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ABSTRACT
Social network de-anonymization, which refers to re-identifying

users by mapping their anonymized network to a correlated net-

work, is an important problem that has received intensive study

in network science. However, it remains less understood how net-

work structural features intrinsically affect whether or not the

network can be successfully de-anonymized. To find the answer,

this paper offers the first general study on the relation between de-

anonymizability and network symmetry. To this end, we propose to

capture the symmetry of a graph by the concept of graph bijective

homomorphism. By defining the matching probability matrix, we

are able to characterize the de-anonymizability, i.e., the expected

number of correctly matched nodes. Specifically, we show that for

a graph pair with arbitrary topology, the de-anonymizability is

equal to the maximal diagonal sum of the matching probability

matrix generated from homomorphisms. Due to the prohibitive

cost of enumerating all possible homomorphisms, we further ob-

tain an upper bound of such de-anonymizability by counting the

orbits of each of the two graphs, which significantly reduces the

computational cost. Such a general result allows us to theoretically

obtain the de-anonymizability of any networks with more specific

topology structure. For example, for any classic Erdős-Rènyi graph

with designated 𝑛 and 𝑝 , we can represent its de-anonymizability

numerically by calculating the local symmetric structure that it

contains. Extensive experiments are performed to validated our

findings.
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1 INTRODUCTION
As the popularity of social networks increases, the privacy of per-

sonal information in social networks becomes an issue of great

concern. Concealing personal identity in social network is one of

the most common methods to protect personal information, but

it is insufficient for privacy protection since adversaries may use

correlated side information across multiple networks to uncover

the identity of anonymous user. Such re-identification process us-

ing auxiliary correlated information is called Social Network De-
anonymization. The problem is initially proposed by Narayanan

and Shimatikov [16]. In the past decades, a large number of works

[16][19][14][11][3][13][9][18][24][4][20] have emerged focusing

on the de-anonymization problem with different aspect.

In this work, our focus is on an important branch of de-anonymization

problem: seedless de-anonymization. In seedless de-anonymization,

the attacker needs to re-identify the user identity in a published

network using an auxiliary network with full identity information.

The published network is completely anonymous, where no
pre-identified nodes (i.e. the so-called seeds) are given. The
correlation between two networks only lies in the similarity in

their topology, since these two networks are supposed to be from

the same underlying relationship network. The attacker aims to

uncover the identities in this published anonymous network by

matching the users in the published network to those in the auxil-

iary network.

Various algorithms for seedless de-anonymization have been

proposed [16][19][14][13][9][18][24][4]. Unfortunately, such algo-

rithms may occasionally fail to perfectly de-anonymize the pub-

lished network due to the natural characteristics of the network

itself. Further, many works [3][11][9] have discussed that under

some circumstances, no algorithm can successfully re-identify the

users in the network. We thus use the term de-anonymizability
to describe the accuracy with which a de-anonymization attack can

(at most) achieve upon certain network.

However, it has not yet been well understood how network

structural features intrinsically affect the de-anonymizability of

the graph. Most previous works focused on proposing certain al-

gorithms to solve de-anonymization problems in the context of

some network model, and even analyzed their performance for

certain classes of networks. However, to the best of our knowledge,

no previous work gives comprehensive analysis on the phenom-

enon that some kinds of networks cannot be de-anonymized by

any algorithm. First, all of the previous works were based on the

assumption that the graphs are generated by classical network mod-

els, e.g. classical Erdős-Rènyi network [16][19][13][9], correlated

Erdős-Rènyi network model [18][24][4] and power law model [14],

which may not represent real networks. Second, almost all of the

previous studies [16][19][14][13][9][18][24][4] only focus on the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Mobihoc ’20, October 11-14, 2020, Online Benjie Miao, Shuaiqi Wang, Luoyi Fu and Xiaojun Lin

asymptotic regime, i.e. the regime where the probability of success-

fully matching all nodes approaches either 1 or 0, as the number

of nodes approaches infinity, while there are no non-asymptotic

results on de-anonymizability yet. In short, there is a need for a

more systematical, quantitative and non-asymptotic analysis on

de-anonymizability.

Therefore, in this paper, we provide the first study that system-

atically analyzes how graph structure characteristics will affect the

de-anonymizability, without restricting our assumption to any spe-

cific network model. We will obtain quantitative, non-asymptotic

results on de-anonymizability, which is defined as the maximum

number of nodes that one can expect to correctly match in the

given network for any de-anonymization algorithms.

In particular, we are interested in how the symmetry of a graph

can affect the accuracy of de-anonymization. The idea of studying

symmetry is intuitive, since attackers have no way to re-identify

the symmetric nodes using only structural information. However,

a thorough understanding on the relationship between symmetry

and de-anonymizability remains elusive. In particular, how should
we measure and describe the degree of symmetry of an arbitrary
graph? What is the exact quantitative relationship between symmetry
and de-anonymizability? In this paper, we aim to answer these two

problems.

Specifically, in this paper we define the degree of symmetry of

a graph by generating a matching probability matrix using the

concept of graph bijective homomorphism. It then allows us to

build the relationship between symmetry and de-anonymizability

in general graphs. This result enables us to predict the maximum

expected number of correctly-matched nodes for any algorithm,

given any instance of a de-anonymization problem. Although the

exact algorithm implementing such predictions incurs exponential

complexity, we develop a practical algorithm to obtain an upper

bound of such de-anonymization by finding graph automorphisms

and counting the number of orbits of each graph, which overcomes

the exponential time complexity of the original exact algorithm.

Further, we conduct a case study on Erdős-Rènyi network model

to apply such general results to a more specific situation. We also

conduct experiments to verify our result.

Our main contributions are:
(1) We conduct the first theoretical study on de-anonymizability

through the lens of symmetry. We precisely capture the structural

similarity between two social networks by generating a matching

probability transition matrix, using the concept of graph bijective

homomorphisms.

(2) Based on these concepts, we proposed a method that quanti-

tatively determines the de-anonymizability of given networks. Our

method can find the maximum expectation number of correctly

matched nodes, which is equal to the maximum diagonal sum of

the matching probability matrix that we define. Then, by defin-

ing homomorphism transition matrix, we build the relationship

between symmetry and de-anonymizability. Our method is system-

atic, general, and non-asymptotic. It can be applied to any general

de-anonymization problem without depending on any specific net-

work model.

(3) To overcome the exponential time complexity of finding all

homomorphisms, we propose an method to obtain an upper bound

of the de-anonymizability of any given de-anonymization problem.

We prove that the number of orbits in each graph can serve as an

upper bound of de-anonymizability, and we propose such algorithm

accordingly which finds all the graph automorphisms and counts

the number of orbits in each graph. This method is also general

and can be exerted within practical time consumption.

(4) We apply the general method to the analysis of classical net-

work model. As a case study, we analyzed the de-anonymizability

of Erdős-Rènyi graph with any given parameters 𝑛 and 𝑝 . By enu-

merating the local symmetric structure in Erdős-Rènyi model, we

obtain a numerical upper bound on de-anonymizability in Erdős-

Rènyi graph. We also gave proof on the correctness by illustrating

the fact that in the giant component of a supercritical Erdős-Rènyi

graph, the number of symmetric nodes is of the order 𝑜 (1). All the
results above are verified by extensive experiment results.

The remainder of the paper is organized as follows: In Section

2, we survey previous works on the topic of de-anonymization,

de-anonymizability and symmetry. In Section 3, we introduce the

model for de-anonymization and problem formulation for de-anonymizability,

and also introduce some symmetry-related concepts. Section 4

demonstrates our main result, i.e., the method of obtaining the de-

anonymizability on general graphs. In Section 5, we conduct a case

study in the context of Erdős-Rènyi graph, in which we extend our

general method to special prior network model conditions. Section

6 contains the experiment verification and result. We conclude with

some discussion in Section 7.

2 RELATEDWORK
2.1 De-anonymization Algorithms
Narayanan and Shimatikove [16] first proposed de-anonymization

problem. They formulated this problem and proposed a generic

algorithm based on network structure information with the help

of seed nodes, i.e. pre-identified node pairs that are known to be

correctly matched. However, in many situations, it is difficult to

obtain such seed nodes due to the limited access to user profiles

[9] [24]. Pedarsani and Grossglauer [19] first studied the seedless

de-anonymization problem in the context of Erdős-Rènyi model,

and they took the number of mismatched edge as the objective

function. A different cost function based on Maximum a Posterior

(MAP) was proposed in [17] and also used in [9] [24]. Recent works

for correlated Erdős-Rènyi networks were reported in [20] [4];

Nitish and Silvio also proposed algorithm in [14] for the preferential

attachment (PA) model.

2.2 De-anonymizability
Some networks are difficult to de-anonymize due to their inherent

topoligical structure. Along with their problem formulation and al-

gorithm, Pedarsani and Grossglauser [19] also approached the prob-

lem of finding theoretic conditions for successful de-anonymization.

Cullina and Kiyavash [3] further investigated the conditions under

which a pair of correlated Erdős-Rènyi graphs can be correctly

matched. However, most of these studies focus on the asymptotic

regime, i.e., when the probability of correctly matching all nodes

goes to either 1 or 0, as the number of nodes approaches infinity.

Further, they mostly base their studies on the assumption of classi-

cal network models such as Erdős-Rènyi [17][9] and preferential

attachment[14].
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The concept of de-anonymizability was also proposed by Ji

et al. [10] [11] [12], which is a metric to describe the accuracy

that a de-anonymization attack can achieve. Although the orig-

inal intention of our proposing de-anonymizability is the same,

the de-anoymizability in our paper has a different definition from

theirs. The metric that we consider here is the performance of de-

anonymization algorithm in non-asymptotic situation. We aim

to provide a quantitative characterization of de-anonymizability

by obtaining the maximum expected number of correctly mapped

nodes of a de-anonymization problem.

2.3 Symmetry and De-anonymization
Symmetry is a widely discussed topic in mathematics, especially in

abstract algebra. Many concepts, like isomorphism, automorphism,

homomorphism, etc., are used to describe different types of sym-

metry in algebra structure. Related contents can be found in any

textbook on abstract algebra, and are beyond the scope of this work.

In the context of graph, Graph Isomorphism, Graph Automorphism

and Graph Homomorphism are also classical topics[2][6], which

show potential to describe the degree of symmetry of graphs.

[25][15] leveraged symmetry to anonymize the network. They

proposed techniques to add symmetry to a network in order to

protect personal information from structural attack. However, no

previous work has applied symmetry to the theoretical analysis

of de-anonymization problem. To the best of our knowledge, this

paper is the first to build the relationship between symmetry and

de-anonymizability in general graphs.

3 PRELIMINARY DEFINITION AND CONCEPT
3.1 De-anonymization Problem
Let𝐺 = (𝑉 , 𝐸) be the underlying social network, where𝑉 is the set

of nodes, and 𝐸 is the set of edges. The underlying network indicates

the true relationship among all users in𝑉 , but the true relationship

is invisible to the attacker. We further define 𝐺1 = (𝑉1, 𝐸1) as the
published network and 𝐺2 = (𝑉2, 𝐸2) as the auxiliary network.

The published network is completely anonymous, meaning that

no identity information is given of any node in 𝐺1. In contrast, in

auxiliary network, each node in𝐺2 may have a name label which

is available to the attacker. Similar to most previous work [11][9],

we suppose that both 𝐺1 and 𝐺2 have the same node set with G.

Further, we denote the vertex in 𝐺 as 𝑉 = {1, 2, . . . , 𝑛} [3].
We suppose the 𝐺1 and 𝐺2 are generated via independent edge-

sampling and random vertex permutation from 𝐺 . By independent

edge-sampling we mean that for graph 𝐺𝑖 (𝑖 = 1, 2), each existing

edge in𝐺 is sampled to𝐺𝑖 i.i.d. with a sampling rate 𝑠𝑖 . That is, for

each edge 𝑒 ∈ 𝐸, we have

𝑃 (𝑒 ∈ 𝐸𝑖 ) =
{
𝑠𝑖 if 𝑒 ∈ 𝐸
0 if 𝑒 ∉ 𝐸

(1)

In this sense, the underlying network𝐺 is the only bridge between

𝐺1 and 𝐺2, though it is invisible to the adversaries. We then ran-

domly shuffle all the nodes in 𝑉1 and 𝑉2 independently and uni-

formly across all possible permutations.

Given the published network 𝐺1 and the auxiliary network 𝐺2,

the problem of social network de-anonymization aims to match the

node in𝐺1 to the nodes in𝐺2 using only the structural information

of 𝐺1 and 𝐺2 as side information. Formally, we need to find a

permutation 𝜎 : 𝑉1 ↦→ 𝑉2. For 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2, 𝜎 (𝑣1) = 𝑣2
means the node 𝑣1 ∈ 𝑉1 and the 𝑣2 ∈ 𝑉2 derive from the same node

in the underlying network (and since we have the name label of 𝑣2
in 𝑉2, we can then deduce the name label of 𝑣1 in 𝑉1). The random

shuffling of all nodes in 𝑉1 and 𝑉2, respectively, ensures that the

attacker can only use structural information to find 𝜎 .

Unlike most of the previous work, in this paper we do not as-

sume that𝐺 is generated by some specific network model. We only

assume the sampling rates 𝑠1, 𝑠2 to be known. This assumption is

reasonable since they can be obtained from statistical methods.

The parameters defined above can be simply denoted by a pa-

rameter set 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2), which we will use to state a de-

anonymization problem. In the rest of the paper we may simply

refer to a de-anonymization problem as a de-anonymization problem
with parameter 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2) without ambiguity.

3.2 De-anonymizability
Predicated on Section 3.1, in the sequel we propose the concrete

quantification of de-anonymization accuracy, denoted asde-anonymizability
formally. Note that de-anonymizability will be the principal met-

ric discussed in this paper, which measures the potential accuracy

of a de-anonymization problem. To this end, we denote the true

permutation between 𝐺1 and 𝐺2 as 𝜎0. Note that 𝜎0 is a random
variable due to the lack of ground truth information. In other
words, although there is a unique true mapping between 𝐺1 and

𝐺2, this true mapping is unknown to the attacker, who can only hy-

pothetically choose among many similar seemingly true mappings.

Counter-intuitive at the first sight, this claim can be illustrated by

the following two examples:

1. Suppose 𝐺 = 𝐾𝑁 (complete graph) and 𝐺1 = 𝐺2 = 𝐺 (i.e.

𝑠1 = 𝑠2 = 1). Given𝐺1 and𝐺2, any permutation 𝜎 could be the true

mapping assuming that adversaries have no information other than

their topology. More concretely, 𝜎0 is a random variable satisfying

𝑃 (𝜎0 = 𝜎) = 1

𝑁 !
for any permutation 𝜎 from 𝑉1 to 𝑉2.

2. Suppose𝐺1,𝐺2 are given in Figure 1. Two possible underlying

networks 𝐺 and 𝐺 ′
are shown, and we cannot tell which to be the

true underlying network. As a result, different ways of matching

from𝐺𝑖 (𝑖 = 1, 2) to𝐺 (or𝐺 ′
) exist, and it is uncertain which one is

true. We can see that even 𝐺1 itself is asymmetric[7], the process

of sampling will still bring uncertainty to the de-anonymization.

To be more concrete, for any de-anonymization problem with

parameter set 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2), let Π = {𝜋} denote all the permu-

tations from 𝑉1 to 𝑉2. For each de-anonymization problem, there

exists a probability distribution of the true mapping 𝜎0, denoted as

𝑃 (𝜎0 = 𝜋 |𝜃 ) for all 𝜋 in Π. One of the main focuses in the rest of this

paper is to study ways to calculate such probability distribution.

For any two permutations 𝜋1,𝜋2 from𝑉1 to𝑉2, we denote𝑁 (𝜋1,𝜋2)
as the number of nodes in 𝑉1, each of which, under 𝜋1 and 𝜋2, has

the same image in 𝑉2. Formally, we have
1

𝑁 (𝜋1,𝜋2) =
∑

𝑣∈𝑉 ,𝜋1 (𝑣)=𝜋2 (𝑣)
1 (2)

1
The notation 𝑣 ∈ 𝑉 in the formula is equivalent to 𝑣 = 1, 2, . . . , 𝑛. At times, we

interchange these two notations in this paper, especially in the subscript of summation

notation.
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Figure 1: Uncertainty From Sampling.𝐺1 and𝐺2 are known,
but multiple underlying networks (including 𝐺 and 𝐺 ′) is
feasible, and can be the true underlying network.

Then, for any permutation (as a possible solution to the de-

anonymization problem), the expectation of the number of correctly

matched nodes 𝜎 , denoted as 𝐸𝜎 |𝜃 , can be calculated by

𝐸𝜎 |𝜃 =
∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃 )𝑁 (𝜎,𝜋 )

Under the circumstance without ambiguity, we use 𝐸𝜎 to refer

to the expectation. Intuitively, 𝐸𝜎 is the expectation of the number

of correctly mapped nodes when 𝜎 is exerted to the anonymous

network 𝐺1.

Among all possible permutations 𝜎 , a best permutation 𝜎∗ for
a de-anonymization problem is such a permutation that maxi-

mizes the expectation of the number of correctly-mapped nodes,

which can be expressed as 𝜎∗ = argmax𝜎 ∈Π 𝐸𝜎 . And the expec-

tation 𝐸𝜎∗ is the maximum expectation of the number of success-

fully de-anonymized nodes. We define de-anonymizability of a

de-anonymization problem as 𝐸𝜎∗ , which is a performance upper

bound of any de-anonymization algorithm on this de-anonymization

problem. To be concrete, we have the following definition:

Definition 3.1 (De-anonymizability). Given a de-anonymization

problem with parameter 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2), the true mapping 𝜎0
is a random variable with probability distribution 𝑃 (𝜎0 = 𝜋 |𝜃 ) for
any 𝜋 in Π, all the permutations from 𝑉1 to 𝑉2. (One of) the best

permutation 𝜎∗ is

𝜎∗ = argmax

𝜎
𝐸𝜎 = argmax

𝜎

∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃 )𝑁 (𝜋,𝜎0)

where 𝜎 is any permutation on 𝑉 . The de-anonymizability of this

problem is defined as 𝐸𝜎∗ . It reaches the maximum expectation of

the number of correctly matched nodes over all permutations on𝑉 .

As mentioned, de-anonymizability will be our primary focus

throughout the rest of the paper.

3.3 Symmetry
Intuitively, symmetry property determines de-anonymizability of

the networks fundamentally. To better demonstrate this intuition,

we can first study the fully sampled case where the sampling rate

𝑠1 = 𝑠2 = 1. In this case, 𝐺1 = 𝐺2 = 𝐺 . As long as the attacker has

known that the underlying graph is fully sampled, he can attack

this network, i.e. mapping 𝐺1 to 𝐺2 by relabeling 𝐺1 (we denote

the graph after relabeling as 𝐺 ′
1
) such that each node pair, as long

as they have the same labels in 𝐺 ′
1
and 𝐺2, keeps the existence or

absence of edge between them. It is easy to see that this mapping

process is equivalent to finding a graph isomorphism[2] from 𝐺1

to𝐺2. However, multiple isomorphisms from𝐺1 to𝐺2 may exist,

and the attacker cannot judge which one to be the ground truth.

The best thing he could do is to ‘make a guess’; in other words,

any isomorphism has a possibility to be the true mapping from

𝐺1 to 𝐺2. Therefore, whether multiple isomorphisms exist from

𝐺1 to 𝐺2 determines the de-anonymizability of this fully sampled

de-anonymization problem.

Since𝐺1 and𝐺2 are the same in structure in fully sample case,

finding isomorphisms between𝐺1 to𝐺2 is then equivalent to find-

ing graph automorphisms[2] of 𝐺 (also 𝐺1 or 𝐺2). Interestingly,

the number of automorphisms of a graph is indeed an indicator

of symmetry [21]. Therefore we can come to the conclusion that

symmetry can affect the de-anonymizability of a given problem.

To dive more deeply into its essence, the reason why existence

of multiple automorphisms affects the de-anonymizability lies in

that, to some of the node in 𝐺1, it has a probability distribution to

be mapped to more than one node in 𝐺2 by the true mapping. For

example, if there are two isomorphisms from𝐺1 to𝐺2, and the node

𝑣𝑖 in 𝐺1 is mapped to 𝑣 𝑗 and 𝑣𝑘 in 𝐺2 by these two isomorphisms

respectively, since both isomorphisms have the possibility to be

the true mapping 𝜎0, whether 𝑣𝑖 is mapped to 𝑣 𝑗 or 𝑣𝑘 is also not

deterministic, and thus there is a probability distribution of the

node in 𝐺2 that 𝑣𝑖 is mapped to. To this end, a good indicator of

graph symmetry can be the probability distribution of the node

image in 𝐺2 of each node in 𝐺1.

Similarly, we can generalize this concept of symmetry to any de-

anonymization problem, as summarized in the following definition:

Definition 3.2 (Symmetry of a de-anonymization problem). We

quantify the symmetry of a de-anonymization problem𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2)
by the probability distribution that each node in𝐺1 will be mapped

to the each node in𝐺2 by the true mapping 𝜎0. Concretely, the sym-

metry of a problem can be organized into a 𝑛-by-𝑛 matrix (where

𝑛 = |𝑉1 | = |𝑉2 |)𝑀 = 𝑀𝑖 𝑗 , where𝑀𝑖 𝑗 =
∑
𝜋 ∈Π 𝑃 (𝜎0 = 𝜋 |𝜃 )1{𝜋 (𝑖) =

𝑗}. We denote the matrix𝑀 as the matching probability matrix. In-
tuitively, the element𝑀𝑖 𝑗 is equal to the probability that node 𝑖 in

𝑉1 is mapped (by the true mapping) to node 𝑗 in 𝑉2.

We claim that there is direct link between de-anonymizability

and this matching probability matrix. In order to prove this claim,

the concept of doubly stochastic matrix needs to be introduced. A

doubly stochastic matrix [22] is a square matrix with nonnegative

real entries and the sum of the elements in each row and each

column is equal to 1.

Proposition 3.3. A matching probability matrix is a doubly sto-
chastic matrix.

Proof. Obviously each element in𝑀 is nonnegative. Also,

𝑛∑
𝑗=1

𝑀𝑖 𝑗 =

𝑛∑
𝑗=1

∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃 )1{𝜋 (𝑖) = 𝑗}

=
∑

𝜋 ∈Π |𝜃
𝑃 (𝜎0 = 𝜋)

𝑛∑
𝑗=1

1{𝜋 (𝑖) = 𝑗} =
∑

𝜋 ∈Π |𝜃
𝑃 (𝜎0 = 𝜋) = 1
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Therefore, the summation of the elements in each row is equal to 1.

Similarly, the summation of the elements in each row sum is also

equal to 1. The result follows. □

The diagonal sum of 𝑀 corresponding to a permutation 𝜎 on

{1, 2, . . . , 𝑛} of a doubly stochasticmatrix𝑀 is defined as

∑𝑛
𝑖=1𝑀𝑖𝜎 (𝑖) .

We nowdemonstrate that the expected number of correctlymatched

nodes of a permutation 𝜎 is equal to the diagonal sum of 𝑀 corre-

sponding to 𝜎 .

Proposition 3.4. Given a de-anonymization problem with 𝜃 , with
matching probability matrix 𝑀 . For any permutation 𝜎 from 𝑉1 to
𝑉2, the expectation of the number of correctly matched nodes of a
permutation 𝜎 is equal to the diagonal sum of𝑀 corresponding to 𝜎 .

Proof. By definition of the expectation of the number of cor-

rectly matched nodes of a permutation 𝜎 , we have

𝐸𝜎 |𝜃 =
∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃 )
∑

𝑣∈𝑉 ,𝜎 (𝑣)=𝜋 (𝑣)
1

=
∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃 )
𝑛∑
𝑖=1

1{𝜎 (𝑖) = 𝜋 (𝑖)}

=

𝑛∑
𝑖=1

∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃 )1{𝜋 (𝑖) = 𝜎 (𝑖)}

=

𝑛∑
𝑖=1

𝑀𝑖𝜎 (𝑖)

□

Corollary 3.5. Obtaining the maximum expectation (i.e. obtain-
ing the de-anonymizability) is equivalent to finding the maximum
diagonal sum [22] of the matching probability matrix𝑀 .

We denote ℎ(𝑀) as the maximum diagonal sum of a doubly sto-

chasticmatrix𝑀 . Corollary 3.5 thus suggests that de-anonymization

has close relationshipwith the symmetry of a given de-anonymization

problem through the quantity ℎ(𝑀).

3.4 The Concept of Graph Bijective
Homomorphism

Earlier we have pointed out that Graph Automorphism, which de-

termines the symmetry of a single graph, affects de-anonymizability.

In addition, in this paper we also use the concept of Graph Bijective
Homomorphism[6] to capture the symmetry between any pair of

given graphs. The Graph Bijective Homomorphism is defined as

follows:

Definition 3.6 (Graph Bijective Homomorphism). For two graph

𝐺1 = (𝑉2, 𝐸2) and 𝐺2 = (𝑉2, 𝐸2), if there is a bijection ℎ : 𝑉1 → 𝑉2
such that ∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸1 → (𝑓 (𝑣𝑖 ), 𝑓 (𝑣 𝑗 )) ∈ 𝐸2, then we say that

ℎ is a bijective homomorphism from 𝐺1 to 𝐺2. In this paper, we

slightly abuse the term homomorphism to refer to graph bijective

homomorphism.

4 DE-ANONYMIZABILITY IN GENERAL
GRAPHS

In Section 3 we have already built the link between symmetry and

de-anonymizability. Precisely, we can calculate de-anonymizability

directly after obtaining the matching probability matrix. Therefore,

in this section we aim to obtain the probability transition matrix of

a given problem 𝜃 .

4.1 Probability Distribution of Underlying
Network

Since the underlying graph 𝐺 is the mere link between 𝐺1 and 𝐺2,

we in this section derive the probability distribution of 𝐺 from a

Bayesian’s perspective. As a necessity of Bayes’ Rule, we assume a

prior probability of𝐺 , denoted as 𝑃 (𝐺). Notice that, this prior prob-
ability is a generalization of previous model-based assumption of de-

anonymization problem. We then derive the posterior probability

distribution of the underlying network 𝐺 when 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2)
is given.

Proposition 4.1. Given parameter 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2) of a de-
anonymization problem, for any graph𝐺 = (𝑉 , 𝐸), a prior probability
of𝐺 is given, denoted as 𝑃 (𝐺). The probability of its being the ground
truth underlying network is propositional to 𝑃 (𝐺) hom(𝐺1,𝐺) hom(𝐺2,𝐺) ((1−
𝑠1) (1 − 𝑠2)) |𝐸 | , where hom(𝐹,𝐺) is the number of graph bijective
homomorphisms from 𝐹 to 𝐺 . More precisely,

𝑃 (𝐺 |𝜃 ) = 1

𝐻
𝑃 (𝐺) hom(𝐺1,𝐺) hom(𝐺2,𝐺) ((1 − 𝑠1) (1 − 𝑠2)) |𝐸 |

where𝐻 =
∑
𝐺 ∈G 𝑃 (𝐺) hom(𝐺1,𝐺) hom(𝐺2,𝐺) ((1−𝑠1) (1−𝑠2)) |𝐸 |

is a normalization parameter.

Proof. Determining which graph to be the underlying network

is like an inferencing process, so it is reasonable to use Bayes’

Rule to deal with the probability. By Bayes’ Rule we can write the

probability of 𝐺 given 𝐺1,𝐺2 as:

𝑃 (𝐺 |𝐺1,𝐺2) =
𝑃 (𝐺1,𝐺2 |𝐺)𝑃 (𝐺)

𝑃 (𝐺1,𝐺2)
On the right side, 𝑃 (𝐺1,𝐺2) is a normalized factor and is identical

among different 𝐺 . Thus we have

𝑃 (𝐺 |𝐺1,𝐺2) ∝𝑃 (𝐺)𝑃 (𝐺1,𝐺2 |𝐺)
(0)
= 𝑃 (𝐺)𝑃 (𝐺1 |𝐺) (𝐺2 |𝐺)
(1)
= 𝑃 (𝐺) hom(𝐺1,𝐺)𝑠 |𝐸1 |

1
(1 − 𝑠1) |𝐸 |− |𝐸1 |

hom(𝐺2,𝐺)𝑠 |𝐸2 |
2

(1 − 𝑠2) |𝐸 |− |𝐸2 |

∝𝑃 (𝐺) hom(𝐺1,𝐺) hom(𝐺2,𝐺) ((1 − 𝑠1) (1 − 𝑠2)) |𝐸 |

In formula, (0) holds because𝐺1 and𝐺2 are independent samplings

from 𝐺 . (1) holds because there are hom(𝐺𝑖 ,𝐺) ways to produce

𝐺𝑖 from 𝐺 by sampling and vertex permutation. □

The probability distribution of the true mapping 𝜎0 can be ex-

pressed by a total probability formula with known probability of𝐺 ,

which is

𝑃 (𝜎0 = 𝜋 |𝜃 ) =
∑
𝐺 ∈G

𝑃 (𝐺 |𝜃 )𝑃 (𝜎0 = 𝜋 |𝜃,𝐺)

Therefore in the following section we focus on 𝑃 (𝜎0 = 𝜋 |𝜃,𝐺),
the probability distribution of the true mapping when both the

problem and the 𝐺 is given.
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4.2 Probability Distribution of True Mapping
with Known Underlying Network

Due to the existence of the underlying network𝐺 , the permutation

from𝐺1 to𝐺2 is not enough for our analysis. Therefore, we analyze

the problem via matching 𝐺1 and 𝐺2, respectively, to 𝐺 . The final

mapping from 𝐺1 to 𝐺2 is a composition of these two mappings.

Since𝐺𝑖 (𝑖 = 1, 2) is sampled from𝐺 , a feasible mapping (from𝐺𝑖 to

𝐺) only needs to keep the edge existence, but not the non-existence

of the edge. In other words, the feasible mapping from 𝐺𝑖 (𝑖 = 1, 2)
to𝐺 should be a graph bijective homomorphism from𝐺𝑖 (𝑖 = 1, 2) to
𝐺 .

Recall that when we construct𝐺1 and𝐺2, we randomly permute

all vertices. Therefore, there exists a true mapping from 𝐺1 and 𝐺2,

respectively, to 𝐺 . We denote the true mapping from 𝐺1 to 𝐺 as 𝑓0,

and the mapping from𝐺2 to𝐺 as ℎ0. Then we have 𝜎0 = 𝑓0 ◦ ℎ−1
0
.
2

For the same reasonwith𝜎0, 𝑓0 andℎ0 are all random variables. Also,

We define 𝐹𝐺 = {𝑓1, 𝑓2, . . . , 𝑓𝑘1} as all the homomorphisms from𝐺1

to 𝐺 , and 𝐻𝐺 = {ℎ1, ℎ2, . . . , ℎ𝑘2} the homomorphisms from 𝐺2 to

𝐺 . Here 𝑘1 = hom(𝐺1,𝐺), 𝑘2 = hom(𝐺2,𝐺) represent the number

of homomorphisms from 𝐺1 and 𝐺2, respectively, to 𝐺 . Notice

that here 𝐹𝐺 , 𝐻𝐺 , 𝑘1, 𝑘2 are variant among different topological

realizations of 𝐺 . Proposition 4.2 claims that each homomorphism

has the same probability to be the true permutation from 𝐺1 and

𝐺2, respectively, to 𝐺 .

Proposition 4.2. Given underlying network 𝐺 and parameter
𝜃 of a de-anonymization problem, each homomorphism mapping 𝑓𝑖
from𝐺1 to𝐺 has the probability of 1

hom(𝐺1,𝐺) to be the true mapping

from 𝐺1 to 𝐺 . Similarly, each ℎ𝑖 has the probability of 1

hom(𝐺2,𝐺) to
be the true mapping from 𝐺2 to 𝐺 .

Proof. We only prove the proposition for 𝐺1. For 𝐺2 the proof

is the same.

Given 𝐺1 and 𝐺 , if a permutation 𝑓𝑖 is proved to be the true

mapping 𝑓0, then: (1) 𝑓𝑖 is a (graph bijective) homomorphism from

𝐺1 to𝐺 (otherwise𝐺1 cannot be sampled from𝐺) (2) In the sampling

process, for the edges in𝐺 , all the edges that exist in𝐺1 are ‘sampled

in’, while all other edges that are absent from 𝐺1 are ‘sampled out’.

By Bayes’ Law we can write that for any homomorphism 𝑓𝑖 from

𝐺1 to 𝐺 , the probability that 𝑓 is the true mapping 𝑓0 is:

𝑃 (𝑓0 = 𝑓𝑖 |𝐺1,𝐺) =
𝑃 (𝐺1 |𝑓0 = 𝑓𝑖 ,𝐺)𝑃 (𝑓0 = 𝑓𝑖 |𝐺)

𝑃 (𝐺1 |𝐺)
here, (a) 𝑃 (𝑓0 = 𝑓𝑖 |𝐺) is a constant since we have no preference for

any specific mapping; (b) 𝑃 (𝐺1 |𝐺) is a normalized factor and is iden-

tical among different 𝑓𝑖 ; (c) 𝑃 (𝐺1 |𝑓0 = 𝑓𝑖 ,𝐺) = (1 − 𝑠1) |𝐸 |− |𝐸1 |𝑠 |𝐸1 |
1

is constant since the edge number of 𝐺 and both 𝐺𝑖 are deter-

mined. Therefore, each homomorphism 𝑓𝑖 has the same probability

1

hom(𝐺1,𝐺) to be the true mapping when 𝐺 is given. Similar for

𝐺2. □

4.3 Main Result
The previous two sections provide all the evidence that we need to

obtain the de-anonymizability. In this section we combine previous

2
For a permutation 𝑓 , the inverse of 𝑓 , denoted as 𝑓 −1 , is a permutation that satisfies :

for each 𝑣, 𝑓 −1 (𝑓 (𝑣)) = 𝑣

results to obtain the de-anonymizability of a given de-anonymization

problem.

We define the homomorphism transition matrix from𝐺1 to𝐺 as

follows:

Definition 4.3 (Homomorphism TransitionMatrix). For a de-anonymization

problem 𝜃 and a given underlying network 𝐺 , the homomorphism

transition matrix from 𝐺1 to 𝐺 is

𝐶𝐺 =
1

ℎ𝑜𝑚(𝐺1,𝐺)


𝑐11 𝑐12 . . . 𝑐1𝑛
𝑐21 𝑐22 . . . 𝑐2𝑛
. . . . . .

𝑐𝑛1 𝑐𝑛2 . . . 𝑐𝑛𝑛


where 𝑐𝑖 𝑗 is the number of homomorphisms from 𝐺1 to 𝐺 that

matches the node 𝑖 in 𝐺1 to the node 𝑗 in 𝐺 . Formally, (𝐶𝐺 )𝑖 𝑗 =

𝑐𝑖 𝑗 =
∑

𝑓 ∈𝐹𝐺 1(𝑓 (𝑖) = 𝑗). Similarly, for 𝐺2, the homomorphism

transition matrix from 𝐺2 to 𝐺 is

𝐷𝐺 =
1

ℎ𝑜𝑚(𝐺2,𝐺)


𝑑11 𝑑12 . . . 𝑑1𝑛
𝑑21 𝑑22 . . . 𝑑2𝑛
. . . . . .

𝑑𝑛1 𝑑𝑛2 . . . 𝑑𝑛𝑛


where (𝐷𝐺 )𝑖 𝑗 = 𝑑𝑖 𝑗 =

∑
ℎ∈𝐻𝐺

1(ℎ(𝑖) = 𝑗).

Intuitively, the element 𝐶𝑖 𝑗 (resp. 𝐷𝑖 𝑗 ) in homomorphism transi-

tion matrix indicates the probability that node 𝑖 in 𝐺1 (resp.𝐺2) is

mapped to node 𝑗 in 𝐺 by the true mapping.

Now we can calculate the probability distribution of the true

mapping 𝜎0 in terms of 𝐶𝐺 and 𝐷𝐺 along with the probability of

underlying graph 𝑃 (𝐺 |𝜃 ).

Theorem 4.4. For a de-anonymization problem 𝜃 with a given
underlying network 𝐺 ,𝑀 =

∑
𝐺 ∈G 𝑃 (𝐺 |𝜃 )𝐶𝐺𝐷𝑇

𝐺

Proof. For each possible underlying network𝐺 , we define𝑀𝐺 =

𝐶𝐺𝐷
𝑇
𝐺
. For each element in𝑀𝐺 , we have

(𝑀𝐺 )𝑖 𝑗 =(𝐶𝐺𝐷𝑇
𝐺 )𝑖 𝑗 =

𝑛∑
𝑘=1

(𝐶𝐺 )𝑖𝑘 (𝐷𝐺 )𝑗𝑘

(0)
=

𝑛∑
𝑘=1

𝑃 (𝑓0 (𝑖) = 𝑘 |𝜃,𝐺)𝑃 (ℎ0 ( 𝑗) = 𝑘 |𝜃,𝐺)

(1)
=

𝑛∑
𝑘=1

𝑃 (𝑓0 (𝑖) = 𝑘, ℎ0 ( 𝑗) = 𝑘 |𝜃,𝐺)

(2)
= 𝑃 (𝜎0 (𝑖) = 𝑗 |𝜃,𝐺)
(3)
= E(𝑃 (𝜎0 = 𝜋 |𝜃,𝐺)1{𝜋 (𝑖) = 𝑗})
(4)
=

∑
𝜋 ∈Π

𝑃 (𝜎0 = 𝜋 |𝜃,𝐺)1{𝜋 (𝑖) = 𝑗}

In this formula, (0) holds due to the probability distribution we

obtained in Proposition 4.2, (1) holds due to the fact that𝐺1 and𝐺2

are independent samplings from𝐺 , (2) holds due to the fact that 𝜎0
is the composition of 𝑓0 and ℎ

−1
0
, (3) holds due to the fact that the

expectation of an indicator function is equal to its probability, (4)

holds due to the definition of expectation.

Therefore, each element in𝑀𝐺 , (𝑀𝐺 )𝑖 𝑗 is equal to the probability
that node 𝑖 in 𝐺1 to be matched to node 𝑗 in 𝐺2 when 𝐺 is given.
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Applying a total formula, each element in 𝑀𝑖 𝑗 is the probability

that node 𝑖 in 𝐺1 to be matched to node 𝑗 in 𝐺2. □

4.4 An Upper Bound of De-anonymizability
So far, we have already proposed our method to determine the

matching probability matrix of a de-anonymization problem. How-

ever, this method is costly in terms of time complexity due to two

reasons: (1) the method involves enumerating common supergraphs

𝐺 , which is exponentially expensive; (2) finding graph bijective ho-

momorphisms is proved to be NP-Complete in general case[8]. The

prohibitive cost drives the necessity of proposing more efficient

approximate algorithms. To this end, in this section we want to

bound the de-anonymization using the structural information of

only either 𝐺1 or 𝐺2.

Definition 4.5 (Orbit). For a graph𝐺 = (𝑉 , 𝐸), two nodes 𝑣1, 𝑣2 are
symmetric (automorphically equivalent) [23] (denoted as 𝑣1 ∼ 𝑣2)
if there exists an automorphism 𝑓 of 𝐺 such that 𝑓 (𝑣1) = 𝑣2. An
orbit is a subset of nodes. The orbit that a certain node 𝑣 belongs to

contains all the nodes that are symmetric to 𝑣 . Precisely, an orbit

O = {𝑣1, 𝑣2, . . . , 𝑣𝑖 } satisfies: if 𝑣 ∈ O ,then for any 𝑣 ′ ∼ 𝑣 , 𝑣 ′ ∈ O ,

According to Definition 4.5, intuitively, an orbit is a subset of

nodes, in which all nodes are internally symmetric.

A

B

E F

C

G H I

D

J K L

Orbit 1

Orbit 2 Orbit 3

Orbit 4 Orbit 5

Figure 2: An Illustration of Orbit

Lemmas 4.6 present some further properties regarding the orbit.

Lemma 4.6. [5] A graph𝐺 can be partitioned into several orbits.
That is, there exists a partition {O1,O2, . . . ,O𝑘 } of V such that for
each 𝑖 = 1, 2, . . . 𝑘 , O𝑖 is an orbit in 𝑉 .

We then define |𝑂𝑟𝑏 (𝐺) | = 𝑘 as the number of orbits contained

in 𝐺 (i.e. the number of partitions in Lemma 4.6). We now use the

concept of orbit to define the automorphism transition matrix, which
captures the symmetry of a single graph.

Definition 4.7 (Automorphism transition matrix). For a graph G,

the automorphism transition matrix A(G) is defined as

𝐴𝑖 𝑗 =

{
1

|𝑂𝑟𝑏 (𝑖) | 𝑗 ∈ 𝑂𝑟𝑏 (𝑖)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note that A is a symmetric matrix, since for any two nodes 𝑖, 𝑗 ∈
𝑉 , 𝑖 ∈ 𝑂𝑟𝑏 ( 𝑗) is equivalent to 𝑗 ∈ 𝑂𝑟𝑏 (𝑖) , which implies |𝑂𝑟𝑏 (𝑖) | =
|𝑂𝑟𝑏 ( 𝑗) |. Particularly, we denote 𝐴1 = 𝐴(𝐺1), 𝐴2 = 𝐴(𝐺2) as the
automorphism transition matrix of 𝐺1 and 𝐺2, respectively. The

following Figure 3 is an illustration of automorphism matrix.

12

3 4 5
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(a) A graph with three or-
bits, each color represents
an orbit
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(b) The automorphism tran-
sition matrix of the graph
on the left

Figure 3: An illustration of automorphism transitionmatrix

Automorphism transition matrix is used to capture the symme-

try within a graph. The following proposition shows that automor-

phism transition matrix can be used to obtain an upper bound of

the de-anonymizability.

Proposition 4.8. Given problem 𝜃 and an presumed underly-
ing network 𝐺 , let 𝐴1,𝐴2 be their automorphism transition matri-
ces of 𝐺1,𝐺2, respectively. Let 𝐶𝐺 , 𝐷𝐺 be the homomorphism tran-
sition matrix from 𝐺1 and 𝐺2, respectively, to 𝐺 . Then each ho-
momorphism transition matrix keeps invariant under the multipli-
cation of corresponding automorphism transition matrix. Precisely,
𝐶𝐺 = 𝐴1𝐶𝐺 , 𝐷𝐺 = 𝐴2𝐷𝐺

Proof. We only prove the result of 𝐺1, i.e. 𝐶𝐺 = 𝐴1𝐶𝐺 . The

proof for 𝐺2 is completely the same. Let 𝐶 ′ = 𝐴1𝐶𝐺 . Then

𝐶 ′
𝑖 𝑗 =

∑
𝑘∈𝑉

(𝐴1)𝑖𝑘 (𝐶𝐺 )𝑘 𝑗 =
𝑘∈𝑂𝑟𝑏𝐺

1
(𝑖)∑

𝑘∈𝑉

1

|𝑂𝑟𝑏𝐺1
(𝑖) |𝐶𝑘 𝑗

Here 𝑂𝑟𝑏𝐺1
(𝑖) represents the orbit in 𝐺1 that contains i. We can

see from the formula that the theorem holds if (𝐶𝐺 )𝑘 𝑗 = (𝐶𝐺 )𝑖 𝑗 for
any 𝑘 ∈ 𝑂𝑟𝑏𝐺1

(𝑖). In fact, the latter can be proved as follows:

Suppose 𝑖 and 𝑘 are in the same orbit (of𝐺1). That indicates that

there exists an automorphism 𝑓 (on𝐺1) that maps 𝑖 to 𝑘 (𝑓 (𝑖) = 𝑘).
Then for each homomorphism 𝜎 from 𝑖 (in 𝐺1) to 𝑗 (in 𝐺), there

exists a permutation 𝜎 ′ = 𝑓 ◦ 𝜎 . On one hand, 𝜎 ′ is a homomor-

phism, since𝐺1 keeps invariant under the action of 𝑓 . On the other

hand, 𝜎 ′ maps 𝑘 to 𝑗 . This suggests that for each homomorphism

that maps 𝑖(in 𝐺1) to 𝑗 (in 𝐺), there also exists a homomorphism

mapping 𝑘(in 𝐺1) to 𝑗 (in 𝐺), and vice versa. Therefore, the number

of homomorphisms that map 𝑖 to 𝑗 and map 𝑘 to 𝑗 is equal.

Recall that (𝐶𝐺 )𝑖 𝑗 = 1

𝑘1
𝑐𝑖 𝑗 , which is determined by the number

of homomorphisms that match 𝑖 (in 𝐺1) to 𝑗 (in 𝐺). Thus (𝐶𝐺 )𝑖 𝑗 =
(𝐶𝐺 )𝑘 𝑗 for any 𝑖 ,𝑘 in the same orbit. Therefore, 𝐶𝐺 = 𝐴1𝐶𝐺 . Simi-

larly 𝐷𝐺 = 𝐴2𝐷𝐺 . □

Corollary 4.9. The matching probability matrix𝑀 can be repre-
sented as:𝑀 = 𝐴1𝑀𝐴2.

Proof. 𝑀 is a linear combination of𝑀𝐺 , and for each𝑀𝐺 ,𝑀𝐺 =

𝐶𝐺𝐷
𝑇
𝐺
= 𝐴1𝐶𝐺𝐷

𝑇
𝐺
𝐴2. Since𝐴1 and𝐴2 are constant matrices within

a de-anonymization problem, the result follows. □

Notice that 𝐴1,𝑀 , 𝐴2 are all doubly stochastic matrices
3
. Then

Theorem 4.10 shows that the maximum diagonal sum of the product

3
We have proved previously that𝑀 is a doubly stochastic matrix. For𝐴1 and𝐴2 , the

result can be proved easily by the definition of automorphism transition matrix
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of two doubly stochastic matrices is no greater than that of any one

of them.

Theorem 4.10 (Theorem 4.1 in [22]). For two n-×-n doubly sto-
chastic matrices A and B, ℎ(𝐴𝐵) ≤ min(ℎ(𝐴), ℎ(𝐵)).

Corollary 4.11. For any 𝐺 , ℎ(𝑀) = ℎ(𝐴1𝑀𝐴2) ≤ ℎ(𝐴1) =

|𝑂𝑟𝑏 (𝐺1) |. Similarly ℎ(𝑀) ≤ |𝑂𝑟𝑏 (𝐺2) |.

Corollary 4.11 indicates that automorphisms in 𝐺1 or 𝐺2 can

determine the upper bound of the de-anonymizability of the de-

anonymization problem. Given 𝐺1, 𝐺2, the de-anonymizability of

the problem can not exceed the orbit numbers of𝐺1 and𝐺2. In other

words, as long as either 𝐺1 𝐺2 are highly symmetric, we cannot

expect too many nodes to be correctly de-anonymized.

5 A CASE STUDY: ERDŐS-RÈNYI MODEL AS
THE UNDERLYING NETWORK

Next, we conduct a case study of calculating de-anonymizability

in the context of Erdős-Rènyi network. Since most previous works

make this assumption, this part can be seen as an application of

our main theorem.

An Erdős-Rènyi network is characterized by two parameters 𝑛

and 𝑝 , where 𝑛 represents the number of nodes, and 𝑝 represents

the probability that any node pair has an edge in between, indepen-

dently of other node pairs. The de-anonymizability here refers to

the expectation of de-anonymizability of all graph instances
generated by the Erdős-Rènyi model. Since our method focuses on

the automorphism and homomorphism of a graph, the key is to

theoretically analyze the automorphism and homomorphism of an

instance generated by Erdős-Rènyi model. We will study the fully
sampled case in detail, and then briefly demonstrate how we deal

with the partially sampled case based on the result from the fully

sample case.

As [15] has mentioned, the symmetric structure in real-world

network is more likely to be ‘local’. Inspired by this phenomenon,

we enumerate some locally symmetric structures in Erdős-Rènyi

graph, calculate the expected number of times of the appearance

of each of them, and count the number of nodes that are mutually

symmetric (so that they are on the same orbit).

5.1 Fully Sampled Case
In fully sampled cases we only need to count the orbits of the graph

to get the de-anonymizability. In doing so, we introduce the concept

of motif to express the locally symmetric structure.

Definition 5.1. For a graph 𝐺 = (𝑉 , 𝐸), a motif is denoted by

𝑉𝑠 ⊂ 𝑉 , and we define 𝑇 (𝑉𝑠 ) = |𝑉𝑠 | − |𝑂𝑟𝑏 (𝑉𝑠 ) |, where |𝑂𝑟𝑏 (𝑉𝑠 ) |
is the number of orbits in the subgraph of 𝐺 that contains all the

nodes in 𝑉𝑠 . Notice that 𝑇 (𝑉𝑠 ) captures how many nodes in the

original graph 𝐺 are collapsed into orbits formed by the motif 𝑉𝑠 .

Thus, below we often refer to 𝑇 (𝑉𝑠 ) as the contraction of graph 𝐺

by the motif 𝑉𝑠 .

Here we focus on two most common kinds of motif (illustrated in

Figure 4) that have been verified to exist in many complex networks

[15]:

(1) Fruits in cherry-like structure: A set of 𝑘 nodes forms a ‘𝑘-

fruit cherry-like’ motif (in short ‘𝑘-fruit’) iff : (1) the degree of

each of them is one; (2) they are connected to the same node.

Proposition 5.2 shows the effect of all cherry-like structures

𝑆 in terms of 𝑇 (𝑉𝑠 ), 𝑉𝑠 ∈ 𝑆 .
(2) Small isolated components: A small isolated component in a

graph is simply a connected component whose size is less

than a threshold 𝑘 . To reduce the number of components

that we have to enumerate, we use the fact that almost all

the small components in Erdős-Rènyi graph are trees [1].

Here we choose the threshold 𝑘 = 7, of which the detailed

illustration of all these 13 types of tree components are avail-

able in Figure 5. Proposition 5.3 shows the effect of small

components 𝐶 .

67

85

1

23 4

9 10

11 12

Cherry-like Structure

Small Components

Figure 4: Two kinds of motifs we consider here.

1 2 3 4 5

6 7 8

9 10 11

12 13

Figure 5: Different types of small components.

Proposition 5.2. The expected total contraction by cherry-like
structures is:

𝑇 (𝑆) =
∑
𝑉𝑠 ∈𝑆

𝑇 (𝑉𝑠 ) =
𝑛∑

𝑘=2

(−1)𝑘
(
𝑛

𝑘

)
(𝑛−𝑘)𝑝𝑘 (1−𝑝)𝑘 (𝑛−𝑘−1)∗(1−𝑝) (

𝑘
2
)

Proof. In an Erdős-Rènyi graph𝐺 (𝑛, 𝑝), for 𝑘 nodes, the proba-

bility that all of them are connected only to the same node is

𝑃𝑉𝑠𝑘
= (𝑛 − 𝑘)𝑝𝑘 (1 − 𝑝)𝑘 (𝑛−𝑘−1) ∗ (1 − 𝑝) (

𝑘
2
)
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The expected number of ‘𝑘-fruits’ over the whole graph is

𝐸 |𝑆𝑘 | =
(
𝑛

𝑘

)
𝑃𝑠𝑘 =

(
𝑛

𝑘

)
(𝑛 − 𝑘)𝑝𝑘 (1 − 𝑝)𝑘 (𝑛−𝑘−1) ∗ (1 − 𝑝) (

𝑘
2
)

It is easy to see that the contraction by a 𝑘-fruit’ structure is 𝑘 − 1,

since all the ‘fruits’ in this structure are on the same orbit. However,

note that a ‘𝑘-fruit’ structure also contains
(𝑘
𝑖

)
‘𝑖-fruit’ substructure

for 1 ≤ 𝑖 ≤ 𝑘 . Due to this repetitive counting, we can not simply add

up (𝑘 − 1)𝐸 |𝑆𝑘 | for all 𝑘 to be the expected total contraction 𝑇 (𝑆).
Instead, we denote 𝐴𝑘 as the number of ‘pure 𝑘-fruit’ structures.
Here a ‘pure 𝑘-fruit’ structure means that it is not a substructure of

a ‘𝐾-fruit’ structure where 𝑘 < 𝐾 . Let 𝑎𝑘 = 𝐸 |𝑆𝑘 |. Then, we have

𝐴𝑘 = 𝑎𝑘 −
𝑛∑

𝑖=𝑘+1

(
𝑖

𝑘

)
𝐴𝑖 (3)

when 𝑘 = 2, 3, . . . , 𝑛− 1. Apparently𝐴𝑛 = 𝑎𝑛 . Then we have𝑇 (𝑆) =∑𝑛
𝑘=2

(𝑘 − 1)𝐴𝑘 .
Next we prove the following equality:

𝑛∑
𝑘=2

(𝑘 − 1)𝐴𝑘 =

𝑛∑
𝑘=2

(−1)𝑘𝑎𝑘 . (4)

To see this, note that by Equation (3), we have

𝑎𝑘 = 𝐴𝑘 +
𝑛∑

𝑖=𝑘+1

(
𝑖

𝑘

)
𝐴𝑖 =

𝑛∑
𝑖=𝑘

(
𝑖

𝑘

)
𝐴𝑖 .

Therefore,

𝑛∑
𝑘=2

(−1)𝑘𝑎𝑘 =

𝑛∑
𝑘=2

(−1)𝑘
[
𝑛∑
𝑖=𝑘

(
𝑖

𝑘

)
𝐴𝑖

]
=

𝑛∑
𝑖=2

(
𝑖∑

𝑘=2

(−1)𝑘
(
𝑖

𝑘

)
𝐴𝑖

)
(by switching the order of summation)

=

𝑛∑
𝑖=2

((1 − 1)𝑖 − 1 + 𝑖)𝐴𝑖 (by binomial expansion)

=

𝑛∑
𝑖=2

(𝑖 − 1)𝐴𝑖 =
𝑛∑

𝑘=2

(𝑘 − 1)𝐴𝑘 .

Now that Equation (4) is proven, we then have𝑇 (𝑆) = ∑𝑛
𝑘=2

(−1)𝑘𝑎𝑘 .
Substituting 𝑎𝑘 back with 𝐸 |𝑆𝑘 | we can get the result. □

Next we count the contraction due to small isolated components.

Note that some of the small isolated components may contain a

‘k-fruit’ structure, whose contraction has been counted in Prop. 5.2.

Thus, below we focus on the additional contraction contributed

by the small components, excluding the contraction by any sub

‘cherry-like’ structure.

Proposition 5.3. The additional contraction by small isolated
components are 𝑇 (𝐶) = ∑

𝑖 𝑇 (𝑐𝑖 ), where 𝑇 (𝑐𝑖 ) for each type of com-
ponents are listed in Table 1.

Proof. For each type, the expected number of its appearance is

calculated in order to obtain the additional contraction.

As an example, we show in detail how to calculate the expec-

tation of 𝐶1 (i.e. an isolated node). The probability that a node is

connected to none of the other nodes is (1 − 𝑝)𝑛−1.

Table 1: T(𝑐𝑖 ) for each type of motifs

i 𝐸 (𝑐𝑖 ) 𝑇 (𝑐𝑖 )
1 𝑛(1 − 𝑝)𝑛−1 𝐸 (𝑐1) − 1

2

(𝑛
2

)
𝑝 (1 − 𝑝)2(𝑛−2) 2 ∗ 𝐸 (𝑐2) − 1

3

(𝑛
3

)
3!

2
𝑝2 (1 − 𝑝)3(𝑛−3)+1 2 ∗ 𝐸 (𝑐3) − 1

4

(𝑛
4

)
4!

2
𝑝3 (1 − 𝑝)4(𝑛−4)+3 2 ∗ 𝐸 (𝑐4) − 2

5

(𝑛
4

)
4!

3
𝑝3 (1 − 𝑝)4(𝑛−4)+3 4 ∗ 𝐸 (𝑐5) − 2

6

(𝑛
5

)
5!

2
𝑝4 (1 − 𝑝)5(𝑛−5)+6 5 ∗ 𝐸 (𝑐6) − 3

7

(𝑛
5

)
5!

2
𝑝4 (1 − 𝑝)5(𝑛−5)+6 4 ∗ 𝐸 (𝑐7) − 4

8

(𝑛
5

)
5!

4!
𝑝4 (1 − 𝑝)5(𝑛−5)+6 2 ∗ 𝐸 (𝑐8) − 1

9

(𝑛
6

)
6!

2
𝑝5 (1 − 𝑝)6(𝑛−6)+10 6 ∗ 𝐸 (𝑐9) − 2

10

(𝑛
6

)
6!

2
𝑝5 (1 − 𝑝)6(𝑛−6)+10 6 ∗ 𝐸 (𝑐9) − 4

11

(𝑛
6

)
6!

2
𝑝5 (1 − 𝑝)6(𝑛−6)+10 6 ∗ 𝐸 (𝑐10) − 4

12

(𝑛
6

)
6!

3!
𝑝5 (1 − 𝑝)6(𝑛−6)+10 4 ∗ 𝐸 (𝑐11) − 4

13

(𝑛
6

)
6!

8
𝑝5 (1 − 𝑝)6(𝑛−6)+10 4 ∗ 𝐸 (𝑐12) − 2

Then the expectation over the whole graph is equal to

𝐸 (𝑐1) = 𝑛(1 − 𝑝)𝑛−1

which shows the expected number of 𝐶1 motifs (i.e. isolated nodes)

in G (in expectation). For type 3,5,7,8,12,13, cherry-like structure

exists in those components. We now take type 3 as an example to

show how to calculate the additional contraction by those motifs.

We can show that expected number of the appearance of type 3

components is:

𝐸 (𝑐3) =
(
𝑛

3

)
3!

𝐴𝑢𝑡 (𝑐3)
𝑝2 (1 − 𝑝)3(𝑛−3)+1,

where 𝐴𝑢𝑡 (𝑐𝑖 ) is the number of automorphisms of the 𝑐𝑖 motif,

which is 2 in the case of 𝑐3. Note that all type-3 components to-

gether form 2 orbits. Thus, the total contraction is 3𝐸 (𝑐3) − 2. How-

ever, in each type-3 component, the two ‘fruit’ nodes have already

contributed a contraction of 1 in the analysis in Proposition 5.2.

Therefore, the additional contration is 2 ∗ 𝐸 (𝑐3) − 2. For other types

of components, the analysis is similar. The results are listed in the

Table 1. □

Considering the overall effect of both types of motifs, Proposition

5.4 characterizes the de-anonymizability of a Erdős-Rènyi model.

Proposition 5.4. An upper bound of the de-anonymizability of a
graph generated from Erdős-Rènyi model𝐺 (𝑛, 𝑝) is 𝑁 −𝑇 (𝑆) −𝑇 (𝐶).

For ease of understanding, let us now take an Erdős-Rènyi graph

with 𝑛 = 1000, 𝑝 = 1/500 as an example. After calculation we get

𝑇 (𝑆) = 33.69,𝑇 (𝐶) = 181.49

𝐸𝜎∗ = 𝑛 −𝑇 (𝑆) −𝑇 (𝐶) = 784.82

which means in an Erdős-Rènyi graph generated by𝐺 (1000, 1/500),
at most 3/4 nodes can be (expected to be) de-anonymized.

5.2 Partially Sampled Case
In partially sampled case, for the problem 𝜃 = (𝐺1,𝐺2, 𝑠1, 𝑠2) where
the underlying network is generated by Erdős-Rènyi model𝐺 (𝑛, 𝑝),
we calculate the de-anonymizability of𝐺 (𝑛, 𝑝𝑠1) and 𝐺 (𝑛, 𝑝𝑠2) re-
spectively, using the method proposed in Section 4.4. Then we take
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the smaller one as the upper bound of the de-anonymizability of

the problem.

6 EXPERIMENT EVALUATION
To verify our result in the case study, we conduct experiments on

Erdős-Rènyi graph to testify our theoretical results.

We choose 𝑁 = 500, 2000, 5000, 10000 as the representative of

small-size network and large-size network, respectively. Using the

method in Section 5.1 , we calculate the expected de-anonymizability

of the Erdős-Rènyi graph with different parameter. To compare the

theoretical result with the experimental one, we generate a number

of graphs generated by the given model, and count the orbit number

as the experimental result. In this experiment, we use nauty [15], an

efficient automorphism-related toolkit, to obtain the orbit number

of a graph. For each model 𝐺 (𝑛, 𝑝), we generate 10 independent
samples of Erdős-Rènyi graph and take the average of their orbit

numbers. Figure 6 shows the results of our experiments. In this

plot, x-axis is the (asymptotic) average node degree 𝑐 = 𝑛𝑝 , and

y-axis is the ratio of de-anonymizability to the number of nodes

𝑛. The result demonstrates the high consistency of our theoretical

result with the experimental result. Also, the result accords with a

well-known classic conclusion [1] that the Erdős-Rènyi network

tends to be asymmetric when 𝑐 = 𝑛𝑝 exceeds the threshold log(𝑛).
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Figure 6: Experiments on fully sampled Erdős-Rènyi graph

7 CONCLUSIONS
The past decades witnessed the advancement of the study on de-

anonymization problem problem. Many algorithms are proposed,

but systematic analysis on the accuracy of de-anonymization re-

mains limited. We proposed a quantitative method to determine the

de-anonymizability of a non-asymptotic de-anonymization prob-

lems through the lens of symmetry. To the best of our knowledge,

our work is the first to study the exact relationship between de-

anonymizability and symmetry.

We believe that such a study of symmetry will be of great value

to not just social network de-anonymizability, but also to other

types of Graph Matching problem, such as field pattern recognition,

chemistry molecular reconstruction, etc. Therefore, our analysis

has the potential to be applied to a large number of real-world

applications.
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