due to the
Stirling’s formula. Therefore we can upper bound D2

D1
as

D2

D1
≥ c
√

2πn(ne )n

(2n)ρn
= c
√

2πn

(
n1−ρ

2ρe

)n
.

If ρ is a constant and ρ→ 1, we can find that when n→∞,
D2 is of higher order of n than D1. Therefore, we verify
that

∑
ρn<k≤n

∑
Π0∈Πn ||Π̃−Π0||2F ||Π0Â− B̂Π0||2F is of

higher order of n than
∑
k≤ρn

∑
Π0∈Πn ||Π̃−Π0||2F ||Π0Â−

B̂Π0||2F , since for k1 > ρn and k2 < ρn, Π′1 ∈ Sk1(Π̃) and
Π′2 ∈ Sk2(Π̃), we have ||Π′1 − Π̃||2F ≥ ||Π′2 − Π̃||2F . Thus
we can obtain

2βn
∑

Π0∈Πn ||Π0Â− B̂Π0||2F∑
Π0∈Πn ||Π̃−Π0||2F ||Π0Â− B̂Π0||2F

≈
2βn

∑
ρn<k≤n

∑
Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F∑

ρn<k≤n
∑

Π0∈Sk(Π̃) ||Π0 − Π̃||2F ||Π0Â− B̂Π0||2F

≤ 2βn

2ρn

∑
ρn<k≤n

∑
Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F∑

ρn<k≤n
∑

Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F
=
β

ρ
.

We finally obtain the approximation ratio

g(Π̃)

g(Π̂)
≥ 1

1 + β
ρ

≈ 1

1 + β
≥ 1

2
.

V. ALGORITHMIC ASPECT OF DE-ANONYMIZATION
PROBLEM

In this section, we show that WEMP is of significant
advantages in seedless de-anonymization since it resolves the
tension between optimality and complexity. For optimality, We
prove the good performance of solving WEMP that the result
makes the node mapping error (NME) negligible in large
social networks under mild conditions, facilitated by higher
overlapping strength; For complexity, the optimal mapping of
WEMP, Π̃, can be perfectly sought algorithmically by our
convex-concave based de-anonymization algorithm (CBDA).

A. Optimality: WEMP Returns Negligible NME

Recall that our aim is to minimize NME in expectation, a
natural question arises: what is the NME between the optimal
solution Π̃ of WEMP and the true permutation matrix Π0?
The answer will indicate the ability of solving WEMP in
enhancing the mapping accuracy. To answer this question, we
define the relative NME as follows.

Definition 5. (Relative NME) The relative NME is defined as
the ratio of mismatched nodes, i.e., ||Π̃−Π0||2F

||Π0||2F
.

We then demonstrate in the following that under mild
conditions, the relative NME vanishes to 0 as n → ∞.
The relative NME is actually the proportion of mismatched
nodes in the network. Our result implies that in a large-
sized network, the NME caused by Π̃ is negligible compared
with |V | = n. Furthermore, we surprisingly find that the
conditions are facilitated under higher overlapping strength,
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explicitly delineating benefits brought by overlapping com-
munities in NME reduction. Theorem 3 formally presents our
result mentioned above. Before that, we provide Lemma 1,
whose proof is provided in Appendix D, as a prerequisite in
proving Theorem 3.

Lemma 1. Suppose that the permutation matrix Π ensures
that all nodes are mapped with those who have same commu-
nity structures, i.e., for every i, j, if Π(i, j) = 1, Ci = Cj .
On this condition, there will be Â = W ◦ A, B̂ = W ◦ B
and ||W ◦ (ΠAΠT −B)||F = ||ΠÂΠT − B̂||F .

Remark: Note that there are no differences between
||ΠÂΠT − B̂||F and ||Â−ΠB̂ΠT||F since we can simply
find that ΠΠT = I. Therefore, we do not distinguish the
forms ||ΠÂΠT − B̂||F and ||Â−ΠB̂ΠT||F anymore.

We can then introduce one of the most important results in
this paper as follows.

Theorem 3. Given G1(V1, E1,A), G2(V2, E2,B), θ and
W. Let K = mins,t,j{(pCsCj + pCtCj ) min{s1, s2}}, L =
maxs,t,j{[(pCsCj + pCtCj ) max{s1, s2}]2}. If (i) L

K = o(1);

(ii) ||Â−Π0B̂ΠT
0 ||

2
F

||Â−Π̃B̂Π̃T||2F
= Ω(1); (iii) ||Â−Π0B̂ΠT

0 ||2F =

o(Kn2); (iv) Π0 and Π̃ ensures that all nodes are mapped
with those who have same community structures, then as
n→∞, ||Π̃−Π0||2F

||Π0||2F
→ 0.

Proof. The proof is composed of the following four steps:
i. Upper bounding ||Π̃−Π0||F by ||(Π̃−Π0)B̂||F ;
ii. Finding the relationship between ||(Π̃ − Π0)B̂||F and

tr((Π̃−Π0)B̂(Π̃−Π0)TÂ);
iii. Upper bounding tr((Π̃−Π0)B̂(Π̃−Π0)TÂ);
iv. Upper bounding ||Π0−Π̃||2F

||Π0||2F
.

i. Upper bounding ||Π̃−Π0||F by ||(Π̃−Π0)B̂||F .
For the ith row of (Π0−Π̃), we set π0(i) = s and π̃(i) = t.

If s = t, then the ith row of (Π0−Π̃)B̂ is a zero vector; else
the ith row of (Π0−Π̃)B̂ is (Bs1−Bt1,Bs2−Bt2, · · · ,Bsn−
Btn). For an element, ([(Π0 − Π̃)B̂]ij)

2 = (Bsj − Btj)
2.

Taking the expectation on both sides, we can derive that

EB[(Π0 − Π̃)B̂]2ij = (pCsCj + pCtCj − 2pCsCjpCtCjs2)s2,

where EB means taking expectation on every element in B.
By summing up all the rows and columns,

||(Π0 − Π̃)B̂||2F = E
n∑
i=1

n∑
j=1

[(Π0 − Π̃)B̂]2ij

=
n∑
i=1

1{π0(i) 6= π̃(i)}
n∑
j=1

(pCsCj + pCtCj − 2pCsCj pCtCj s2)s2

≥
n∑
i=1

n1{π0(i) 6= π̃(i)}min
j

(pCsCj + pCtCj − 2pCsCj pCtCj s2)s2,

SettingK2 = mins,t,j(pCsCj + pCtCj − 2pCsCjpCtCjs2)s2.
Note that ||(Π0− Π̃)||2F = 2

∑n
i=1 1{π0(i) 6= π̃(i)}, we have

||Π0 − Π̃||2F ≤
2

nK2
||(Π0 − Π̃)B̂||2F . (14)

Similarly we can replace B̂ with Â and replace s2 with s1 to
obtain K1, which provides K = min{K1,K2}.

ii. ||(Π0 − Π̃)B̂||F and tr((Π̃−Π0)B̂((Π̃−Π0)T)Â).

Note that

||(Π0 − Π̃)B̂||F = ||B̂(Π0 − Π̃)T||F = ||Π̃B̂(Π0 − Π̃)T||F
≤ ||(Π̃B̂Π0 − Â)− (Π̃B̂Π̃− Â)||F
≤ ||Π̃B̂Π̃T − Â||F + ||Π̃B̂ΠT

0 − Â||F ,

where the second equation holds since the permutation matrix
Π̃ keeps invariant of Frobenius norm, and the second inequal-
ity holds due to the triangular inequality of Frobenius norm.
Then we obtain

||(Π0 − Π̃)B̂||2F ≤ 2(||Π̃B̂Π̃T − Â||2F + ||Π̃B̂ΠT
0 − Â||2F ).

For the term ||Π̃B̂ΠT
0 − Â||2F ,

||Π̃B̂ΠT
0 − Â||2F = tr((Π̃B̂ΠT

0 − Â)T(Π̃B̂ΠT
0 − Â))

=tr(ÂTÂ) + tr(B̂TB̂)− 2tr(Π0B̂Π̃TÂ)

=||Â||2F + ||B̂||2F − 2tr(Π0B̂Π̃TÂ)

=
1

2
(||Π̃B̂Π̃T − Â||2F + ||Π0B̂ΠT

0 − Â||2F )

+ tr(Π0B̂ΠT
0 Â) + tr(Π̃B̂Π̃TÂ)− 2tr(Π0B̂Π̃TÂ)

≤||Π0B̂Π0
T − Â||2F + tr((Π̃−Π0)B̂((Π̃−Π0)T)Â),

(15)
the last inequality holds since ||Π̃B̂Π̃T − Â||2F ≤

||Π0B̂ΠT
0 − Â||2F .

iii. Upper Bound of tr((Π̃−Π0)B̂(Π̃−Π0)TÂ).
Set Z = (Π̃−Π0)B̂(Π̃−Π0)TÂ. For simplicity, we

define Y = (Π̃−Π0)B̂ and X = (Π̃−Π0)TÂ, thus
Z = YX. We focus on tr(Z). For any node i, when Π̃ and Π0

map it to the same node, the ith column of Π̃−Π0 is all-zero,
hence Zii = 0. Otherwise, for node i we assume that Π̃ maps
it to s and Π0 maps it to t, where s 6= t. We can obtain the ith
row of Y as Yi· = (B̂s1− B̂t1, B̂s2− B̂t2, · · · , B̂sn− B̂tn).
Similarly, we can obtain the ith column of X as X·i =
(Âp11−Âq11, Âp22−Âq22, · · · , Âpnn−Âqnn)T, where pi(qi)
means the row index of the 1(−1) in the ith column of
Π̃−Π0. If π0(j) = π̃(j), we simply set Xji = 0. Therefore
Zii, an element on diagonal of Z, satisfies

|Zii| = |〈Yi·X·i〉| ≤ ||Yi·||F ||X·i||F
≤ nmax

k
|B̂sk − B̂tk|max

`
|Âp`` − Âq``|.

(16)

Note that if we normalize wij to [0, 1] by dividing ||W||F ,
with no impact on Π̃ since it is irrelevant with ||W||F , then
|Zii| ≤ n. Taking the expectation of A and B on both sides
of Inequality (16), we can obtain that

EA,B|Zii| = EA,B(max
s,t,k
|B̂sk − B̂tk|max

p,q,`
|Âp`` − Âq``|)

≤ EA,B(max
s,t,k
|Bsk −Btk|max

p,q,`
|Ap`` −Aq``|)

≤ max
p,q,`
{[(pCsCj + pCtCj ) max{s1, s2}]2} = L,

where the first inequality holds since for any s, t, k and the
normalized weights wsk, wtk ≤ 1, |B̂sk−B̂tk| = |

√
wskBsk−√

wtkBtk| ≤ |Bsk−Btk|, and |Âp``−Âq``| is similar. Hence

|tr((Π̃−Π0)B̂((Π̃−Π0)T)Â)| ≤ nmax
i
|〈Yi·X·i〉| ≤ n2L.

(17)

iv. Upper Bound of ||Π0−Π̃||2F
||Π0||2F

.
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From Inequalities (14), (15) and (17), we can obtain

||(Π0 − Π̃)||2F ≤
2

nK
||(Π0 − Π̃)B̂||2F

≤ 8

nK
||Π0B̂ΠT

0 − Â||2F + 2tr((Π̃−Π0)B̂((Π̃−Π0)T)Â)

≤ 8

nK
||Π0B̂ΠT

0 − Â||2F +
4nL

K
.

Since condition 2 holds, there exists a constant c̃ ≥ 1 such
that ||Â−Π0B̂Π0

T||F ≤ c̃||Â−Π̃B̂Π̃T||F . Therefore since
||Π0||2F = 2n and the first and third condition, we can bound
the relative NME when n→∞ as:

||(Π0 − Π̃)||2F
||Π0||2F

≤ 4

n2K
||Π0B̂ΠT

0 − Â||2F +
2L

K

=
4c̃

n2K
||Π̃B̂Π̃T − Â||2F +

2L

K
→ 0.

This completes our proof.

Remark: Although Theorem 3 does not ensure NME = 0
exactly, it makes sense in de-anonymization since NME can be
neglected when the size of network is very large and we can
map asymptotically all nodes correctly under mild conditions.
We show the mildness of these conditions under a particularly
network structure: the whole networks connected with high
probability, which must follow pCiCj = Ω( logn

n ),∀i, j ∈
{1, 2, ..., n} [13].

Meanwhile, we take s = s1 = s2 = o(1) denoting sparse

sampling from G. For condition (i), L
K = O(

p2CiCj
s2

pCiCj s
) = o(1);

For conditions (ii) and (iii), |E[(A−ΠBΠT)ij ]| = pCiCjs+

pCπ(i)Cπ(j)
s = O( s logn

n ) satisfies both; For condition (iv), we
show in Section V-C that it holds if Π̃ ensures that all nodes
are mapped with those who have same community structures
(Recall Lemma 1) as Π0, which is easily realizable.

B. Overlapping Communities Benefit De-anonymization

Intuitively, the large overlapping strength of the communi-
ties usually means that a large number of nodes belonging to
different communities. In other words, the large overlapping
strength enriches the feature of nodes in an average sense,
whereby it could be beneficial to the de-anonymization pro-
cess. Mathematically, a larger overlapping strength can lead to
the increase of values in the weight matrix W according to its
definition, thereby enlarges the differences between irrelevant
nodes. Meanwhile, the overlapping communities can positively
impact on reducing the relative NME through facilitating
conditions in Theorem 3, specifically condition (iii). We now
demonstrate this point in the following.

For convenience, we assume s1 = s2 = s. When π0 maps
all nodes to those who have same community structures, then
on average condition (iii) in Theorem 3 can be written as

2
∑

1≤i<j≤n

pCiCj s log

(
1− pCiCj (2s− s

2)

pCiCj (1− s)2

)
= o(Kn2). (18)

To characterize the global situation in the networks, we define

an average probability p̂ such that∑
1≤i<j≤n

pCiCj s log

(
1− pCiCj (2s− s

2)

pCiCj (1− s)2

)

=
n(n− 1)

2
log

(
1− p̂(2s− s2)

p̂(1− s)2

)
p̂s,

(19)

where p̂ is positively correlated to the overlapping strength
of the whole networks. Taking the derivative of p̂ over(

1−p̂(2s−s2)
p̂(1−s)2

)
ep̂s, we find that

d

((
1− p̂(2s− s2)

p̂(1− s)2

)
ep̂s
)
/dp̂ =

ep̂s

(1− s)2
(
p̂− 1

p̂2
− (2s− s2)) ≤ 0,

(20)

indicating that
(

1−p̂(2s−s2)
p̂(1−s)2

)
ep̂s is a decreasing function be-

coming smaller as overlapping strength increases. Therefore if
the order of p̂ rises, then the order of ||Â−Π0B̂ΠT

0 ||2F turns
smaller, facilitating ||Â−Π0B̂ΠT

0 ||2F = o(Kn2).
Taking a vivid example of the proposed OSBM [12] in

which
pCiCj =

1

1 + ae−x
, (21)

where a is an adjustable parameter and x is the number of
overlapping communities. We find that mini,j pCiCj = 1

1+a
is a constant if a = Ω(1), and can be arbitrarily close to 1
when x is large enough. So if s = o(1) and p̂ = 1 − o(1),
which means that the overlapping strength is very large, then

p̂ log(
1− p̂(2s− s2)

p̂(1− s)2
) = p̂ log(1 +

1− p̂
p̂(1− s)2

)

≈ 1− p̂
(1− s)2

= o(min
i,j

pCiCj ),

(22)

thus condition (iii) holds. Meanwhile s = o(1) makes con-
dition (i) hold as well. Therefore all the four conditions in
Theorem 3 hold, thus the relative NME vanishes to 0.

C. Complexity: WEMP can be Algorithmically Solved

Upon proving the good performance of solving WEMP in
large-scale networks, now we algorithmically demonstrate that
WEMP reduces the complexity of the MMSE problem since
the optimal mapping of WEMP can be perfectly found by the
convex-concave based de-anonymization algorithm (CBDA).

1) Formulation of WEMP in Constrained Optimization For-
m: We first restate WEMP in the form of the following
constrained optimization problem:

minimize‖(Â−ΠB̂ΠT)‖2F
s.t. ∀i ∈ V1,

∑
i Πij = 1 (23)

∀j ∈ V2,
∑
j Πij = 1 (24)

∀i, j, Πij ∈ {0, 1}, (25)
∀i ∈ V1,Ci = Cπ(i) (26)

Constraints (23), (24) and (25) are the attributes of per-
mutation matrices. What’s more, we append constraint (26),
which means that our estimated mapping π should keep the
community representation of all the nodes in V1 unchanged
before and after mapping. Note that it is hard to implement
this constraint directly in the optimization problem since
it is not in the form of permutation matrix. However, we
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can easily convert it into a suitable one by defining a new
matrix to characterize the community representation of all the
nodes, which we call as “Community Representation Matrix”,
denoted as M. Its formal definition is as follows.

Take Fig. 1 as an instance again. The community represen-
tation matrix of G, denoted as MG, satisfies

MT
G =

1 0 1 1 0 0 0 0 0

0 1 1 1 0 1 1 1 0

0 0 1 1 1 0 1 1 1

 .
Note that the community representation matrices for G, G1

and G2 are identical. So we set all of them to be M. Hence
the constraint (26) can be rewritten as ||ΠM −M||2F = 0.
According to optimization theory, we can form this constraint
into the objective function by regarding it as the penalty term
and obtain a new objective function

F0(Π) = ||Â−ΠB̂ΠT||2F + µ||ΠM−M||2F ,

where µ is an adjustable penalty parameter, which is large
enough such that when the objective function reaches its
minimum value, ||ΠM−M||2F is exactly. Note that this trans-
formation of objective function does not affect the previous
analytical results of WEMP since we have the assumption that
the true mapping ensures that all nodes are mapped with those
who have same community structures.

2) Problem Relaxation and Idea of Algorithm Design:
Hereinafter, we focus on how we design our algorithm tar-
geting the WEMP.

Problem Relaxation: WEMP is an integer program prob-
lem which cannot be solved efficiently. We relax the original
feasible region of WEMP Ω0 into Ω, which are respectively

Ω0 = {Πij ∈ {0, 1}|∀i, j,
∑
i Πij = 1 ,

∑
j Πij = 1};

Ω = {Πij ∈ [0, 1]|∀i, j,
∑
i Πij = 1 ,

∑
j Πij = 1}.

After this relaxation the problem becomes tractable. Howev-
er, a natural question arises: How to obtain the solution of the
original unrelaxed problem from that of the relaxed problem?

Idea of Convex-Concave Relaxation Method: Note that
the minimizer of a concave function must be at the boundary of
the feasible region, coinciding that Ω0, the original feasible set,
is just the boundary of Ω. Therefore, a natural idea emerges:
We can modify the convex relaxed problem into a concave
problem gradually. Thus we apply the convex-concave opti-
mization method (CCOM), whose concept is pioneeringly pro-
posed in [35] to solve pattern matching problems: For F0(Π),
we find its convex and concave relaxed version respectively
F1(Π) and F2(Π). Then we obtain a new objective function
as F (Π) = (1−α)F1(Π)+αF2(Π). We modify α gradually
from 0 to 1 with interval ∆α, each time solving the new F (Π)
initialized by the optimizer last time. F (Π) becomes more
concave, with its optimum closer to Ω0 where Π̃ lies.

3) Implementation of CCOM and Algorithm Design:
Although [35] has proposed the general framework of CCOM,
the way it presents to obtain F1(Π) and F2(Π) is rather
complex, as it involves Kronecker product and the Laplacian
matrix of graphs. Here we provide a simple way, as defined in
Lemma 2, to get the convex relaxation and concave relaxation.

Lemma 2. A proper way to get the convex relaxation and
concave relaxation is

F1(Π) = F0(Π) +
λmin

2
(n− ||Π||2F );

F2(Π) = F0(Π) +
λmax

2
(n− ||Π||2F ).

where λmin (λmax) is the smallest (largest) eigenvalue of the
Hessian matrix of F0(Π). Therefore we form our new objective
function in CCOM as

F (Π) = (1−α)F1(Π)+αF2(Π) = F0(Π)+2ξ(n−||Π||2F ),

where ξ = (1− α)λmin + αλmax, ξ ∈ [λmin, λmax].

The proof of Lemma 2, which is left in Appendix E, uses
the sufficient and necessary condition that for a function whose
variable is matrix is convex (concave) is that the Hessian
matrix of this function is positive (negative) semi-definite.

Lemma 2 presents a simple way to implement CCOM
algorithmically, since F0(Π) is just our objective function in
Section V-C1 and ||Π||2F can be computed easily. We can
modify F (Π) step by step from a convex function to a concave
function by modifying the value of ξ or α. In the following
analysis, we set Fξ(Π) equivalent to F (Π) since ξ is an
adjustable parameter in F (Π).

A vivid example of the CCOM under the formulation of
Fξ(Π) by Lemma 2 is illustrated in Fig. 2. As can be seen
in the figure, when ξ starts at λmin, Fξ(Π) is a convex
function, thus we can obtain the minimizer of this objective
function. After we find the minimizer, we increase α which
makes the objective function become less convex. To obtain
the minimizer of this new objective function, we have the
prior knowledge of the previous minimizer, and since we only
slightly modify the objective function, the optimal solution
of new objective function should not deviate much from the
previous one intuitively. Therefore we can start from the
previous minimizer to find the new minimizer. Gradually, as
α becomes increasingly larger, the objective function tends to
be concave while the minimizer of it tends to get close to
the boundary, on which the optimal solution of the original
WEMP exists. The trail for the minimizer can be referred to
the red line with arrows in Fig. 2.

Based on the above analysis, we propose Algorithm 1,

minimal value

Fig. 2: An Illustration of the Implementation of CCOM.
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Algorithm 1 Convex-concave Based De-anonymization Algo-
rithm (CBDA)
Input: Adjacent matrices A and B; Community assignment

matrix M; Weight controlling parameter µ; Adjustable
parameters δ, ∆ξ.

Output: Estimated permutation matrix Π̃.
1: Form the objective function F0(Π) and F (Π).
2: ξ ← 0, k ← 1. Π1 ← 1n×n./n. Set ξm, the upper limit

of ξ.
3: while ξ < ξm and Πk /∈ Ω0 do
4: while k = 1 or |F (Πk+1)− F (Πk)| ≥ δ do
5: X⊥ ← arg minX⊥ tr(∇Πk

F (Πk)TX⊥), where
X⊥ ∈ Ω.

6: γk ← arg minγ F (Πk + γ(X⊥ −Πk)), where γk ∈
[0, 1].

7: Πk+1 ← Πk + γk(X⊥ −Πk), k ← k + 1.
8: end while
9: ξ ← ξ + ∆ξ.

10: end while
11: Π̃ = Πk.

called Convex-concave Based De-anonymization Algorithm
(CBDA), as our main algorithm for the weighted-edge match-
ing problem (WEMP) under CCOM. Note that F0(Π) itself
is convex in our problem, thus we can set ξ from 0 to an
arbitrarily large number, which obviates the great complexity
to calculate eigenvalues of Hessian matrices.

CBDA consists of an outer loop (lines 3 to 10) and an
inner loop (lines 4 to 8). The outer loop modifies ξ in CCOM.
The inner loop finds the minimizer of F (Π), whose main
idea resembles descending algorithms: In line 5, we obtain
descending direction by minimizing tr(∇Πk

F (Πk)TX⊥),
dangling the highest probability to find a descending direction
characterized by tr(∇Πk

F (Πk)TX⊥) < 0. In line 6 we
search for step length γk contributing most to lowering F (Π)
on this descending direction. Line 7 is the update of estimation.

4) Time Complexity and Convergence Analysis: Time
Complexity: The inner loop is similar to the Frank-Wolfe
algorithm, with O(n6) in a round (since the input is an n×n
matrix). If the maximum number of inner loops as T , thus
the whole algorithm has a complexity of O

(
n6Tξ
∆ξ

)
. As far

as we know, a dearth of algorithmic analysis of seedless de-
anonymization exists except for [36], [37], with their proposed
algorithm sharing identical complexity of O(n6) with ours.

Convergence: Before the convergence analysis, we first
clarify that:
• We set Πk as the estimation after k rounds in the inner

loop, thus we have Πk+1 = Πk + γk(X⊥ −Πk).
• We set Fξ(Π) = F0(Π) + ξ(n− ||Π||2F ) and Πξ as the

minimizer of Fξ(Π).
Then we analyze the convergence of CBDA and propose

Lemma 3.

Lemma 3. CBDA converges and its final output is a permu-
tation matrix within the original feasible region Ω0.

Proof. There are inner and outer loops in CBDA and we show
the convergence of them respectively.

1. Inner Loop: We provide the outline of the proof here
and put the detailed one in Appendix F.

We focus on Fξ(Πk+1) and Fξ(Πξ). According to Taylor’s
Theorem, we can derive that

Fξ(Πk+1) = Fξ(Πk + γk(X⊥ −Πk))

≤ Fξ(Πk) + γktr(∇FTξ (Πk)(Πξ −Πk)) + γkRk,
(27)

Fξ(Π
ξ) = Fξ(Πk + Πξ −Πk)

= Fξ(Πk) + tr(∇FTξ (Πk)(Πξ −Πk)) + R′k,
(28)

where γkRk and R′k is the remainder of this Taylor series.
Combining Eqn. (27) and (28), we can obtain

Fξ(Πk+1)− Fξ(Πξ)

≤ (1− γk)(Fξ(Πk)− Fξ(Πξ)) + γk∆Rk

≤
k∏
i=1

(1− γi)(Fξ(Π1)− Fξ(Πξ)) +

k∑
i=1

γi

k−i∏
j=1

(1− γj)∆Ri.

(29)
For Fξ(Π1) − Fξ(Πξ), note that Π1 = Πξ−∆ξ, then we

can derive that

Fξ(Π
ξ−∆ξ)− Fξ(Πξ) ≤ ∆ξ(||Πξ−∆ξ||2F − ||Πξ||2F ). (30)

Therefore by combining Inequalities (29) and (30), we
can obtain that both

∏k
i=1(1 − γi)(Fξ(Π1) − Fξ(Π

ξ)) and∑k
i=1 γi

∏k−i
j=1(1− γj)∆Ri approach to 0.

2. Outer Loop: Note that from Eqn. (30), we know
(||Πξ−∆ξ||2F − ||Πξ||2F ) is nonnegative since ∆ξ > 0 and
Πξ is the minimizer of Fξ(Π). Thus ||Πξ||2F ≤ ||Πξ−∆ξ||2F .
Note that ||Π||2F ≤ n. From Inequality (30), we find that

Fξ(Π
ξ) ≥ F0(Πξ−∆ξ) + (ξ −∆ξ)(n− ||Πξ−∆ξ||2F )

−∆ξ(n− ||Πξ||2F )

= Fξ−∆ξ(Π
ξ−∆ξ)−∆ξtr(||Πξ||2F − n).

Therefore

|Fξ(Πξ)− Fξ−∆ξ(Π
ξ−∆ξ)|

≤ ∆ξ|||(Πξ)||2F − n| ≤ ∆ξ|||Πξ−∆ξ||2F − n|
≤ ∆ξ|||Πξ0 ||2F − n| ≤ ∆ξ(n− 1),

where the third inequality holds since Πξ0 is the minimizer of
Fλmin(Π), i.e., the convex relaxation of F0(Π), and the fourth
inequality holds since minΠ∈Ω ||Π||2F = 1 and Π = 1n×n./n
is the minimizer. Therefore, if ∆ξ = o

(
1
n

)
, the outer loop

converges.
Combining the convergence analysis of both inner and outer

loops above, we complete the proof of the convergence of
CBDA.

Lemma 3 ensures that CBDA can perfectly solve WEMP,
which vanishes the relative NME. In this section, we have
proved that the CBDA algorithm, proposed as the algorith-
mic approach for seedless de-anonymization, is feasible for
networks with broad degree distributions and can bring high
accuracy in mapping those networks in its feasible region.

5) Discuss on the Computational Complexity of CB-
DA: Different from the literature focusing on seeded de-
anonymization problem, our analysis and algorithm are pro-
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posed in the seedless case. Although the seeded case can
iteratively and locally de-anonymize the nodes with the aid of
a fraction of pre-identified nodes, the seedless case can only
be solved with a global perspective, which inevitably results in
a high complexity of Ω(n3). As far as we know, most seedless
works face the same bottleneck that their polynomial-time
algorithms cannot directly apply to large-scale networks due
to the high time complexity. For instance, [26] realizes a “fast”
de-anonymization algorithm with time costs O(n2d2), where
d is the maximal degree of nodes in the networks. For a dense
network, their complexity approaches O(n4). Besides, the path
following algorithm in [27] costs O(n7) in the worst case.
[36], which de-anonymizes the networks with non-overlapping
communities with an MAP estimator, also costs O(n6) to
obtain their solutions. Even the most intuitive heuristic named
fast approximate quadratic (FAQ) programming [28], which
has no analytical guarantee and has a relatively low complexity
of O(n3), performs their experiments with hundreds of or
thousands of nodes.

To sum up, though the complexity of algorithms may
decrease by adopting some heuristics, the performance may
also decrease. Meanwhile, the design of efficient algorithms
for large-scale seedless de-anonymization still remains open.

VI. EXPERIMENTAL ASPECT OF SOCIAL NETWORK
DE-ANONYMIZATION PROBLEM

In this section, we utilize three datasets: synthetic networks,
sampled real social networks and true cross-domain networks,
to validate our theoretical results and the performance of
CBDA.Before presenting empirical results, we first introduce
our experimental setup.

A. Experiment Setup

1) Main Parameters: We list our adjustable parameters
involved in our experiments in Table II. Three parameters are
in need of further explanations:

i) a. This is a parameter in the overlapping stochastic block
model (OSBM) which determines the pCiCj , the probability
of edge existence between nodes i and j in underlying graph.
Specifically, pCiCj can be expressed as

pCiCj =
1

1 + ae−x
, (31)

where x is the number of communities that both nodes i and j
belong to. Note that if a becomes larger (smaller), then pCiCj
is smaller (larger) so that the graph becomes sparser (denser).

ii) η. This is the community ratio. It means the ratio
between the number of communities and nodes. This ratio
reflects the density of community numbers regardless of the
size of network. In performance validation of CBDA we set
η = 0.05 or 0.1, while when studying the influence of η on de-
anonymization accuracy, it will be endowed with more values.

iii) OL/NOL. OL means that communities are overlapping
while NOL means not. This makes for illustrating the impact
of the overlapping property of communities on the mapping
accuracy.

TABLE II: Main Experimental Parameters

Notation Definition Range
N Number of Nodes {500, 1000, 1500, 2000}
s Sampling Probability (s1 = s2 = s) 0.3-0.9
a OSBM Parameter {3, 5, 7, 9}
η Community Ratio {0.05, 0.1}

OL/NOL Overlapping or Non-Overlapping {OL, NOL}

TABLE III: Datasets in Basic Experiments

Dataset Synthetic Sampled Real Social Cross-Domain Co-author

Source OSBM LiveJournal [14] MAG [15]

Num. of Nodes 500 ∼ 2000 500 ∼ 2000 3176

Num. of Communities 25 ∼ 1000 25 ∼ 1000 89

2) Experimental Datasets: We discuss three adopted
datasets, which is shown is Table III, in an order from model-
based to real social networks.

i) Synthetic Networks: We generate networks by setting the
community representation of every node independently and
randomly deciding the edge existence in node pair (i, j) based
on OSBM [12]

ii) Sampled Real Social Networks: The underlying social
network G is extracted from LiveJournal [29], while G1 and
G2 are sampled from G with the same probability s.

iii) Cross-Domain Co-author Networks: The co-author net-
works are from the Microsoft Academic Graph (MAG) [15].
We extract 4 networks belonging to different sub-areas in the
field of computer science, with the same group of authors,
each of whom has a unique 8-bit hexadecimal ID enabling
us to construct the true mapping between two networks as
the one mapping nodes with same ID. Each network can be
viewed as G1 or G2, thus there are C2

4 = 6 combinations.
Note that we can assign wij on all these 3 datasets since the
prior knowledge is just the community assignment matrix M ,
which can be generated or known from the real networks.

3) Algorithms for Comparison and Performance Metric:
We exclude algorithms for seeded de-anonymization and select
algorithms suitable for seedless cases related to our main
point: showing the impact of overlapping communities on
reducing NME, though other algorithms might outperform
ours. We select two algorithms for comparison: (i) the Genetic
Algorithm (GA), an epitome of heuristic algorithms which can
work under both overlapping or non-overlapping communities;
(ii) the Convex Optimization-Based Algorithm (COBA) in
[36], [37], which primarily suits the non-overlapping cases by
assigning every node to a unique community. The performance
metric in our experiments is the accuracy, i.e., the proportion
of correctly mapped nodes.

4) Supplementary Experiments: To make our experimental
validation more comprehensive and convincing, we study (i)
the effect of different community ratios (η), which is modified
from 0.025 to 0.2 with interval 0.025, on the accuracy based
on sampled real social networks; (ii) the priority of our cost
function with W derived from MMSE makes for higher
accuracy, comparing with the cost function without W in [6];
(iii) the instability of GA revealing its practical limitation,
for which we take the average performance of 10 duplicate
experiments as the final accuracy.
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Fig. 3: Experiments on Synthetic Networks with a = 5.
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(f) a=5,η=0.1
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(g) a=7,η=0.1
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(h) a=9,η=0.1
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Fig. 4: Experiments on Synthetic Networks with N = 2000.
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(a) N=1000, C=0.05
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(b) N=2000, C=0.05
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(c) N=1000, C=0.1
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(d) N=2000, C=0.1
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Fig. 5: Experiments on Sampled Real Social Networks.

B. Experiment Results

1) Synthetic Networks: Figs. 3 and 4 illustrate our exper-
imental results on synthetic networks, where the community
ratio η ∈ {0.05, 0.1}, the network size N range from 500 to
2000 in Fig 3 and the OSBM parameter a range from 3 to
9 in Fig 4. From Fig. 3, we observe that: (i) The average
accuracy of genetic algorithm (GA) under different settings
keeps at levels around 40% − 60%, which illustrates that
different sizes, densities and whether the communities overlap

or not do not make many differences on the performance
of GA averagely. This is because GA examines the edges
one by one to make the cost function as small as possible,
therefore it is not seriously affected by the global setting of the
networks. (ii) The accuracy of COBA also keeps at a stable
level in different situations. However, COBA can only cope
with non-overlapping situations, and generally its performance
is inferior to GA when communities are not overlapped, which
is in line with the results in [36], [37]. (iii) The accuracy of
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CBDA, our algorithm, rises with the increasing network size
N when η = 0.05. Specifically, when N goes from 500 to
2000, the accuracy rises from approximately 40% to 80%. This
corresponds to our Theorem 3 that as the size of networks
becomes larger, the relative NME becomes smaller. When
η = 0.1, which indicates denser communities, the accuracy
of CBDA is at a high level (around 90%) even if the network
size is small. On the other hand, however, when dealing with
non-overlapping situations, our CBDA works stably but not
as efficiently as GA or COBA, with the accuracy only around
20%. This indicates that the overlapping strength brings great
differences to our algorithm.

From Fig. 4, we can observe that when communities are
non-overlapping, for both COBA and our CBDA, curves at
η = 0.05 have the same trends as curves at η = 0.1, showing
that the community density under non-overlapping situations
does not affect the performance of all these algorithms. How-
ever, our CBDA always performs better than other algorithms
when the communities are overlapping each other. With a
certain community size, the accuracy of CBDA keeps at a
stable level when η = 0.05 and varies with edge density
a when η = 0.1. Thus, when the community density is
large, the performance of CBDA is mainly decided by the
edge density (a), positively correlated to community density;
when the community density is small, then the performance
of CBDA is mainly decided by the size of the networks (N ).
This shows that the community ratio (density) determines the
dominant factor (a or N ) in de-anonymization accuracy in
networks with overlapping communities.

2) Sampled Real Social Networks: In sampled real social
networks, we utilize the real underlying network, thus no
modifications on a exist. The results are in Fig. 5. We can
observe: (i) GA performs better in larger networks and under
denser communities, either overlapping or non-overlapping;
(ii) The performance of COBA is also enhanced when the
size of networks become larger and the community becomes
denser; (iii) The performance of CBDA under non-overlapping
situations does not outperform other algorithms, but a rising
tendency exists as the sampling probability s becomes larger;
(iv) The performance of CBDA under overlapping situations
still performs well under denser communities and larger net-
work size, with the highest point 95% and the highest average
level around 90% when N = 2000 and η = 0.1, the largest
size and densest communities in Table III.

Synthesizing the above four observations, we can learn
that the OSBM does not reflect the real social networks
very precisely, since the performance of all three algorithms
under non-overlapping or overlapping communities differs in
two datasets. Moreover, with the same experimental setting,
we discover that the performance of our CBDA is better in
sampled real social networks than in OSBM-based synthetic
networks, which further undergirds the high performance of
our algorithm in practical use. Additionally, the results in Fig.
5 also meet Theorem 3 that as the network size becomes larger,
the relative NME is much smaller and close to 0, indicating
that Theorem 3 also works in real social networks.

3) Cross-Domain Co-author Networks: In cross-domain
co-author networks, we pick up four networks with the same
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Fig. 6: Experiments on Cross-Domain Co-author Networks.
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(c) The effect of W, N=1000
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(d) The effect of W, N=2000
GA−W GA−NW CBDA−W CBDA−NW

Fig. 7: Supplementary Experiments

set of 3176 users. Fig. 6 illustrates our results. We find that
in non-overlapping situation, the results correspond to those in
previous datasets that our CBDA does not perform well, while
GA and COBA work well. On the other hand, in overlapping
situation, we find our CBDA reaches accuracy around 90%,
outstripping GA whose accuracy is averagely 60%. This
phenomenon upgrades the significance of our CBDA in de-
anonymization with overlapping communities since the dataset
is entirely realistic. Moreover, since overlapping cases are
much more quotidian in real social networks, CBDA has wider
usage than GA and COBA.

4) The Effect of Community Density: We apply the sampled
real social networks under which we can adjust the community
ratio η. We modify η from 0.025 to 0.2, with interval 0.025.
The results are shown in Fig. 7(a). We can observe that our
CBDA performs better when the network size is larger, which
again echoes the conclusion in Theorem 3. Moreover, with
the larger community ratio, the accuracy of CBDA rises up,
showing that CBDA is suitable for social networks with highly
overlapping communities. What’s more, a huge gap occurs
between the accuracy of η = 0.025 and η = 0.075, and
when η ≥ 0.1, the accuracy of CBDA under all the network
sizes involved keeps at high levels, around 80% or higher. The
results further illustrate that the higher community ratio η, the
better de-anonymizing result will be.

5) The Effect of Weight Matrix W: As Figs. 7(c) and
7(c) show, CBDA works better appending W derived by
MMSE, since the non-weighted cost function, adopted in
[6], fails to distinguish nodes belonging to different number
of communities. It shows the superiority of cost functions
derived with rationale, as we claim in Section IV. Under larger
network size, however, the difference becomes fainter since the
impact of distinguishing a single node by wij is weaker than
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the benefits brought by large size shown in Theorem 3.
6) The Instability of Genetic Algorithm: We disclose the

instability of GA in Fig. 7(b). We run GA 10 times under
sampled real social networks with different sizes. The perfor-
mance of GA fluctuates violently, bewildering adversaries in
the quality of a specific estimation, which inhibits the usage
of GA in practice.

C. Discussion for the Experimental Results

In general cases, our CBDA algorithm outperforms others in
the experiments, because this algorithm can properly cope with
the overlapping community structure in the social networks,
while other works are either a simple heuristic without analyti-
cal guarantee or just proposed under non-overlapping commu-
nities. Every node is divided into a specific community in the
non-overlapping community case while a node may belong
to different communities in our background setting. Though
the Genetic algorithm is unstable for the de-anonymization
work, the COBA algorithm in [36], [37] is expected to achieve
similar performance if this algorithm can also be properly
adapted to make use of overlapping communities. Due to the
difficulty in doing so, we leave it a future work after we can
achieve new progress in the de-anonymization problem.

The performance of CBDA is poor in non-overlapping
community case. This phenomenon stems in our analysis in
Section V-B, which requires that the overlapping strength
of the communities should be large to satisfy our optimal
mapping conditions proposed in Theorem 3.

VII. CONCLUSION

We tackle the seedless de-anonymization problem under a
more practical social network model concreted by overlapping
communities than existing works. With the MMSE, we derive
a well-justified cost function, i.e., the MMSE estimator, which
aims to minimize the expected number of mismatched users.
While showing the NP-hardness of minimizing the proposed
MMSE estimator, we validly transform it into the WEMP
problem, which resolves the tension between the optimality
and the complexity: (i) WEMP can be algorithmically solved
via CBDA, which is proved to find exactly the optimum of
WEMP; (ii) The solution of WEMP is proved to asymptoti-
cally achieve optimal with a negligible mapping error under
mild conditions facilitated by higher overlapping strength.
Extensive experiments further confirm the effectiveness of
CBDA under overlapping communities.
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APPENDIX A
PROOF OF THEOREM 1

Proof. Define GΠ as the set of all possible realizations of
the underlying network G which can be sampled to form the
observed networks G1, G2 given the mapping matrix Π. Then
the MMSE estimator can be written as
Π̂ = arg min

Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F
∑
G∈GΠ

Pr(G,Π0|G1, G2,θ).

Let us focus on the conditional probability
Pr(G,Π0|G1, G2,θ) in Eqn. (2). According to Bayesian’s
formula, along with the fact that G1 and G2 are sampled
independently from each other, we obtain

Pr(G,Π0|G1, G2,θ) =
Pr(G,G1, G2,Π0)

Pr(G1, G2)

∼ Pr(G)Pr(G1|G)Pr(G2|G,Π0),

(32)

where a ∼ b means that a and b are positively correlated and
their difference appears only in the parameters unrelated to
Π0, which will not change the value of arg max or arg min.3

Note that the parameter set θ remains invariant, so we need
not add Ci and θ into further consideration.

Set Eij as the indicator variable about whether an edge
exists between nodes i and j in the edge set E. If an edge
exists then Eij = 1, otherwise Eij = 0. The same rule also
holds for indicators Eij1 and Eij2 . Therefore Eqn. (32) can be
further written as∑

G∈GΠ

Pr(G)Pr(G1|G)Pr(G2|G,Π0)

=
∑
G∈GΠ

n∏
i<j

s
E
ij
1

1 (1− s1)E
ij−Eij1 s

E
π0(i)π0(j)
2

2

· (1− s2)E
ij−Eπ0(i)π0(j)

2 pE
ij

CiCj (1− pCiCj )
1−Eij

=
∏
i<j

(
s1

1− s1

)Eij1 ( s2

1− s2

)Eπ0(i)π0(j)
2

·
∑
G∈GΠ

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)Eij

∼
∑
G∈GΠ

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)Eij
.

(33)

Note that the last equivalence in Eqn. (33) holds since

the term
(

s1
1−s1

)Eij1
does not depend on π0 and the prod-

uct
∏
i<j

(
s2

1−s2

)Eπ0(i)π0(j)
2

is independent of π0 due to the
bijective property of π0.

Then we define G∗π0
as the graph which has the smallest

number of edges in GΠ. Equivalently G∗π0
= (V,E1∪π0(E1)),

where π0(E1) = {(π0(i), π0(j))|(i, j) ∈ E1}. Now we set
E∗π0

as the edge set of G∗π0
, and E∗ijπ0

as the indicator variable
between nodes i and j, i.e., E∗ijπ0

= 1 if (i, j) ∈ E∗π0
and

3There is a notation abuse for ∼ between the one in Eqn. (6) and here.

E∗ijπ0
= 0 otherwise. Then we sum up all the graphs in GΠ∑
G∈GΠ

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)Eij

=

n∏
i<j

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)E∗ijπ0

·
Eij−E∗ijπ0∑

k=0

Ck
Eij−E

∗ij
π0

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)k
.

(34)

Note that in Eqn. (34) last multiplicative factor ,

Eij−E∗ijπ0∑
k=0

Ck
Eij−E

∗ij
π0

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)k
,

yields as a Bernoulli sum, therefore Eqn. (34) can be further
written as ∑

G∈GΠ

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)Eij

=

n∏
i<j

(
(1− s1)(1− s2)

pCiCj
1− pCiCj

)E∗ijπ0
·
(

1 + (1− s1)(1− s2)
pCiCj

1− pCiCj

)1−E∗ijπ0

∼
n∏
i<j

(
pCiCj (1− s1)(1− s2)

1− pCiCj (s1 + s2 − s1s2)

)E∗ijπ0
∼

n∑
i<j

E∗ijπ0
log

(
pCiCj (1− s1)(1− s2)

1− pCiCj (s1 + s2 − s1s2)

)
.

(35)

Here the last line in Eqn. (35) holds since the log operator
keeps the minimum Π0 invariant. Note that G∗π0

= (V,E1 ∪
π0(E1)). Then we can find that E∗ijΠ0

= 0 if and only if both
Eij1 and Eij2 are equal to 0, and E∗ijΠ0

= 1 occurs in the
following three conditions:

• (i, j) ∈ E1 but (i, j) /∈ E2. Note that this condition also
ensures that (π0(i), π0(j)) ∈ E2.

• (i, j) ∈ E2 but (i, j) /∈ E1. Note that this condition also
ensures that (π0(i), π0(j)) /∈ E2.

• (i, j) ∈ E1 and (i, j) ∈ E2. Note that this condition also
ensures that (π0(i), π0(j)) ∈ E2.

Synthesizing all the above conditions, we express E∗ijπ0
as

E∗ijπ0
=

1

2
(Eij1 +Eij2 + |1{(i, j) ∈ E1}−1{(π0(i), π0(j)) ∈ E2}|),

(36)
where 1{P} = 1 if the random event P happens and
1{P} = 0 otherwise. Substituting Eqn. (36) into the last line
in Eqn. (35), we get

arg min
Π∈Πn

n∑
i<j

E∗ijπ0
log

(
pCiCj(1−s1)(1−s2)

1− pCiCj (s1 + s2 − s1s2)

)

= arg max
Π∈Πn

n∑
i<j

wij |1{(i, j) ∈ E1} − 1{(π0(i), π0(j)) ∈ E2}|

= arg max
Π∈Πn

||W ◦ (Π0A−BΠ0)||2F ,
(37)

where wij = log
(

1−pCiCj (s1+s2−s1s2)

pCiCj (1−s1)(1−s2)

)
is weight between
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i and j, W is a symmetric weight matrix where W(i, j) =√
wij = W(j, i), and “◦” denotes the Hadamard product.
Substituting Eqn. (37) into Eqn. (32), now we can formulate

the MMSE estimator as

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F ||W◦(Π0A−BΠ0)||2F . (38)

APPENDIX B
ANALYSIS OF THE TRANSFORMATION FROM

MMSE TO WEMP

𝑥𝑥 𝛥𝛥
𝑥𝑥 𝛥𝛥

𝑥𝑥 𝑥𝑥 0 𝑥𝑥 𝑥𝑥 ☆ 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝛥𝛥
𝑥𝑥 𝛥𝛥

𝛥𝛥 𝛥𝛥 ☆ 𝛥𝛥 𝛥𝛥 0 𝛥𝛥 𝛥𝛥
𝑥𝑥 𝛥𝛥
𝑥𝑥 𝛥𝛥

𝛥𝛥 𝑥𝑥
𝛥𝛥 𝑥𝑥

𝛥𝛥 𝛥𝛥 0 𝛥𝛥 𝛥𝛥 ☆ 𝛥𝛥 𝛥𝛥
𝛥𝛥 𝑥𝑥
𝛥𝛥 𝑥𝑥

𝑥𝑥 𝑥𝑥 ☆ 𝑥𝑥 𝑥𝑥 0 𝑥𝑥 𝑥𝑥
𝛥𝛥 𝑥𝑥
𝛥𝛥 𝑥𝑥

exchange

the node pair 𝑖𝑖, 𝑗𝑗

𝑖𝑖

𝑖𝑖

𝑖𝑖

𝑖𝑖

𝑗𝑗

𝑗𝑗

𝑗𝑗

𝑗𝑗

Fig. 8: An example of the effect of Π0 which differs from Π̃0

only in the ith and jth row. The triangles denote the jth row and
column the “x”es denote the ith row and column of

W ◦ (Π0AΠT
0 −B). And the triangles denote the ith row and

column the “x”es denote the jth row and column of
W ◦ (Π̃AΠ̃T −B). Note that the difference between

W ◦ (Π0AΠT
0 −B) and W ◦ (Π̃AΠ̃T −B) exists in the ith and

jth row and column except the intersections (those 0s and stars).

i. Analysis of ||Π0Â− B̂Π0||2F where Π0 ∈ S2(Π).
Now we focus on the value of ||Π0Â − B̂Π0||2F , where

Π0 ∈ S2(Π). Note that any permutation in S2(Π) only causes
matching error on one pair of nodes. Thus if we consider
Π = Π̃ and set one specific Π0 ∈ S2(Π̃), which differs from
Π̃ only in the ith and jth row, we can derive that

||Π0Â− B̂Π0||2F − ||Π̃Â− B̂Π̃||2F
=||W ◦ (Π0AΠT

0 −B)||2F − ||W ◦ (Π̃AΠ̃T −B)||2F

=2

( n∑
k 6=i,j

[(W ◦ (Π0AΠT
0 −B))2

ik − (W ◦ (Π̃AΠ̃T −B))2
ik]

+

n∑
k 6=i,j

[(W ◦ (Π0AΠT
0 −B))2

jk − (W ◦ (Π̃AΠ̃T −B))2
jk]

)

=2

( n∑
k 6=i,j

wik[(Π0AΠT
0 −B)2

ik − (Π̃AΠ̃T −B)2
ik]

+

n∑
k 6=i,j

wjk[(Π0AΠT
0 −B)2

jk − (Π̃AΠ̃T −B)2
jk]

)

=2

( n∑
k 6=i,j

wik[Π0AΠT
0 − Π̃AΠ̃T]ikψ(Bik)

+
n∑

k 6=i,j

wjk[Π0AΠT
0 − Π̃AΠ̃T]jkψ(Bjk)

)
,

(39)
where ψ(x) = −1 if x = 1 and ψ(x) = 1 if x = 0. Fig.
8 illustrates how Eqn. (39) can be derived intuitively. Note
that if Π0 and Π̃ are different only in the ith and jth rows,
then the difference between ||W ◦ (Π0AΠT

0 − B)||2F and
||W ◦ (Π̃AΠ̃T − B)||2F exists in the red circles in Fig. 8,
which corresponds to the third line in Eqn. (39). Note that the

intersection part, i.e., the stars in Fig. 8, does not contribute
to the ||W ◦ (Π0AΠT

0 −B)||2F and ||W ◦ (Π̃AΠ̃T−B)||2F .
Note that since Π0 and Π̃ are different in the ith and jth

rows, then (Π̃AΠ̃T)ik = (Π0AΠT
0 )jk. Therefore

||Π0Â− B̂Π0||2F − ||Π̃Â− B̂Π̃||2F

=2

( n∑
k 6=i,j

wikψ(Bik)([Π0AΠT
0 ]ik − [Π0AΠT

0 ]jk)

+

n∑
k 6=i,j

wjkψ(Bjk)([Π0AΠT
0 ]jk − [Π0AΠT

0 ]ik)

)

=2

( n∑
k 6=i,j

(wikψ(Bik)− wjkψ(Bjk))

· [(Π0AΠT
0 )ki − (Π0AΠT

0 )kj ]

)
.

(40)

In convenience, we define the term in this equation as
∆i,j,π = (wikψ(Bik) − wjkψ(Bjk)) · [(Π0AΠT

0 )ki −
(Π0AΠT

0 )kj ]. Since G1 and G2 are independently sampled
from G, their adjacency matrices A and B should be condi-
tionally independent, which follows E[Aπ0(i)π0(j)Bij |Uij ] =
E[Aπ0(i)π0(j)|Uij ]E[Bij |Uij ], where U is the adjacency ma-
trix of network G. Thereafter, we can get the conditionally
expectation of ψ(Bij) as

E[ψ(Bij)|Uij = 1] = −1 · s2 + 1 · (1− s2) = 1− 2s2,

E[ψ(Bij)|Uij = 0] = 1.

In the sequel, we can estimate the expectation of ∆i,j,k on
matrix A,B by dividing it into four conditions as follows.

EA,B[∆i,j,π]

=E[∆i,j,π|Uik = 1,Ujk = 1]Pr(Uik = 1,Ujk = 1)

+ E[∆i,j,π|Uik = 0,Ujk = 0]Pr(Uik = 0,Ujk = 0)

+ E[∆i,j,π|Uik = 1,Ujk = 0]Pr(Uik = 1,Ujk = 0)

+ E[∆i,j,π|Uik = 1,Ujk = 0]Pr(Uik = 1,Ujk = 0)

=(wik − wjk)(1− 2s2)(s1 − s1) · pCiCkpCjCk
+ (wik − wjk)(0− 0) · (1− pCiCk)(1− pCjCk)

+ (wik(1− 2s2)− wjk)(s1 − 0) · pCiCk(1− pCjCk)

+ (wik − wjk(1− 2s2))(0− s1) · (1− pCiCk)pCjCk
=(wik − 2wiks2 − wjk)s1pCiCk − (wik − wjk + 2wjks2)s1pCjCk

+ 2(wik + wjk)s1s2pCiCkpCjCk .

In this equation, ∆i,j,k,π0
reflects a part of the difference

||Π0Â− B̂Π0||2F − ||Π̃Â− B̂Π̃||2F caused by the difference
of a single element in matrices Π0Â−B̂Π0 and Π̃Â−B̂Π̃.4

Since we consider the average case of all possible Π0, we also
consider the average value of ∆i,j,π0 , which we denote as ∆̂ =
Ei,j,π0

[∆i,j,π0
]. Note that EA,B[||Π0Â− B̂Π0||2F − ||Π̃Â−

B̂Π̃||2F ] > 0 since Π̃ is the minimizer of ||Π0Â− B̂Π0||2F .
Therefore ∆̂ = Ei,j,π0 [∆i,j,π0 ] > 0.

ii. Analysis of
∑

Π0∈Sk(Π) ||Π0Â− B̂Π0||2F .
Now we move to the second part involved in our idea. We

first focus on Sk(Π0), and count the number of elements in
Sk(Π0), denoted as |Sk|. Note that if there are k mismatched
nodes in a graph with n nodes, there are Ckn possible sets of
mismatched nodes. We define |Tk| as the number of elements
in each possible set, and can get |Sk| = Ckn|Tk|. For |Tk|, we

4For example, the difference of the corresponding element (with the same
notation, e.g., (i, k) in the left matrix and (j, k) in the right matrix, both of
which are triangles.) in two matrices in Fig. 8 inside one of the red circles
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can find that it satisfies
|Tk| = (k − 1)(|Tk−2|+ (k − 2)(|Tk−3|+ (k − 3)(|Tk−4|+ ...)))

=

k−1∑
t=1

(

t∏
i=1

(k − i))|Tk−t−1|.

(41)

Consider |Tk| and |Tk−1| in Eqn. (41), we can discover that

|Tk| = (k − 1)(|Tk−2|+ |Tk−1|) ≥ (k − 1)|Tk−1|, k ≥ 2.

Therefore we obtain the relationship between |Sk| and
|Sk−1| as

|Sk| = Ckn|Tk| ≥ (k−1)
Ckn
Ck−1
n

|Sk−1| = (1−1

k
)(n−k+1)|Sk−1|,

(42)
where k ≥ 2. Eqn. (42) shows that when k is much smaller
than n, then |Sk|

|Sk−1| = (1 − 1
k )(n − k + 1) is large; when k

gets close to n, then |Sk|
|Sk−1| approaches 1, which means that

|Sk| and |Sk−1| are almost the same.

0 𝐶𝐶21 𝐶𝐶31 𝐶𝐶41 ┅ ┅ 𝐶𝐶𝑛𝑛𝑛
𝐶𝐶21 0 𝐶𝐶32 𝐶𝐶42 ┅ ┅ 𝐶𝐶𝑛𝑛𝑛
𝐶𝐶31 𝐶𝐶32 0 𝐶𝐶43 ┅ ┅ 𝐶𝐶𝑛𝑛𝑛
𝐶𝐶41 𝐶𝐶42 𝐶𝐶43 0 ┅ ┅ 𝐶𝐶𝑛𝑛𝑛
┇ ┇ ┇ ┇ ┇

┇ ┇ ┇ ┇ ┇
𝐶𝐶𝑛𝑛𝑛 𝐶𝐶𝑛𝑛𝑛 𝐶𝐶𝑛𝑛𝑛 𝐶𝐶𝑛𝑛𝑛 ┅ ┅ 0

0 0 1 0 ┅ 0
1 0 0 0 ┅ 0
0 1 0 0 ┅ 0
0 0 0 1 ┅ 0
┇ ┇ ┇ ┇ ┇
0 0 0 0 ┅ 1

Π= 0 𝐶𝐶31 𝐶𝐶32 𝐶𝐶43 ┅ ┅ 𝐶𝐶𝑛𝑛3
𝐶𝐶31 0 𝐶𝐶21 𝐶𝐶41 ┅ ┅ 𝐶𝐶𝑛𝑛1
𝐶𝐶32 𝐶𝐶21 0 𝐶𝐶42 ┅ ┅ 𝐶𝐶𝑛𝑛2
𝐶𝐶43 𝐶𝐶41 𝐶𝐶42 0 ┅ ┅ 𝐶𝐶𝑛𝑛𝑛
┇ ┇ ┇ ┇ ┇

┇ ┇ ┇ ┇ ┇
𝐶𝐶𝑛𝑛3 𝐶𝐶𝑛𝑛1 𝐶𝐶𝑛𝑛2 𝐶𝐶𝑛𝑛𝑛 ┅ ┅ 0

Fig. 9: An example of the effect of Π ∈ S3(Π̃), where we set
Π̃ = I. I is the identity matrix. Note that under the Π above the
arrow, which differs from I only in the first three rows (columns).
Thus the possible difference between two matrices only exists in

the red circles, with 6n− 6 elements in the matrix involved.

Now we consider Π0 ∈ Sk(Π). Note that for any
Π0 ∈ Sk(Π), there are k rows and columns that may
cause the difference between ||W ◦ (Π0AΠT

0 − B)||2F and
||W◦(Π̃AΠ̃T−B)||2F . Fig. 9 illustrates an example of Π0 ∈
S3(Π). Therefore we can discover for any Π0 ∈ Sk(Π), the
number of node pairs (i, j) which may influence the difference
between ||W◦(Π0AΠT

0 −B)||2F and ||W◦(Π̃AΠ̃T−B)||2F
is approximately

∑
i=1(n− i) = (2n−k−1)k

2 .5 Thus, denoting
Nk as this number of node pair, we can obtain

Nk =
(2n− k − 1)k

2
|Sk|

≥ (2n− k − 1)k

2
(1− 1

k
)(n− k + 1)|Sk−1|

= (1− 1

k
)(n− k + 1)

(2n− k − 1)k

(2n− k)(k − 1)
Nk−1

= (n− k + 1)
2n− k − 1

2n− k
Nk−1.

5For example, in Fig. 9 when k = 3 the number is 6n−6. Although there
may be some elements which do not cause error, such as the two stars in Fig.
8, the number of this kinds of node pairs can be neglected when n is large
enough.

Therefore in average, we have∑
Π0∈Sk

||Π0Â− B̂Π0||2F = Nk∆̂

≥ (n− k + 1)
2n− k − 1

2n− k
Nk−1∆̂

≥ (n− k + 1)
2n− k − 1

2n− k
∑

Π0∈Sk−1

||Π0Â− B̂Π0||2F

≈ (n− k + 1)
∑

Π0∈Sk−1

||Π0Â− B̂Π0||2F ,

(43)

where the last approximation holds since k ≤ n and when
n→∞, 2n−k−1

2n−k → 1.
Therefore, we can claim that in average, if k1 > k2, then∑
Π0∈Sk1

||Π0Â− B̂Π0||2F >
∑

Π0∈Sk2

||Π0Â− B̂Π0||2F . (44)

iii. Maximum Value Under Sequence Inequality.
In average case, by setting Π in the original MMSE

objective function∑
Π0∈Πn

||Π−Π0||2F ||W ◦ (Π0A−BΠ0)||2F

equal to Π̃, the minimizer of WEMP, then this original MMSE
objective function reaches its largest value under Sequence
Inequality.

Moreover, note that if we do not set Π̃ = Π̂, for example
set Π̃ = Π ∈ Sk(Π), we can verify that Π does not make
the objective function in Eqn. (10) larger than Π0 since

0||ΠÂΠT − B̂||2F + 2k||ΠÂΠT − B̂||2F
≥ 2k||Π̂ÂΠ̂T − B̂||2F + 0||ΠÂΠT − B̂||2F,

which means that the Sequency Inequality preserves that when
||Π0ÂΠT

0 −B̂||2F achieves its minimum, then ||Π−Π0||2F also
achieves its minimum. Therefore by setting Π̃ = Π̂ we can
achieve the largest value of the original MMSE problem under
this sequence inequality.

APPENDIX C
PROOF OF THEOREM 2

Proof.

g(Π̂)− g(Π̃)

=
∑

Π0∈Πn

(||Π̂−Π0||2F − ||Π̃−Π0||2F )||Π0Â− B̂Π0||2F . (45)

Then we divide the set Πn into two subsets:

Πn
1 = {Π ∈ Πn|||Π̂−Π0||2F > ||Π̃−Π0||2F };

Πn
2 = {Π ∈ Πn|||Π̂−Π0||2F < ||Π̃−Π0||2F }.

Following that, we also divide Eqn. (45) into two sets:

g(Π̂)− g(Π̃) =
∑

Π0∈Πn
1

(||Π̂−Π0||2F − ||Π̃−Π0||2F )||Π0Â− B̂Π0||2F

−
∑

Π0∈Πn
2

(||Π̃−Π0||2F − ||Π̂−Π0||2F )||Π0Â− B̂Π0||2F

≤ ||Π̃− Π̂||2F
∑

Π0∈Πn
1

||Π0Â− B̂Π0||2F .

(46)



20

where the last inequality holds due to the triangular inequality
||Π̂ − Π0||2F − ||Π̃ − Π0||2F ≤ ||Π̃ − Π̂||2F and the term∑

Π0∈Πn
2
(||Π̃ −Π0||2F − ||Π̂ −Π0||2F )||Π0Â − B̂Π0||2F is

positive. Then we have

g(Π̂)− g(Π̃)

g(Π̃)
=

(||Π̃− Π̂||2F )
∑

Π0∈Πn
1
||Π0Â− B̂Π0||2F∑

Π0∈Πn ||Π̃−Π0||2F ||Π0Â− B̂Π0||2F

≤
2βn

∑
Π0∈Πn ||Π0Ã− B̃Π0||2F∑

Π0∈Πn ||Π̃−Π0||2F ||Π0Ã− B̃Π0||2F
.

(47)
where ||Π̃− Π̂||2F = 2βn and β ∈ [0, 1] is the ratio between
the number of mistakenly matched nodes and that of all the
nodes. The last inequality in (47) holds because Πn

1 ⊂ Πn.
Now we divide the sum

∑
Π0∈Πn ||Π0Â − B̂Π0||2F into

two parts:

D1 =
∑
k≤ρn

∑
Π0∈Πn

||Π0Â− B̂Π0||2F ;

D2 =
∑

ρn<k≤n

∑
Π0∈Πn

||Π0Â− B̂Π0||2F .

where ρ is any real number in [0, 1] and we assume that ρn
is an integer.6

For D1, in average case we can obtain

D1 ≤
ρn∑
i=1

∑
Π0∈Πn

||Π0Â− B̂Π0||2F ≤
ρn∑
i=1

i∏
j=1

2(n− j + 1)

≤
ρn∑
i=1

(2n)i = 2n
(2n)ρn − 1

2n− 1
≈ (2n)ρn.

For D2, according to Inequality (43), in average case we
can get

D2 ≥
n∑

k=ρn+1

k∏
j=1

(n− j + 1) =

n∑
k=ρn+1

n!

(n− k)!

≥
n∑

k=ρn+1

n!

((1− ρ)n)!
= (1− ρ)n

n!

((1− ρ)n)!
.

Note that if we set ρ = Ω(1) = c0, where c0 → 1, then ρ→ 1
and

D2 ≥ c0
n!

c0!
= cn! ∼ c

√
2πn(

n

e
)n,

where c is a constant and the last step holds due to the
Stirling’s formula. Therefore we can upper bound D2

D1
as

D2

D1
≥ c
√

2πn(ne )n

(2n)ρn
= c
√

2πn

(
n1−ρ

2ρe

)n
.

Then if ρ is a constant which approaches 1 but does not
equal to 1, then we find that when n → ∞, D2 is of
higher order of n than D1. Therefore we can easily verify
that in the denominator of the last term in Inequality (47),∑
ρn<k≤n

∑
Π0∈Πn ||Π̃−Π0||2F ||Π0Â−B̂Π0||2F is of high-

er order of n than
∑
k≤ρn

∑
Π0∈Πn ||Π̃ − Π0||2F ||Π0Â −

B̂Π0||2F , since for k1 > ρn and k2 < ρn, Π′1 ∈ Sk1(Π̃)
and Π′2 ∈ Sk2(Π̃), we have ||Π′1 − Π̃||2F ≥ ||Π′2 − Π̃||2F .
Therefore, we can leave the term with highest order of n in

6If it is not an integer, we can easily modify it by rounding.

the denominator and numerator in the last term in Inequality
(47) when n→∞ and thus we can obtain

2βn
∑

Π0∈Πn ||Π0Â− B̂Π0||2F∑
Π0∈Πn ||Π̃−Π0||2F ||Π0Â− B̂Π0||2F

≈
2βn

∑
ρn<k≤n

∑
Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F∑

ρn<k≤n
∑

Π0∈Sk(Π̃) ||Π0 − Π̃||2F ||Π0Â− B̂Π0||2F

≤ 2βn

2ρn

∑
ρn<k≤n

∑
Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F∑

ρn<k≤n
∑

Π0∈Sk(Π̃) ||Π0Â− B̂Π0||2F
=
β

ρ
.

Thus we have the approximation ratio

g(Π̃)

g(Π̂)
≥ 1

1 + β
ρ

≈ 1

1 + β
≥ 1

2
.

Note that in the proof of Theorem 2, we use several times
of inequality scaling method to derive the lower bound of
approximation ratio, which is 0.5. These inequality scaling
may cause this lower bound to be smaller than the real
approximation ratio. That is to say, the approximation ratio
0.5 may be even worse than the approximation ratio in the
worst case in real situations. For example, in Inequality (47)
we directly use∑

Π0∈Πn
1

||Π0Â− B̂Π0||2F ≤
∑

Π0∈Πn

||Π0Â− B̂Π0||2F ,

which may cause a big gap. Therefore, for a more general
situation we have the following corollary.

Corollary 1. Given the published graph G1, the auxiliary
graph G2, the parameter set θ and the weight matrix W, and
we let

χ =

( ∑
Π0∈Πn

1

||Π0Â−B̂Π0||2F
)/( ∑

Π0∈Πn

||Π0Â−B̂Π0||2F
)
,

then in average case, the approximation g(Π̃)/g(Π̂) ratio is
larger than 1

1+βχ .

This corollary can be easily proved by slightly changing the
form of Eqn. (47). To take an example to illustrate the gap of
approximation ratio caused by χ more intuitively, we assume
that

∑
Π∈Πn

1
||Π0Â− B̂Π0||2F =

∑
Π∈Πn

2
||Π0Â− B̂Π0||2F

7. Then χ = 1
2 and ( 1

1+βχ ) > 2
3 , which causes the gap of the

lower bound of approximation ratio to be 2
3 −

1
2 = 1

6 .
Note that we still claim that the approximation ratio is

larger than ( 1
1+βχ ). This is because we eliminate the sum∑

Π0∈Πn
2
(||Π̂ − Π0||2F − ||Π̃ − Π0||2F )||ΠÂ − B̂Π||2F in

Eqn. (46), which also generates a gap between the lower
bound 1

1+βχ and the real approximation ratio. We leave it
a future direction to find a proper estimation of this gap.
However, the current gap still ensures the real approximation
ratio strictly larger than 1

1+βχ , which further strengthens our

7This is only a very special situation, which we use it to make an intuitive
example to explain how χ causes the gap of approximation ratio. It is not
necessarily the same as real situations
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claim at the beginning of Section IV-C that the transformation
of the original MMSE problem is valid.

APPENDIX D
PROOF OF LEMMA 1

Proof. We know ||ΠÂ− B̂Π||F = ||W ◦ (ΠA−BΠ)||F ,
thus we only need to prove that

W ◦ΠA = Π(W ◦A).

Note that the value of wij depends only on pCiCj , s1

and s2. For some given nodes i, j, s, t, if Ci = Cs and
Cj = Ct, then wij = wst. This fact tells that the weight
for every node pair stays invariant as long as the node pair
keeps the same community structure. Therefore, since Π
follows that for every i, j, if Π(i, j) = 1, then Ci = Cj ,
there would be (W ◦ ΠA)ij = wij ·

∑n
k=1 ΠikAkj =∑n

k=1 Πik(wkj ·Akj) = (Π(W ◦A))ij . Hence, W ◦ΠA =
ΠW ◦A. Combining the assumption that ΠÂ = W ◦ΠA,
we have Â = W ◦ A. Similarly, B̂ = W ◦ B. The lemma
holds with these derivations.

APPENDIX E
PROOF OF LEMMA 2

Proof. First we verify that F1(Π) is a convex function. One
of the sufficient and necessary condition for a function whose
variable is matrix is convex is that the Hessian matrix of this
function is positive semi-definite. The Hessian matrix of F (Π)
can be obtained by taking the second derivative over Π on
F (Π), we denote it as ∇2F (Π). Therefore we can obtain the
Hessian matrix of F1(Π) by

∇2F1(Π) = ∇2F0(Π)− λminI.

where I is the identity matrix.8 Note that λmin is the min-
imum eigenvalue of ∇2F0(Π), therefore all the eigenvalues
of ∇2F0(Π) − λminI are equal to or larger than 0. Hence
∇2F1(Π) is a nonnegative definite matrix and F1(Π) is a
convex function.

Meanwhile, one of the sufficient and necessary conditions
for a function whose variable is matrix is concave is that
the Hessian matrix of this function is negative semi-definite.
Similar to the analysis of F1(Π), we can verify that F2(Π)
is a concave function. Thus we complete the proof.

APPENDIX F
PROOF OF LEMMA 3

For the inner loop part,we focus on Fξ(Πk+1) and Fξ(Πξ).
Since Πk+1 = Πk + γk(X⊥ − Πk), according to Taylor’s
Theorem,

Fξ(Πk+1) = Fξ(Πk + γk(X⊥ −Πk))

= Fξ(Πk) + γktr(∇FTξ (Πk)(X⊥ −Πk)) + γkRk

≤ Fξ(Πk) + γktr(∇FTξ (Πk)(Πξ −Πk)) + γkRk,
(48)

8The identity matrix I means all the elements on the diagonal of I are
all 1s while others are all 0s. Note that here I is an n2 × n2 matrix since
the first order derivative of a function whose variable is a matrix is a n× n
matrix, thus the second derivative of F0 (F1) is n2 × n2 matrix.

where γkRk is the remainder of this Taylor series, and
this form makes sense since the remainder must contain a
multiplicative factor of γk. The last inequality holds since X⊥

is the minimizer of tr(∇FTξ (Πk)(Πξ −Πk)).
In terms of Fξ(Πξ), we have

Fξ(Π
ξ) = Fξ(Πk + Πξ −Πk)

= Fξ(Πk) + tr(∇FTξ (Πk)(Πξ −Πk)) + R′k,
(49)

where R′k is the remainder of this Taylor series.
Combining Eqn. (48) and (49), we can obtain

Fξ(Πk+1) ≤ Fξ(Πk)+γk(Fξ(Π
ξ)−Fξ(Πk))+γk(Rk−R′k).

(50)
Denote ∆Rk = Rk −R′k and by simple transformation of

Inequality (50), we obtain

Fξ(Πk+1)−Fξ(Πξ) ≤ (1−γk)(Fξ(Πk)−Fξ(Πξ))+γk∆Rk.
(51)

Note that Inequality (51) builds up the relationship between
Fξ(Πk+1) and Fξ(Πk), and we obtain

Fξ(Πk+1)− Fξ(Πξ)

≤
k∏
i=1

(1− γi)(Fξ(Π1)− Fξ(Πξ)) +

k∑
i=1

γi

k−i∏
j=1

(1− γj)∆Ri.

(52)
For Fξ(Π1)− Fξ(Πξ), note that Π1 = Πξ−∆ξ, then

Fξ(Π
ξ) = F0(Πξ) + ξ(n− ||Πξ||2F )

= F0(Πξ) + (ξ −∆ξ)(n− ||Πξ||2F )−∆ξ(n− ||Πξ||2F )

≥ F0(Πξ−∆ξ) + (ξ −∆ξ)(n− ||Πξ−∆ξ||2F )

−∆ξ(n− ||Πξ||2F )

= F0(Πξ−∆ξ) + ξ(n− ||Πξ−∆ξ||2F )

+ ∆ξ(||Πξ||2F − ||Πξ−∆ξ||2F )

= Fξ(Π
ξ−∆ξ) + ∆ξ(||Πξ||2F − ||Πξ−∆ξ||2F ).

(53)
Hence

Fξ(Π
ξ−∆ξ)− Fξ(Πξ) ≤ ∆ξ(||Πξ−∆ξ||2F − ||Πξ||2F ). (54)

Therefore by combining Inequalities (54) and (52), we
can obtain if ∆ξ is small enough, or if k → ∞, then the
term

∏k
i=1(1 − γi)(Fξ(Π1) − Fξ(Πξ)) in last expression of

Inequality (52) goes to 0.
For the second term

∑k
i=1 γi

∏k−i
j=1(1 − γj)∆Ri, we note

that when k → ∞, then ∀ε > 0,∃K > 0, δ1 > 0, when
i > K, γi

∏k−i
j=1(1 − γj) < γi < ε

2δ1i
, and meanwhile

when i ≤ K, γk(1 − γj) <
∏k−i
j=1(1 − γj) < ε

2δ2i
.

Setting δ∗ = min{δ1, δ2}, then we can upper bound the sum∑k
i=1 γi

∏k−i
j=1(1 − γj)∆Ri ≤

∑∞
i=1

ε
2δi

= 0. Therefore we
prove that the inner loop converges.

APPENDIX G
MORE EMPIRICAL RESULTS

We provide Figs. 10, 11, 12 and 13 here to show more
detailed empirical results about the effect of weight matrix
W and results on synthetic networks as well as sampled real
social networks. These results strengthen our conclusions from
the experimental aspect.
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(h) N=2000, C=0.1

GA−W GA−NW CBDA−W CBDA−NW

Fig. 10: Experiments on Weighted and Non-weighted Cost Function.
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Fig. 11: Experiments on Synthetic Networks with η = 0.05.
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Fig. 12: Experiments on Synthetic Network with η = 0.1.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(a) N=500, C=0.05

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(b) N=1000, C=0.05

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(c) N=1500, C=0.05

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(d) N=2000, C=0.05

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(e) N=500, C=0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(f) N=1000, C=0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(g) N=1500, C=0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

(h) N=2000, C=0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Sampling Probability

A
cc

ur
ac

y

 

 

GA−OL GA−NOL CBDA−OL CBDA−NOL COBA−NOL

Fig. 13: Experiments on Sampled Real Social Networks.
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