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Abstract—A cognitive network refers to the one where two
overlaid structures, called primary and secondary networks
coexist. The primary network consists of primary nodes who are
licensed spectrum users while the secondary network comprises
unauthorized users that have to access the licensed spectrum
opportunistically. In this paper, we study the percolation degree
of the secondary network to achieve k-percolation in large scale
cognitive radio networks. The percolation degree is defined as
the number of nearest neighbors for each secondary user when
there are at least k vertex-disjoint paths existing between any
two secondary relays in the percolated cluster. The percolated
cluster is formed when there are an infinite number of mutually
connected secondary users spanning the whole network. Each
user in the cluster is possibly connected to several neighbors,
inducing more communication links between any two of them.
Since nodes located near the boundary have fewer neighbors, the
boundary effect becomes a bottleneck in determining the perco-
lation degree. For cognitive networks, when the primary node
density becomes considerably large, the boundary effect spreads
inside the network. The transmission area of most secondary
users who are located near the primary nodes decreases due to
the restriction of the primary network. Therefore, to ensure k-
connectivity in the percolated cluster, each secondary user must
be connected to more neighbors, and the percolation degree of
the secondary network yields a function of the primary node
density. We specify the relationship into three regimes regarding
the topology variation of the cognitive network. A closed-form
expression of the percolation degree under different primary
node densities is presented. The expression characterizes the con-
nectivity strength in the secondary percolated cluster, therefore
providing analytical insight on fault tolerance improvement in
cognitive networks.

Index Terms—Connectivity, Continuum Percolation, Scaling
Law

I. INTRODUCTION

THE INCREASING demand for available communication
spectrum has drawn intense attention in many fields, such

as mobile communication, military detection and environmen-
tal monitoring. An appealing solution is re-exploration of the
underutilized licensed spectrum. The strategy introduced in [1]
allows unlicensed users to take advantage of the temporarily
unoccupied spectrum on the condition that they cannot cause
destructive interferences to licensed users. By adopting a hier-
archical access control, the spectrum efficiency and reusability
can be greatly improved.
The cognitive network, which has spawn tremendous in-

terest in recent studies on wireless communication, is a
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new communication paradigm to meet the spectrum demand
aforementioned. In cognitive networks proposed in [3], there
are two overlaid networks called the primary network and
the secondary network, respectively. The primary network
is composed of licensed users, who transmit based on their
own protocols and transmission schemes, independent of the
secondary users. In contrast, secondary users form unlicensed
community who can only transmit when the communication
channels are idle from primary users. They have to identify
and explore instantaneous and local spectrum opportunities to
avoid affecting the communication of the primary network.
Therefore, secondary users are equipped with cognitive radio
so that they can detect the spectrum environment and adjust
their communication operations accordingly. The primary and
secondary networks are independent of each other in terms of
node distribution, but can transmit over the same time, space
and frequency. Different from homogeneous networks where
all nodes have equal transmission opportunities, cognitive
networks are heterogeneous in terms of user priorities.

Though the cognitive network addresses critical concerns in
spectrum utilization, the analysis of the heterogeneous network
structure brings greater challenges to researchers sharing an
interest in this field. Among the fundamental limits concerning
the communication network, connectivity has been discussed
intensively as one of the most basic issues. When two users
communicate with each other, they must be connected firstly.
The information can be disseminated over the whole network
area when all the users in the network are fully connected as a
huge cluster. In cognitive networks, secondary users commu-
nicate with each other based on the information they detect
in the cognitive environment. Consequently, connectivity of
the secondary network is influenced by either of the network
topology and can therefore reflect the interaction between the
two networks.

Investigating the connectivity of the secondary network
can lead to a better understanding of the cognitive network
paradigm. Due to the subordinative status, secondary users
suffer from impulsive destruction on the communication links
from the primary network, which imposes fault tolerance in the
secondary network on an urgent issue. Intuitively, the network
with higher connectivity strength is more resistant to fault
emergencies. When there are several paths between any two
communicating objects, the loss caused by failure on one path
can be minimized by increasing communication opportunities
on alternative paths. Thus, not only connectivity of secondary
network is worth of analysis, a concrete metric to measure
the connectivity strength of the secondary network is also
necessary for us to design better cognitive networks with high
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fault tolerance of secondary users. Most previous works, e.g.,
[10], [16], investigate the connectivity strength with all nodes
involved in the network. However, the connectivity strength
concerning the percolation phenomenon, which is previously
studied as a phase transition of the immediate formation of an
infinite cluster, is still an open issue.
In this paper, we focus on the connectivity characteristics

of the secondary network. Specifically, we investigate the
scenario of percolation where there are an infinite number
of mutually connected secondary users spanning the whole
network area, called the percolated cluster. Our work derives
the percolation degree in the scenario, defined as the nearest
number of neighbors for the secondary network so that there
are at least k vertex-disjoint communication paths between
any two secondary users in the percolated cluster.
To figure out the percolation degree, we first explore the

condition under which there is a positive probability for
the secondary network to achieve percolation. The condition
specifies the requirements on network parameters concerning
the percolation phenomenon of secondary users. Under the
condition, we derive the lower bound of the percolation
degree l∗. When each secondary user is connected to its
l∗ nearest neighbors, it occurs with positive probability for
the secondary network to achieve k-percolation, namely the
secondary percolated cluster is k-connected. The lower bound
is asymptotically achievable when the primary node density
is sufficiently low. The impact of the primary topology on
the secondary communication links becomes apparent with
the increase of the primary node density. As the cognitive
network exhibits different topologies with respect to different
primary node densities, the expression of the percolation
degree can be divided into three regimes. Our work establishes
a full relationship between the percolation degree and the
primary node density, which characterizes connectivity of
the secondary network as an illustration of properties of the
cognitive network paradigm.
The remainder of the paper is organized as follows. In

Section II, we give an overview of related works on network
connectivity and percolation theory. Section III presents our
network model and the specific definition of percolation degree
is given. Section IV lists the main results of our work whereas
Section V briefly introduces the solution of the main results.
We investigate the scenario of percolation in Section VI and
derive the critical primary node density regarding percolation
in the secondary network. Section VII is contributed for
deriving both the lower and upper bounds of the percolation
degree as well as a closed-form expression of the relationship
between percolation degree and the density of primary nodes.
We discuss some prospective extensions in Section VIII and
give concluding remarks in Section IX.

II. RELATED WORKS

Initiated by the seminal work by Gupta and Kumar in [9],
where they discuss the critical power for asymptotic full con-
nectivity, connectivity has been under intensive study over the
last decades. When two nodes communicate with each other,
they must be connected firstly, namely they are within each
other’s transmission range. As to the whole network, packets

can be relayed between any given pair of nodes successfully
when the whole network is connected within a big cluster. In
[9], it is pointed out that to achieve asymptotic connectivity,
the critical transmission range should be O(

√
logn/n) for a

dense network with n nodes randomly scattered in a unit-area
square.

Later on, Dousse et al. introduce percolation theory into
their work [16], where they relax the condition of full connec-
tivity to the less restrictive level that the network is connected
within a set of nodes spanning the entire network plane. The
set is specified as a cluster composed of an infinite number
of nodes and there exists at least one communication link
between any two of them. The percolation theory has been
adopted in a flurry of research in wireless networks and
demonstrated to be a useful mathematical tool in solving
various network problems. In [5], Franceschetti et al. show
that the capacity of wireless networks can be greatly improved
via the establishment of percolation highway, which is a
big breakthrough of the pioneering work from Gupta and
kumar [17]. Following that, the percolation phenomenon of
wireless networks arouses increasing interest in the study of
network characteristics. Then connectivity and delay tradeoff
in cognitive networks is investigated by Ren and Zhao in [10].
The continuum percolation theory is utilized to study the con-
nectivity and coverage in three dimensional network in [11].
And tradeoff between the number of neighbors and spectrum
opportunities for secondary users in the cognitive network
is revealed in [19]. Although helpful for gaining a better
understanding of percolation phenomenon in communication
networks, the major attention of all these works is limited
to the scenario where the phase transition of percolation
occurs in the network. It still remains unclear what are the
specific properties of connectivity of the percolation cluster,
with respect to the network topology.

Although one-connectivity has been taken into account in
most related work, it only suffices to guarantee the network
communication. To meet the demand of high fault tolerance
of wireless communication, a class of large wireless systems,
such as ad hoc network, mesh network and sensor network, has
emerged for analysis of k-connectivity properties in wireless
networks, which requires that the number of communication
links between any two users in the network is at least k.
In [2], Li et al. are the first to give loose lower and upper
bounds of the critical transmission range for k-connectivity
in a dense network. Then Wan and Yi show in [14] that the
asymptotically critical transmission range of k-connectivity in

the homogeneous network is rn = Ω(
»

log n+(2k−1) log logn
πn ).

Their work is based on the result Penrose presents in [13]
that the minimum transmission range for a network to achieve
k-connectivity is the same as that when the network has
minimum node degree k. Following that, the phase transition
width of k-connectivity in wireless networks is characterized
in [18]. And the node deployment pattern for k-connectivity in
three dimensional is proposed in [15]. As an important metric,
connectivity is also taken into consideration in some real
applications such as sensor networks [20] [21], P2P networks
[22] and VANETs [23]. However, none of these works are
studied in the context of the cognitive network, where the
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communication is complicated due to the coexistence of both
the primary and secondary networks. Therefore, in cognitive
networks, the analysis of k-connectivity of the secondary
network must take into consideration the impact of the primary
network. In this paper, we will investigate the k-connectivity
of the percolation cluster in the secondary network and provide
analytical result of the percolation degree.

III. SYSTEM MODEL

A. Network Topology

To study the asymptotic behavior of scaling characteristics
of the network, we model the network topology in two cases,
namely the dense network and the extended one. In a dense
network, nodes are assumed to be located within a unit-area
region with node density of n that can go to infinity. In an
extended network, the network area is assumed to be

√
n×√

n
while the node density is a constant (usually normalized to unit
value). We will first focus our problem in a dense network.
In dense network model, we assume the primary and sec-

ondary network coexist in a two dimensional unit-area square
denoted by S. And we adopt the static Poisson Boolean model
in [4] to characterize the node distribution. The locations of
the nodes follow a Poisson Point Process with density λ,
i.e., nodes are uniformly distributed in the network area and
the number of the nodes is a random variable of Poisson
distribution. Each node is represented by a disk centered at
the location of the node with radius r/2, where r denotes the
transmission range independent of λ. Moreover, we denote by
B(λ, r) as the disk model.
In two dimensional Poisson Boolean model B(λ, r), two

nodes are connected if their disks overlap. They are considered
to be disconnected once the distance between them is larger
than r. Thus the transmission radius is a critical parameter in
determining the connectivity of the proposed boolean model.
The whole network is connected together when there is at
least one chain of connected disks between any two nodes.
Note that in the boolean model the transmission range for
each node is twice the radius of the disks. This is because
two nodes can communicate successfully given that they are
located within each other’s transmission range and the distance
between two connected disks is no larger than r. We focus
our study on the case where all the nodes communicate with
the same transmission range in the network. Note that the
case of heterogeneous transmission radiuses is beyond the
scope of this paper and can be found in a flurry of related
works. In the following we will describe the two overlaid
networks respectively. As an illustration, Fig. 1 shows the
network topology of the cognitive radio (CR) network.
1) Primary Network: As the primary network consists of

licensed users who operate independently of secondary users,
analysis of the primary network characteristics is similar to
that of the homogeneous cases. In our discussion, we assume
that the primary node distribution follows a Poisson point
process with density n, and the transmission range for each
primary user is rp.
2) Secondary network: Similarly, secondary nodes are de-

ployed in the network as a two dimensional Poisson point
process with density m, which is independent of the primary

primary node

active node

dead node

sr

jr

Fig. 1. Topology of CR Network. Primary users have a rejection radius rj ,
secondary users in this region are not allowed to transmit information.

network. In this paper, we are mainly interested in the asymp-
totic characteristics of the network. That is, we focus on the
events that occur with probability approaching 1 when m goes
to infinity. Actually, we denote by ζ(m) as the density of
active secondary users, who are located in the vacant space of
the primary rejection disks that prohibit the secondary users
inside from transmission, as will be defined later. Here ζ(m)
is obtained by dividing the number of active secondary users
to the whole area of the total network. We assume that all the
secondary users employ the same transmission range rs. In
the CR network, secondary users possess the cognitive ability
to sense the communication environment, which enables them
to switch transmission status between on and off according
to the primary network. Moreover, it is commonly assumed
that the number of secondary nodes are much larger than that
of primary ones so that the secondary nodes have available
opportunistic spectrum access (OSA).

3) Primary rejection region: Restricted by the higher pri-
ority of the primary network, secondary users selectively
transmit to ensure their existence undetected by the primary
users. In our work, we specify this limitation by defining a
rejection region for each primary user, given as follows.
Definition 1: Denote rj as the rejection radius and assume

that rj = ηrs (η > 1). A disk centered at a primary node with
a radius rj is called the rejection region (RR). Any secondary
user inside this region is enforced to turn off and thus not
allowed to transmit.
Notice that the rejection radius is related to the secondary

transmission radius with a proportional parameter larger than
one. The mechanism behind is that the rejection region is
introduced in order to prevent the communication activities
of secondary users from generating negative effect on primary
users. Thus the size of the rejection region is determined by the
transmission power, which can be reflected by the transmission
radius of secondary users. Furthermore, the rejection radius
should be larger than the transmission radius to ensure that
secondary transmitted signal is feebly negligible in the area
where primary users are located. In other words, this helps to
get us out of taking into account the interference caused by
the primary users to the secondary ones, leaving the results
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unaffected in order sense.
Due to the spectrum limitation, all the secondary users are at

the distance of at least rj away from primary users, mitigating
the severe interference the primary network suffers from the
secondary one. With primary nodes scattered randomly over
the unit-area square, the whole secondary network is split
into two parts, the active nodes located outside RR of any
primary users and the dead nodes inside RR of at least one
primary user. Note that dead nodes are turned off compulsively
and therefore cannot communicate with neighboring nodes.
Only active nodes can serve as packet relays in the secondary
network.

B. Percolation Degree

The range assignment in the Poisson Boolean model charac-
terizes connectivity requirements in the network with regards
to the transmission radius. A group of connected nodes is de-
fined as a cluster, denoted by Ci(λ, r). Let Ni(λ, r) represent
the number of mutually connected nodes in the cluster. We
will use the main result of the continuum percolation theory
in [8]. In a Poisson Boolean model B(λ, r), if λr2 > pc,
then the probability that there exists an infinite cluster in the
network approaches 1. λr2 is called the percolation probability
of two dimensional network and pc is the critical value in the
two dimensional Poisson Boolean model. Note that pc does not
need to be specifically formulated, and it is shown in [12] that
the analytical result of pc is in the range of (0.7698, 3.372).
Recall that only active nodes can transmit information in the

secondary network. Thus the secondary network is percolated
when there exists an infinite cluster among the active nodes.
Our work is concerned with the minimum number of vertex
disjoint paths between any two active nodes in the infinite
cluster. To specify this problem, we introduce the percolation
degree defined below.
Definition 2: The secondary network is percolated when

there exists a secondary cluster C(m, rs) such that the number
of secondary nodes in C(m, rs), denoted by N(C(m, rs)),
goes to infinity. If C(m, rs) is k-connected, i.e., for each
pair of nodes in C(m, rs) there are at least k vertex disjoint
paths connecting them, then the network is k-percolated. And
the percolation degree is defined as the minimum number of
neighbors1 for each secondary user in k-percolated network.
The definition investigates the nearest neighbor number with

regards to the connectivity strength of the percolation cluster
in the secondary network. While the percolation demonstrates
a phase transition phenomenon where the network becomes
connected over the whole area once the percolation probability
is above the threshold, the situation of multiple communication
links between any two connected nodes in the percolation clus-
ter is studied. Consequently, we will be able to investigate the
connectivity properties inside the percolation cluster composed
of an infinite number of nodes spanning the whole network
area. In this work, we will first investigate the condition when
there exists a huge connected component in the secondary
network, and then will concentrate on deriving percolation
degree in different network topologies.

1Note that communication can occur only between two SUs. Therefore the
neighbors of a secondary user represent those secondary users who are nearest
to it in terms of distance.

IV. MAIN RESULTS

Our work studies the percolation behavior in the secondary
network and specifies the percolation degree of secondary
users corresponding to different cognitive network topologies.
The main results are given as follows:
1) For the secondary network, there exists a lower bound

of the percolation degree l∗, defined as the minimum number
of nearest neighbors required for each secondary user. There
exists a primary network with node density n < n∗ =

pc/[r
2
s

»
η2 − 1

4 ], such that when each secondary user is
connected to its l∗ nearest neighbors, the induced secondary
network is k-percolated, namely there are at least k commu-
nication links between any secondary users in the percolated
cluster. And we find that

l∗ = eρ2[log ζ(m) + k log log ζ(m)],

where it is satisfied that limm→∞ ζ(m) → ∞ and ρ is a
constant larger than 1.
2) In cognitive networks, the percolation degree is a function

of the primary node density n. The minimum neighbor number
l required for each secondary user follows that

l =

⎧⎨
⎩

eρ2

δ [log ζ(m) + k log log ζ(m)] , n ∈ (
η2− 1

4

(η+1)2n
∗, n∗)

eρ2[log ζ(m) + k log log ζ(m)] , n ∈ (0,
η2− 1

4

(η+1)2n
∗)

Here δ is a variable with regards to n.
The lower bound of the percolation degree is achievable

under the optimal primary network topology, where the restric-
tion of primary network on the secondary network connectivity
can be asymptotically neglected. Thus, the percolation degree
is mainly determined by active nodes serving as relays in
the secondary network. In the cases where the primary users
are sparsely deployed all over the network area, the lower
bound can be achieved with a positive probability. The primary
boundary effect becomes dominant as the number of primary
users increases. The percolation degree varies more quickly
with higher primary node density due to the rapid contraction
of secondary transmission range. The main proof of our results
is given in Section 7.

V. OVERVIEW OF THE SOLUTION

Our problem is defined in the cognitive radio network
and we focus on the percolation behavior of the secondary
network. To allow the formation of huge secondary cluster,
we must firstly solve the problem concerning the requirements
on the primary network topology that will lead to percolation
occurrence among secondary users. It is required in the
solution that there exists infinite vacant space in the network
area. The vacant space visualizes the area in the network that
is not covered by the rejection region. And we call the vacant
space is infinite when its area is ineligible compared to the
whole network area under the limitation ofm. Secondary users
can operate to communicate in this area when the spectrum
is unoccupied by the primary users. Those secondary users
which are connected in the huge cluster must be located in
the vacant space. So when there is an infinite vacant space
in the network, there is a positive probability that percolation
can be achieved in the secondary network.
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To derive the percolation degree of the secondary net-
work, we consider the connectivity characteristics regarding
the active secondary users. In Penrose’s work [13], it is
demonstrated that there exists a strong relationship between
the average node degree and the connectivity degree of the
whole network. When the minimum node degree for all the
nodes in the network is above k, the network becomes k-
connected immediately. Hence, we can focus our analysis
on the average node degree of the active secondary users.
In [14], Wan et al. study the the k−connectivity from the
perspective of asymptotic transmission radius in wireless ad
hoc networks, showing that the boundary effect is a critical
factor in restricting the average node degree over all nodes in
the network. Under the cognitive network model present in this
paper, the boundary effect has been extended to the border of
the rejection region where neighbors of active secondary users
are located. As a result, the number of useful neighbors with
which these active users can communicate decreases, making
the average node degree yield a function of the area of the
border between the primary and secondary networks. We will
specify the network topologies in different scenarios and thus
derive the border area to enable discussion on the average
node degree of secondary users.
The main difficulty of this paper lies in that we need to

consider the interaction of two overlaid networks coexisting
within the same area. In cognitive networks, the interaction
is specified by the rejection region where secondary users
are not allowed for communication. The rejection region is
directly determined by the location of primary users and the
transmission power of secondary users. We should focus on
their interplay and investigate its cooresponding impact on
network performance. Note that the characteristic is different
from most related works on connectivity analysis conducted
in homogeneous networks. Utilizing the result, we can obtain
more insights of heterogenous network models composed of
different user communities.

VI. CRITICAL PRIMARY NODE DENSITY

From the definition of percolation degree, the secondary
network is percolated when there exists an infinite active
cluster. As the active cluster must exist outside the primary
rejection region, the distribution of active nodes is influ-
enced by the primary network topology. Consider the primary
network, primary nodes are uniformly distributed over the
whole network area according to a poisson point process with
node density n. Hence the number of primary users located
in a given area is a random variable following a poisson
distribution with parameter nmultiplied by the size of the area.
In this section, we will study the critical primary node density
n∗ above which the secondary network can be percolated.

A. Vacant Space

As is specified in the network topology, the secondary users
are not allowed to transmit in the rejection region centered at
primary nodes. When the primary node density gets higher, the
number of active nodes decreases. And there exists a critical
primary node density n∗ above which secondary network is
broken into several clusters of finite size, i.e., the number of

nodes in any secondary cluster is finite. The percolation is
unachievable in this scenario since there is no infinite vacant
space in the primary network where the percolated cluster can
exist. When the primary node density are smaller than n∗,
there is a positive probability that a huge cluster composed of
an infinite number of secondary nodes exists. The following
theorem characterizes the value of n∗.
Theorem 1: In the cognitive radio network where

Ni(m, rs) represents the number of nodes in the secondary
cluster Ci(m, rs), the critical primary node density n∗

satisfies that n∗r2s(η2 − 1
4 ) = pc, provided that

Pr(sup{Ni(m, rs) | n < n∗} = ∞) > 0,

Proof: The proof of the theorem is divided into two
parts. Notice that n∗ is the critical percolation density in the
poisson boolean model B(n,

»
r2j − ( rs2 )

2). In the first part,
we will show that when there exists an infinite vacant space
in B(n,

»
r2j − ( rs2 )

2), the secondary network is percolated
with a positive probability. Then the second part completes
the proof that when the primary poisson boolean model with
density n∗ is not percolated, there exists an infinite vacant
space in the network area where the secondary percolation
cluster can exist.
From the condition of the active secondary users, we can

know that the secondary nodes connected in the percolation
cluster must be located outside the rejection disk of any
primary node. When there is an infinite vacant space outside
the primary rejection disks with radius rj , the number of
active secondary users goes to infinity. Hence, as long as
the connectivity of active secondary nodes is guaranteed,
percolation in the secondary network can be achieved. A
natural deduction from the discussion above is that when
the percolation probability for the rejection disk is less than
the critical percolation probability of the two dimensional
network, the secondary network can be percolated. However,
the conclusion can be developed even further.
Consider a secondary communication path in the percola-

tion cluster depicted in Fig. 2, any secondary node along this
path must be at the distance of rj away from all the primary
nodes. Hence, the primary nodes is at least at the distance of»
r2j − ( rs2 )

2 away from the secondary communication links.
When there is an infinite vacant space outside the disks with
radius

»
r2j − ( rs2 )

2 centered at primary nodes, these links
can exist in the vacant space and they together form the
percolation cluster of secondary nodes. Recall the definition
of the vacant space to be infinite in the last section, the area
of vacant space is of order Ω(1). Also, the space taken by
each communication link is bounded by rs multiplied by a
sufficiently small width, denoted as ε in Fig. 2. So the number
of secondary communication links existing in the vacant space
goes to infinity and they can form a percolated cluster over
the secondary network.
Next we will prove that when the primary poisson boolean

B(n,
»
r2j − ( rs2 )

2) is not percolated, there exists an infinite
vacant space in the primary network. We can first consider
this problem inversely. When the primary poisson boolean
B(n,

»
r2j − ( rs2 )

2) is percolated, there is an infinite chain

composed of the disk with radius
»
r2j − ( rs2 )

2 spanning over
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jr

sr

Fig. 2. Secondary users can only transmit in the vacant space. All the primary
nodes are at least rj distance away from secondary nodes in the percolated
cluster.

the whole network. Any secondary communication link cannot
traverse the chain and thus all the active secondary users will
probably not be connected as a whole. Adopting the standard
techniques in the continuum percolation, we map the poisson
boolean model into a discrete grid model to complete the
proof.
To begin with the construction, we partition the network

square into small squares with side length c = 1
2

»
r2j − ( rs2 )

2.
We define each small square to be open if there is at least one
primary user inside the small square. Otherwise, the square
is defined to be close. Thus, according to the poisson point
process, the open probability po for each small square is
independent and it satisfies that

po = 1− e
1
4nr

2
s(η

2− 1
4 ).

Then we add horizontal and vertical lines to connect the
vertices of the small squares and they form the discrete grid
G. For each square, two of its diagonal vertices will be
connected together and we call the diagonal an open edge
if the square where it is located is open. Otherwise, the edge
is close. When the poisson boolean model B(n,

»
(r2j − rs

2
2))

is percolated, there exists an infinite number of connected
open edges in G, denoted as Opath, with |Opath| representing
the corresponding number of edges contained. In contrast,
when B(n,

»
r2j − ( rs2 )

2) is not percolated, the number of any
connected open edges is finite. And in this case, we have that

lim
L→∞

Pr(|Opath| = L) = lim
L→∞

pLo 4 · 3L−1 → 0.

Thus we get that po < 1
4 .

For the following discussion, we construct a dual grid Gd

of the original one. The dual grid is formed by placing a
vertex at the center of each small square in the original grid.
Then we connected all the vertices in Gd with horizontal
and vertical lines, denoted by the dashed lines in Fig. 3.
The open edge in the dual grid is defined as those which
intersect with close edge in G. Hence, the open probability
for edge in Gd is 1−po. When the dual grid is not percolated,
then the number of connected open edges in Gd is finite
and they can be surrounded by a loop of connected open
edges in G. Let σ(2L) denote the number of loops composed
of 2L open edges. According to [8], σ(2L) is bounded by
σ(2L) ≤ (L − 1) · 32(L−1). And the probability that there

2

 p 1 nc
o e−= −

G

dG

Fig. 3. Discrete grid model G and dual grid Gd. Each edge in the grid is
open with probability po. When the dual grid is not percolated, there, any
given vertex in Gd can be surrounded by a loop of open edges in G.

exists such a loop is upper bounded by

Pr(
∞∑

L=2

σ(2L) ≥ 1) =
∞∑

L=2

p2Lo σ(2L) ≤ 9p4o
[1− 9p2o]

2
.

When po < 1
4 , the probability is smaller than 1. Thus, there

exists a positive probability that the dual grid is percolated.
Notice that the open edges in the dual percolation model
intersect with close edges in G located in small squares
without primary users. Thus, the percolation cluster in the dual
grid is located in the vacant space of poisson boolean model
B(n,

»
r2j − ( rs2 )

2) and its size goes to infinity. Hence, we

have proved that when B(n,
»
r2j − ( rs2 )

2) is not percolated,
there exists an infinite vacant space outside primary rejection
region.
Theorem 1 characterizes the restriction of the primary

network topology on the secondary communication links. As
communications in secondary network are limited by available
OSA, the characteristics of the secondary network are, to
a large extent, dependent on the value of primary node
density. When the primary node density is small, there are
sufficient communication opportunities for secondary users.
Most secondary users are located out of rejection region,
which enables them to communicate without spectrum con-
straints. Therefore, the impact of the primary network on
the secondary communications is negligible. However, when
the primary users occupy more communication bandwidth,
secondary users have to be turned off due to the higher primary
priority. The number of active nodes reduces when more users
are located in the rejection region and thus unable to transmit.
As a consequence of fewer active nodes, the connectivity of
the secondary network is greatly deteriorated.

VII. PERCOLATION DEGREE

Since the pioneering work by Meester et. al. in [8], perco-
lation theory has been demonstrated as a powerful technique
in analyzing connectivity as well as other network metrics.
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Different from the requirements for full connectivity that every
node in the network must be connected to each other, it is
only required in percolation theory that the majority of nodes
in the network are connected in the same cluster, under which
the network is defined as percolated. This revise in terms
of connectivity loosen the constraints on network topology
and therefore brings about appealing improvement on network
performances. However, most previous works only focus on
the phase transition phenomenon in the percolation whereas
the characteristics of communication links in the percolated
cluster still remains unclear. In previous sections, we have
analyzed the critical primary node density to allow percolation
in the secondary network. In this section, we will concentrate
on the discussion of the percolation degree of the secondary
network.

A. Lower Bound

Now we consider the asymptotic k-connectivity in the
secondary network and derive the lower bound of percolation
degree. The lower bound characterizes the minimum node
degree required on the secondary nodes in the percolated
cluster. The strict definition can be characterized as follows.

l∗ � inf{l : ∃ n < n∗ s.t. The percolation degree is l.}.
In this paper, we focus our discussion on the percolation

phenomenon in the secondary network, which means that
the secondary network is connected within a huge cluster.
However, the difference from full connectivity is that not
all the secondary nodes are connected as a whole. Instead,
it is only required that the number of nodes in the huge
cluster tends to infinity with the increase of m, which we will
denote as ζ(m) satisfying limm→∞ ζ(m) → ∞. Considering
the percolation degree of the secondary network, we aim to
derive the minimum number of neighbors when there are k
communication links between any two nodes in the percolated
cluster.
To compute the lower bound of the percolation degree, we

will first give a useful theorem put forward by Pensrose in
[13].
Theorem 2 (Pensrose [13]): In a dense network with node

density of λ, let μk(λ) denote the minimum transmission
radius that the network is k-connected. And denote by νk(λ)
as the minimum transmission radius for which the node degree
of the network is at least k. It satisfies that

lim
λ→∞

Pr(μk(λ) = νk(λ)) = 1.

According to the Poisson Boolean Model in [4], in a
randomly distributed network with poisson point process of
parameter λ, the probability that there are x nodes falling
in a region of area A is e−λA (λA)x

x! . Thus we can get the
probability that there are k nodes in the transmission range
of a node located at x. Denoting D(x) and N(x) as the node
degree and the number of of x, respectively, we have

Pr(D(x) = k) = (λπr2s )
k · exp(−λπr2s)

k!
.

And the mean number of points with node degree k is

E(N(x)|D(x) = k) = λ

∫
S
Pr(D(x) = k)dx.

Based on the result of Theorem 2, we can get the con-
nectivity degree of the percolated cluster by finding out the
minimum node degree of nodes in the cluster. Regarding the
minimum node degree of the network, Pensrose proved in [13]
that:
Theorem 3 (Pensrose [13]): Given a network with trans-

mission range rs, if k satisfies the following condition

lim
λ→∞

E(N(x)|D(x) = k − 1) = e−β,

then it follows that

lim
λ→∞

Pr(νk(λ) ≤ rs) = exp(−e−β).

Theorem 3 establishes a quantitative relationship between
the average number of nodes with node degree k and the prob-
ability of k-connectivity in the network. Jointly considering
Theorem 2 and Theorem 3, to achieve the connectivity degree
k in the percolated cluster, we must first find the minimum
transmission radius rs such that E(N(x)|D(x) = k−1) tends
to zero. This result is given in the following lemma.
Lemma 1: In a dense cognitive network, the asymptotic

transmission radius of which the secondary network to achieve
k-connectivity in the percolated cluster is

rs =

 
log ζ(m) + k log log ζ(m)

πζ(m)
.

Proof: From Theorem 3, the minimum transmission ra-
dius is determined by the mean number of points in the huge
cluster with node degree k − 1, which can be specified as

E = ζ(m)

∫
S

(ζ(m)S(x))k−1

(k − 1)!
e−ζ(m)S(x)dx. (1)

Here S(x) denotes the part of the transmission disk of x
located inside S. In the dense network model, there are some
nodes located near the boundary of the network area, leaving
the transmission disks of these nodes located partially outside
S. Hence the corresponding S(x) is smaller than πr2s . How-
ever, note that these nodes only exist in the rectangular border
area with size 1− (1 − 2rs)

2, which tends to zero compared
to the whole network area. In the percolated cluster, since we
only consider the connected huge component composed of an
infinite number of nodes, the nodes located near the boundary
with finite size can be neglected. Therefore we can simplify
the average number E as

E = ζ(m)
(ζ(m)S(x))k−1

(k − 1)!
e−ζ(m)S(x).

Substituting rs =
√

log ζ(m)+k log log ζ(m)
πζ(m) , we can get that E

tends to zero under the limit of m. This completes our proof
of Lemma 1.
The critical transmission radius of k-connectivity for sec-

ondary network percolation is smaller than that obtained in
[14]. The improvement comes from the fact that the boundary
effect is negligible in the percolated cluster where only the
node degree of the majority of the connected components are
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Fig. 4. Every secondary transmission disk can be covered by disk with
radius ρ centered at one vertex of G′.

considered whereas the nodes located near the border becomes
a bottleneck of the k-connectivity in [14]. Thus, the boundary
effect has little affection on the connectivity degree in the
percolated cluster.
Next we will begin to derive the percolation degree of the

secondary nodes in the percolated cluster. As is illustrated
in Fig. 4, we divide the network square into a grid G′

of side-length 2(ρ − 1)rs with the center of the square as
the origin, where ρ is a constant larger than 1. Then for
each secondary node in the network, it is at most at the
distance of (ρ − 1)rs away from one vertex of the grid. Let
M = ρ

(ρ−1) , we divide the vertices of the grid into M2

groups G′ = G′(i, j), i, j = 0, · · ·,M − 1, where G′(i, j) is
composed of nodes located at (i+k1M, j+k2M), k1, k2 ∈ Z.
Denote A(G′(i, j)) as the event that all the disks with radius
ρrs centered at vertices in G′(i, j) contains no more than l∗.
Note that since the number of groups is finite, we can deduce
that when A(G′(i, j)) occurs with probability approaching 1,
A(G′) is also an almost sure event.
Denote by N(i, j) as the number of disks in G′(i, j) and

D(i, j, n) (n = 1, · · ·, N(i, j),) as the disk in G′(i, j), with
|D(i, j, n)| being the number of nodes in the disk. Then the
probability of A(i, j) can be expressed by

Pr(A(G′(i, j))) = 1−
∑
n

Pr(|D(i, j, n)| > l∗). (2)

As the number of nodes located in D(i, j, n) is a random
variable following poisson distribution with parameter λD =
ρ2[log ζ(m) + k log log ζ(m)], applying Chernoff bound and
Stirling’s Formula we can get that when l∗ = eλD , the
following probability is sufficiently small.

Pr(|D(i, j, n)| > l∗) ≤ e−λD (eλD)l
∗

(l∗)l∗

=
1

(η(m))ρ2 (log η(m))kρ2 .

The disks in G′(i, j) are at least 2ρrs distance away from
each other, so N(i, j) can be bounded by N(i, j) ≤ 1

πρ2r2s
=

ζ(m)
ρ2[log ζ(m)+k log log ζ(m)] . Substituting the result back into
Equation (2) and employing union bound we get

Pr(A(i, j)) = 1− [log ζ(m) + k log log ζ(m)]−1

ρ2(ζ(m))ρ2−1(log ζ(m))kρ2 .

When m tends to infinity, the above probability tends to one.
Thus, the probability that all the transmission disks in the
secondary network contains no more than l∗ nodes tends to
one. Hence if every secondary user is connected to its l∗

nearest neighbors, the induced secondary network topology
is k-connected almost surely. This completes our proof of
Theorem 2, stating that the lower bound of the percolation
degree of secondary network to achieve k-percolation is
l∗ = eρ2[log ζ(m) + k log log ζ(m)].

B. Upper Bound

In the discussion above, we have considered the minimum
neighbor number for the secondary percolation cluster to
achieve k-connectivity. When there are a large number of
primary users inside the network, the transmission range of
most secondary users inside the network may shrink accord-
ingly at the border of the primary rejection disks. Thus the
nodes in the secondary percolation cluster must be connected
to more neighbors to ensure k-percolation. Considering the
boundary effect of primary rejection disks, in the following
we will derive the upper bound of the percolation degree.
From Theorem 1, when n < n∗ there is an infinite vacant

component in the primary network where secondary perco-
lated cluster can exist. When primary node density decreases,
there exists more vacant space in the network area where
secondary network is allowed for communication. Hence, the
opportunistic spectrum available for the secondary cluster is
different with regards to different primary node densities. This
results in adjustment of secondary users on their transmission
protocol to take better advantage of the spectrum as well as
ensure the network connectivity.
We give the following theorem for the upper bound of the

percolation degree.
Theorem 4: When n < n∗, let α = arcsin 1

2η , l∗ =

eρ2[log ζ(m) + k log log ζ(m)], then the minimum neighbor
number l for the secondary network to ensure k-percolation
satisfies that

1) when pc

(ηrs)2
< n < pc

r2s(η
2−1/4) , l = l∗/δ1, δ1 ∈

(cπ , cπ
′), where{
πcπ = α+ sinα− η2[2α− sin(2α)],

πcπ
′ = α+ sinα+ η2[2 sin(2α) + π − 4α];

2) when pc

[(η+1)rs]2
< n < pc

(ηrs)2
, l = l∗/δ2, δ2 ∈ [cπ

′, 1);
3) when n < pc/[(η+1)rs]

2, l can achieve l∗ with a high
probability.

Proof:
Similar to the discussion of the lower bound, as we only

consider the percolation connectivity, the number of nodes
located near the border of the network can be neglected since
it is sufficiently small compared to the total number of nodes
in the network. In the percolation phenomenon, it only needs
to be ensured that a sizable number of nodes are connected as
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Fig. 5. The distance between two rejection disk centers is 2R, R = γrs
and

√
η2 − 1

4
< γ < η. S1(R, rs, η) is composed of two parts.

a whole in a cluster. However, inside the network area where
primary users exist, the boundary effect near the rejection
disks cannot be neglected. This gives an explanation on why
the primary network has an impact on the percolation degree
of secondary network. Furthermore, by investigating this rela-
tionship we can gain a better understanding of the interaction
between the two networks coexisting in the same network area.
Now we will depict the cognitive network topology inside the
network area by considering three situations with regard to
different densities of the primary network.
First, when pc

(ηrs)2
< n < pc

r2s(η
2−1/4) , the network topology

is illustrated in Fig. 5. There is an infinite vacant space in the
Poisson Boolean Model B(n,R), rs

»
η2 − 1

4 < R < rj . In
this scenario, an intersection area exists between two neigh-
boring primary rejection disks in the percolated cluster almost
surely. And the average distance 2R between two neighboring
vertices satisfies the condition above. Denote S1(R, rs, η) as
the shaded area where the distance from all points inside this
region to a point of intersection of two rejection disks with a
distance of 2R (R = γrs,

»
η2 − 1

4 < γ < η) is less than rs.
Then the intersection area between the transmission disk of a
secondary node near the rejection region and vacant space is
reduced to S1(R, r, η).
When the primary node density becomes higher, the trans-

mission range of some secondary nodes decreases as a result
of the restriction by the primary topology. To investigate this
impact, we will analyze the value of S1(R, rs, η) regarding the
distance R between two rejection disk centers. As is illustrated
in Fig. 5, S1(R, rs, η) is composed of two separate parts. Let
α denote the constant vertex angle in the triangle with side rj
and base rs, as is noted in the right part of Fig. 5, and Ψ1 the
intersection area of two rejection disks. Then the area of the
shaded area can be written as

S1(R, rs, η) = S11(R, rs, η) + S12(R, rs, η)

= πr2s − r2s(π − α− sinα) − r2j [2α− sin(2α)] + Ψ1

= r2s(α+ sinα)− r2j [2α− sin(2α)− 2θR + sin(2θR)]
.
= c1r

2
s + 2r2jθR − r2j sin(2θR).

Notice that α is a constant, so c1 is also a constant which can
be expressed as c1 = α + sinα − η2[2α − sin(2α)]; θR =
arccos R

rj
= arccos γ

η and 0 < θR < arcsin 1
2η ≤ π

6 . Note

that n∗(η2 − 1
4 )r

2
s = nR2, we have γ =

»
n∗
n (η2 − 1

4 ), then

θR = arccos
»

n∗
n (1− 1

4η2 ). For simplicity, let δ1 = S1(R,r,η)
πr2s

denote the ratio of the shaded area to the transmission disk.
Computing the derivative of S1(R, rs, η) with respect to θR,
we get

dS1(R, rs, η)

dθR
= r2j [2− 2 cos(2θ)] ≥ 0.

Hence, S1(R, rs, η) is a monotone increasing function with the
increase of R. Let c1′ = α+ sinα+ η2[2 sin(2α) + π − 4α,
it satisfies that c1/π < δ1 < c1

′/π].
Due to the boundary effect from rejection region, the vacant

space where secondary transmitters are located is split into
two parts. The border area, denoted as SN1 is the space
near primary rejection disks, of which secondary nodes have
smaller valid transmission region. The left area, denoted as
SN2, is sufficiently far away from the primary nodes, making
the transmission region of secondary nodes located in SN2

unaffected by the primary network. As SN1 is around the
primary rejection disks, the area of SN1 is no larger than
nπ(rj+rs)rs. And the transmission region of secondary nodes
in this area is at least larger than S1(R, rs, η). For simplicity,
let δ1 = S1(R,r,η)

πr2s
denote the rate of the shaded area to the

transmission disk. Rewriting Equation (1), we have

ζ(m)

∫
S

(ζ(m)S(x))k−1

(k − 1)!
e−ζ(m)S(x)dx

≤ ζ(m)
(ζ(m)πr2s )

k−1

(k − 1)!
e−ζ(m)δ1πr

2
s · nπr2s(η + 1)

+ζ(m)
(ζ(m)πr2s )

k−1

(k − 1)!
e−ζ(m)πr2s

To ensure the k-connectivity of the secondary percolated
cluster, the above expression must tend to zero with the
increase of m. Recall the proof of Lemma 1, we can see that

when rs =
√

log ζ(m)+k log log ζ(m)
δ1πζ(m) , limm→∞ E → 0. Thus,

the transmission radius of secondary users has to be increased
with a factor 1

δ1
in order to ensure k-percolation in a denser

primary network with density of pc

(ηrs)2
< n < pc

r2s(η
2−1/4) .

To derive the percolation degree in this network topology,
we have to take into account the impact of primary restriction
on secondary neighbor degree. For every secondary user, the
probability that it has l neighbors located in its transmission
range is also determined by the probability that all the
primary users are at the distance of at least rj away from
its transmission region. And the number of secondary nodes
in D(i, j, n) is a poisson random variable with parameter
λD

′ = ρ
δ1
[log ζ(m) + k log log ζ(m)]. Thus, we have

Pr(|D(i, j, n) > l|) ≤ e−nπ(rs+rj)
2 · e

−λD
′
(eλD

′)l

ll

Similarly, we can get that when l = eλD
′ = eρ2

δ1
[log ζ(m) +

k log log ζ(m)], the l-nearest neighbor model is k-percolated.
When pc

[(η+1)rs]2
< n < pc

(ηrs)2
, we can see from the

scenario depicted in Fig. 4 that the distance between two
rejection disks becomes larger. However there is still an
intersection area between the transmission disk of an active
node and the rejection disks. Similarly, we denote the shaded
area as S2(R, rs, η), where ηrs < R < (η+1)rs. This area is
the part of a transmission disk outside RR, with the center of
the transmission disk being the midpoint of two rejection disk
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RR.

centers. For any active node, S2(R, rs, η) is the lower bound
of a transmission disk area outside RR.

S2(R, rs, η) = πr2s − r2j · 2θj − r2s · 2θs + 2Rh

= πr2s − r2j (2θj − sin 2θj)− r2s(2θs − sin 2θs)

= πr2s −
∞∑
i=1

(−1)i

(2i+ 1)!
[η2(2θj)

2i+1 − (2θs)
2i+1]r2s

≥ r2s(π − 4

3
η2θ3j −

4

3
tan3 θs)

∼ r2s [π − 4

3

η3

η + 1
θ3j ]

As is denoted in Fig. 6, θj = arccos γ2+η2−1
2γη , θs =

arccos γ2+1−η2

2γ , and η sin θj = sin θs. The last equality
holds when η 
 1 so that tan θs ∼ θs. Notice that
the last expression above is also a monotone function with
respect to θj . Thus we can get the range of S2(R, rs, η).Let
δ2 = S2(R,r)

πr2s
, then it is easy to get that c1′/π < δ2 < 1.

Similar to discussion of the first case, we can get that the
critical secondary transmission radius to achieve k-percolation

is rs =
√

log ζ(m)+k log log ζ(m)
δ2πζ(m) . And the percolation degree

satisfies that l = eρ2

δ2
[log ζ(m) + k log log ζ(m)].

When n gets even smaller, that is n < pc/[(η+ 1)rs]
2, the

whole area of a transmission disk of an active node is possibly
located inside the vacant component of the primary network.
Thus the percolation degree can reach the lower bound l∗. The
result shows that there is a threshold of primary node density
under which the impact of the primary network topology on
the percolation of the active cluster is negligible.
From Theorem 4, we can see that the lower bound of the

percolation degree l∗ of secondary network is restricted, to a
larger extent, by the size of the percolated cluster and the
connectivity degree in this cluster. As for the size of the
percolated cluster, it is influenced by the node densities of both
networks. When the primary users are sparsely distributed over
the network, they incur little impact to the secondary network,
where most of the secondary users can therefore transmit
without restriction from the primary network. Hence, a huge
percolated cluster can form and every secondary transmitter
belongs to it with probability independent of each other.
This corresponds to the scenario where the utilization rate
of licensed spectrum is extremely low. However, when the
primary node density becomes relatively higher, there will

1

A
B

* /l l

'cπ

cπ
/j cp p

12]+1)η(
η[ )4

1−2η(/2η

Fig. 7. The curve between the percolation degree and percolation probability
pj where pj = nr2j .

be more secondary users in the rejection region than that
in the sparse primary network. To ensure k-connectivity in
this network scenario, secondary users have to increase their
own spatial density to make sure there are enough relays
along the communication links. Also, when k increases, more
communication links are required between secondary nodes,
so secondary users must be connected to more neighbors for
information transmission.
For the upper bound, we consider the valid secondary

transmission range influenced by the primary node density.
The result varies according to different network topology.
From the discussion above, it is easy to know that denser
primary network has greater influence on the connectivity
behavior of the secondary network. Thus, it will be more
complicated for the cognitive users to adjust their transmission
activities in this network scenario. However, in the cognitive
network where primary spectrum utilization is extremely low,
the existence of secondary users can greatly help to take better
advantage of communication resources. And their communi-
cation activities are much freer compared to that in dense
primary network. There exists a threshold for the primary node
density below which the restrictions from the primary network
to the secondary one is negligible, making the analysis of
secondary network greatly simplified.
Moreover, in both cases, we consider under the condition

where the primary node density is lower than the critical
value proposed in Theorem 1. It is equivalent that in such
circumstance the primary network is relatively sparse, being
entirely possible that the distance is less than pc/[(η+1)rs]

2.
Therefore, we consider the mostly-likely-happen case to derive
the accordingly results.

VIII. DISCUSSION

The analysis of the percolation degree is mainly based on
the primary node density and the theoretical result is illustrated
in Fig. 7, showing the relationship between percolation degree
and the percolation probability. In the following we give
some intuitive explanations on our results. 1. Boundary Effect
Regarding the Network Square
From the derivation of the percolation degree in Section 7,

we can see that the boundary effect regarding the border of
the network is quite different from that in the case of full
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connectivity. To achieve full connectivity, it is required that
every node in the network has to be connected within at least
k communication links from any other nodes. As those nodes
located near the network border have fewer neighbors than
nodes whose transmission disk are totally located inside the
network area, their node degree becomes the bottleneck of
achieving the network connectivity degree. However, for the
percolated cluster, we only have to make sure that the majority
of the network are connected as a whole. On the other side, the
number of nodes located near the network border is sufficiently
small compared to the size of the whole network. Thus, the
node degree of these nodes is negligible, implying that the
boundary effect regarding the network border has no impact
on the percolation degree.
2. Boundary Effect Resulted from the Primary Network
For the secondary network, the valid area of their transmis-

sion disk is also determined by the primary network topology.
As primary nodes are scattered over the whole network, the
boundary effect therefore spreads to the intersection of the
two networks. The impact is similar to the boundary effect
at the border of the network area. As this border affects
more secondary users, the connectivity degree in the secondary
network is greatly abated. As a result, the percolation degree
becomes a function related to the primary node density.
From the curve we can see that there are two turning points

concerning the relationship between the percolation degree and
the primary node density. The upper bound l∗ is asymptotically
achievable when the primary node density is lower than the
critical value pc

[(η+1)rs]2
immediately. Point A shows that when

there is an intersection between RR and secondary transmis-
sion disk where the percolation degree decreases. And the
denser the primary network, the more quickly the percolation
degree decreases. This can be explained in the way that the
area of the intersection between the two networks increases
more quickly in denser primary network. When the primary
node density is higher than pc

(ηrs)2
, as is pointed out at B,

there is no spectrum access available between adjacent primary
transmitters, leading to dramatic decrease of the percolation
degree. Also the denser the primary network, the more quickly
it decreases. When n > n∗, percolation cannot be achieved
in the secondary network because there is no infinite vacant
component in the primary network and the secondary clusters
can only form with finite size.
Our results are applicable to the case of one-connectivity

by setting k = 1 since the corresponding results are close to
that obtained under one-connectivity in previous literatures,
up to a factor of log logn. Although obtained under the two
dimensional unit-area square, our results can also be employed
to analyze the scenarios in higher dimensional space, such
as 3D space, which is mainly addressed in [11], [15]. Many
results derived in this paper can be directly generalized to 3D
space. However, as neighbors of a single node may scatter in
three different dimensions, we can no longer limit our analysis
to the case of two objects but consider the space deployment
of the nodes instead. We will leave this as our future work.
Moreover, the assumption that the primary network is static

can be relaxed. In the static setting, the nodes are not allowed
to use store and forward strategies, which enables the topology
changes over time. As many realistic traces demonstrate that

nodes are usually moving around rather than staying static,
it remains interesting how connectivity performance will be
like in such mobile cases. And we will also consider it as our
future work.

IX. CONCLUSION

We consider the cognitive radio networks where the pri-
mary and secondary networks are overlapped in a unit-area
square following independent poisson point processes. Due to
the heterogeneity of different network priorities of spectrum
utilization as well as other communication resources, the
connectivity of secondary network is restricted by those net-
work parameters. While the percolation phenomenon exhibits
a phase transition that the majority of the nodes in the network
are connected immediately in a huge cluster composed of
an infinite number of nodes spanning the whole network
area, we further explore the nearest number of neighbors in
the percolated cluster when there are k vertex disjoint paths
between any two of them. We analyze the primary network
topology and derive the upper bound of primary node density
where percolation can be achieved at the secondary network..
Then we focus on the discussion of the percolation in different
cognitive network deployments. Our results give a closed-form
expression of the percolation degree in the secondary network
concerning various primary node density. The work provides
a method to ensure the connectivity strength of percolation in
the network and sheds light on the analysis of fault tolerance
in cognitive networks.
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