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Abstract—In many real world networks, entities of different
types usually form an evolving network with hybrid interactions.
However, how to theoretically model such networks, along with
quantitive characterizations, remains unexplored.

Motivated by this, we develop a novel evolving model, which,
as validated by our empirical results, can well capture some basic
properties such as power-law degree distribution, densification,
shrinking diameter and community structure embodied in most
real datasets. Particularly, two types of results are presented in
the paper. (i) Our proposed model, namely, Evolving K-Graph,
consists of K node sets representing K different types of entities.
The hybrid interactions among entities, based on whether they
belong to the same type, are classified into inter-type and intra-
type ones that are respectively characterized by two joint graphs
evolving over time. Following our newly proposed mechanism
called interactive-evolution, potential connections can be estab-
lished among nodes with common features and further form a
positive feedback. The superiorities of our model are three folded:
good capture of realistic networks, mathematical tractability and
efficient implementation. (ii) By analytical derivations, along with
empirical validation on real datasets, we disclose two aspects of
network properties: basic ones as power-law degree distribution,
densification, shrinking diameter and community structure, as
well as a distinctive one, that is, positive correlation observed in
real networks, implying that a hub in one inter-type relationship
network also has many neighbors in another one. An additional
interesting finding is that through further comparison of models
with or without interactive-evolution, the former one leads to an
even earlier occurrence of network connectivity.

I. INTRODUCTION

EVOLVING networks has long been a significant research
topic [2], [3], [4], [5] in discovery of typical features.

Recent empirical work [6], [7] have identified some surprising
properties in many real evolving networks, such as densifica-
tion (the ratio of edges to nodes grows over time) and shrinking
diameter (the diameter reduces over time). These properties,
while reshaping the conventional view of network formation,
lead to an urgent requirement on developing theoretical mod-
eling that provides guidance to many applications like network
analysis [8], [9], [10], recommendation optimization [11], [12],
activity measurement [13], and resource allocation [14].

Motivated by it, some efforts have been made in proposing
models that are in hope of characterizing evolving networks.
However, to our best knowledge, existing models [7], [15], [23
- 25] only consider nodes of a single type (Details on these
models will be discussed in Related Work), which falls short in
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Fig. 1. An example of academic network with authors, papers and topics.

the characterization of networks with hybrid interactions that
are exhibited in real networks. A typical example belongs to
academic networks, which have an underlying hybrid structure
that is composed of three types of entities, i.e., authors, papers
and topics. Specifically, an author working on certain research
topics often have related publications (papers) of their owns,
and meanwhile builds up collaborative relationship with other
authors, resulting in citations among papers and interdependent
cross-domain topics. Those elements, when influenced in the
prescribed way with elapse of time, form hybrid interactions
that can be classified into inter-type and intra-type ones. Some
additional similar examples include social networks consisting
of users, groups and interests, contact networks consisting of
different roles of users, etc.

Those hybrid interactions among nodes stimulate two new
features: positive correlation and interactive evolution. Some
work [16], [17] revealed that the degrees of nodes in different
networks are often positively-correlated. In other words, a hub
in one network also has many neighbors in another one [18]. In
addition to static interactions described above, there also exist
dynamic ones which result in a distinctive network evolution,
where the arrival of the node of a certain type may lead to the
evolution of the whole network. All these properties give rise
to the fact that existing models are inadequate to characterize
such kind of networks. And motivated by this, we aim to model
the evolving networks with hybrid interactions and disclose the
theoretical properties of them. The main challenge of the work
is brought by the hybrid interactions among nodes of different
types. Multiple types of connections diversify the construction
of network and more importantly, they are interdependent and
further related to another dimension, i.e., time, which causes
great difficulty in modeling and the corresponding analysis.

To address the aforementioned problems, we propose a
novel model, namely, Evolving K-Graph, which uses two
jointly evolving graphs, i.e., K-partite graph and generated
graph, to characterize inter-type and intra-type interactions
among nodes respectively, and establishes the evolving process
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of them. The network structure is illustrated for an academic
network in Fig. 1, where inter-type connections among au-
thors, papers and topics are characterized by a tripartite graph
as shown in the left and the generated graph characterizing
connections among authors is shown in the right. The evolving
process of the proposed model incorporates two steps: self-
evolution characterizing the evolution of the node set itself
and interactive-evolution modeling the influence of it on other
ones. In the former step, the newly arrived node first attaches
a community and then picks a node from it following the
preferential attachment [4], [15], which models user behaviors
and leads to a multiplicative process giving community struc-
ture and power-law degree distributions. In addition to network
expansion, it also allows edge leaving and node leaving. As
for interactive-evolution, it follows a folklore wisdom that the
correlation is transitive, that is, two nodes sharing a common
neighbor are much likely to be correlated as well, and thus
the arrival of a new node can further influence its neighbors
of other types and even connections between them.

The superiorities of Evolving K-Graph lie in three aspects:
Firstly, it can well capture realistic networks with properties
such as power-law degree distribution, densification, shrinking
diameter, evolving community structure, as well as positive
correlation observed among different types of nodes. Secondly,
the model is a mathematically tractable one that is amenable
to conduct theoretical analysis. And thirdly, it is efficiently
implementable, since the computational complexity of the
model is of constant order in each time slot.

We further analyze the network properties of Evolving K-
Graph. Our results show that the node degree is power-law dis-
tributed and grows over time with a polynomial rate. Besides,
we also observe phenomenons that are prevalent in many large-
scale real datasets, i.e., network density increases and network
diameter shrinks or stabilizes over time. Moreover, the network
is structured with communities, which remain stable over time
unless some events, such as merge and split, happen. Last but
not least, in Evolving K-Graph, nodes of the same type exhibit
positive correlation, where both the node degrees in K-partite
graph and that in generated graph are positively-correlated
and the distributions of them show the same feature. This
property further provides an improved performance of network
connectivity: the phase transition time, i.e., the threshold time
when the giant component emerges, of our model is reduced
by a factor of c-power, where c ≤ 1 is a scalar constant.

Our main contributions are summarized as follows:

• Modeling: We propose a novel model, Evolving K-Graph,
that can well capture the properties widely observed in real
evolving networks: power-law degree distribution, commu-
nity structure, densification, shrinking diameter, and positive
correlation. The model has significant superiority in analysis
with mathematical tractability and efficient implementation.

• Analysis: We theoretically analyze the properties of Evolv-
ing K-Graph and results show that it speeds up the evolution
in terms of growth of node degree, densification and shrink-
ing diameter. In addition, our model reproduces community
structure that remains stable over time in general but evolves
if merge or split events happen. Last but not least, the model

establishes positive correlation, based on which the phase
transition time is reduced by a constant power.
• Validation: We empirically observe the properties of evolv-

ing networks with hybrid interactions on two real datasets.
Then, we conduct validation on the proposed model to show
that it can well reproduce the corresponding properties, from
which we demonstrate that our model can well capture the
features of real networks.
The rest of this paper is organized as follows. We give

literature review in Section II. We present feature observations
in Section III. The proposed model is described in Section IV
and the network properties are analyzed in Section V. We
make an extension of our model in Section V-D. Our model
is validated in Section VI. We conclude in Section VII.

II. RELATED WORK

1) Properties and models in evolving networks with uniform
interactions: To begin with, we briefly introduce the properties
of evolving networks with uniform interactions, which include:
Power-law degree distribution: node degree follows power-law
distribution, i.e., the probability that a node’s degree d equals
to k is P{d = k} ∝ d−α, which has been found in the Internet
[19], the web [20] and etc; Community Structure: nodes in a
same community are more closely connected than those cross
different communities [21]; Densification: the ratio of number
of edges to that of nodes grows over time [6], [7]; Shrinking
Diameter: the network diameter reduces as time goes by [7].
Many efforts have been made to capture the above properties.
The majority of existing works takes advantage of preferential
attachment [22] that follows the rule: at each time slot a new
node arrives the network and connects to an existing node with
the probability proportional to its degree, which gives power-
law degree distribution but fails to reproduce the other prop-
erties mentioned above. Based on this model, some variations,
all somehow present a “richer gets richer” style, are proposed.
In particular, some models can further cover densification and
shrinking diameter properties. Kumar et.al propose “copying
model” [23], behind which basic idea is that a new web page
is often made by copying an old one, and then changing some
of the links, or in other words, at each time slot, a vertex u is
added and given d connections by picking a “prototype” and
copying its edges. Leskovec et.al use a matrix operation, i.e.,
Kronecker product, to generate evolving graph. The proposed
model [24], “Kronecker Graph”, defines the Kronecker product
of two graphs as that of their adjacency matrices, through
which to create self-similar graphs recursively. Lattanzi et al.
[15] propose “Affiliation Networks” model that consists of
two types of nodes, i.e., actor and attribute, where the latter
one is a feature capture of the former one, and based on the
correlation between them the evolving process of the model
is developed. In addition, Community Structure is reproduced
in some other models. For example, Leskovec et.al present
“Forest Fire Model” [7], where a new node links to a node w
uniformly at random, picks some neighbors of w that were not
visited yet and applies this step recursively. As a result, the
model obtains a structure of communities-within-communities
as a tree. However, all the above models assume nodes are of
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TABLE I
COMPARISON OF DIFFERENT MODELS OF EVOLVING NETWORKS

Network Properties #1 #2 #3 #4 #5 #6 Parameter Space
Preferential
Attachment No No Yes No No No (0, 1)× (0,∞)

Copying Model No No Yes Yes Yes No (0,∞)2 × (1,∞)
×(0, 1)

Kronecker Graph No No Yes Yes Yes No [0, 1]2

Forest Fire Model No No Yes Yes Yes Yes [0, 1]2

Affiliation Network No No Yes Yes Yes No [0, 1]2 × [0,∞)2

Multi-typed
Affiliation Network Yes No Yes Yes Yes No [0, 1]K × [0,∞)K!

Evolving K-Graph Yes Yes Yes Yes Yes Yes
[
2
3
, 1

]
× [0,∞)K!

×[0, 1]K+M

1 #1 - #6 are labels of properties, where #1 is “multi-typed nodes”, #2 is
“interactive evolution”, #3 is “power-law degree distribution”, #4 is “den-
sification”, #5 is “shrinking diameter” and #6 is “community structure”.

2 Parameter K denotes the number of node types and parameter M denotes
the number of communities in the network.

single type, which cannot fully characterize the real networks
with hybrid interactions.

2) Models of evolving networks with hybrid interactions:
To our best knowledge, there are no existing works that attempt
to model evolving networks with hybrid interactions. So, could
models of single-typed evolving networks still well regenerate
multi-typed evolving ones without an explicitly hybrid model?
For example, “Affiliation Networks” model can be modified to
include multi-typed nodes by adding multiple attributes/actors,
where we name the modified model as “Multi-typed Affiliation
Networks” and it will be used in the later comparison with our
model. However, though mathematically tractable and efficient
implementable as ours, such a modification ignores interactive
evolution. As illustrated in academic networks that has three
types, i.e., authors, papers and topics, “Multi-typed Affiliation
Networks” assumes a new arrived node, e.g., paper, connects
to some existing authors and topics, which, however, ignores
possible links between the picked authors and topics who are
also potentially related since they share a common paper. Such
generation of potential links are called interactive evolution.
Different from such a simple modification, our proposed model
introduces multi-typed nodes, as well as interactive evolution
among them, which leads to some distinctive features such as
positive correlation and improvements of network connectivity,
which will be illustrated in details in the remaining parts. And
for the convenience, we present Table I to show the observed
properties and whether the discussed models support them.

III. EXPERIMENTAL OBSERVATIONS

Multiple types of nodes and hybrid interactions among them
may bring some new features to network properties, and in this
section we try to characterize them based on two real datasets.

A. Dataset Description

Statistical properties of the datasets are summarized in Table
II, where B(X,Y ) denotes the bipartite graph of types X and
Y . In addition, some basic descriptions are presented below.

1) Academic Network: This dataset is collected from Mi-
crosoft Academic Graph in Data Mining field [25]. The dataset
includes three types of nodes, i.e., authors, papers and topics,
and interactions among them. In addition, every node in the
dataset has a timestamp recording the time it joins the network,
ranging from the year 1816 to 2015.

2) Contact Network: This real dataset is obtained from So-
cioPatterns [26], collected in 2013. It gives temporal contacts
of the students from three classes in a high school in France.
The time duration of this dataset is 5 days, where 20-second
interval is regarded as a timeslot and thus the total number
of timeslots is 360, 700. In this dataset, students of different
classes are viewed as different types and once a contact occurs
between two students we regard them as connected.

B. Settings
In both Academic Network and Contact Network, each item

is formed as < u, v, t >, which means an edge between node
u and node v is created at time t. When a node v0 appears in
an item whose timestamp is t0, we regard this as “node v0 is
active at time t0”. Denote the smallest and largest active time
of node v as tsmall and tlarge, the arrival time and leaving
time of v are defined as follows:
- Arrival time: tsmall; - Leaving time: tlarge + twait,
where twait is a time interval that is set to ensure the node is
not active anymore. In particular, twait is set as 5 and 30, 000
for Academic Network and Contact Network, respectively.

C. Observations
We first verify that some properties, which exist in ordinary

evolving networks, are also observed in the multi-typed ones.
Then, we introduce a distinct one, i.e., positive correlation.

1) Basic features: Firstly, let us come to the discussion on
power-law degree distribution. To study the cross-type edges,
we explore the bipartite graphs that are used to model the links
between nodes of different types. For example, in academic
network, we use a bipartite graph B(A,P ) to characterize the
edges between authors (A) and papers (P ), where the degree
of an author in A represents the number of papers he published
and the degree of a paper in P indicates the number of authors
of the paper. We measure the degree distributions of the two
types of nodes in all bipartite graphs of academic network and
the corresponding results are given in Fig. 2, from which we
can observe that all the degrees are power-law distributed.

In addition, densification and shrinking diameter are another
two common features that reflect how networks evolve. Results
in both two datasets show that generated networks (networks
that consist of nodes of the same type and intra-type connec-
tions among them) densify over time as shown in Fig. 3 and
the diameters of them shrink or stabilize over time as given
in Fig. 4. This observation exactly meets the general view.

2) Community structure: We conduct experiments on the
dataset of academic network and use Louvain algorithm [27] to
make the community partition. Results show that community
structure exists and further, it evolves over time. For example,
communities 1 and 2 merge into community 3 at time t = 2002
as shown in Fig. 5 (a) and in Fig. 5 (b), community 4 splits
into communities 5 and 6 at time t = 2012.
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TABLE II
STATISTICAL PROPERTIES OF DATASETS.

Properties of node sets # of Edges # of Timeslots

Academic Network
Physical meaning Author Paper Topic B(A,P ) B(P, T ) B(A, T )

200Notation A P T 3,291,293 3,921,512 1,251,915# of Nodes 1,048,576 1,042,280 403

Contact Network
Physical meaning Class 1 Class 2 Class 3 B(C1, C2) B(C1, C3) B(C2, C3)

360,700Notation C1 C2 C3 1,180 946 1,833# of Nodes 29 38 32
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Fig. 2. Degree distributions in dataset of academic network that consists of three types of nodes, i.e., authors (A), papers (P) and topics (T).

1960 1980 2000
Time

0

500

1000

1500

D
e

n
s
if
ic

a
ti
o

n
 R

a
ti
o

Author
Paper
Topic

(a) Academic network.

0 1 2 3

Time
×10

5

0

5

10

15

20

D
e

n
s
if
ic

a
ti
o

n
 R

a
ti
o

Class 1

Class 2

Class 3

(b) Contact network.

Fig. 3. Densification property observed in the two datasets.
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Fig. 4. Shrinking diameter property observed in the two datasets.
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Fig. 5. Merging and splitting events in community evolution.
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Fig. 6. Correlation coefficients observed in the two datasets.

3) Positive correlation: In addition to the above conven-
tional features, we further observe a distinctive one - a hub
in one bipartite network also has many neighbors in another
one. We use a metric, i.e., correlation coefficient, to measure
it. In the example of academic network, a positive correlation
coefficient of authors indicates that an author with more papers
is likely to works on more topics. We only give the intuitive
explanation of the metric here. The mathematic definition of it
is provided in Definition 5, Section V-C. Results of Academic
Network are shown in Fig. 6 (a), where we can observe that
the correlation coefficient of topics is obviously positive which
even approaches 1 after the year 2010. The cor coefficient of
authors is also a positive one, although not particularly large.
Someone may wonder that why the correlation coefficient of
papers floats around 0. This lies in the fact that the number
of authors and that of topics in a paper are always limited by
the publisher, ranging from 3 to 5 approximately. As for the
contact network, cor coefficients of Class 1, Class 2 and Class
3 are positive and all of them approach more than 0.2 at time
t = 2×105 as shown in Fig. 6 (b). Based on the above results,
we conclude that the node degrees are positively-correlated in

networks with hybrid interactions.

IV. EVOLVING K-GRAPH MODEL

Based on the above observations, we develop a novel model
named Evolving K-Graph. In the model we assume that every
node is born with two attributes:
– Type: a set of nodes with certain functions and structures,

where the k-th type is denoted by Vk, 1 ≤ k ≤ K.
– Community: a group of nodes of the same type that have

a larger probability to connect to each other than the rest,
where the m-th community is denoted by Cm, 1 ≤ m ≤M .

Particularly, in our model we consider the network consisting
of K types, where K ≥ 3, and M communities. We remark
that there could be multiple ways of community partition and
here we assume that all types of nodes are partitioned into
communities according to a same criterion. Consequently, as
we will show in later description of our modeling in Section
IV-B, a node of one specific type can always find, in the same
community, its counterpart of a different type.

To better distinguish the conception of type and community
aforementioned, let us, for example, consider academic net-
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works. The networks are composed of three types, i.e., author,
paper and topic, and meanwhile partitioned into communities
according to their research domains, such as Mathematics,
Biology and History. Note that whichever type a node belongs
to, it can be partitioned into one of the provided communities
according to its research domain. And obviously, the majority
of the citations are more likely to be formed among papers
that belong to the same domain than those across domains,
and this leads to the formation of a community in citation
networks. The similar cases also hold for authors in co-author
networks and topics in inter-disciplinary networks.

A. K-Graph Model

The intuition behind the model is that, entities belonging to
the same type are usually connected together if they are related
to a common entity of other types. For examples, in academic
networks, authors collaborating a same paper are often friends.
We use two graphs, i.e., K-partite graph and generated graph,
to characterize inter-type and intra-type relationships among
nodes respectively, and model them as follows:
1) K-partite Graph T (V1, ..., VK): The relationship between

any two different node sets Vi and Vj can be naturally
viewed as a bipartite graph B(Vi, Vj) and the union
set of all the bipartite graphs forms a K-partite graph
T (V1, ..., VK), which we use to characterize the inter-type
connections among different types of nodes. The degree
of node v ∈ Vk is represented by a vector whose i-th
component, dki, is the degree of v in B(Vk, Vi).

2) Generated Graph G(Vi|Vj): The graph G(Vi|Vj) charac-
terizes the intra-type connections among nodes in Vi, which
is generated from B(Vi, Vj) following the rule that an edge
exists between v1, v2 ∈ Vi in G(Vi|Vj) if and only if they
share a common neighbor u ∈ Vj in B(Vi, Vj). Note that
in G(Vi|Vj), multiple edges may exist between v1, v2 ∈ Vi
if they share more than one neighbor in B(Vi, Vj).

This model has its applicability to massive real scenarios.
Take academic networks again for instance. Denoting authors,
papers and topics by V1, V2 and V3 respectively, the model
can then be interpreted as follows. For the tripartite graph
T (V1, V2, V3), an edge exists between v1 ∈ V1 and v2 ∈ V2

indicates that the author v1 published the paper v2, and the
other two kinds of edges have a similar physical meaning. For
the generated graph G(V1|V2), two authors have a common
neighbor in B(V1, V2) indicates that they collaborate a paper
and thus are correlated. In addition, this model can also be used
to characterize some other realistic networks such as social
networks that consist of users, groups and interests, contact
networks that consist of different roles of users, etc.

B. Evolving Process

In our model, K-partite graph and generated graph follow a
joint evolution. We give an illustration on the evolving process
of the former one, based on which that of the latter one can
be obtained, and therefore we omit it here for concision. The
parameters that will be used later are defined as follows:
– Community Probability p: the probability that a newly

arrived node attaches to the community it belongs to.

– Community Control Set {β1, β2, ..., βM}: a set of proba-
bilities where βm ∈ (0, 1) denotes the fraction of nodes
belonging to community Cm.

– Arriving Probability αk: the probability that a new node of
type Vk arrives at each time slot, where αk ∈ (0, 1).

The effects of these parameters on the network structures are
illustrated as follows. A larger Community Probability p gives
a more evident community structure, where, specifically, when
p = 1 there are no cross-community edges. Community Con-
trol Set {β1, β2, ..., βM} determines the scale of communities,
and a larger βm results a larger size of community Cm. In a
similar way, Arriving Probability αk determines the scale of
nodes of type k. With these parameters, the evolving process
of T (V1, ..., VK) is presented in Algorithm 1. At time t = 0,
an initial graph T0(V1, ..., VK) is given. Then at each time slot
t > 0, a new node arrives at Vk with probability αk and results
in a two steps evolution:

Self-evolution: The new node first conducts the community
attachment following the rule that chooses its own community
with a larger probability p and others with a smaller one 1−
p. Then, following the preferential attachment [15], the new
node picks an existing node from the chosen community as
prototype with probability proportional to its degree and copies
a constant number, i.e., cij where i 6= j ∈ {1, ...,K}, of edges
from the picked prototype. In addition, ĉki edges, randomly
and uniformly picked in B(Vk, Vi), k 6= i, leave the network.

Interactive-evolution: Additional edges are created follow-
ing the rule that: For each newly added node in T (V1, ..., Vk),
all its neighbors in different node sets connect to each other.

We note that the interactive-evolution is a distinctive process
and a unique phenomenon that is only considered in Evolving
K-Graph. It differs from the self-evolution whose evolution of
a certain node set only results in the creation of edges between
itself and other types. Instead, some edges among other types,
not directly connected to the node type itself, will be created.
Consider again the example of academic networks. The arrival
of a new author merely establishes edges between it and some
papers/topics in models without interactive-evolution. While in
our Evolving K-Graph, it further generates edges between the
papers and topics that simultaneously related to a same author.

Fig. 7 shows an example of the evolving process of tripartite
graph T (V1, V2, V3) when a node v ∈ C1 arrives in V1. Note
that in order to present all edges in a plane, we unfold the
tripartite graph where the two node sets V3 are actually the
same one. The evolving process of T (V1, V2, V3) happens
in two steps. In the first step, the node v chooses its own
community, i.e., C1, picks two existing nodes as prototypes
and copies c13 = 1 and c12 = 2 edges from them respectively.
Then, in the second step, neighbors of the new node v in V2

and V3 are connected together and thus two additional edges
are added to the graph. And finally, one node and five edges
are added and T (V1, V2, V3) evolves from the left-most one in
the figure to the right-most one during this time slot.

For convenience, we present Table III to list all notations
that will be used in later analysis, proofs and discussions.
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Algorithm 1 Evolving process of T (V1, ..., VK)

Fix parameters including community probability p ≥ 2
3

, community control set {β1, β2, ..., βM} and arriving probability αk , k ∈ {1, ...,K}.
Fix parameters cij , ĉij ≥ 0, where i 6= j ∈ {1, ...,K}.

At time t = 0:
The initial K-partite graph T0(V1, ..., VK) is given, where each node in Vk has at least cki edges in bipartite graph B(Vk, Vi).

At time t > 0:
(Evolution of Vk)

Arrival: A new node v of community Cm arrives with probability αkβm and is added to the node set Vk , k ∈ {1, ...,K}.
Self-evolution in B(Vk, Vi):

(Community Attachment) For the bipartite graph B(Vk, Vi), k 6= i, the node v chooses a community following the rule that choosing its own co-
mmunity Cm with probability p and others with probability 1− p, where community Ci, i 6= m, is chosen with the probability proportional to the
parameter βi.
(Preferential Attachment) For every node set Vi, i 6= k, a node u ∈ Vk of the chosen community is picked as the prototype for the new node v
with a probability proportional to its degree in B(Vk, Vi). Then, cki edges are copied from u, that is, cki neighbors of u denoted by v1, ..., vcki ,
are picked uniformly and randomly and the edges (v, v1), ..., (v, vcki ) are added to the graph.

Interactive-evolution in B(Vi, Vj): ckickj edges are added between nodes v1, ..., vcki ∈ Vi and v1, ..., vckj ∈ Vj , where i 6= j 6= k.
Edge Leaving and Node Leaving: ĉki edges, which are randomly and uniformly picked in B(Vk, Vi), k 6= i, leave the network. A node leaves the

network if all its edges left the network.

Fig. 7. An example of the evolving process of tripartite graph T (V1, V2, V3).

TABLE III
NOTATIONS AND DEFINITIONS

Notation Definition
K Total number of node types in the network.
M Total number of communities in the network.
n Number of nodes in the network.

d(t) Node degree at time t.
Vi Node type i.
Cm Community m.
αi Probability that a new node arrives at Vi.
βm Fraction of nodes belonging to Cm.
γi Parameter of growth rate of node v ∈ Vi.
cij Number of edges copied from prototype in B(Vi, Vj).

B(Vi, Vj) Bipartite graph with node sets Vi and Vj .
G(Vi|Vj) Generated graph of Vi obtained from B(Vi, Vj).
G(Vi) Generated network of Vi.

T (V1, ..., VK) K-partite graph with node sets V1, ..., VK .

C. Complexity

We now analyze the computational complexity of Evolving
K-Graph. At each time slot, the evolving process of a certain
node set Vk in T (V1, ..., VK) includes two steps. The compu-
tational complexity of each of them is analyzed as follows:

1) Self-evolution: The evolving process in this step can be
divided into three parts: community attachment, preferential
attachment and edge/node leaving. In the first part, a newly
arrived node chooses a community following the rule that
choosing its own community with a constant probability (Case
1) and others with probabilities proportional to the parameter
βi (Case 2). Obviously, the computational complexity of this
operation can be achieved as Θ(1) if Case 1 happens, since
it is equal to tossing a biased coin; and similarly in Case 2,

this operation can also be conducted with Θ(1) complexity by
using a “Probability Pool”, where each community occupies
a portion of the whole pool whose area is proportional to its
size. Then, the choice can be achieved by randomly dropping
a seed to the pool and picking the community whose area
the seed falls into. Specifically, when the new node v ∈ Cm
makes the choice, one can easily realize “Probability Pool”
by a linked list. Firstly, build a linked list whose length
is set as the total size of communities and community Ci
occupies βi

1−βm fraction of it. Then, randomly and uniformly
choose an item from the linked list and pick the corresponding
community. Following this method, we can achieve com-
munity attachment with only Θ(1) complexity. Besides, the
complexity of “Probability Pool” maintenance is also Θ(1).
For the linked list realization method, at each time slot it only
needs to insert constant number of new items and thus the
cost is Θ(1). In the second part, i.e., preferential attachment,
the new node v in Vk picks an existing node of the chosen
community as prototype with probability proportional to its
degree, which can also be achieved with Θ(1) complexity by
using the “Probability Pool”. In addition, the computational
complexity of edge copying is also Θ(1) since it only involves
cki times edge copying. And finally, edge/node leaving costs
Θ(1) complexity since a constant number, i.e., ĉij , of edges
are removed. Combining the above three parts we have proved
that computational complexity of self-evolution is Θ(1).

2) Interactive-evolution: In this step there are ckickj times
occurrence of edge copying, and the corresponding computa-
tional complexity is Θ(1).

Combining the above two steps, we conclude that the
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computational complexity of our model at each time slot is
Θ(1). We note that the computational complexity of our model
is a linear one, which is superior to some other existing
models. For example, in a milestone work [7] on network
evolution modeling, Leskovec et al. propose the forest fire
model where at each time slot the new node forms links based
on a tree structure with Θ (log n) complexity. To summarize,
our model is an efficiently implementable one.

V. NETWORK PROPERTIES

In this section we provide corresponding property analysis.
We start with the case K = 3, and then extend our results to a
more general case where K ≥ 3 in Section V-D. In addition,
though our model can cover a general evolving process, to
enable mathematical tractability, the analysis below considers
a network expansion mode where in each time slot, the number
of newly generated edges is larger than that of left ones.

A. Properties on Evolution

This subsection presents theoretical analysis on the model’s
capability to capture some basic network features, i.e., power-
law degree distribution, densification and shrinking diameter.
For each feature, we discuss it follow a pattern of motivation,
theorem, proof and implications.

1) Result 1: Growth of node degree:
We first present a theorem on growth of node degree, which

plays a fundamental role in the following analysis.
Theorem 1: In the tripartite graph T (V1, V2, V3) generated

after t time slots, for the node v of community Cm, the degree
of v ∈ V1 at time t ≥ t0 satisfies

d(t) = d(t0)

(
t

t0

)γ1m
,

with the initial condition that node v is added to the set V1

at time t0 with degree d(t0). This result also holds for node
v ∈ V2 and v ∈ V3 with a symmetrical expression.

Proof: Before the calculation of node degree, let us first
consider the average number of edges between nodes in V1

and V2 of community Cm, denoted by em12(t). At each time
slot, em12(t) may increase in the following three cases:

Case 1: A new node arrives at V1 with probability α1.
If the node belongs to community Cm (this event happens
with probability βm), each of its c12 edges connects to node
of community Cm with probability p and thus in this case,
α1βmc12p edges are added; otherwise, the node belongs to
the other communities. For example, assume the node is of
community Ci (this event happens with probability βi), then it
has (1−p)c12 edges connecting to nodes in other communities
and βm

1−βi of them connecting to nodes of community Cm, and
thus in this case, α1βic12(1 − p) βm

1−βi edges are added. Sum
over all possible i and we have that in this case

em12(t) = C1
12t,

where C1
12 = α1βmc12

(
p+ (1− p)

∑
i 6=m

βi
1−βi

)
. We use

C1
12 to denote the coefficient of em12(t), with subscript indi-

cating the edges between node sets V1 and V2 and superscript

indicating the trigger event that the new node arrives at V1.
Note that C1

12 is a constant only related to parameter m.
Case 2: A new node arrives at V2 with probability α2.

Following the same method as in the previous case, we can
obtain that in this case

em12(t) = C2
12t,

where C2
12 = α2βmc21

(
p+ (1− p)

∑
i6=m

βi
1−βi

)
is also a

constant only related to parameter m.
Case 3: A new node arrives at V3 with probability α3. In

this case, the increase of em12(t) results from the interactive-
evolution. If the new node belongs to community Cm, it has
c31p edges connecting to nodes of community Cm in V1 and
c32p edges connecting to that in V2 on average. Then, these
nodes are also connected due to the interactive-evolution which
results in c31c32p

2 newly added edges. In the other case where
the new node belongs to the other communities, for example,
community Ci, it has βic31(1 − p) βm

1−βi edges connecting to
nodes of community Cm in V1 and βic32(1 − p) βm

1−βi edges
connecting to that in V2 on average. Take summation over all
possible is and we have that

em12(t) = C3
12t,

where C3
12 = α3c31c32

(
βmp

2 + βm
2(1− p)2

∑
i 6=m

βi
1−βi

)
with the similar meaning to others stated earlier.

In addition to increase, the value of e12(t) may also decrease
in the following case:

Case 4: Edge leaving of edges in B(V1, V2) of community
Cm. According to the evolving process, where in each time
slot ĉ12 edges leave the network, we have that the number of
edges decreased due to edge leaving in all t time slots is

em12(t) = −ĉ12t.

Combining all the above four cases, we have

em12(t) =
(
C1

12 + C2
12 + C3

12 − ĉ12

)
t.

Note that the average number of edges between nodes in V1

and V2 grows linearly with evolving time t and its coefficient
is a constant that is only related to parameter m.

Based on the above results, now we come to the calculation
of node degree in tripartite graph T (V1, V2, V3). At each time
slot t, the degree of node v ∈ V1 in B(V1, V2), i.e., d12(t),
may increase in the following two cases:
– A new node arrives at V2 and is connected to v, which

results in d12(t) = d12(t− 1) + 1.
– A new node arrives at V3 and is connected to v, then v

will connect to c32 neighbors of the new node in V2 which
results in d12(t) = d12(t− 1) + c32.

In preferential attachment, the endpoint of any edge is chosen
with equal probability as a destination of the new edge, and
thus the probability that a newly added edge in B(V1, V2)

points to node v is d12(t−1)
e12(t−1) , where e12(t − 1) denotes the

average number of edges in B(V1, V2) at time t− 1.
In addition, d12(t) may decrease in the following case:

– One of its edges leaves, with the probability ĉ12
e12(t) , which

results in d12(t) = d12(t− 1)− 1.
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Combining the above cases, we have

d12(t)− d12(t− 1) =
(
C2

12 − ĉ12
) d12(t− 1)

e12(t− 1)
+ C3

12

d13(t− 1)

e13(t− 1)
, (1)

and similarly,

d13(t)− d13(t− 1) =
(
C3

13 − ĉ13
) d13(t− 1)

e13(t− 1)
+ C2

13

d12(t− 1)

e12(t− 1)
. (2)

With the initial condition that d(t0) = [d12(t0), d13(t0)], the
solution of the above two equations is

d(t) =

[
d12(t0)

(
t

t0

)γ1m
, d13(t0)

(
t

t0

)γ1m]
, (3)

where,

γ1m =

(
C3

13 − ĉ13
)
e12 +

(
C2

12 − ĉ12−
)
e13 +

√
∆

2e12e13
, (4)

and,

∆ =− 4
((
C3

13 − ĉ13
) (
C2

12 − ĉ12
)
− C3

12C
2
13

)
e12e13

+
((
C3

13 − ĉ13
)
e12 −

(
C2

12 − ĉ12
)
e13

)2
.

Here, e12 = e12(t)
t is a constant.

By the same method we can obtain the expression of d(t)
for nodes in V2 and V3 and thus we complete the proof.

The result in Theorem 1 has the following two implications:

i) The degree d(t) grows with time t following a polynomial
rate with power γkm ∈ (0, 1).

ii) The two components of vector d(t) are in the same order,
i.e., dki(t) = Θ (dkj(t)).

The first implication gives the growth rate of node degree.
Recall that dki(t) denotes the degree of node v in B(Vk, Vi)
and dkj(t) denotes that in B(Vk, Vj). The second one implies
that the degrees of a certain node in two corresponding
bipartite graphs appear to be approximately the same, which
indicates that an important node (the node with larger degree)
also behaves influential in all the other bipartite relationship
networks and vice visa. Considering the example of academic
networks, it is a common result that an author with more
research topics is much likely to publish more papers. Con-
sequently, the degree of it in authors-topics networks and that
in authors-papers networks are in the same order.

2) Result 2: Degree distribution:
Based on the results in Theorem 1, we now come to analyze

the degree distribution of nodes in T (V1, V2, V3).
Theorem 2: For the tripartite graph T (V1, V2, V3) generated

after t time slots, when t → ∞, the degree sequences of
v ∈ V1 of community Cm in B (V1, V2) and B (V1, V3) both
follow a power-law distribution that

P {d(t) = x} =
x−

1
γ1m
−1

G1
,

where G1 is a constant normalization coefficient. This result
also holds for node v ∈ V2 and v ∈ V3 with a symmetrical
expression.

Proof: For simplicity we first consider the distribution of
d12(t), which denotes the degree of node v ∈ V1 in B(V1, V2).

According to Equation (3), the Cumulative Distribution Func-
tion (CDF) of d12(t) can be calculated as

P {d12(t) < x} =P
{
d12(t0)

(
t

t0

)γ1m
< x

}
=P

{
t0 > t

(
d12(t0)

x

) 1
γ1m

}
=1− d12(t0)

1
γ1m x

− 1
γ1m ,

where the third equality holds since nodes are added to V1 ho-
mogeneously with time t. Then, the Probability Density Func-
tion (PDF) of d12(t) can be calculated using P {d12(t) = x} =
∂P{d12(t)<x}

∂x . Alternatively, we can also express it as

P {d12(t) = x} =
x−

1
γ1m
−1

G1
,

where G1 =
∑n
x=1 x

− 1
γ1m
−1 is a constant normalization co-

efficient. By the same method, we can obtain the distributions
of dij(t), i 6= j ∈ {1, 2, 3}, which completes the proof.

The results in Theorem 2 are two folded:

i) The degree d(t) follows the power-law distribution with
exponent − 1

γkm
− 1.

ii) The degree distributions of node v in different bipartite
graphs have the same exponent.

The first result shows that our model can well capture the
power-law distribution of node degrees. As for the similarity
of degree distributions, the reason behind this result is the
same with that in growth of node degree.

3) Result 3: Densification and shrinking diameter:
Theorem 3: In the tripartite graph T (V1, V2, V3) generated

after t time slots, the ratio of edges to nodes in G (Vi|Vj) is

|E|
|Vi|

=


Θ

(
t
2− 1

γj

)
,

1

2
< γj < 1

Θ (log t) , γj =
1

2

Θ (1) , 0 < γj <
1

2
,

where γj = maxm {γjm}.
Proof: According to the definition of G (Vi|Vj), each

node v ∈ Vj in B (Vi, Vj) gives rise to a clique where all
neighbors of v are connected. Thus, the average number of
edges in G (Vi|Vj) that are resulted by the nodes of community
Cm in Vj is

|Em| =
αit∑
k=1

αjβmt ·
k
− 1
γjm
−1

Gj

(
k

2

)
,

where αjβmt is the expected number of nodes of community
Cm in Vj . The probability that the node’s degree equals to

k is k
− 1
γjm

−1

Gj
, and each of them gives rise to

(
k
2

)
edges in

G (Vi|Vj). Given the sum of p-series

lim
n→∞

n∑
x=1

1

xp
=


Θ
(
n1−p) , 0 ≤ p < 1

Θ (logn) , p = 1

Θ (1) , p > 1,
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we have

|Em| =


Θ

(
t
3− 1

γjm

)
,

1

2
< γjm < 1

Θ (t log t) , γjm =
1

2

Θ (t) , 0 < γjm <
1

2
.

Summing over all possible m and noting that |Vi| = αit, we
obtain the final results

We proceed to present that in our model, network diameter
shrinks or stabilizes over time. Before the proof we first give
a useful result shown in Lemma 1.

Lemma 1: In B(Vi, Vj), the probability that an edge points
to a node j ∈ Vj of community Cm with degree x is

P {dj(t) = x} =
x
− 1
γjm

Ĝj
,

where Ĝj is a constant normalization coefficient.
Proof: According to Theorem 2, the probability that a

node j ∈ Vj in B(Vi, Vj) has degree x is

P {dj = x} ∝ x−
1

γjm
−1
.

The number of nodes with degree x is nP {dj = x} and the
probability that an edge in B(Vi, Vj) points to one of these
nodes is xnP{dj=x}

eij(t)
. Alternatively, we can also express it as

x
− 1
γjm

Ĝj
with normalization coefficient Ĝj =

∑n
x=1 x

− 1
γjm .

We use the definition of q-effective diameter given in [28]
to measure the network diameter.

Definition 1: (q-effective diameter) q-effective diameter is
defined as the minimum d such that, for at least a q fraction
of nodes, the shortest path between any two nodes is at most
d, 0 < q < 1.

Theorem 4: In the generated graph G (Vi|Vj), if γj =
maxm {γjm} ≥ 1

2 , the q-effective diameter shrinks or sta-
bilizes at time t ≥ φn, for any constants φ > 0, 0 < q < 1.

Proof: Let C denote the set of nodes of Vj in B(Vi, Vj)
with degree dij ≥ nσ , where σ > 0 is a small constant.
By Theorem 1 we have, every node in C arrives before time
εn, ε > 0. Thus the diameter of the neighborhood of C in
G (Vi|Vj), i.e., dia(C), shrinks or stabilizes after time t = φn.

Now we show that all but only o(n) nodes added after time
t = φn have at least a friend that is the neighborhood of
C. According to Lemma 1, if γj = maxm {γjm} ≥ 1

2 , the
number of edges in B(Vi, Vj) whose endpoints are not nodes
in C can be upper bounded by∑
m

1

Ĝj

∑nσ

x=1
x · x−

1
γjm ≤M 1

Ĝj

∑nσ

x=1
x · x−

1
γj = o(n).

Hence the q-effective diameter of G (Vi|Vj) is upper bounded
by dia(C) + 2 and we complete the proof.

The above results imply that, the generated graph G(Vi|Vj)
densifies and its diameter shrinks or stabilizes with time t if
it is satisfied that γj = maxm {γjm} ≥ 1

2 .

B. Properties on Community Structure

Besides the aforementioned network properties, our model
can also incorporate community structure, which is our focus
in this part. In doing so, we first introduce some preliminaries
on community and its evolution, and then present our results.

1) Result 4: Community structure:
Quantitive metrics of community structure vary a lot and in

our work, we use community ratio, as defined below, to make
the measurement.

Definition 2: (Internal and External Degree) The internal
and external degree of community Cm, denoted by kmin and
kmex, are defined as the sum of degrees of node v ∈ Cm
connecting to node of the same community and the sum of
that connecting to the rest of nodes, respectively.

Definition 3: (Community Ratio) We define the total degrees
of community Cm, denoted by km, as the number of degrees
of node in community Cm. Then, the intra-community ratio,
denoted by Dm

in, and the inter-community ratio, denoted by
Dm
ex, are defined as

Dm
in =

kmin
km

and Dm
ex =

kmex
km

,

respectively. By the definition, we know Dm
in, D

m
ex ∈ [0, 1]

and Dm
in + Dm

ex = 1. Since Dm
ex can be calculated through

Dm
ex = 1 −Dm

in, in the following analysis we only take Dm
in

into consideration. Under the given definition, the network can
be classified into three types:
– Community Structure: Dm

in > 1
2 . The ratio of internal

degrees is greater than that of external degrees.
– Random Structure: Dm

in = 1
2 . The ratio of internal degrees

is equal to that of external degrees.
– Disassortative Structure: Dm

in < 1
2 . The ratio of internal

degrees is less than that of external degrees.
Firstly, we give a Theorem to show that the network in our

model exhibits community structure.
Theorem 5: In Evolving 3-Graph generated after t time slots,

if the community probability p > 2
3 , the nodes in generated

graph G (Vi|Vj) are community-structured, that is,

Dm
in >

1

2
.

Proof: Firstly, let us come to calculate the number of total
degrees of an arbitrary community Cm, that is,

km =
∑

vj∈Cm

∑
k

((
k

2

)
−

(
(1− p)k

2

))
k
− 1
γjm

−1

Gj
+

∑
n6=m

∑
vj∈Cn

∑
k

((
k

2

)
−

(
k − k(1− p) βm

1−βn
2

))
k
− 1
γjn
−1

Gj
,

where vj is the node in set Vj and we make the calculation
by considering vj in different communities. The first item in
the Equation denotes the expected number of edges in km

that resulted by the vj of community Cm. Note that these
part of nodes that similarly belong to community Cm in Vj

have degree k with probability P {dji(t) = k} = x
− 1
γjm

−1

Gj
according to Theorem 2. Each of these nodes results in a
clique in G (Vi|Vj) with

(
k
2

)
total edges. Except

(
(1−p)k

2

)
edges
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connecting to nodes in Vi of other communities, all the other
edges connecting to at least one node of community Cm in Vi.
On the other hand, the second item in the Equation denotes
the expected number of edges in km that resulted by the vj
of community Cn in Vj , where n 6= m. In this part, only
k(1−p) βm

1−βn edges connecting to node vi ∈ Cm in Vi and the
corresponding edges in G (Vi|Vj) can be calculated as in the
Equation. Then, summing these two items together we obtain
km. Since that the second item is greatly smaller than the first
one in order sense, the above Equation can be simplified to

km =
∑

vj∈Cm

∑
k

((
k

2

)
−
(

(1− p)k
2

))
k
− 1
γjm
−1

Gj
. (5)

Secondly, the internal degree of community Cm is

kmin >
∑

vj∈Cm

∑
k

(
pk

2

)
k
− 1
γjm
−1

Gj
. (6)

Essentially, the internal degree of community Cm is also
composed of two parts: edges that resulted by vj of community
Cm and that of other communities. For simplicity, we neglect
the latter one and thus obtain Equation (6).

Combining Equation (5) and Equation (6), we have

Dm
in =

kmin
km

>
p2

1− (1− p)2 .

With the condition p > 2
3 , we complete the proof.

The above results have the following two implications:

i) The Evolving K-graph exhibits community structure.
ii) The intra-community ratio, i.e., Dm

in, is a constant that
remains stable in the whole evolving process.

The first result implies that Evolving K-Graph can well capture
the community structure existed in real networks. The second
result indicates that community structure often remains stable
during network evolution unless there are occurrences of some
events such as merge or split, which we will discuss then.

2) Result 5: Merge and split:
As two basic events of community evolution, we formulate

merge and split in our model as follows:

– Merge: C1 + C2 → C3. Communities C1 and C2 start to
merge into a new community C3 at time t0 by removing β1

and β2 from the community control set and adding a new
one β3 = β1 + β2 instead.

– Split: C3 → C1 + C2. A community C3 starts to split into
communities C1 and C2 at time t0 by removing β3 from
the community control set and adding two new ones β1 and
β2 that satisfy β1 + β2 = β3 instead.

The merge and split of community are measured as follows.
Definition 4: (Merging and Splitting Time) The merging

time, denoted by ∆tm, of the event C1 +C2 → C3 is defined
as the time period that starts at the beginning time of merge
event, i.e., t0, and ends after ∆tm time slots with a stable D3

in.
The splitting time, denoted by ∆ts, of the event C3 → C1+C2

is defined in a similar way that ends when both D1
in and D2

in

become stable.

Theorem 6: In Evolving 3-Graph, the merging time of the
event C1 + C2 → C3 satisfies

∆tm = ω(t0),

where t0 is the beginning time of the merge event. And
similarly, the splitting time of the event C3 → C1+C2 satisfies

∆ts = ω(t0),

where t0 is the beginning time of the split event.
Proof: Let us first consider the merging time of the event

C1 + C2 → C3. Note that at the end of merge event, the
network achieves a new stable state and thus the network
properties we have given hold. Considering the generated
graph G(Vi|Vj), according to Theorem 2 we have that the
degree of node v ∈ C3 in Vj satisfies

P {d(t) = x} =
x
− 1
γj3
−1

Gj
.

According to Equations (5) and (6), in order to obtain
the intra-community ratio Dm

in, we should also calculate the
fraction of edges of nodes in Vj that connect to nodes in Vi
of community Cm.

For an arbitrary node v ∈ C3 that is added to Vj before time
t0, the number of its edges connecting to nodes of community
C3 in Vi among its total k edges is

p̃k =
∆tm

∆tm + t0
kp+

t0
∆tm + t0

k
β1

β1 + β2

(
p+ (1− p) β2

1− β1

)
+

t0
∆tm + t0

k
β2

β1 + β2

(
p+ (1− p) β1

1− β2

)
.

Note that ∆tm
∆tm+t0

k edges are added after time t0 following
the new rule and thus p fraction of them connect to nodes of
community C3 in Vi, which is given in the first item of the
Equation. Then, the other t0

∆tm+t0
k edges are added before

time t0. The corresponding node in Vj originally belongs to
C1 with probability β1

β1+β2
and in this case, p of its edges

connecting to nodes v ∈ C3 in Vi that originally belong to
C1 and (1 − p) β2

1−β1
of them connecting to those originally

belonging to C2, as given in the second item of the equation.
The third item of the equation is calculated similarly for node
in Vj that originally belongs to C2. In addition, nodes added
after time t0 follow the results given in Theorem 5.

Finally, according to Equations (5) and (6) we know that
only if p̃ → p the merge event ends. This required condition
holds when ∆tm = ω(t0) and we obtain the result. The proof
of the split event follows a similar method and thus we omit
it here for concision.

This result indicates that once an event happens, the network
needs a considerable time to recover and achieve a new stable
state. While, we note that since most of community detection
algorithms [29], [30], [31] work by maximizing “modularity”
[32], the community partition result will be updated before the
event ends, which thus does not require such a long time.
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C. Properties on Correlation and Network Connectivity
All the network properties we discussed are common ones

in single-typed evolving networks. In this part, we study some
distinctive ones that only exists in multi-typed networks.

1) Result 6: Positive correlation:
For an Evolving 3-Graph, the connections among nodes in

Vk can be classified into two types:
- Type 1: Connections in G(Vk|Vi) generated from B(Vk, Vi).
- Type 2: Connections in G(Vk|Vj) generated from B(Vk, Vj).
Therefore, the generated network of nodes in Vk is two-
layered, and we denote it as G(Vk) = [G(Vk|Vi), G(Vk|Vj)].
Based on the above network structure, we measure the prop-
erties of generated network from the following two aspects.

For a two-layered network, the correlation of the node
degrees in two layers can be measured by degree correlation
coefficient, which is defined as follows:

Definition 5: (Degree Correlation Coefficient) The degree
correlation coefficient of a two-layered network is defined as

ρ (d1, d2) =
E [d1d2]− E [d1]E [d2]√

E
[
d1

2
]
− E [d1]

2
√
E
[
d2

2
]
− E [d2]

2
,

where d1 is the degree in layer 1 and d2 is that in layer 2.
According to degree correlation coefficient, networks can be
classified into the following three types:
– Positively-Correlated: ρ (d1, d2) > 0. Node with large

degree in layer 1 also has large degree in layer 2.
– UnCorrelated: ρ (d1, d2) = 0. The degree of a node in layer

1 has no relation with that in layer 2.
– Negatively-Correlated: ρ (d1, d2) < 0. Node with large

degree in layer 1 has small degree in layer 2.
To focus on correlation and connectivity, in the remaining

part we remove the community structure by setting the param-
eters as {β1 = 1} and as p = 1.

Theorem 7: In the generated network at time t, when
t → ∞, the degree of node v ∈ V1 in G (V1|V2), denoted
by d12, and that in G (V1|V3), denoted by d13, are positively-
correlated, that is,

ρ (d12, d13) > 0.

This result also holds for node v ∈ V2 and v ∈ V3 with a
symmetrical expression.

Proof: According to Definition 5, we need to prove

E [d12d13] > E [d12]E [d13] .

In the following, for convenience, we use several simplified
notations to denote the degrees in T (V1, V2, V3). Let d2 denote
the degree of node v ∈ V1 in B (V1, V2), d3 denote that in
B (V1, V3), i denote the degree of node in V2 that an arbitrary
edge in B (V1, V2) points to and j denote the degree of node
in V3 that an arbitrary edge in B (V1, V3) points to. The
distributions of these four random variables can be obtained
from Theorem 2 and Lemma 1.

Firstly, let’s consider the average degree of node v ∈ V1 in
G (V1|V2). According to the generating rule, the degree of v
in G (V1|V2) can be considered as the sum of degrees of the
node in V2 that the edges of v in B (V1, V2) lead to, that is,

E [d12] = E
[∑d2

k=1
ik
]

= E [d2]E [i] , (7)

where the second equality holds since ik is an independent
and identically distributed random variable. Then, the average
degree of node v ∈ V1 in G (V1|V3) can be obtained similarly,
that is,

E [d13] = E
[∑d3

k=1
jk
]

= E [d3]E [j] . (8)

Secondly, E [d12d13] can be calculated following the same
method

E [d12d13] = E
[∑d2

k=1
ik ·
∑d3

k=1
jk
]

= E [i]E [j]E [d2d3] . (9)

Based on Equation (7), Equation (8) and Equation (9), we have

E [d12d13]−E [d12]E [d13] = E [i]E [j] (E [d2d3]− E [d2]E [d3]) .

Then according to Theorem 1 we know
d2

d12(t0)
=

d3
d13(t0)

. (10)

Equation (10) indicates that d2 and d3 are positively-correlated
and thus we complete the proof.

We note that this result can be widely observed in realistic
networks, which indicates that a user with many friends in a
certain network is also influential in another one. Moreover,
this result is also verified in the experimental observations on
real datasets in Section III.

2) Result 7: Reduced phase transition time:
In addition to the correlation coefficient, we define the other

metric named Phase Transition Time to evaluate the properties
of network connectivity in evolving networks.

Definition 6: (Phase Transition Time) In evolving networks,
the metric phase transition time tp is defined as the threshold
time when the giant component emerges, that is, if t < tp,

C = o (n) ,

and if t ≥ tp,
C = Θ (n) ,

where C is the size of giant component and n is the total
number of nodes in the network.
Obviously, a smaller Phase Transition Time indicates a better
network connectivity in evolving networks, which can further
lead to a better performance of information cascading, network
robustness, resource prediction, system behavior, etc. To better
demonstrate the performance of Evolving K-Graph, we present
a comparison between our model and Multi-typed Affiliation
Network. The result is given in Theorem 8.

Lemma 2: The value of parameter γim lies in the range
γim ∈ (0, 1). Moreover, any two of parameters γ1m, γ2m and
γ3m can not be smaller than 1

2 at the same time.
Proof: The conclusion that γim ∈ (0, 1) can be verified

by Equation (4), and we focus on the second result in the
following proof. Without loss of generality, we prove that the
case γ1m, γ2m < 1

2 does not exist. Note that the value of γ1m

(γ2m) increases monotonically with α2 and α3 (α1 and α3),
and thus in order to satisfy the case, α3 should be set as small
as possible. Letting α3 → 0, we have

γ1m =
C2

12

C1
12 + C2

12

and γ2m =
C1

12

C1
12 + C2

12

.

Note that γ1m < 1
2 when C1

12 > C2
12 and γ2m < 1

2 when
C1

12 < C2
12, which leads to a contradiction. Hence we conclude
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that γ1m and γ2m can not be smaller than 1
2 at the same time

and we complete the proof.
Theorem 8: In the generated network G(Vk), t → ∞, the

phase transition time tg is much smaller than that of Multi-
typed Affiliation Network, denoted by tb, which satisfies

tg = Θ (tb
c) ,

where c ≤ 1 is a constant.
Proof: We make the calculation by using generating

functions [33]. Let h2(x) denote the generating function of the
size of component reached by following an edge in G(V1|V2)
and let h3(x) denote that in G(V1|V3). In other words, we
define h2(x) as

h2(x) =
∑
k

pkx
k,

where pk is the probability that an arbitrary edge in G(V1|V2)
leads to a component of size k. And h3(x) is defined in a same
way. The self-consistency conditions of h2(x) and h3(x) are

h2(x) = x
∑
d

dvpd
E[dv]

h2(x)
dv−1

h3(x)
du

h3(x) = x
∑
d

dupd
E[du]

h2(x)
dvh3(x)

du−1
,

where d = [dv, du] is the node degree in generated network.
Let H(x) denote the generating function of size of component
reached by following an arbitrary edge. Using the same
method we have

H(x) = x
∑
d

pdh2(x)
dvh3(x)

du .

This equation holds since a node in generated network can be
reached either by an edge in G(V1|V2) or an edge in G(V1|V3).
The Jacobian matrix J of the equations can be generated as

J =

[
a11 a12
a21 a22

]
=


E[dv

2 − dv]

E[dv]

E[dvdu]

E[dv]

E[dvdu]

E[du]

E[du
2 − du]

E[du]

 .
Phase transition point exists when the eigenvalues of J equal
to 1

σ (J) =
1

2

(
a11 + a22 +

√
(a11 − a22)

2
+ 4a12a21

)
= 1.

To derive the phase transition point, we first need to calculate
the items in the Jacobian matrix J .
1) E[dv] and E[du]: According to Equations (7) and (8), we

have

E [dv] = E [d2]E [i] = Θ
(∑n

k=1
k1− 1

γ2

)
E [du] = E [d3]E [j] = Θ

(∑n

k=1
k1− 1

γ3

)
.

The probability distributions of d2 and d3 are given in
Theorem 2, and that of i and j are given in Lemma 1,
based on which we can obtain the above results.

2) E[dv
2] and E[du

2]: Since dv =
∑d2
k=1 ik, we have

E[dv
2] = E[d2]E[i2] + E[d2] (E[d2]− 1)E[i]2

= Θ
(∑n

k=1
k
2− 1

γ2

)
,

where E[d2] = Θ(1) and E[i2] ≥ E[i]2. And similarly, we
have

E[du
2] = Θ

(∑n

k=1
k2− 1

γ3

)
.

3) E [dvdu]: According to Equation (9), we have

E[dvdu] =E [i]E [j]E [d2d3] = E[dv]E[du]
E[d2d3]

E[d2]E[d3]

=E[dv]E[du]Θ
(∑n

k=1
k
1− 1

γ1

)
.

(11)

Note that the expression of E[dvdu] in our model is given
in Equation (11) since dv and du are positively-correlated.
However, in the Multi-typed Affiliation Network we have
E[dvdu] = E[dv]E[du].

The above items vary with parameters γ1, γ2 and γ3, and
thus we divide this problem into several cases.

Case 1: γ1 ∈ (0, 1
2 ]. In this case, according to Equation (11)

we know that for the generated network

E[dvdu] = Θ (E[dv]E[du]) .

Therefore, we have
tg = Θ (tb) .

Case 2: γ1 ∈ ( 1
2 , 1) and γ2, γ3 ∈ (0, 1

2 ). According to
Lemma 2 we know that this case does not exist.

Case 3: γ1, γ2, γ3 ∈ ( 1
2 , 1). For the generated network, we

have √
ng2 + 4ng

4− 1
γ2
− 1
γ3 − ng = Θ(1). (12)

For the one obtained from Multi-typed Affiliation Network,
we have √

nb2 + 4nb
8− 1

γ2
− 1
γ3
− 2
γ1 − nb = Θ(1). (13)

Note that in evolving networks, n = Θ(t). Combining the
Equations (12) and (13), we can obtain

tg = Θ

(
tb

2

8− 1
γ2

− 1
γ3

− 2
γ1

)
,

if 8− 1
γ2
− 1

γ3
− 2

γ1
> 2; otherwise,

tg = Θ (tb) .

Case 4: γ1, γ2 ∈ ( 1
2 , 1) and γ3 ∈ (0, 1

2 ). In this case, we
have E[dv

2−dv ]
E[dv ] ≥ E[du

2−du]
E[du] and thus the phase transition time

can be calculated as follows. For the generated network, we
have √

ng2 + 4ng
2− 1

γ2 − ng = Θ(1).

For the one generated from Multi-typed Affiliation Network,
we have √

nb2 + 4nb
6− 1

γ2
− 2
γ1 − nb = Θ(1).

Combining the the above two equations, we can obtain

tg = Θ

(
tb

2

6− 1
γ2

− 2
γ1

)
,

if 6− 1
γ2
− 2

γ1
> 2; otherwise,

tg = Θ (tb) .



13

Case 5: γ1, γ3 ∈ ( 1
2 , 1) and γ2 ∈ (0, 1

2 ). The result can be
obtained with a same method as in case 4.

Remark: Although results in Theorem 8 indicate that the
phase transition time of generated network is equal (c = 1) or
smaller (c < 1) than that in Multi-typed Affiliation Network
in order sense. We will show that the case c < 1 exists in
most conditions. According to Theorem 3 and Theorem 4 we
know that, the densification and shrinking diameter exist in
G (Vi|Vj) if γj ≥ 1

2 and a larger γj indicates a faster speed.
Therefore, we can infer that in most realistic networks, the
condition γj ≥ 1

2 holds for j ∈ {1, 2, 3}. Then, according to
Theorem 8, most of networks can be classified into Case 3
with the large enough parameters, and consequently,

tp = Θ (tb
c) ,

where c < 1 holds in most realistic networks.
Thanks to the interactive-evolution, we observe a relatively

smaller phase transition time in the proposed model compared
with Multi-typed Affiliation Networks, which gives an earlier
occurrence of connection among a constant fraction of nodes.

D. Extension to Evolving K-Graph

In this subsection, we extend the Evolving 3-Graph model
to the general case K ≥ 3. As expected, the main results in
Evolving 3-Graph also hold in the extended one. Specifically,
for an arbitrary node v ∈ Vk in T (V1, ..., VK), it satisfies

– Growth of node degree: The degree of node v increases
with time t, i.e., d(t) = Θ (tγkm), where γkm ∈ (0, 1) is
a constant. Moreover, all components of vector d(t) are in
the same order.

– Degree distribution: The degree of node v follows the
power-law distribution with exponent − 1

γk
− 1.

– Densification and shrinking diameter: The generated graph
G(Vk|Vi), k 6= i, has the properties of densification and
shrinking diameter if γi ≥ 1

2 .
– Community structure: The intra-community ratio Dm

in re-
mains stable with the network evolution and requires ω(t0)
time to recover after an event.

– Degree correlation: For the generated network G(Vk), the
degree correlation coefficient of any two layers is positive.

– Phase transition time: The phase transition time of gen-
erated network G(Vk) is much smaller than that without
interactive-evolution in order sense.

To prove the above results, let us consider how the node
degree grows in each time slot. Following the same method
as in Theorem 1, the degree of v ∈ Vk in B(Vk, Vi) satisfies

dki(t)− dki(t− 1) = Ciki
dki(t− 1)

eki(t− 1)
+
∑
j 6=k,i

Cjki
dkj(t− 1)

ekj(t− 1)
,

where dki is the degree of v ∈ Vk in B(Vk, Vi). As we can
observe, interactive-evolution (the second part in the equation)
dominates the growth of node degree, which further leads to
other results following the same way as in Evolving 3-Graph.

TABLE IV
PARAMETERS IN FITTING OF CONTACT NETWORK

Parameters Evolving K-Graph Multi-typed Affiliation Network
< cij > < 5 > < 9 >
< ĉij > < 0.25 > < 0.25 >
< p1, p2, p3 > < 0.29, 0.38, 0.43 > < 0.29, 0.38, 0.43 >
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Fig. 8. Fitting of the Contact Network dataset, where Evolving K-Graph and
Multi-typed Affiliation Networks are applied to reproduce three main features,
i.e., densification, shrinking diameter and positive correlation.

VI. SIMULATIONS

This section gives experiments of fitting Evolving K-Graph
model to real-world networks. Given a particular dataset, we
aim to reproduce its main features through our proposed model
as well as other baseline models for performance comparison.

A. Simulation Settings

1) Dataset: The dataset used in simulations is the Contact
Network, the details of which could be found in Section III-A.

2) Model used in Comparison: As illustrated in Section II,
to our best knowledge, there are no existing models designed
for multi-typed evolving networks; Instead, some models for
single-typed ones can be simply modified to a multi-typed one
and thus we include one of them for performance comparison.
• Multi-typed Affiliation Network: A modification of Affili-

ation Network [15], where at each time slot, a certain typed
node arrives with a given probability and attaches to nodes
of other types following a preferential attachment manner.
3) Parameter Settings: The values of parameters applied in

fitting are listed in Table IV. The objective of fitting is to look
for a group of parameters that minimizes the sum of relative
error, between simulated results and real ones, over all the test
points. The objective function we aim to minimize is

min
∑

feature i

∑
test point j

(hij − dij)2
,

where hij and dij denote the simulated results and real ones,
respectively. In the fitting process, we adjust parameters in the
following way. Firstly, in both Evolving K-Graph and Multi-
typed Affiliation Network, < p1, p2, p3 > directly determines
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(b) Multi-typed Affiliation Network.

Fig. 9. Degree distributions of bipartite graphs in Evolving K-graph and Multi-typed Affiliation Network with nodes types V1, V2 and V3.
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Fig. 10. Simulation results on community evolution. The top three subfigures show the merge event with start times t = 100, t = 150 and t = 200
respectively and the bottom three subfigures give the corresponding results of split event.

the number of nodes in the network, i.e., E[|Vi|] = pit. Hence,
we set it as < 0.29, 0.38, 0.43 >, which is proportional to the
number of nodes in Contact Network. Secondly, in both two
models, < cij > and < ĉij > jointly determine the speed of
network evolution, where a larger < cij > leads to a faster
evolution and a larger < ĉij > results in a slower one. For the
convenience, we fix the value of < ĉij > and adjust < cij > to
make the fitting. We note that fix < cij > and adjust < ĉij >,
or adjust the two parameters simultaneously can also achieve
the goal. In addition, due to the different evolving mechanisms,
performances of these two models, under the same parameters,
differ with each other. Therefore, we conduct fitting of the two
models separately and finally obtain the values as in Table IV.

B. Performance

1) Performance of Evolving K-Graph: We reproduce three
main features, i.e., densification, shrinking diameter and posi-
tive correlation, and the corresponding results are given below.

Densification: With the given parameters, the network gen-
erated by Evolving K-Graph densifies as illustrated in Fig. 8.
From the figure we can observe that the densification ratios at
five data points, in all the three node types, well fit to that in
the Contact Network dataset. In particular, the largest absolute
error among all the 15 data points is only 0.3159.

Shrinking diameter: With the same parameters, diameter of
the generated network shrinks with the time. The correspond-
ing results are given in Fig. 8. We can find that the diameter

of the dataset shrinks slowly while in our generated network,
it first decreases rapidly and then remains stable. However, the
fitness can still be regarded as a well performed one since the
largest absolute error among all the data points is only 0.4074.

Positive correlation: In the generated network, node degrees
of a certain type are positively correlated, which well fit to that
in the Contact Network dataset under the given parameters, as
we could observe from the results presented in Fig. 8.

In addition to the fitting in terms of the above three features,
we present how our model produce the other two, i.e., power-
law degree distribution and community evolution. We note that
these two features are not included as targets in the fitting since
the corresponding statistic in the dataset is difficult to obtain.

Power-law degree distributions: Degree distributions in each
bipartite graph, which models inter-type interactions, are given
in Fig. 9. Results show that all the degrees follow power-law
distributions, which exactly meets the one in real networks.

Community evolution: To evaluate the performance of merge
event modeled in Evolving K-graph, we assume that there are
three communities C1, C2 and C3 with fractions β1 = 0.3,
β2 = 0.4 and β3 = 0.3 at the initial time. Then, when the
merge event starts we reset the parameters as β1 = 0.3,
β2 = 0, β3 = 0 and β4 = 0.7 and merge the nodes in
C2 and C3 into a new one C4. To make the evaluation we
use two community partitions, one is obtained through pre-
set parameters, i.e., Ci, and the other is detected by Louvain
algorithm [27] which is generated based on the network
topology. We measure relative error (Err) between them and
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the result is shown in Fig. 10. The figure shows that before
the merge event, Err is approximately 0 which indicates that
Evolving K-graph can well capture the community evolution.
When the event happens, Err increases abruptly since that
though we reset the community parameters, network topology
can not change immediately and thus results in a dismatch
between the two results. After that, Err decreases over time and
finally reapproaches 0. Compare the top three figures where
the merge event starts at t = 100, t = 150 and t = 200
respectively, and we could conclude that the network that starts
merge later requires a larger merging time, which is consistent
with our theoretical results. The same results appear in split
event as shown in the three bottom figures. From the above
results we demonstrate that Evolving K-Graph can well model
the community structure and its evolution.

2) Comparison with the Baseline Model: In addition to the
properties of data and Evolving K-Graph, Fig. 8 also presents
that of Multi-typed Affiliation Network. The figure shows that,
Multi-typed Affiliation Network can also well fit the real data
points in terms of densification ratio and diameter. However,
the positive correlation can only be reproduced in Evolving K-
Graph while in Multi-typed Affiliation Networks it fluctuates
around 0. In addition, we plot the degree distribution of the
baseline model in Fig. 9 (b). Results show that it is power-
law distributed. As for interactive evolution and community
structure, the characterizations of them are innovations of the
proposed model and the baseline model can not cover them, as
shown in Table I. To sum up, Evolving K-Graph could better
fit the dataset compared with the baseline one.

C. Parameters Choice and Difficulties in Fitting

We now present an illustration on the choice of parameters
and the difficulties in fitting a specific dataset. All the involved
parameters are listed in Table IV, which includes:

• < pi >: Since pi denotes the probability that a node of type
i arrives the network, a larger pi directly results in a larger
number of nodes in Vi. Based on this we set < p1, p2, p3 >
as < 0.29, 0.38, 0.43 >, which is in proportion to the final
number of nodes as given in Table II.

• < cij > and < ĉij >: The parameter cij denotes the number
of newly added edges and ĉij denotes that of newly leaved
ones, and thus their combined effects determine the number
of edges in the network. A larger cij and a smaller ĉij result
in a larger number of edges.

However, unlike pi that only affects nodes of type i, cij and
ĉij have a cross-type effects and therefore bring difficulties in
fitting. For example, a larger cij could cause a larger number
of edges in B(Vi, Vj), which, however, also results in a larger
number of edges in B(Vj , Vk) since cijcik edges will be added
in B(Vj , Vk) due to interactive evolution. Therefore, the fitting
of asymmetric networks whose properties in nodes of different
types vary a lot, e.g., Academic Network in Table II, tends to
be especially difficult to control. Further, note that the values
of parameters sometimes vary with the time, e.g., the curves
in Fig. 3 (b) should be fitted with time varying parameters.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a model named Evolving K-Graph
to characterize evolving networks with hybrid interactions in-
volving both inter-type connections and intra-type connections.
The superiorities of Evolving K-Graph lie in three aspects:
good capture of realistic networks, mathematical tractability
and efficient implementation. Subsequently, we prove that the
model can reproduce commonly-observed network properties
such as power-law distribution, densification, shrinking diame-
ter and community structure. And finally, the proposed model
is verified through simulations and results show that it can
well capture the realistic networks.

There remains some future directions that can be explored.
For example, it is a desirable future work to study the network
under shrinking mode, where the edge leave rate is faster than
its creation rate. Another interesting work is to explore direct
connections between nodes of a same type, which exist, since
entities without common attributes may also related with each
other, but are ignored in the current model.
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