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Abstract—The advent of social networks poses severe threats
on user privacy as adversaries can de-anonymize users’ identities
by mapping them to correlated cross-domain networks. Without
ground-truth mapping, prior literature proposes various cost
functions in hope of measuring the quality of mappings. However,
there is generally a lacking of rationale behind the cost functions,
whose minimizer also remains algorithmically unknown.

We jointly tackle above concerns under a more practical
social network model parameterized by overlapping communities,
which, neglected by prior art, can serve as side information
for de-anonymization. Regarding the unavailability of ground-
truth mapping to adversaries, by virtue of the Minimum Mean
Square Error (MMSE), our first contribution is a well-justified
cost function minimizing the expected number of mismatched
users over all possible true mappings. While proving the NP-
hardness of minimizing MMSE, we validly transform it into the
weighted-edge matching problem (WEMP), which, as disclosed
theoretically, resolves the tension between optimality and com-
plexity: (i) WEMP asymptotically returns a negligible mapping
error in large network size under mild conditions facilitated by
higher overlapping strength; (ii) WEMP can be algorithmically
characterized via the convex-concave based de-anonymization
algorithm (CBDA), perfectly finding the optimum of WEMP.
Extensive experiments further confirm the effectiveness of CBDA
under overlapping communities, in terms of averagely 90% re-
identified users in the rare true cross-domain co-author networks
when communities overlap densely, and roughly 70% enhanced
re-identification ratio compared to non-overlapping cases.

I. INTRODUCTION

With the mounting popularity of social networks, the privacy
of users has been under great concern, as information of
users in social networks is often released to public for wide
usage in academy or advertisement [8]. Although users can be
anonymized by removing personal identifiers such as names
and family addresses, it is not sufficient for privacy protection
since adversaries may re-identify these users by correlated side
information, for example the cross domain networks where the
identities of these users are unveiled [8].

Such user identification process in social networks resort-
ing to auxiliary information is called Social Network De-
anonymization. Initially proposed by Narayanan and Shi-
matikov [2], this fundamental issue has then gained increas-
ing attention, leading to a large body of subsequent works
[3]–[9]. Particularly, this family of works embarked on de-
anonymization under a common framework, as will also
be the framework of interest in our setting. To elaborate,
in the framework there is an underlying network G which

characterizes the relationship among users. Then there are two
networks observed in reality, named as published network G1

and auxiliary network G2, whose node sets are identical and
edges are independently sampled from G with probability s1

and s2 respectively. The aim of de-anonymization is to discover
the correct mapping between V1 and V2, which corresponds
the same user in two networks, with the network structure as
the only side information available to the adversaries.

Regardless of the considerable efforts paid to de-
anonymization, there is still a severe lacking of a compre-
hensive understanding about the conditions under which the
adversaries can perfectly de-anonymize user identities. It can
be accounted for from three aspects. (i) Analytically, despite
a variety of existing work [3], [4] that proposed several cost
functions in measuring the quality of mappings, the theoret-
ical devise of those costs functions lacks sufficient rationale
behind. (ii) Algorithmically, previous works [3], [4] failed to
provide any algorithm to demonstrate that the optimal solution
of proposed cost functions can indeed be effectively obtained.
(iii) Experimentally, due to the destitution of real cross-domain
datasets, state-of-the-art research [6], [7] simply evaluated
the performance of proposed algorithms on synthetic datasets
or real cross-domain networks formed by artificial sampling,
falling short of reproducing the genuine social networks.

The above limitations motivate us to shed light on
de-anonymization problem by jointly incorporating ana-
lytical, algorithmic and experimental aspects under the
common framework noted earlier. As far as we know,
the only work that shares the closest correlation with us
belongs to Fu et. al. [22], [23], who investigated this problem
on social networks with non-overlapping communities and
derived their cost function from the Maximum A Posterior
(MAP) manner. However, we remark that the assumption of
disjoint communities fails to reflect the real situation where a
user belongs to multiple communities, as observed in massive
real situations. For example, in social networks of scientific
collaborators [9], actors and political blogospheres [18], users
might belong to several research groups with different research
topics, movies and political parties respectively. Furthermore,
while MAP enables adversaries to find the correct mapping
with the highest probability, it relies heavily on a prerequisite,
i.e., a hypothetically true mapping between the given published
and auxiliary networks. However, once the MAP estimation
fails to exactly match this “true” mapping, then the mapping
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error becomes unpredictable, with the probability that the esti-
mation deviates largely from the real ground-truth. For the first
concern, by adopting the overlapping stochastic block model
(OSBM), we allow the communities to overlap arbitrarily,
which can well capture a majority of real social networks.
For the second concern, we derive our cost function based
on Minimum Mean Square Error (MMSE), which minimizes
the expected number of mismatched users by incorporating
all the possible true mappings between the given published
and auxiliary networks. This incorporation, from an average
perspective, keeps the estimation of MMSE from significant
deviation from any possible hypothetic true mapping.

Hereinafter we unfold our main contributions in analytical,
algorithmic and experimental aspects respectively as follows:

1. Analytically, we are the first to derive cost function based
on MMSE, which justifiably ensures the minimum expected
mapping error between our estimation and the ground-truth
mapping. Then we demonstrate the NP-hardness of solving
MMSE, whose intractability stems mainly from the calculation
of all n! possible mappings (n is the total number of users). To
cope with the hardness, we simplify MMSE by transforming
it into a weighted-edge matching problem (WEMP), with
mapping error negatively related to weights.

2. Algorithmically, in terms of solving WEMP, we theo-
retically reveal that WEMP alleviates the tension between
optimality and complexity: Solving WEMP ensures optimality
since its optimum, in large network size, negligibly deviates
from the ground-truth mapping under mild conditions where
on average a user belongs to asymptotically non-constant
communities. Meanwhile it reduces complexity since perfectly
deriving its optimum only entails a convex-concave based de-
anonymization algorithm (CBDA) with polynomial time. The
proposed CBDA serves as one of the very few attempts to ad-
dress the algorithmic characterization, that has long remained
open, of de-anonymization without pre-identification.

3. Experimentally, we validate our theoretical findings that
minimizing WEMP indeed incurs negligible mapping error in
large social networks based on real datasets. Interestingly, we
also observe significant benefits that community overlapping
effect brings to the performance of CBDA: (i) in notable
true cross-domain co-author networks with dense overlapping
communities, CBDA can correctly re-identify 90% nodes on
average; (ii) the overlapping communities bring about an
enhancement of around 70% re-identification ratio compared
with non-overlapping cases.

Unlike de-anonymization with pre-identified seed nodes, to
which a family of work pays endeavor, no prior knowledge
of such seeds complicates this problem, thus leaving many
aspects largely unexplored. Meanwhile, theoretical results on
such seedless cases in prior art is short of experimental
verification. Our work is, as far as we are concerned, the initial
devotion to theoretically dissecting seedless cases with over-
lapping communities, under real cross-domain networks with
more than 3000 nodes. With novel exploitations of structural
information, future design of more efficient mechanisms will
be expected to further dilute the limitation of network size.

II. RELATED WORKS

Narayanan and Shimatikove [2] formulated social network
de-anonymization problem initially and proposed a gener-
ic algorithm based on some pre-identified (seeded) nodes.
Predicated on this seminal paper, amounts of work zoomed
in on de-anonymization with seed nodes or not. For seeded
networks, Yartseva et al. [12], Kazemi et al. [13] and Fabiana
et al. [14] studied de-anonymization under Erdős-Rényi graph,
while Korula and Lattenzi [15] shed light on it under pref-
erential attachment model. For seedless networks, Pedarsani
and Grossglauer [3] are precursors studying this problem
under Erdős-Rényi graph. Kazemi et al. [4] considered the
partial overlapping of nodes in two networks. Onaran et. al.
[8] justified a cost function based on Maximum A Posterior
(MAP) and Fu et. al. [22], [23] algorithmically solved it.

For the clustering effect, Chiasserini et al. [16] studied
clustering under seeded de-anonymization problem and point-
ed that the clustering reduces seeded nodes while crippling
algorithmic robustness. Onaran et al. [8] modeled clustering
as communities and Fu et al. [22], [23] showed that the com-
munity enhance re-identification accuracy in seedless cases.
However, as far as we know, no existing work has focused on
overlapping communities, an omnipresent case in large-scale
social networks.

III. MODELS AND DEFINITIONS

In this section, we will introduce the fundamental model
and some related definitions. Before we start, we list some
basic notations frequently used in our later analysis.

A. Preliminary Notations

Definition 1. (Expectation Over Matrix) Given a random
matrix variable A and a function f(A), the expectation of
f(A) over matrix A is denoted as EA(f(A)).

Definition 2. (Frobenius Norm) Given an m× n matrix X,
the Frobenius norm of X is ||X||F =

√∑m
i=1

∑n
j=1(X2

ij),
where Xij is the element at the ith row and jth column of X.

Definition 3. (Hadamard Product) Given two n×n matrices
Y and Z, The Hadamard Product between Y and Z is defined
as ∀i, j ∈ {1, 2, ..., n}, (Y ◦ Z)ij = YijZij .

B. Social Network Models

The social network model considered in this paper is
composed of three parts, i.e., the underlying network G, the
published network G1 and the auxiliary network G2. G1

and G2 can be viewed as the incomplete observations of
G, which represents the underneath relationship among all
users. For instance, in reality G may characterize the true
underlying relationship among a group of people, while G1

might represent the online network in Facebook of this group
of people and G2 might represent the communication records
in the cell phones of them, both of which are observable.
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1) Underlying Social Network: Let G = (V,E,U), where
V is the node set, E is the edge set and U is the adjacent
matrix. We regard G as undirected with |V | = n nodes. To
reflect the property of overlapping communities, we suppose G
is generated based on the overlapping stochastic block model
(OSBM) [18], whose idea can be interpreted as follows:

Suppose there are Q communities in G, where each com-
munity q ∈ Q contains a subset of nodes. For a generic
node i, we introduce a latent Q-dimensional column vector
Ci, in which all elements are independent boolean variables
Ciq ∈ {0, 1}, with Ciq being the qth row in Ci. Ciq = 1
means that node i is in community q and Ciq = 0 otherwise.
Thus Ci can be seen as drawn from the Bernoulli distribution:
Ci ∼

∏Q
q=1(pq)

Ciq (1− pq)1−Ciq , where pq is the probability
of any node in G belonging to community q. We call Ci the
community representation of node i, since Ci shows to which
communities node i belongs exactly.

In OSBM, the probability of edge existence between nodes i
and j in G relies on Ci and Cj . Hence we denote Pr{(i, j) ∈
E} = pCiCj , where pCiCj is pre-defined depending on the
number of communities nodes i and j co-exist in, which is
easy to obtain in real de-anonymization.

2) Published Network and Auxiliary Network: We let
G1(V1, E1,A) denote the published network, whose node
labeling is identical with the underlying graph G and edges are
independently sampled from G with probability s1. In contrast,
an auxiliary network, denoted by G2(V2, E2,B), does not
necessarily share the same node labeling as G, and the edges
are independently sampled from G with probability s2. A
and B respectively represent the adjacency matrix of G1 and
G2. In correspondence to real situations, G1 characterizes the
anonymized network where users’ identities are unavailable
for privacy concern. On the contrary, G2 characterizes an un-
anonymized network where users’ identities are all available.

Adversaries can leverage G2 to identify nodes in G1 based
on the edge relationship and community information: (i) For
edge relationship, adversaries can harness the degree similarity
that a node of high degree in G1 should be inclined to match
a node of high degree in G2; (ii) For community information,
adversaries can exploit the community representation simi-
larity that nodes in G1 and G2 with the same community
representation should be matched with higher probability.

For the edge set Ek (k ∈ {1, 2}) of either network,
Pr{(i, j) ∈ Ek} = sk if (i, j) ∈ Ek and Pr{(i, j) ∈ Ek} = 0
otherwise. For the node sets V1 and V2, we assume same
number of nodes in G, G1 and G2, i.e., |V | = |V1| = |V2| = n
for convenience. Note that it is easy to extend to the situation
where |V1| 6= |V2| as shown in Section III-C.

Furthermore, we should clarify that we render each node
pair (i, j) a weight wij , which, quantified in Section III-C,
is the cost of mistakenly matching the node pair (i, j) and is
contingent on pCiCj , s1 and s2. As we will show in Section
IV-A, wij is negatively proportional to the number of com-
munities nodes i and j co-exist in, evincing the cost reduction
arose from higher overlapping strength of communities.

Remark: In fact G, G1 and G2 are all random variables.

We directly use G, G1, G2 as notations for the realizations of
these random variables with no loss of clearance. Moreover,
we set θ = {{pCiCj |1 ≤ i, j ≤ n}, s1, s2} as the parameter
set incorporating all pre-defined parameters in the model.
C. Social Network De-anonymization

The goal of social network de-anonymization problem is to
find a mapping π : V1 7→ V2, which corresponds nodes on
behalf of the same user in G1 and G2. We can equivalently
express this mapping by forming a permutation matrix Π ∈
{0, 1}n×n, where Π(i, j) = 1 if π(i) = j and Π(i, j) = 0
otherwise (If |V1| 6= |V2|, then Π is a non-square matrix which
does not affect our analysis and algorithm design). We denote
Π0(π0) as the true permutation matrix (mapping) between
G1 and G2. We do not have any prior knowledge of Π0

and access to the underlying graph G. We formally define
the social network de-anonymization problem in Definition 4
along with an illustrative instance in Fig. 1.
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Fig. 1: An example of G, G1 and G2. The edges of G1(2) are
sampled independently from G with probability s1(2). C1, C2, C3 de-
note 3 different communities in OSBM. The true mapping π0 =
{(1, 1), (2, 6), (3, 3), (4, 4), (5, 5), (6, 2), (7, 8), (8, 7), (9, 9)}.

Definition 4. (Social Network De-anonymization Problem)
Given the published network G1, the auxiliary network G2,
parameter set θ, social network de-anonymization problem
aims to construct the true mapping π0 between V1 and V2.

However, our estimated permutation, Π̂, may deviate from
the ground-truth Π0. To quantify this difference, we introduce
a metric called “node mapping error (NME)” as follows.

Definition 5. (Node Mapping Error) Given the estimated Π̃
and ground-truth Π0, the node mapping error (NME) between
Π̂ and Π0 is defined as d(Π̂,Π0) = 1

2 ||Π̂−Π0||2F .

Obviously d(Π̂,Π0) equals to 0 if and only if two permu-
tations are identical, and if k nodes are mapped mistakenly,
then NME equals to k, showing that NME is well-defined.
Thus the goal of de-anonymization is to minimize NME.

Moreover, since adversaries is uncertain about the true
mapping between the given G1 and G2, Π0 can be viewed
as a random variable whose probability distribution is condi-
tioned on G1 and G2 in adversaries’ perspectives. Naturally
adversaries prefer an estimation of Π0 keeping from severe
NME on average. To this end, we consider selecting Π̂ in the
light of “Minimum Mean Square Error (MMSE)” criterion,
which, formally presented in Definition 6, is the minimizer of
the expected NME in the form of mean square.

Definition 6. (The MMSE Estimator) Given G1, G2 and θ,
the MMSE estimator is an estimation of Π0 minimizing the
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TABLE I: Notions and Definitions
Notation Definition
G Underlying social network
G1, G2 Published and auxiliary networks
V, V1, V2 Vertex sets of graphs G, G1 and G2

E,E1, E2 Edge sets of graphs G, G1, G2

s1, s2 Edge sampling probabilities of graphs G1, G2

n Total number of nodes
wij The weight of node pair (i, j)
Ci Community representation of node i
pCiCj Probability of edge existence between node i and j in G
θ Parameter set
W The weight matrix
U,A,B Adjacency matrices of G, G1, G2

Π0(π0) True permutation matrix (True mapping) between V1 and V2

Π(π) A permutation matrix (A mapping) between V1 and V2

Π̂(π̂) The MMSE estimator (the corresponding mapping)
Π̃(π̃) The minimizer of WEMP (the corresponding mapping)
Πn The set of n× n permutation matrices.

number of mistakenly matched nodes in expectation, which is

Π̂ = arg min
Π∈Πn

EΠ0{d(Π,Π0)}

= arg min
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2FPr(Π0|G1, G2,θ),
(1)

where Πn is the set of n× n permutation matrices.

Remark: Recall that prior effort [8] has leveraged Maxi-
mum A Posterior (MAP), which provides the solution with
the highest probability being exactly identical to the true
permutation. MMSE and MAP characterize different aspects
of minimizing NME. As far as we know, no previous work
has learned de-anonymization under MMSE, which, however,
is also of great significance as MAP in reducing NME.

The main notations in our work are summarized in Table 1.

IV. ANALYTICAL ASPECT

In this section, we rewrite the MMSE problem in an
equivalent but more explicit form, which is then proved to
be NP-hard. To facilitate the problem analysis, we give an
approximation to the MMSE problem and discuss its validity.

A. Reforming MMSE Estimator

Note that Pr(Π0|G1, G2,θ) in Eqn. (1) needs to be ex-
pressed more explicitly. Inspired by the derivation in [8], we
have the following theorem reforming MMSE estimator.

Theorem 1. Given G1, G2 and θ, the MMSE estimator can
be equivalently reformed as

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F ||W ◦ (Π0A−BΠ0)||2F , (2)

where W satisfies that W(i, j) =
√
wij and wij =

log
(

1−pCiCj (s1+s2−s1s2)

pCiCj (1−s1)(1−s2)

)
is weight between nodes i and j.

Proof: Here we present an sketch of our proof, which is
similar to Appendix D in [22]. Define GΠ as the set of all
realizations of the underlying network which is in consistency
with the given G1, G2 and Π. Then the MMSE estimator can
be written as

Π̂ = arg min
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F
∑
G∈GΠ

Pr(G,Π0|G1, G2,θ). (3)

Focusing on Pr(G,Π0|G1, G2,θ) in Eqn. (2). By Bayesian’s

formula along with the independency of the sampling pro-
cess of G1 and G2, we obtain Pr(G,Π0|G1, G2,θ) =
(Pr(G)Pr(G1|G)Pr(G2|G,Π0))/Pr(G1, G2). Then we ex-
plicitly express Pr(G), Pr(G1|G), Pr(G2|G,Π0) by virtue
of defining a graph G∗π with the least number of edges among
all graphs in GΠ. Ultimately we transform Eqn. (3) into

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F
∑
G∈GΠ

||W ◦ (Π0A−BΠ0)||2F ,

where W is the symmetric weight matrix such that W(i, j) =
√
wij = W(j, i) and wij = log

(
1−pCiCj (s1+s2−s1s2)

pCiCj (1−s1)(1−s2)

)
is

weight between nodes i and j. Proved.
Remark: To simplify the form of ||W◦(Π0A−BΠ0)||2F ,

we set Π0Â = W◦Π0A, and B̂Π0 = W◦BΠ0. Therefore
we can rewrite the MMSE estimator as

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π−Π0||2F ||Π0Â− B̂Π0||2F , (4)

We discuss MMSE estimator in the form of Eqn. (4) which will
be the object of interests in our subsequent analysis throughout
the paper. In Section V-A, we will discuss when W ◦A = Â
and W ◦B = B̂.

B. NP-hardness of Solving the MMSE Estimator

We prove the NP-hardness of MMSE problem, showing no
polynomial time approximation algorithm for it.

Proposition 1. Solving the MMSE estimator is an NP-hard
problem. There is no polynomial time approximation algorithm
with any multiplicative approximation guarantee unless P=NP.

Proof: Due to the limitation of space, we provide an
outline of our proof. Generally, the main idea to demonstrate
the NP-hardness of MMSE problem is that: We reduce the
1-median problem1 to MMSE problem, and demonstrate that
when the size of 1-median problem is identical to MMSE prob-
lem (which is n! since we need to calculate all Π0 ∈ Πn), then
the lower bound of time complexity is larger than polynomial.

Reduction from 1-median problem: We construct a
clique with n! nodes, each node i representing a possible
Π0(i) ∈ Πn. We modify Eqn. (4) equivalently into Π̂ =
arg minΠ∈Πn

∑
Π0∈Πn(4n−||Π−Π0||2F )||Π0Â− B̂Π0||2F

where we set D(i, j) = 4n − ||Π0(i) − Π0(j)||2F and
ω(i) = ||Π0(i)Â − B̂Π0(i)||2F (Note that Π0(i) is a node
in the clique). Both D(i, j) and ω(i) meet the requirements
in 1-median problem , thus we complete the reduction.

The Lower Bound for 1-Median Problem: For a 1-median
problem with n! nodes, obviously we need to calculate at least
dn!

2 e edges to form an edge set such that the endpoints of all
edges inside cover all nodes in the graph, or else at least one
node will not be calculated for any edge connecting it, which
we can not judge if it is the node we intend to find. Since the

1The 1-median problem [20] refers to that: Given a connected undirected
graph G = (V,E) in which no isolated vertices exist and each node v is
endowed with a nonnegative weight ω(v), find the vertex v∗ which minimizes
weighted sum. H(v∗) =

∑
v∈V ω(v) ·D(v, v∗) where D(v, v∗) means the

shortest path length between nodes v and v∗. Note that 1-median itself is not
NP-hard if the problem size is O(n).
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size of our input, a matrix, is n2, the complexity turns out to
be Ω((

√
n/2)!) = Ω(

√
n!), exceeding polynomial.

C. Approximation of the MMSE estimator

MMSE involves all the n! possible true mappings, leading to
fairly prohibitive computational cost. To tackle the difficulty,
we validly transform the MMSE problem into a weighted-
edge matching problem (WEMP), which ensures tractability
by eliminating the need for calculating all n! possible cases.
Definition 7 formally formulates WEMP.

Definition 7. (Weighted-Edge Matching Problem) Giv-
en G1(V1, E1,A), G2(V2, E2,B) and weight matrix W,
the weighted-edge matching problem is to find Π̃ =
arg minΠ∈Πn ||ΠÂ− B̂Π||2F .

The idea of this transformation is that: For any fixed Π,
we define a set Sk(Π), 0 ≤ k ≤ n, any element of which
is Π0 such that d(Π,Π0) = k. Obviously S0(Π) = {Π},
S1(Π) = ∅. Then we can reform MMSE problem as

Π̂ = arg max
Π∈Πn

n∑
k=0

k

 ∑
Π0∈Sk(Π)

||Π0Â− B̂Π0||2F

 . (5)

From Eqn. (5) we transform MMSE problem to WEMP by
three steps: (i) Analyzing the error caused by Π0 ∈ S2(Π), the
simplest case where only two nodes are mapped erroneously;
(ii) Extending the basic analysis on Π0 ∈ S2(Π) to Π0 ∈
Sk(Π),∀k > 2; (iii) Finding that WEMP coincides MMSE
estimator under Sequence Inequality [19]. It is proved to be
valid under average case. Meanwhile, for a specific network,
we also show that the validity of this transformation can be
ensured. Due to the space limitation we omit the proof here.

V. ALGORITHMIC ASPECT

In this section, we show that WEMP is of significant
advantages in seedless de-anonymization since it resolves the
tension between optimality and complexity. For optimality, We
prove the good performance of solving WEMP that the result
makes the node mapping error (NME) negligible in large
social networks under mild conditions, facilitated by higher
overlapping strength; For complexity, the optimal mapping of
WEMP, Π̃, can be perfectly sought algorithmically by our
convex-concave based de-anonymization algorithm (CBDA).

A. Optimality: WEMP Returns Negligible NME

Recall that our aim is to minimize NME in expectation, thus
a natural question arises: how much NME Π̃ may cause for
any probable real permutation matrix Π0? The answer reflects
the ability of solving WEMP in enhancing mapping accuracy.
To answer it, we demonstrate that under mild conditions, the
relative NME, defined as ||Π̃−Π0||2F

||Π0||2F
, vanishes to 0 as n→∞.

This implies that under large network size, NME caused by
Π̃ is negligible compared with |V | = n. Furthermore, we
surprisingly find that the conditions are facilitated under higher
overlapping strength, explicitly delineating benefits brought
by overlapping communities in NME reduction. Theorem 2
formally presents our result mentioned above. Before that, we
give Lemma 1.

Lemma 1. [22]Suppose the permutation matrix Π keeps
invariant of the community representation of all the nodes, i.e.,
∀Π ∈ Πn such that Π(i, j) = 1, Ci = Cj , then Â = W◦A,
B̂ = W◦B and ||W◦(ΠAΠT −B)||F = ||ΠÂΠT − B̂||F .

Remark: Note that there are no differences in form between
||Π1ÂΠT

1 − B̂||F and ||Â−Π2B̂ΠT
2 ||F since we can sim-

ply set Π2 = ΠT
1 . Therefore, we do not distinguish the forms

||ΠÂΠT − B̂||F and ||Â−ΠB̂ΠT||F anymore.
Theorem 2. Given G1(V1, E1,A), G2(V2, E2,B), θ and
W. Let K = mins,t,j{(pCsCj + pCtCj ) min{s1, s2}}, L =
maxs,t,j{[(pCsCj + pCtCj ) max{s1, s2}]2}. If (i) L

K = o(1);

(ii) ||Â−Π0B̂ΠT
0 ||

2
F

||Â−Π̃B̂Π̃T||2F
= Ω(1); (iii) ||Â−Π0B̂ΠT

0 ||2F =

o(Kn2); (iv) Π0 and Π̃ keep invariant of community rep-
resentations, then as n→∞, ||Π̃−Π0||2F

||Π0||2F
→ 0.

Proof: The proof has four steps: (i) Upper bounding
||Π̃−Π0||F by ||(Π̃−Π0)B̂||F ; (ii) Finding the relationship
between ||(Π̃−Π0)B̂||F and tr((Π̃−Π0)B̂(Π̃−Π0)TÂ).;
(iii) Upper bounding tr((Π̃−Π0)B̂(Π̃−Π0)TÂ); (iv) Up-
per bounding ||Π0−Π̃||2F

||Π0||2F
. Before proving, note that we can

normalize wij to [0, 1] by dividing ||W||F , which will not in-
fluence the result Π̃. Thus in the following proof wij ∈ [0, 1].

1. Upper bounding ||Π̃−Π0||F by ||(Π̃−Π0)B̂||F :
For the ith row of (Π0−Π̃), we set π0(i) = s and π̃(i) = t.

If s = t, then the ith row of (Π0−Π̃)B̂ is a zero vector; else
the ith row of (Π0−Π̃)B̂ is (B̂s1−B̂t1, B̂s2−B̂t2, · · · , B̂sn−
B̂tn). For an element, ([(Π0 − Π̃)B̂]ij)

2 = (B̂sj − B̂tj)
2 =

(
√
wsjBsj−

√
wtjBtj)

2. Taking the expectation on both sides,
we can derive that EB[(Π0 − Π̃)B̂]2ij = (pCsCj + pCtCj −
2pCsCjpCtCjs2)s2, where EB means taking expectation on
every element in B. By summing up all the rows and columns,

||(Π0 − Π̃)B̂||2F = E
n∑
i=1

n∑
j=1

[(Π0 − Π̃)B̂]2ij

=

n∑
i=1

1{π0(i) 6= π̃(i)}
n∑
j=1

(pCsCj + pCtCj − 2pCsCjpCtCj s2)s2

≥
n∑
i=1

n1{π0(i) 6= π̃(i)}min
j

(pCsCj + pCtCj − 2pCsCjpCtCj s2)s2,

Setting K = mins,t,j(pCsCj + pCtCj − 2pCsCjpCtCjs2)s2,
we have

||Π0 − Π̃||2F ≤
2

nK
||(Π0 − Π̃)B̂||2F . (6)

Similarly we can replace B̂ by Â and change s2 to s1 in K.
2. ||(Π0 − Π̃)B̂||F and tr((Π̃−Π0)B̂((Π̃−Π0)T)Â):
Note that ||(Π0−Π̃)B̂||F ≤ ||(Π̃B̂ΠT

0 −Â)− (Π̃B̂Π̃T−
Â)||F ≤ ||Π̃B̂Π̃T−Â||F + ||Π̃B̂ΠT

0 −Â||F . Then ||(Π0−
Π̃)B̂||2F ≤ 2(||Π̃B̂Π̃T − Â||2F + ||Π̃B̂ΠT

0 − Â||2F ). For the
term ||Π̃B̂ΠT

0 − Â||2F ,

||Π̃B̂ΠT
0 − Â||2F = ||Â||2F + ||B̂||2F − 2tr(Π0B̂Π̃TÂ)

=
1

2
(||Π̃B̂Π̃T − Â||2F + ||Π0B̂ΠT

0 − Â||2F )

+ tr(Π0B̂ΠT
0 Â) + tr(Π̃B̂Π̃TÂ)− 2tr(Π0B̂Π̃TÂ)

≤ ||Π0B̂ΠT
0 − Â||2F + tr((Π̃−Π0)B̂(Π̃−Π0)

TÂ),

(7)
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3. Upper Bound of tr((Π̃−Π0)B̂(Π̃−Π0)TÂ):
Set Z = (Π̃−Π0)B̂(Π̃−Π0)TÂ. For simplicity, we

define Y = (Π̃−Π0)B̂ and X = (Π̃−Π0)TÂ, thus
Z = YX. We focus on tr(Z). It is easy to verify that for
any node i, when Π̃ and Π0 map it to the same node, then
Zii = 0. If not, for node i we assume that Π̃ maps it to s
and Π0 maps it to t, where s 6= t. We can obtain the ith row
of Y as Yi· = (B̂s1 − B̂t1, B̂s2 − B̂t2, · · · , B̂sn − B̂tn).
Similarly, we can obtain the ith column of X as X·i =
(Âp11−Âq11, Âp22−Âq22, · · · , Âpnn−Âqnn)T, where pi(qi)
means the row index of the 1(−1) in the ith column of
Π̃−Π0. If π0(j) = π̃(j), we simply set Xji = 0. Therefore
Zii, an element on diagonal of Z, satisfies

|Zii| = |〈Yi·X·i〉| ≤ ||Yi·||F ||X·i||F
≤ nmax

k
|B̂sk − B̂tk|max

`
|Âp`` − Âq``|.

(8)

then |Zii| ≤ n. Taking the expectation of A and B on both
sides of Inequality (8), we can obtain that

EA,B|Zii| = EA,B(max
s,t,k
|B̂sk − B̂tk|max

p,q,`
|Âp`` − Âq``|)

≤ EA,B(max
s,t,k
|Bsk −Btk|max

p,q,`
|Ap`` −Aq``|)

≤ max
p,q,`
{[(pCsCj + pCtCj )max{s1, s2}]2} = L,

where the first inequality holds since for any s, t, k and the
normalized weights wsk, wtk ≤ 1, |B̂sk−B̂tk| = |

√
wskBsk−√

wtkBtk| ≤ |Bsk−Btk|, and |Âp``−Âq``| is similar. Hence

|tr((Π̃−Π0)B̂((Π̃−Π0)
T)Â)| ≤ nmax

i
|〈Yi·X·i〉| ≤ n2L.

(9)
4. Upper Bound of ||Π0−Π̃||2F

||Π0||2F
:

From Inequalities (6), (7) and (9), we can obtain ||Π0 −
Π̃||2F ≤ 2

nK ||(Π0 − Π̃)B̂||2F ≤ 8
nK ||Π0B̂ΠT

0 − Â||2F + 4nL
K .

Since condition 2 holds, there exists a constant c̃ ≥ 1 such
that ||Â− Π̃B̂Π̃T||F ≤ c̃||Â−Π0B̂ΠT

0 ||F . Therefore since
||Π0||2F = 2n and conditions 1 and 3, when n→∞,

||Π0 − Π̃||2F
||Π0||2F

≤ 4c̃

n2K
||Π̃B̂Π̃T − Â||2F +

2L

K
→ 0.

This completes our proof.
Remark: Although Theorem 2 does not ensure NME=0

exactly, it makes sense in de-anonymization since we can map
asymptotically all nodes correctly under mild conditions. We
show the mildness of these conditions under a particularly
network structure: the whole networks connected with high
probability, which must follow pCiCj = Ω( logn

n ),∀i, j ∈
{1, 2, ..., n} [10]. Meanwhile, we take s = s1 = s2 =
o(1) denoting sparse sampling from G. For condition (i),
L
K = O(

p2CiCj
s2

pCiCj s
) = o(1); For conditions (ii) and (iii),

|E[(A −ΠBΠT)ij ]| = pCiCjs + pCπ(i)Cπ(j)
s = O( s logn

n )
satisfies both; For condition (iv), we show in Section V-B that
it holds if Π̃ keeps invariant of community representations
(Recall Lemma 1) as Π0, which is easily realizable.

Overlapping Communities Benefits De-anonymization:
Now we show that overlapping communities positively impact
on reducing relative NME through facilitating conditions
in Theorem 2, specifically condition 3. For convenience,

we assume s = s1 = s2. When π0 keeps invariant of
community representations, then on average condition 3 can

be written as 2
∑

1≤i<j≤n pCiCjs log

(
1−pCiCj (2s−s2)

pCiCj (1−s)2

)
=

o(Kn2). To characterize the global situation in
the networks, we define an average probability p̂

such that
∑

1≤i<j≤n pCiCjs log

(
1−pCiCj (2s−s2)

pCiCj (1−s)2

)
=

n(n−1)
2 log

(
1−p̂(2s−s2)
p̂(1−s)2

)
p̂s, where p̂ is positively correlated

to the overlapping strength of the whole networks. Taking
the derivative of p̂ over

(
1−p̂(2s−s2)
p̂(1−s)2

)
ep̂s, we find that

d
((

1−p̂(2s−s2)
p̂(1−s)2

)
ep̂s
)
/dp̂ = ep̂s

(1−s)2 ( p̂−1
p̂2 − (2s − s2)) ≤ 0,

indicating that
(

1−p̂(2s−s2)
p̂(1−s)2

)
ep̂s is a decreasing function

becoming smaller as overlapping strength increases. Therefore
if the order of p̂ rises, then the order of ||Â−Π0B̂ΠT

0 ||2F
turns smaller, facilitating ||Â−Π0B̂ΠT

0 ||2F = o(Kn2).
Taking a vivid example of the proposed OSBM [18] in

which pCiCj = 1
1+ae−x , where a is an adjustable parameter

and x is the number of overlapping communities. We find that
mini,j pCiCj = 1

1+a is a constant if a = Ω(1), and can be
arbitrarily close to 1 when x is large enough. So if s = o(1)
and p̂ = 1− o(1), which means that the overlapping strength
is very large, then p̂ log( 1−p̂(2s−s2)

p̂(1−s)2 ) = p̂ log(1 + 1−p̂
p̂(1−s)2 ) ≈

1−p̂
(1−s)2 = o(1) = o(mini,j pCiCj ), thus condition (iii) holds.
Meanwhile s = o(1) makes condition (i) hold as well.

B. Complexity: WEMP can be Algorithmically Solved

Upon proving the good performance of solving WEMP in
large-scale networks, now we algorithmically demonstrate that
WEMP reduces the complexity of the MMSE problem since
the optimal mapping of WEMP can be perfectly found by the
convex-concave based de-anonymization algorithm (CBDA).

1) The Constraints of WEMP: We state WEMP as a
constrained optimization problem: The objective function is
‖Â−ΠB̂ΠT‖2F, with four constraints: (i) ∀i ∈ V1,

∑
i Πij =

1; (ii) ∀j ∈ V2,
∑
j Πij = 1; (iii) ∀i, j, Πij ∈ {0, 1} and

(iv) ∀i ∈ V1,Ci = Cπ(i). Constraints (i), (ii) and (iii) are
the attributes of permutation matrices. Note that we append
constraint (iv) in that our estimated mapping should keep the
community representations as Π0, the true permutation we
intend. To change it in the form of Π as constraints (i), (ii)
and (iii), we define “Community Representation Matrix” to
characterize the community representations of all the nodes.
Definition 8. (Community Representation Matrix) Given a
graph G with n nodes and m communities, the community
representation matrix of G is an n × m matrix M which is
composed of 0s and 1s, and ∀i ∈ {1, 2, · · · , n}, the ith row
of M is the community representation of node i in G.

Note that the community representation matrices for G, G1

and G2 are identical, hence constraint (iv) can be rewritten
as ||ΠM−M||2F = 0. We equivalently embed this constraint
into the objective function as F0(Π) = ||(Â−ΠB̂ΠT)||2F +
µ||ΠM−M||2F , where µ is a large enough parameter such that
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when F0(Π) reaches its minimum, ||ΠM−M||2F is exactly
0, ensuring the invariance of community representations.

2) Problem Relaxation and Idea of Algorithm Design:
Problem Relaxation: WEMP is an integer program prob-

lem which cannot be solved efficiently. We relax the original
feasible region of WEMP Ω0 into Ω, which are respectively

Ω0 = {Πij ∈ {0, 1}|∀i, j,
∑
i Πij = 1 ,

∑
j Πij = 1};

Ω = {Πij ∈ [0, 1]|∀i, j,
∑
i Πij = 1 ,

∑
j Πij = 1}.

After this relaxation the problem becomes tractable. Howev-
er, a natural question arises: How to obtain the solution of the
original unrelaxed problem from that of the relaxed problem?

Idea of Convex-Concave Relaxation Method: Note that
the minimizer of a concave function must be at the boundary of
the feasible region, coinciding that Ω0, the original feasible set,
is just the boundary of Ω. Therefore, a natural idea emerges:
We can modify the convex relaxed problem into a concave
problem gradually. Thus we apply the convex-concave opti-
mization method (CCOM), whose concept is pioneeringly pro-
posed in [21] to solve pattern matching problems: For F0(Π),
we find its convex and concave relaxed version respectively
F1(Π) and F2(Π). Then we obtain a new objective function
as F (Π) = (1−α)F1(Π)+αF2(Π). We modify α gradually
from 0 to 1 with interval ∆α, each time solving the new F (Π)
initialized by the optimizer last time. F (Π) becomes more
concave, with its optimum closer to Ω0 where Π̃ lies.

3) Implementation of CCOM and Algorithm Design: The
way to obtain F1(Π) and F2(Π) in [21] is rather complex.
We provide a simple way to get them by Lemma 2.
Lemma 2. A proper way to get F1 and F2 is F1(Π) =
F0(Π) + λmin

2 (n − ||Π||2F );F2(Π) = F0(Π) + λmax

2 (n −
||Π||2F ), where λmin (λmax) is the smallest (largest) eigen-
value of the Hessian matrix of F0(Π).

Proof: First we verify that F1(Π) is a convex function.
One of the sufficient and necessary condition for a function
whose variable is matrix is convex is that the Hessian matrix
of this function is positive semi-definite. The Hessian matrix
of F (Π) can be obtained by taking the second derivative
over Π on F (Π), we denote it as ∇2F (Π). Therefore we
can obtain the Hessian matrix of F1(Π) by ∇2F1(Π) =
∇2F0(Π) − λminI. where I is the identity matrix. Note that
λmin is the minimum eigenvalue of ∇2F0(Π), therefore all
the eigenvalues of ∇2F0(Π) − λminI are equal to or larger
than 0. Hence ∇2F1(Π) is a nonnegative definite matrix and
F1(Π) is a convex function. Similarly we can verify that
F2(Π) is a concave function.

Lemma 2 presents a simple way to implement CCOM,
by which we form our new objective function in CCOM as
F (Π) = (1−α)F1(Π)+αF2(Π) = F0(Π)+2ξ(n−||Π||2F ),
where ξ = (1−α)λmin+αλmax. Then we propose Algorithm
1, called Convex-concave Based De-anonymization Algorithm
(CBDA), as our main algorithm for WEMP.

Note that F0(Π) itself is convex in our problem, thus we can
set ξ from 0 to an arbitrarily large number, which obviates the
great complexity to calculate eigenvalues of Hessian matrices.

CBDA consists of an outer loop (lines 3 to 10) and an

inner loop (lines 4 to 8). The outer loop modifies ξ in CCOM.
The inner loop finds the minimizer of F (Π), whose main
idea resembles descending algorithms: In line 5, we obtain
descending direction by minimizing tr(∇Πk

F (Πk)TX⊥),
dangling the highest probability to find a descending direction
characterized by tr(∇Πk

F (Πk)TX⊥) < 0. In line 6 we
search for step length γk contributing most to lowering F (Π)
on this descending direction. Line 7 is the update of estimation.

Algorithm 1: Convex-concave Based De-anonymization
Algorithm (CBDA)

Input: Adjacent matrices A and B; Community assignment matrix M;
Weight controlling parameter µ; Adjustable parameters δ, ∆ξ.

Output: Estimated permutation matrix Π̃.
1: Form the objective function F0(Π) and F (Π).
2: ξ ← 0, k ← 1, Initialize Π1. Set ξm, the upper limit of ξ.
3: while ξ < ξm and Πk /∈ Ω0 do
4: while k = 1 or |F (Πk+1)− F (Πk)| ≥ δ do
5: X⊥ ← arg minX⊥ tr(∇Πk

F (Πk)TX⊥), where X⊥ ∈ Ω.
6: γk ← arg minγ F (Πk + γ(X⊥ −Πk)), where γk ∈ [0, 1].
7: Πk+1 ← Πk + γk(X⊥ −Πk), k ← k + 1.
8: end while
9: ξ ← ξ + ∆ξ.

10: end while

4) Time Complexity and Convergence Analysis:
Time Complexity: The inner loop is similar to the Frank-

Wolfe algorithm, with O(n6) in a round (since the input is an
n × n matrix). If the maximum number of inner loops as T ,
thus the whole algorithm has a complexity of O

(
n6Tξ
∆ξ

)
. As

far as we know, a dearth of algorithmic analysis of seedless de-
anonymization exists except for [22], [23], with their proposed
algorithm sharing identical complexity of O(n6) with ours.

Convergence: The inner loop is similar to the Frank-Wolfe
algorithm, and if the step size of outer loop ∆ξ is small
enough, then it is convergent.

VI. EXPERIMENTAL ASPECT

In this section, we utilize three datasets, especially the rare
true cross-domain co-author networks, to validate our theo-
retical results and performance of CBDA. Before presenting
empirical results, we first introduce our experimental setup.

A. Experimental Setup
1) Main Parameters: We list the main parameters in val-

idating the performance of our CDBA in Table II, where η
is the ratio between the number of communities and nodes. η
reflects more communities in networks with larger size.

TABLE II: Main Experimental Parameters
Notation Definition Range
N Number of Nodes {500, 1000, 1500, 2000}
s Sampling Probability (s1 = s2 = s) 0.3-0.9
η Community Ratio {0.05, 0.1}

OL/NOL Overlapping or Non-Overlapping {OL, NOL}

2) Experimental Datasets: (i) Synthetic Networks: We
generate networks by setting the community representa-
tion of every node independently and randomly deciding
the edge existence in node pair (i, j) based on OSBM
[18]. (ii) Sampled Real Social Networks: The underlying so-
cial network G is extracted from LiveJournal [17], while G1
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(a) N=500, η=0.05

(e) N=500, η=0.1 (f) N=1000, η=0.1 (g) N=1500, η=0.1 (h) N=2000, η=0.1

(b) N=1000, η=0.05 (c) N=1500, η=0.05 (d) N=2000, η=0.05

GA−OL GA−NOL CBDA−OL CBDA−NOL COBA−NOL

Fig. 2: Experiments on Synthetic Networks.
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Fig. 3: Experiments on Sampled Real Social Networks.

and G2 are sampled from G with the same probability s.
(iii) Cross-Domain Co-author Networks: The co-author net-
works are from the Microsoft Academic Graph (MAG) [11].
We extract 4 networks belonging to different sub-areas in the
field of computer science, with the same group of authors,
each of whom has a unique 8-bit hexadecimal ID enabling us
to construct the true mapping between two networks as the one
mapping nodes with same ID. Each network can be viewed
as G1 or G2, thus there are C2

4 = 6 combinations. (Table III)
Note that we can assign wij on all these 3 datasets since the
prior knowledge is just M , which can be generated or known
from the real networks.

TABLE III: Datasets in Basic Experiments
Dataset Synthetic Sampled Real Social Cross-Domain Co-author
Source OSBM LiveJournal [1] MAG [11]
Num. of Nodes 500 ∼ 2000 500 ∼ 2000 3176
Num. of Communities 25 ∼ 1000 25 ∼ 1000 89

3) Algorithms for Comparison and Performance Metric:
We exclude algorithms for seeded de-anonymization and select
algorithms suitable for seedless cases related to our main
point: showing the impact of overlapping communities on
reducing NME, though other algorithms might outperform
ours. We select two algorithms for comparison: (i) the Genetic
Algorithm (GA), an epitome of heuristic algorithms; (ii) the
Convex Optimization-Based Algorithm (COBA) in [22], [23],
assigning a node to a unique community, which primarily suits
non-overlapping cases. The performance metric is accuracy,
the proportion of correctly mapped nodes.

4) Supplementary Experiments: To make our results more
solid, based on sampled real social networks we study (i) the
effect of η, reflecting overlapping strength, on the accuracy;
(ii) the priority of our cost function with W derived from
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Fig. 4: Experiments on Cross-Domain Co-author Networks

MMSE makes for higher accuracy, comparing with the cost
function without W in [3]; (iii) the instability of GA revealing
its practical limitation and thus in validation on 3 datasets we
take the average preformance of GA 10 times as its accuracy.

B. Experiment Results
1) Synthetic Networks: Fig. 2 illustrates the results on

synthetic networks. We observe that the average performance
of GA fluctuates from 40% to 60%, due to its heuristic search
on local minimum without community information involved.
The accuracy of CBDA rises up under larger network size
N , in line with Theorem 2 that the relative NME shrinks
as N mounts. However, in non-overlapping cases CBDA
is inferior to COBA, since, COBA tackles non-overlapping
property explicitly by assigning a node to a unique community
while our CBDA utilizes it implicitly in optimizing F (Π).
Under denser communities (η = 0.1), our proposed CBDA
always performs best in overlapping cases, with accuracy
mildly swinging around 90%, propped by the facilitation of
overlapping communities discussed at the end of Section V-A.

2) Sampled Real Social Networks: The results under sam-
pled real social networks are plotted in Fig. 3. CBDA still
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Fig. 5: Supplementary Experiments

performs well under denser overlapping communities and
larger network size, with the peak around 95% and the highest
average level around 90% when N = 2000 and η = 0.1.
Surprisingly, the performance of our CBDA is better than
synthetic networks, which further undergirds the high practical
applicability of CBDA. Additionally, the rising tendency of
accuracy for larger N serves as a foil to the practicality of
Theorem 2.

3) Cross-Domain Co-author Networks: Fig. 4 illustrates
results on co-author networks. In non-overlapping cases, our
CBDA does not perform well as GA and COBA, while in over-
lapping cases CBDA reaches accuracy around 90%, outstrip-
ping GA whose accuracy is averagely 60%. This phenomenon
upgrades the significance of CBDA in de-anonymization in
overlapping cases since the dataset is entirely realistic. More-
over, since overlapping cases are much more quotidian in real
social networks, CBDA has wider usage than GA and COBA.

4) The Effect of η: The results are shown in Fig. 5(c). With
larger η, CBDA works more accurately, accounted for by the
facilitation of overlapping communities (Section V-A), which
evinces its fitness for networks with high overlapping strength.

5) The Effect of Appending W: As Fig. 5(a) and Fig.
5(b) show, CBDA works better appending W derived by
MMSE, since the non-weighted cost function, adopted in
[3], fails to distinguish nodes belonging to different number
of communities. It shows the superiority of cost functions
derived with rationale, as we claim in Section IV. Under larger
network size, however, the difference becomes fainter since the
impact of distinguishing a single node by wij is weaker than
the benefits brought by large size shown in Theorem 2.

6) The Instability of GA: We disclose the instability of
GA in Fig. 5(d). We run GA 10 times under sampled real
social networks with different sizes. The performance of GA
fluctuates violently, bewildering adversaries in the quality of a
specific estimation, which inhibits the usage of GA in practice.

VII. CONCLUSION

We tackle seedless de-anonymization under a more practical
social network model parameterized by overlapping communi-
ties than existing work. By MMSE, we derive a well-justified
cost function minimizing the expected number of mismatched

users. While showing the NP-hardness of minimizing MMSE,
we validly transform it into WEMP which resolves the tension
between optimality and complexity: (i) WEMP asymptotically
returns a negligible mapping error under mild conditions
facilitated by higher overlapping strength; (ii) WEMP can
be algorithmically solved via CBDA, which exactly finds the
optimum of WEMP. Extensive experiments further confirm the
effectiveness of CBDA under overlapping communities.

VIII. ACKNOWLEDGEMENT

This work was supported by NSF China (No. 61532012,
61325012, 61521062, 61602303 and 91438115).

REFERENCES

[1] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network
Dataset Collection”, http://snap.stanford.edu/data, 2014.

[2] A. Narayanan and V. Shmatikov, “De-anonymizing social networks”, in
IEEE Symposium on Security and Privacy, pp. 173-187, 2009.

[3] P. Pedarsani and M. Grossglauser, “On the privacy of anonymized
networks” in Proc. ACM SIGKDD, pp. 1235-1243, 2011.

[4] E. Kazemi, L. Yartseva and M. Grossglauser, “When can two unlabeled
networks be aligned under partial overlap?”, in IEEE 53rd Annual
Allerton Conference on Communication, Control, and Computing, pp.
33-42, 2015.

[5] D. Cullina and N. Kiyavash, “Improved achievability and converse bounds
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