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Abstract—With the soaring development of large scale online social networks, online information sharing is becoming ubiquitous
everyday. Various information is propagating through online social networks including both the positive and negative. In this paper, we
focus on the negative information problems such as the online rumors. Rumor blocking is a serious problem in large-scale social
networks. Malicious rumors could cause chaos in society and hence need to be blocked as soon as possible after being detected. In
this paper, we propose a model of dynamic rumor influence minimization with user experience (DRIMUX). Our goal is to minimize the
influence of the rumor (i.e., the number of users that have accepted and sent the rumor) by blocking a certain subset of nodes. A
dynamic Ising propagation model considering both the global popularity and individual attraction of the rumor is presented based on
realistic scenario. In addition, different from existing problems of influence minimization, we take into account the constraint of user
experience utility. Specifically, each node is assigned a tolerance time threshold. If the blocking time of each user exceeds that
threshold, the utility of the network will decrease. Under this constraint, we then formulate the problem as a network inference problem
with survival theory, and propose solutions based on maximum likelihood principle. Experiments are implemented based on large-scale
real world networks and validate the effectiveness of our method.
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1 INTRODUCTION

W ITH the soaring development and rising popularity of
large-scale social networks such as Twitter, Facebook,

and Chinese Sina Weibo, etc., hundreds of millions of people
are able to become friends [2] and share all kinds of infor-
mation with each other. Online social network analysis has
also attracted growing interest among researchers [3], [4],
[5], [6]. On one hand, these online social platforms provide
great convenience to the diffusion of positive information
such as new ideas, innovations, and hot topics [7], [8]. On
the other hand, however, they may become a channel for the
spreading of malicious rumors or misinformation [9], [10],
[11]. For example, some people may post on social networks
a rumor about an upcoming earthquake, which will cause
chaos among the crowd and hence may hinder the normal
public order. In this case, it is necessary to detect the rumor
source and delete related messages, which may be enough
to prevent the rumor from further spreading. However, in
certain extreme circumstances such as terrorist online attack,
it might be necessary to disable or block related Social
Network (SN) accounts to avoid serious negative influences.
For instance, in 2016, the families of three out of the forty
nine victims from the Orlando nightclub shooting incident
filed a lawsuit against Twitter, Facebook and Google for
providing “material support” to the terrorism organization
of the Islamic State of Iraq and Syria (ISIS) [12]. These
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companies then took measures to block related accounts,
delete relevant posts and fanpages on their social network
platforms to prevent the ISIS from spreading malicious
information. Additionally, Facebook et al. also have issued
relevant security policies and standards to claim the au-
thority to block accounts of users when they are against
rules or at risk [13]. Undoubtedly, malicious rumors should
be stopped as soon as possible once detected so that their
negative influence can be minimized.

Most of the previous works studied the problem of
maximizing the influence of positive information through
social networks [14], [15], [16]. Fast approximation methods
were also proposed to influence maximization problem
[17], [18]. In contrast, the negative influence minimization
problem has gained much less attention, but still there have
been consistent efforts on designing effective strategies for
blocking malicious rumors and minimizing the negative
influence. Budak et al. [9] introduced the notion of a “good”
campaign in a social network to counteract the negative
influence of a “bad” one by convincing users to adopt
the “good” one. Kimura et al. [19] studied the problem
of minimizing the propagation of malicious rumors by
blocking a limited number of links in a social network. They
provided two different definitions of contamination degree
and proposed corresponding optimization algorithms.
Fan et al. [20] investigated the least cost rumor blocking
problem in social networks. They introduced the concept of
“protectors” and try to select a minimal number of them to
limit the bad influence of rumors by triggering a protection
cascade against the rumor cascade. However, there are
a few limitations in those works. First, they consider the
rumor popularity as constant during the whole propagation
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process, which is not close to the realistic scenarios. Second,
in the design of the rumor blocking strategies, either
blocking nodes or links, they fail to take into account the
issue of user experience in real world social networks. We
have to avoid blocking the accounts of users for such a long
time that they may lodge complaints or even quit the social
network. Therefore, it is necessary to consider the impact
of blocking time on both individual node and the entire
network.

In this paper, we investigate the problem of dynamic
rumor influence minimization with user experience. First,
based on existing works on information diffusion in social
networks [21], [22], [23], [24], we incorporate the rumor
popularity dynamics in the diffusion model. We analyze
existing investigations on topic propagation dynamics [25]
and bursty topic patterns [26]. Then we choose Chi-squared
distribution to approximate the global rumor popularity.
Inspired by the novel energy model proposed by Han et
al. [27], we then analyze the individual tendency towards
the rumor and present the probability of successful rumor
propagation between a pair of nodes. Finally, inspired by
the concept of Ising model [28], we derive the cooperative
succeeding probability of rumor propagation that integrates
the global rumor popularity with individual tendency. After
that, we introduce the concept of user experience utility
function and analyze the impact of blocking time of nodes to
the rumor propagation process. We then adopt the survival
theory to explain the likelihood of nodes getting activated,
and propose both greedy and dynamic algorithms based on
maximum likelihood principle.

The contributions of our work are as follows:

• We propose a rumor propagation model taking into
account the following three elements: First,the glob-
al popularity of the rumor over the entire social
network, i.e., the general topic dynamics. Second,
the attraction dynamics of the rumor to a potential
spreader, i.e., the individual tendency to forward the
rumor to its neighbors. Third, the acceptance proba-
bility of the rumor recipients. In our model, inspired
by the Ising model, we combine all three factors
together to propose a cooperative rumor propagation
probability.

• In our rumor blocking strategies, we consider the
influence of blocking time to user experience in real
world social networks. Thus we propose a blocking
time constraint into the traditional rumor influence
minimization objective function. In that case, our
method optimizes the rumor blocking strategy with-
out sacrificing the online user experience.

• We use survival theory to analyze the likelihood of
nodes becoming activated or infected by the rumor
before a time threshold which is determined by the
user experience constraint. Then we propose both
greedy and dynamic blocking algorithms using the
maximum likelihood principle.

The rest of the paper is organized as follows. In Section
2, we introduce the preliminaries of social network and
information diffusion models. Next we give an overview of
the related work in Section 3. Then we propose the problem

Fig. 1. The random graph denotation of online social networks. Nodes
with different colors illustrate the different communities they belong to.
The size of the nodes indicate their degrees or “influence” in the social
network. Normally, the more influential a node is, the more contributions
it will make to rumor propagation.

formulation in Section 4, the solutions in Section 5, and the
experiments in Section 6. Finally, we conclude the paper in
Section 7.

2 PRELIMINARIES

2.1 Social Network Definition
A social network, in mathematical context, can be formu-
lated as a directed graph G = (V,E) consisting of a set of
nodes V representing the users, and a set of directed edges
E denoting the relationship between users (e.g. following or
being followed). Figure 1 shows the random graph illustra-
tion of a social network. Let |V | = N denote the number of
nodes, and (u, v) ∈ E denote the directed edge from node
u to node v (u, v ∈ V ), and αuv ∈ {0, 1} denote the edge
coefficient, where αuv = 1 represents the existence of edge
(u, v), and αuv = 0, otherwise. We use puv to denote the
probability of u sending the rumor to v and v accepting it,
i.e., the success probability of u activating v. LetD(u) denote
the in-degree of node u. From Figure 1, we can see nodes in
larger size have higher degree than those in smaller size.
The degree of a node is also an indication of “influence” in
a social network since higher degree denotes more connec-
tions to other nodes, thus it implies more opportunities to
share information (both positive and negative) with other
nodes.

2.2 Rumor Diffusion Model
Rumor diffusion mechanism is similar with that of epidemic
propagation [29]. During the propagation of rumors, each
node could have one of the following three states: Suscep-
tible (S), Infected (I) and Recovered (R), which is known
as the SIR model [30], [31]. The state of being susceptible
represents the node has the potential to accept and spread
the rumor at any time; Infected indicates the node has
already accepted and spread the rumor; Recovered denotes
the state of the node identifying the rumor and denying
it. In this paper, we consider the rumor propagation as a
progressive process, i.e., once a node is infected, it will stay
infected and not recover, which is the SI model.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Jan
2011

Apr Jul Oct Jan
2012

Apr Jul Oct Jan
2013

Date

0

200000

400000

600000

800000

1000000

1200000

1400000
A

m
o
u
n
t

Samples of Rumor Evolution Pattern

Fig. 2. Typical cases of the topic evolution pattern curves extracted from
Sina Weibo from Jan. 2011 to Jan. 2013. Different colors represent
different hot topics and their evolution tracks respectively.

Diffusion models describe the process of information
propagating through the network. Two classic diffusion
models are the Linear Threshold (LT) [32] and the Inde-
pendent Cascade (IC) model [33], [34]. In LT model, an
inactive node u becomes activated if the ratio of its activat-
ed parent nodes surpasses a certain pre-defined threshold
0 < θ < 1. In this paper, since we mainly focus on pairwise
probabilistic rumor propagation among nodes including
individual tendency of a node to a rumor as well as the
global popularity probability of a rumor, it is more suitable
to adopt the IC model in our work.

The IC model has been widely adopted in information d-
iffusion problems. The whole propagation process proceeds
in discrete time steps t0, t1, t2, . . . . Initially, the cascade is
triggered by a set of activated nodes, i.e., the seed nodes at
t0. In our rumor diffusion context, we assume the rumor
is started by one source node s in the network, and the
other nodes are inactive. We use su(t) ∈ {0, 1} to denote the
state of node u at time step t, where su(t) = 1 represents u
is activated and su(t) = 0, otherwise. For every following
time step t ≥ 1, each node u which was activated at time
step (t − 1) has a single opportunity to activate any of its
currently inactive neighbors v with a success probability
puv . In our context, it means in each time step, any node
that has accepted the rumor in previous time step has a
chance to let their inactive neighbors accept the rumor. For
simplicity, we assume that once a node is activated by the
rumor, it will stay activated until the end of the diffusion
process.

3 RELATED WORK

3.1 Topic Dynamics
Researchers have studied the temporal dynamics of we-
b topics based on real-world statistics. Yang et al. [25]
analyzed how the number of tweets related to a specific
theme (i.e., the popularity of a topic) changes with time,
and revealed that a topic evolution generally consists of
three phases, i.e., a rising phase from the start, a peak
period and then a fading phase. Fluctuations in each phase
may result in different temporal characteristics. Yang et al.
[25] proposed K-Spectral Centroids clustering algorithm
for classifying online content according to their temporal
patterns and finally extract six representative patterns from

Normal

Infected

Blocked

Natural Rumor Propagation Propagation Under Blockage

Fig. 3. Illustration of the process of natural rumor propagation and
the process with rumor blockage, i.e., blocking a certain amount of
“important” nodes in the propagation path.

million-scale tweets and blog posts. Crane et al. [35] demon-
strated the existence of Poisson distribution and Power-
law relaxation in controlling the topic evolution over time.
Figure 2 shows several typical topic evolution curves based
on the data extracted from Sina Weibo. From the figure,
in each topic evolution curve, we can see the three phases
mentioned above. It is also discernable that every topic has
a certain lifespan of its own, which is similar to the case of
rumor propagation process. Thus, it is reasonable to utilize
a function to simulate the process of rumor propagation.
According to the topic evolution characteristics, in our work,
we use the Chi-squared distribution [36], [37], [38] to simu-
late the rumor propagation dynamics.

3.2 Energy Model
Rumor propagation can be considered as a type of social
contagion process [39] with several special characteristics.
Firstly, people’s interest of a rumor tends to decrease with
time, which indicates the probability of a node willing to
forward the rumor. That process is similar to the simulated
annealing process [40]. Han et al. [27] proposed a novel en-
ergy model to describe the rumor propagation process. They
introduce the heat energy calculation formula ∆E = cm∆T
in Physics to analogize the rumor impact. The rumor’s
influence on individual node is formulated as the amount
of accumulated heat energy. Based on the model proposed
by Han et al. [27], we define the expression of individual
tendency with respect to the success activation probability
between a pair of nodes. In addition, even though an ac-
tivated node does transmit the rumor to its neighbors, the
probability of these neighbors accepting the rumor is still to
be determined. In that case, we can define the acceptance
probability of the rumor recipient. By combining the rumor
sending probability at the transmitting end with the rumor
acceptance probability at the receiving end, we can obtain
the ultimate rumor propagation probability.

3.3 Ising Model
The Ising model [41] is a widely applicable model in the
research of Physics theory. It is a simple theoretical de-
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scription of the concept of ferromagnetism in Physics [42].
Specifically, it describes the phenomenon that when an array
of atomic spins align in the way that the magnetic moments
associated to them will all point in the same direction.
Then it will create a macroscopic magnetic moment. Gen-
erally speaking, the Ising model contains two parts – the
microscopic and macroscopic parts. The microscopic part
represents the local or individual behavior which is the
alignment of each of the atomic spins. Correspondingly,
the macroscopic part stands for the global or collective
behavior which is the exterior magnetic moment. Based on
its intrinsic attributes, the Ising model can be generalized to
other similar scenarios. In our work, we utilize it to model
the rumor propagation process in social networks.

3.4 User Experience

User experience is an important factor for various services
including social networks [43]. Existing rumor blocking
strategies block either nodes (users) or links (connections
between users) in social networks to prevent the rumor
from further propagation. However, none has analyzed the
impact of blocking nodes. Generally speaking, the longer
the user is blocked, the less satisfactory the user feels about
the social network. Therefore, if the blocked time surpasses
a certain threshold, it is possible that the user may quit
the social network or at least lodge a complaint to the
administrator. Bhatti et al. [44] analyzed the user-perceived
quality in web server design and found that users’ tolerance
for latency decreases over the duration of interaction with
a site. A utility function was presented to measure the
customer satisfaction. Inspired by that, in our work, we
apply a modified utility function to measure user experience
in rumor blocking.

3.5 Rumor Influence Minimization

Rumor influence minimization addresses the problem of
minimizing the propagation effect of undesirable rumors
in social networks. Figure 3 demonstrates the mechanism
of rumor blocking in social networks. It shows both the
normal rumor propagation process without any blockage in
the social network and the process blocking a set of nodes
on the path of rumor propagation. The rumor influence
minimization problem is converse to the classic influence
maximization problem [14].
It has been investigated in different influence diffusion mod-
els in social networks. Fan et al. [20] studied the least cost
rumor blocking problem in social networks, and introduced
the notion of “protectors” to limit the bad influence of ru-
mors by initiating a protector cascade to propagate against
the rumor cascade. Greedy algorithm is proposed for both
opportunistic and deterministic cascade models. However,
Kimura et al. [19] proposed the strategy of blocking links
instead of nodes in social networks so as to minimize the
propagation of malicious rumors. Different contamination
minimization problems are defined based on different defi-
nitions of contamination degree of a network.

4 PROBLEM FORMULATION

4.1 Dynamic Rumor Propagation with Ising Model

Kempe et al. [14] considered the success probability puv
as a system parameter and is fixed at the very beginning
of the cascade. However, based on the topic dynamics we
discussed in a previous section, at different time steps of
the propagation process, a topic can vary dramatically in
its popularity. Besides, the rumor attraction [27] for each
individual node u ∈ V is also a realistic factor we should
take into account. That means the success of rumor prop-
agation between neighbors includes two aspects: first, the
activated node u has to be so attracted by the rumor that
it will choose to send the rumor to its neighbors; second,
one of u’s inactive neighbors v decides to accept the rumor.
Only after those two steps, we can claim that v is activated.
In other words, the success of rumor propagation depends
both on the global popularity and the individual tendency
of the rumor topic, which can be regarded as a generalized
feature of the Ising model.

Now we investigate the two steps of a successful rumor
propagation. In the first step, at any time stamp tj , u is
one of the activated nodes in time stamp tj−1. Based on the
work in [27], we give the modified version of the probability
of node u sending the rumor to one of its inactive neighbors
v as

psend
u (tj) =

p0

lg(10 + tj)
, (1)

where p0 is the initial sending probability at time stamp 0.
On the receiving end, the probability of node v accepting
the rumor transmitted by its parent node u is also given as

pacc
v = 1/Dv, (2)

where Dv is the in-degree of node v. That denotation can
be interpreted as that if a node has very high degree, it will
receive more information than those with lower degrees. In
that case, due to the large number of pieces of information
it receives, every single piece of information will have much
lower possibility to be read, recognized and forwarded by
the node. For example, if a user has only one friend on
a social network, he or she would probably read all the
messages forwarded by his or her friend, and thus if the user
finds a rumor interesting, he or she will probably believe
and forward it. In contrast, if a user has hundreds or even
thousands of friends, he or she could easily miss most of the
information.

Thus, based on the above analysis, we then give the
probability of successful rumor propagation from u to v as

pind(tj) = psend
u · pacc

v =
1

Dv
p0

lg(10 + tj)
, (3)

which can be defined as the individual tendency between
different pair of nodes in the network.

Now we discuss the global topic popularity of the ru-
mor. As mentioned in related work, the rumor popularity
generally includes three phases and approximately subject
to the chi square distribution, which is given by

pglb(t; k) =
2(1− k

2 )tk−1e−
t2

2

Γ(k2 )
, (4)
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where k > 0 represents the degree of freedom, Γ(·) is the
Gamma function. It explains a common social phenomenon
that when a rumor spreads for a while, it may create a
“rumor atmosphere” that could affect the judgements or
decisions of users on online social networks.

According to the Ising model [28], the “phase transition”
of a spin involves both short-range interaction with its
nearest neighbors and long-term system evolution, and is
a combined result. Inspired by that, we propose the co-
operative propagation probability integrating pglb(t; k) with
pind(t) in the form of a logistic function as

puv(t) =
1

1 + exp−
[
β1 · pglb(t; k) + β2 · pind(t)

]
=

1

1 + exp−
[
β1

2(1− k
2
)tk−1e−

t2
2

Γ( k
2 )

+ β2
1
Dv

p0
lg(10+t)

] ,
(5)

where β1, β2 ∈ (0, 1) are the balance coefficients which
satisfy β1 + β2 = 1.

Based on this cooperative propagation probability, the
probability of node v getting activated at time stamp tj can
be given by

Pr[sv(tj) = 1] = 1−
∏
u∈Pv

[1− su(tj−1)puv(tj)], (6)

where Pr[·] represents probability, and Pv represents the
parent nodes of v.

4.2 User Experience Utility

In the formulated optimization problem, one important
constraint condition is the user experience utility function.
Therefore, before giving the concrete algorithm, first, we
elaborate on the user experience utility function.

It is a common sense that user experience is a critical
element in the success of modern business. A large variety
of communication services involve user experience, such as
web searching, telephone connecting, et.al. For customers
using those services, the latency plays a tremendous role
in their satisfaction extent, i.e., the user experience utility.
Specifically, in our proposed problem, the user experience
utility lies in the blocked time tbu of the selected node u.

In our work, we try to find the proper user experience
utility function to characterize the impact of nodes being
blocked to the entire social network. Specifically, we analyze
both the homogeneous and heterogeneous scenarios.
Homogeneous Networks. For homogeneous social net-
works, the simple case, we assume that all the nodes have
the same blocked time threshold Tth. In other words, we
assume that all the users in the same social network have
same tolerance of the time being blocked regardless of the
time they have been in the social network. In this scenario,
based on the user experience definition on web server in
[44], we define the user experience utility function as

Uhom =
1

N

N∑
u=1

Tth − Tb(u)

Tth
, (7)

where the Tth represents the tolerance time threshold, Tb(u)
is used to record the blocked time of node u in the whole

propagation process.
Heterogeneous Networks. In heterogeneous social net-
works, different nodes have distinct properties. For exam-
ple, in real world social networks like Twitter or Weibo,
different users have different levels according to the time
they have spent on it, the number of followers they have
or the number of messages they have posted. Typically,
we can simply divide all users into VIPs and ordinary
users considering their levels. Intuitively, the social network
operators would try to avoid blocking the VIP users as
possible as they can because of the impact they have on
the enormous followers and hence on the entire network.
On the other hand, from the perspective of the VIPs, since
they usually have frequent interactions with their followers,
there is a high possibility that they can not tolerate to be
blocked for a long time. As a result, the VIPs usually have a
relatively low tolerance threshold of the blocked time.
Let L(u) denote the level of node u, and T (u) denote the
tolerance threshold of node u when it is blocked. Then we
propose the following expression:

T (u) =
1

L(u)
. (8)

The mechanism can be explained as follows. When the level
of a user u, L(u), is approximate to zero, i.e., the user has
just joined the social network, its tolerance threshold is close
to infinity, because even if it is blocked forever, it can just
apply for a new account without any loss. On the contrary,
if u is a VIP user, the higher its level is, the less blocked time
it can endure. When L(u) is large enough, its tolerance will
be asymptotic to zero.

There are several metrics to define the level or sig-
nificance of a node in a social network, such as degree,
eigenvector or betweenness. Also there is a widely adopt-
ed PageRank algorithm [45] which can be regarded as a
variant of eigenvector centrality. For simplicity, we here use
the degree of a node u, D(u), to represent its level, i.e.,
L(u) = ζD(u), where ζ is a constant coefficient. Thus, the
user experience utility in a heterogeneous network can be
written as

Uhet =
1

N

N∑
u=1

(1− ζD(u)Tb(u)) . (9)

Given the user experience utility, now we analyze the
strategy of blocking nodes of different levels and its influ-
ence to the entire network. Our goal now is to select a certain
number of nodes and then block them so that the final active
nodes within a duration can be minimized. Nevertheless, it
is a challenge to select the proper nodes to block without
triggering the complaint of users. Let’s assume that every
time a node is blocked longer than its tolerance threshold,
it will trigger a complaint to the operator. Besides, we also
assume that a fraction of its neighbors will also trigger a
certain amount of complaints. For example, some users may
attract many followers by frequently sharing interesting
information, so if they are blocked for a long time, and the
followers fail to receive the information, it is likely that some
of them may lodge a complaint. In the following part, we
will use survival theory to analyze the process mentioned
above.
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4.3 Objective Formulation

Now our goal is to minimize the influence of a rumor as
much as possible (e.g. minimize the number of activated
nodes at the end of propagation process) under the con-
straint of user experience utility. We formulate the DRIMUX
problem as follows:

min E[
∑
v∈V

sv(T ) ]

s. t. Uhom(Uhet) ≥ Uth,

(10)

where sv(T ) represents the state of a node v by end of a
time interval T as denoted in Equation (6). E[

∑
v∈V sv(T ) ]

denotes the expected number of activated nodes by the
end of T . The constraint condition restrains the user expe-
rience above a threshold Uth. In the following section we
will discuss how the user experience constraint affects the
activation likelihood of each node.

5 PROPOSED SOLUTIONS

In this section, we analyze the DRIMUX optimization prob-
lem from the perspective of a network inference problem
with survival theory and then propose the greedy algorithm
and dynamic blocking algorithm based on different nodes
selection schemes and the maximum likelihood principle.

5.1 Survival Theory

In this section, we analyze the likelihood of nodes getting
activated during each time slot in the process of rumor
propagation using the Survival Theory. Firstly, in our model,
we assume that a rumor has been spreading for some time
before it is detected at time t0. Specifically, we assume
that when the ratio of the infected nodes reaches a certain
threshold, it would draw the attention of the monitoring
department and then be detected whether it is a rumor or
not. If it is a rumor, relevant blocking strategies would be
initiated to block it. Mathematically, we use I(t) to denote
the ratio of infected nodes in the social network at time t.

It is also assumed that by time t0, there have already
been a total number of N1 activated nodes, and N2 =
N −N1 nodes remain inactive. Let VN1

and VN2
denote the

set of activated and inactive nodes at time t0 respectively.
Therefore, from t0 on, the system can be viewed as N1

independent cascades propagating through the network,
and our goal is to select K nodes from N2 and block them
so that the final number of activated nodes during the
observation time window T can be minimized.

Let C = (c1, . . . , cN1) denote the set of cascades triggered
by N1 activated nodes by time t0. A cascade ci ∈ C
can be represented by a N -dimensional time vector tci =
(tci1 , . . . , t

ci
N2

), where tcij ∈ [t0, t0+T ]∪{∞}, j = 1, 2, . . . , N2

is the activated time of node j in cascade ci. The observation
time window T is decided by the user experience utility
constraint mentioned in (10), and ∞ means the node is not
activated until the end of the observation time (t0 + T ).
Here, we first consider the propagation process of only one
cascade and then the results can be extended to the scenario
of multiple cascades.

5.1.1 Survival Function

In order to analyze the likelihood of nodes getting activated
during one time slot in a cascade, we adopt the Survival
Theory to calculate the probability of a single node v getting
activated in a given time period. First, we introduce the
survival function defined as [46]

S(t) = Pr(t < T ), (11)

where T is a continuous random variable representing the
occurrence time of an event of interest, t is a specified
constant. The survival function represents the probabili-
ty that the event of interest occurs after the observation
“deadline”. If we use the terminology “death” to represent
the occurrence of the event, we can claim that the target
“survives” if its occurrence takes place after the specified
time t. Then we have the cumulative distribution function
F (t):

F (t) = Pr(T ≤ t) = 1− S(t). (12)

Accordingly, the probability density function f(t) is given
by

f(t) =
d

dt
F (t) = −S′(t). (13)

Alternatively, there is another method named hazard
rate to express the instant activation rate of node v. Specif-
ically, the hazard rate indicates the probability of a single
node with current state s(t) getting activated at time (t+dt).
We define αv(t|s(t)) as the hazard rate of node v condi-
tioned on the set of nodes activated by time t. Our goal now
is to analyze the impact of the hazard rate of different nodes
to the rumor influence minimization problem.

5.1.2 Hazard Rate

Based on the above analysis, the hazard rate can be viewed
as an alternative interpretation of the distribution of T ,
which characterizes the instantaneous rate of occurrence of
an event. It is defined as:

αv(t|s(t)) = lim
dt→0

Pr(t ≤ T ≤ t+ dt|T > t)

dt

= lim
dt→0

Pr(t ≤ T ≤ t+ dt)

Pr(T > t)dt

= lim
dt→0

F (t+ dt)− F (t)

S(t)dt

=
1

S(t)
lim
dt→0

F (t+ dt)− F (t)

dt

=
f(t)

S(t)
= −S

′(t)

S(t)
, (14)

where S′(t) is the derivative of S(t). Pr(t ≤ T ≤ t+dt|T >
t) denotes the conditional probability that the event of
interest will occur in time period [t, t+dt) given that it has
not occurred before time t.

Accordingly, we can have

S(t) = e−
∫ t
0 αv(τ |s(τ))dτ , (15)

and for a certain node v, according to (12),we have

Fv(t|s(t)) = 1− e−
∫ t
0 αv(τ |s(τ))dτ . (16)
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5.2 Problem Solutions
Based on the survival analysis, we propose an additive
survival model where we assume that the probability of
node v getting activated is the weighted summation of
the propagation probabilities mentioned in (5) of all the
previously activated nodes set {u : tu < t}. Thus, in our
context, the hazard rate is given by

αv(t|s(t)) = αTv s(t) =
∑
u:tu<t

αuvpuv(t), (17)

where αv = (αuv), u = 1, 2, . . . , N is a non-negative pa-
rameter vector indicating the existence of the edge between
node u and v. αuv = 1 if there is an edge between them; and
αuv = 0, otherwise.

We then define a coefficient matrix A := [αv] ∈ RN×N+

to denote the structure of the network in terms of the
connection between any pair of nodes in the network. Let
A0 be the original network coefficient matrix before any
nodes are blocked. By substituting αv(τ |s(τ)) in (16) with
(17), then we can have:

Fv(t|s(t)) =1− e
−

∫ t
tu

∑
u:tu<t

αuvpuv(τ)dτ

=1− e
−

∑
u:tu<t

∫ t
tu
αuvpuv(τ)dτ

=1−
∏

u:tu<t

e−αuv

∫ t
tu
puv(τ)dτ

=1− e
−

∑
u:tu<t

αuv

∫ t
tu
puv(τ)dτ

(18)

Accordingly, we have the likelihood function of the activa-
tion of node v, fv(t|s(t)), as following:

fv(t|s(t)) =
dFv(t|s(t))

dt

=
∑
u:tu<t

αuvpuv(t)
∏

%:t%<t

e
−α%v

∫ t
t%
p%v(τ)dτ

. (19)

Given the activation likelihood of a single inactive node
v ∈ VN2

, now we consider any number of inactive nodes
in a cascade, during the entire observation window T ,
t≤T = (t1, . . . , ti, . . . , tN |t0 ≤ ti ≤ t0 + T ). We assume that
every activation is conditionally independent on activations
occurring later given previous activations. Then we can
compute the activation likelihood as:

f(t≤T ; A) =
∏

i:ti<T

∑
u:tu<ti

αuvpuv(ti)×∏
%:t%<ti

e
−α%v

∫ ti
t%
p%v(τ)dτ

. (20)

Based on the activation likelihood function, we then
design the blocking algorithms. First, we choose to select
and block all K nodes at the same time t0. As is shown
in Eq. (20), the activation likelihood of an inactive node
v is related to the hazard rate coming from all previously
activated nodes. Therefore, the early activated nodes play
a significant role in the entire process. Hence, we propose
the following greedy algorithm to minimize the influence
of the rumor within one time stamp after it is detected. We
assume that there are M time steps: t1, . . . , tM during the
whole observation window T , with each time step lasting
T/M .

5.2.1 Greedy Algorithm
The proposed Greedy algorithm tries to block the rumor
as fast as possible to prevent the rumor from further prop-
agation. The working mechanism is as following: At time
t0 when we detect the rumor, we immediately select all K
nodes in our budget and block them (i.e., remove all the
links of it so that it can not communicate with its neighbors).
Mathematically, the Greedy algorithm aims to minimize the
likelihood of inactive nodes getting activated at t1, i.e., the
next time stamp after the rumor is detected. The likelihood
of nodes getting activated at time t1 is given by

f(t1|s(t0)) =
∏

v∈VN2

∑
u:tu≤t0

αuvpuv(t1)×

∏
%:t%≤t0

e
−α%v

∫ t1
t%
p%v(τ)dτ

. (21)

Correspondingly, the objective function is

min
A

f(t1|s(t0))

s. t. αuv ∈ {0, 1}.
(22)

Then, the greedy algorithm is presented as below:

Algorithm 1 Greedy Algorithm
Input: Initial Edge matrix A0.
Initialization: VB = ∅.
for i = 1 to K do
u = arg max

v∈V
[f(t1|s(t0); Ai−1)− f(t1|s(t0); Ai−1\v)]

Ai := Ai−1\u,
VB = VB ∪ {u}.

end for
Output: VB .

5.2.2 Dynamic Blocking Algorithm
Different from the greedy blocking algorithm, which is a
type of static blocking algorithm, we propose a dynamic
rumor blocking algorithm aiming to incrementally block the
selected nodes instead of blocking them at once. In that case,
the blocking strategy is split into several rounds and each
round can be regarded as a greedy algorithm. Thus, how to
choose the number of rounds is also very important for the
algorithm. In the following part, we will elaborate on the al-
gorithm design and how we choose the specific parameters.
From the probabilistic perspective, we seek to formulate the
likelihood of inactive nodes becoming activated in every
round of rumor blocking. Correspondingly, the likelihood
function is given by

f(tj |s(tj−1)) =
∏

v∈V (tj)

∑
u:tu<tj

αuvpuv(tj)×

∏
%:t%<tj

e
−α%v

∫ tj
t%
p%v(τ)dτ

, (23)

where V (tj) represents the set of nodes which remain
inactive at time stamp tj .

Different from the case of greedy algorithm, the objective
function of the dynamic blocking algorithm is implemented
in several rounds. In each round, it is similar to equation
(22). We assume that there are n rounds of blocking in
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total, and for round i, i = 1, 2, . . . , n, we have the objective
function as

min
A

f(ti|s(ti−1))

s. t. αuv ∈ {0, 1}.
(24)

It is noticeable that the proposed greedy algorithm (22) is
a special case of the dynamic blocking algorithm (24) with
n = 1. Accordingly, the dynamic blocking algorithm can be
presented as following:

Algorithm 2 Dynamic Blocking Algorithm
Input: Initial Edge matrix A0.
Initialization: VB(t) = ∅.
for j = 1 to n do

for i = 1 to kj do
∆f = f(tj |s(tj−1); Ai−1)− f(tj |s(tj−1); Ai−1\v),
u = arg max

v∈V
{∆f},

Ai := Ai−1\u,
VB(tj) = VB(tj) ∪ {u}.

end for
end for
Output: VB(t).

The dynamic blocking algorithm runs as follows: at
the very first stage of blocking, we select a number k1

nodes to block based on the Edge matrix and previously
infected nodes; in the next round, we move forward with
the rumor diffusion, and then use the updated status to
block additional k2 nodes. The blocking process continues
at each following instants until the budget runs out at a
moment tn, which can be expressed as

∑n
j=1 kj = K .

In real implementation, we decrease kj as time goes by,
and a practical example is kj = 2(−j) ∗ K . Instead of
blocking K candidates at the moment of detection, as pre-
vious static blocking strategies do, this dynamic approach
is carried out in a progressive way. The design philosophy
is to take advantage of instantaneous information all along
the dissemination, since this the activation likelihood of a
given moment is a variable which depends on the temporal
Edge matrix and previous status. Rather than sparing all
the efforts at once, we apply consequent force to block
the diffusion of rumors. In this way, the global efficiency
outweighs the previous static decisions.

6 TIME COMPLEXITY ANALYSIS

In this section, based on the above algorithms we propose,
we present the time complexity analysis of different algo-
rithms.
Proposition 1. The time complexity of the classic greedy

algorithm, the proposed greedy algorithm and the
proposed dynamic blocking algorithm is O(K|E|),
O(K|E||V |) and O(K|E||V |) respectively, where K <<
|E|.

Proof 1. According to the algorithms we give in the original
version of our paper, the analysis of their time complex-
ity is given as follows. Assume that we perform our
blocking algorithms in a social network graph G(V,E)
of |V | users and |E| connections. The baseline of classic
greedy algorithm has time complexity of O(K|E|) as we

enumerate all users and pick the one with the largest
degree, which requires traversing all connections once
for each of K iterations. Here we have K << |E|.
In contrast, for our proposed greedy algorithm, most
of the time cost lies in the loop of updating the max-
imum likelihood function f . Consequently, in order to
calculate f , we have to go through every user and
connection at most once, which has the time complexity
of O(|V |+ |E|) = O(|E|). Subsequently, in order to pick
out the candidate node u in each iteration, we need to
repeat calculating f for O(|V |) times. Combining these
factors, we can conclude that the total time complexity
for our proposed greedy algorithm is O(K|E||V |). Sim-
ilarly, for the dynamic blocking algorithm, which can
be viewed as an online algorithm, we decompose the
selection of candidate nodes into n epochs and in the
j-th (j = 1, 2, ...n) epoch, we select kj nodes to block,
where

∑n
j=1 kj = K . In our algorithm, for simplicity,

we choose kj = 2(−j) ∗K . Then the time complexity in
each epoch can be calculated as O(kj |E||V |). Finally by
combining the time complexity of every epoch together,
we obtain that the entire algorithm runs in O(K|E||V |)
time.

Additionally, based on the above analysis, we conclude that
the main difference between the time complexity of our
proposed algorithm and the baseline greedy algorithm lies
in the value of |V |. In order to achieve better performance
at relatively low cost, it is better to implement the algorithm
in networks with smaller |V |. In reality, when a rumor is
generated, we expect to locate it in a short time and conduct
the blocking algorithms in a local community that contains
all the infected nodes. In that case, the value of |V | can be
lowered to the largest extent by limiting the target network
to a local community instead of the entire social network.

7 EXPERIMENTS

Dataset: We use three datasets to verify the effectiveness of
our proposed algorithms. They are extracted from the real
world large scale social networks such as Facebook, Twitter
and Sina Weibo. Details of the datasets description are listed
in Table 1.
Notations: Let BlkPer denote the percentage of blocked
nodes in all the nodes in the social network. In our simula-
tion, we set BlkPer to three values as 1%, 2% and 10%. To be
noticed, in realistic large-scale social networks with millions
or even billions of users, 1% may account for up to millions
of users and blocking them is not realistic. However, in
real world rumor blocking, it is impossible to accomplish
any blocking mechanism in a global network scale. It is
more reasonable to first locate the rumour source and divide
the entire network into communities according to certain
attributes of the rumour source (e.g. the geographical in-
formation, related friends, etc), and then conduct blocking
strategies within a target community with the highest risks.
Then, the scale of the target network would be much smaller
than the entire network and thus our parameter settings
would have more realistic sense.

In all figures, the vertical dashed line is plotted to denote
the time when the rumor is detected and our blocking
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TABLE 1
Data Sets Description

Data Sets Facebook Twitter Sina Weibo
Number of nodes 4036 81306 1364548
Number of edges 88234 1768149 31261651
Average degree 21.85 21.74 22.91

Number of connected components 36 278 4631
Average clustering coefficient 0.5731 0.5653 0.5974

strategies start working. All the parameters are selected
based on empirical results that approximate the realistic
scenario. In the experiment, three algorithms are presented
for comparison which are listed as follows:

• Classic Greedy Algorithm: Greedy algorithm based
on descendant order of nodes degree and is used as
the baseline algorithm.

• Proposed Greedy Algorithm: the order is deter-
mined by the maximum likelihood function. By
blocking a node, we can generate a new propagation
matrix and reach a new maximum survival likeli-
hood value.

• Dynamic Blocking Algorithm: This algorithm ad-
justs to each propagation status, and gradually in-
cludes new targeted nodes as long as the cost is
within the scope of tolerable user experience.

In Figure 4, we present the simulation results on the
Facebook, Twitter and Sina Weibo datasets respectively.
Specifically, for each algorithm in each dataset, we repeat
the propagation process for 1000 times and take the average
value as the general feature. The black curve stands for clas-
sic greedy algorithm, blue one for our proposed maximum
likelihood greedy algorithm, which blocks all candidates at
once and use a metric different from traditional approach,
and finally red one for the dynamic blocking algorithm. Ob-
viously, from all the figures, we can see that for all the social
network datasets, the rumor infection ratio is decreased to
different degrees after the introduction of rumor blockage
strategies. As is shown in the results, according to the final
infection ratio, the proposed dynamic blocking algorithm
performs the best of all the blocking strategies, since the
infection ratio (i.e., the number of nodes infected by the
rumor) is minimized at the end of propagation under this
schema.

From all three datasets, we can see that with the blocking
percentage of all the nodes increasing from 1% to 10%, the
performances of different blocking strategies vary distinctly.
In general, for each algorithm, we can see the trend that
the infection ratio tends to be lower with the percentage
of nodes being blocked becoming higher. However, for
different algorithms, the degrees of that trend are different.
Specifically, the dynamic blocking algorithm has relatively
the sharpest trend compared to the classic and proposed
greedy algorithms. In the Facebook dataset, when the block-
ing percentage rises from 1% to 2%, the infection ratio
barely changes for the classic greedy algorithm. In contrast,
the proposed greedy algorithm obtains approximately a
10% improvement in the infection ratio. For the dynamic
blocking algorithm, the blocking performance is even better.
In addition, when the blocking percentage becomes higher

up to 10%, the infection ratios are lowered by approximately
10%, 20% and 30% for the classic greedy, proposed greedy
and dynamic blocking algorithm respectively.

One phenomenon needs to be noticed that at the very
beginning point of blocking strategies, the proposed maxi-
mum likelihood greedy algorithm (i.e. the blue curve) per-
forms slightly better than the dynamic blocking algorithm
(i.e. the red curve). Then after a certain amount of iterations,
the red curve surpasses the blue curve and stays better than
it ever since. The underlying reason is that in the dynamic
blocking algorithm, the dynamic property is revealed from
the early stage of rumor blocking. In detail, during the
initial period of rumor blocking (approximately from 15th
to 25th iteration), the blue curve lies under the red one,
which indicates the slower propagation rate for the static
schema. This can be explained by the fact that the dynamic
algorithm does block fewer nodes than the static greedy
algorithm at the initial stage of first several iterations. How-
ever, after a certain amount of time (about 25 iterations),
the dynamic blocking algorithm dominates the proposed
greedy algorithm because the dynamic strategy considers
the dynamic variation of the topology of the social network
in every iteration and constantly introduce new seeds for
blocking. In that case, the dynamic blocking algorithm can
be regarded as an iterative greedy algorithm.

In the Twitter and Sina Weibo datasets simulation results
shown in Figure 4, we can see the similar results to those in
the Facebook dataset. The slight difference between them
may be caused by the different topologies of the social
networks. From the dataset description in Table 1, we know
that the Sina Weibo network dataset has much more nodes
than the Facebook and Twitter datasets. There are also
some differences in average degree, number of connected
components and average clustering coefficient, which could
influence the rumor propagation process and thus the final
infection ratio in the network. For instance, for Sina Weibo
dataset with slightly higher average degree, the network has
a larger density than the other two. In that case, it is easier
for rumor to spread through the network and accelerate the
rumor contagion process. This analysis can be verified by
the normal rumor propagation curve (i.e. the green curve)
especially at the very initial stage of rumor propagation.
We can see the slope of the green curve in the Sina Weibo
dataset is slightly higher than the other two, which indicates
the higher average degree and connected components lead
to faster rumor contagion. After the beginning phase, when
the infection ratio reaches a certain threshold, the difference
between different network topologies becomes minor. On
the other hand, when it comes to rumor blocking, the higher
average degree and connected components enable more
effective blockage due to its higher density.
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(a) Facebook, BlkPer=1%
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(b) Facebook, BlkPer=2%
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(c) Facebook, BlkPer=10%
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(d) Twitter, BlkPer=1%
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(e) Twitter, BlkPer=2%
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(f) Twitter, BlkPer=10%
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(g) Sina, BlkPer=1%
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(h) Sina, BlkPer=2%
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(i) Sina, BlkPer=10%

Fig. 4. The experimental results of the rumor infection ratio with propagation iterations under different blocking algorithms in the Facebook
((a),(b),(c)), Twitter ((d),(e),(f)) and Sina Weibo ((g),(h),(i)) dataset respectively. The blocking percentage of all the nodes in the social network
is set to 1%, 2% and 10% for each dataset.
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(b) Twitter

0.01 0.012 0.014 0.016 0.018 0.02 0.022
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Blocked Nodes Ratio

R
um

or
 A

ff
ec

te
d 

N
od

es
 R

at
io

 

 

Normal Propagation
Classic Greedy
Proposed Greedy
Dynamic Schema

(c) Sina

Fig. 5. Stationary rumor infection ratio under different blocking algorithms with different blocking ratios on the Facebook, Twitter and Sina Weibo
datasets respectively. The blocking ratio ranges from 1% to 2% with an interval of 0.1%, which shows the sensitivity of different blocking algorithms.

TABLE 2
False Positive Ratio in Nodes Blocking

Data Sets Facebook Twitter Sina Weibo
Classic Greedy 42% 40% 70%

Proposed Greedy 34% 36% 64%
Dynamic Schema 14% 18% 34%
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(a) Facebook, BlkIter=6, 12, 18, 24, 30, 36 from top
to bottom respectively
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(b) Twitter, BlkIter=6, 12, 18, 24, 30, 36 from top to
bottom respectively
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(c) Sina Weibo, BlkIter=6, 12, 18, 24, 30, 36 from top
to bottom respectively

Fig. 6. Rumor infection ratio under different blocking algorithms with different starting time (iterations of rumor propagation) of blocking on the
Facebook, Twitter and Sina Weibo datasets respectively.
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(c) Sina Weibo

Fig. 7. Rumor infection ratio with different blocking time durations (i.e. number of rumor propagation iterations) under the dynamic blocking algorithm
in the dataset of Facebook, Twitter and Sina Weibo respectively.

In order to further observe the sensitivity of different
blocking algorithms over the blocking ratios. We set the
blocking ratio range from 1% to 2% with an interval of
0.1%. Thus, we can observe how the final stationary rumor
infection ratio varies with the gradual increase of blocking
ratio. Figure 5 shows the results of the comparison of the
sensitivities of different algorithms. From the figure, we
can see that for each blocking ratio, the proposed dynamic
blocking schema has the best performance in stationary
rumor infection ratio. Furthermore, with the increase of
the blocking ratio, our proposed algorithms can decrease
the rumor infection ratio at a higher rate than the baseline
algorithms, especially at lower blocking ratio. Overall, the
experiments demonstrate our proposed algorithms have a
better sensitivity in terms of reducing the rumor infection
ratio.

To be noticed, in our blocking algorithms, we select
a certain amount of nodes from the inactivated ones to
minimize the final number of infected nodes. The reason
we do this is that the already activated nodes (i.e., the users
who have accepted and shared the rumor) have determined
status in the network, and we can directly delete the rumor
message from their accounts. However, for the inactivated
nodes, all of them are at high risk and might cause serious
damages. Nevertheless, among all the nodes we choose to
block, there might have been nodes that would have not
activated in normal rumor propagation without interven-
tions. In other words, it is possible that we commit a “false
positive” error in our algorithms. Therefore, we conduct
experiments to obtain the statistical “false positive” error
rate as an evaluation of our algorithms. We conduct our
dynamic blocking schema at 6-th iteration with a blocking
rate of 1% for 1000 times and then calculate the statistical
average of them. The final results are shown in Table 2.
Attributed to the randomness of rumor propagation in
each iteration, the results for each iteration fluctuate in a
wide range, hence we can only calculate an average for
reference. From the table, we see that our algorithms have
lower “false positive” error rates than the classic greedy
algorithm, and the dynamic schema has the lowest rate. This
phenomena demonstrates our maximum likelihood based
algorithms are able to select the nodes that are most likely
to get activated in normal rumor propagation. The reason
we still select nodes that would have not been activated is
that these nodes are influential to the entire network and
by blocking them, we can minimize the global likelihood

of rumor infection. In other words, we sacrifice a small
proportion of influential nodes for the benefit of the entire
network. In addition, it is also shown that the error rate is
lower in small scale networks (e.g. Facebook dataset) than
in larger scale ones (e.g. Sina Weibo dataset). The reason is
that larger scale networks increase the randomness of rumor
propagation, making the prediction of it more difficult.

In our simulation experiments, we assume that the ru-
mor has propagated through the social network for some
time according to our proposed model and then at a certain
time instant, it is detected by the system. Once the rumor
is detected, we start the presented blocking strategies to
prevent it from further diffusion. Obviously, in this process,
the starting time to block the rumor (i.e. the time instant
when we detect the rumor) has enormous impact on the
final rumor infection ratio in the entire social network.
Thus it is necessary to conduct experiments and analyze
to what degree the starting blocking time affect the rumor
propagation. Figure 6 shows the experimental results of
how the starting blocking time influence the final infection
ratio in different algorithms. In all three datasets, we can
see that the earlier we start blocking the rumor, the lower
the final infection ratio will be. That is easy to comprehend
because if we detect the rumor at an early stage, the infection
ratio of the entire network would probably be relatively
lower. Thus, if we start blocking it, the rumor could be
prevented in time and naturally, the final infection ratio will
be constrained to a lower level.

In the experiment, we choose three representative values
of starting time of blocking as 6, 12, 18, 24, 30 and 36
iterations, which represent the rumor is blocked at different
infection stages. Here iterations represent the rumor propa-
gation rounds in the Independent Cascade model. From the
experimental results, we can see that if the rumor is blocked
at an early stage as in the case of 6 and 12 iterations, our
algorithms (both greedy and dynamic blocking algorithms)
have distinctly better performances than the classic greedy
algorithm. However, if the rumor is blocked in the middle
stage as in the case of 18 and 24 iterations, all the blocking
algorithms have similarly limited influences on preventing
the rumor from further diffusion. Furthermore, in the case
of starting blocking the rumor from a late stage such as at
the 36th iteration, all of the blocking strategies have almost
zero impact on the normal rumor propagation process.
The reason is that if the rumor is detected and blocked
at a relatively late stage, the rumor has already infected a
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large portion of the nodes in the entire network. Thus, it is
difficult to restrain the contagion of rumor.

Figure 7 demonstrates the influence of blocking duration
on the infection ratio in different datasets. It is generated
using the dynamic blocking algorithm and reflects the effect
of different block durations on rumor propagation range,
i.e., the infection ratio at the end of the propagation. Al-
though in our proposed algorithms, we utilize blocking time
as a user experience constraint, we still want to explore the
relationship between rumor infection ratio and the blocking
duration in order to figure out the bound of blocking time.
As is shown in the figure, the longer a node is blocked,
the slower the rumor propagates. This benefit, however, is
obtained at the expense of declined user experience. The
result helps us to analyze the possibility of achieving close
performance with less cost. It is also noticeable that this
result is coherent to our analysis on User Experience.

From the experimental results, we try to figure out
the influence of different rumor blocking algorithms and
different blocking durations on the final rumor infection
ratio. Though the proposed dynamic algorithm shows the
best performance in blocking the rumor to a lower ratio,
the computational complexity is also a bottleneck. Thus
the exploration of blocking duration may enlighten us on
designing a better rumor blocking strategy with less cost.

8 CONCLUSION AND FUTURE WORK

In this paper, we investigate the rumor blocking problem in
social networks. We propose the dynamic rumor influence
minimization with user experience model to formulate the
problem. A dynamic rumor diffusion model incorporating
both global rumor popularity and individual tendency is
presented based on the Ising model. Then we introduce the
concept of user experience utility and propose a modified
version of utility function to measure the relationship be-
tween the utility and blocking time. After that, we use the
survival theory to analyze the likelihood of nodes getting
activated under the constraint of user experience utility.
Greedy algorithm and a dynamic blocking algorithm are
proposed to solve the optimization problem based on differ-
ent nodes selection strategies. Experiments implemented on
real world social networks show the efficacy of our method.
In our future work, we plan to design more sophisticated
rumor blocking algorithms considering the connectivity of
the social network topology and node properties. We intend
to separate the entire social network into different com-
munities with different user interests and then analyze the
rumor propagation characteristics among communities. We
are also interested in investigating how to prevent the rumor
propagation effectively at a late stage.
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