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On the Similarity between von Neumann Graph
Entropy and Structural Information: Interpretation,

Computation, and Applications
Xuecheng Liu , Luoyi Fu , Xinbing Wang , and Chenghu Zhou

Abstract—The von Neumann graph entropy is a measure
of graph complexity based on the Laplacian spectrum. It has
recently found applications in various learning tasks driven by
the networked data. However, it is computationally demanding
and hard to interpret using simple structural patterns. Due to
the close relation between the Laplacian spectrum and the degree
sequence, we conjecture that the structural information, defined
as the Shannon entropy of the normalized degree sequence, might
be a good approximation of the von Neumann graph entropy that
is both scalable and interpretable.

In this work, we thereby study the difference between the
structural information and the von Neumann graph entropy
named as entropy gap. Based on the knowledge that the degree
sequence is majorized by the Laplacian spectrum, we for the
first time prove that the entropy gap is between 0 and log2 e in
any undirected unweighted graphs. Consequently we certify that
the structural information is a good approximation of the von
Neumann graph entropy that achieves provable accuracy, scala-
bility, and interpretability simultaneously. This approximation is
further applied to two entropy-related tasks: network design and
graph similarity measure, where a novel graph similarity measure
and the corresponding fast algorithms are proposed. Meanwhile,
we show empirically and theoretically that maximizing the von
Neumann graph entropy can effectively hide the community
structure, and then propose an alternative metric called spectral
polarization to guide the community obfuscation.

Our experimental results on graphs of various scales and types
show that the very small entropy gap readily applies to a wide
range of simple/weighted graphs. As an approximation of the von
Neumann graph entropy, the structural information is the only
one that achieves both high efficiency and high accuracy among
the prominent methods. It is at least two orders of magnitude
faster than SLaQ [1] with comparable accuracy. Our structural
information based methods also exhibit superior performance in
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downstream tasks such as entropy-driven network design, graph
comparison, and community obfuscation.

Index Terms—Spectral graph theory, Laplacian spectrum,
spectral polarization, community obfuscation.

I. INTRODUCTION

EVIDENCE has rapidly grown in the past few years that
graphs are ubiquitous in our daily life; online social

networks, metabolic networks, transportation networks, and
collaboration networks are just a few examples that could be
represented precisely by graphs. One important issue in graph
analysis is to measure the complexity of these graphs [2],
[3] which refers to the level of organization of the structural
features such as the scaling behavior of degree distribution,
community structure, core-periphery structure, etc. In order
to capture the inherent structural complexity of graphs, many
entropy based graph measures [3]–[8] are proposed, each of
which is a specific form of the Shannon entropy for different
types of distributions extracted from the graphs.

As one of the aforementioned entropy based graph com-
plexity measures, the von Neumann graph entropy, defined
as the Shannon entropy of the spectrum of the trace rescaled
Laplacian matrix of a graph (see Definition 1), is of special
interests to scholars and practitioners [1], [9]–[15]. This spec-
trum based entropy measure distinguishes between different
graph structures. For instance, it is maximal for complete
graphs, minimal for graphs with only a single edge, and
takes on intermediate values for ring graphs. Historically, the
entropy measure originates from quantum information theory
and is used to describe the mixedness of a quantum system
which is represented as a density matrix. It is Braunstein et
al. that first use the von Neumann entropy to measure the
complexity of graphs by viewing the scaled Laplacian matrix
as a density matrix [8].

Built upon the Laplacian spectrum, the von Neumann graph
entropy is a natural choice to capture the graph complexity
since the Laplacian spectrum is well-known to contain rich in-
formation about the multi-scale structure of graphs [16], [17].
As a result, it has recently found applications in downstream
tasks of complex network analysis and pattern recognition.
For example, the von Neumann graph entropy facilitates the
measure of graph similarity via Jensen-Shannon divergence,
which could be used to compress multilayer networks [13] and
detect anomalies in graph streams [9]. As another example,
the von Neumann graph entropy could be used to design edge
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centrality measure [15], vertex centrality measure [18], and
entropy-driven networks [19].

A. Motivations

However, despite the popularity received in applications, the
main obstacle encountered in practice is the computational
inefficiency of the exact von Neumann graph entropy. Indeed,
as the spectrum based entropy measure, the von Neumann
graph entropy suffers from computational inefficiency since
the computational complexity of the graph spectrum is cubic in
the number of nodes. Meanwhile, the existing approximation
approaches [1], [9], [10] such as the quadratic approximation,
fail to capture the presence of non-trivial structural patterns
that seem to be encapsulated in the spectrum based entropy
measure. Therefore, there is a strong desire to find a good
approximation that achieves accuracy, scalability, and inter-
pretability simultaneously.

Instead of starting from scratch, we are inspired by the well-
known knowledge that there is a close relationship between
the combinatorial characteristics of a graph and the algebraic
properties of its associated matrices [20]. To illustrate this, we
plot the Laplacian spectrum and the degree sequence together
in a same figure for four representative real-world graphs
and four synthetic graphs. As shown in Fig. 1, the sorted
spectrum sequence and the sorted degree sequence almost
coincide with each other. The similar phenomenon can also
be observed in larger scale free graphs, which indicates that it
is possible to reduce the approximation of the von Neumann
graph entropy to the time-efficient computation of simple node
degree statistics. Therefore, we ask without hesitation the first
research question,

RQ1: Does there exist some non-polynomial function φ

such that
∑n
i=1 φ

(
di/
∑n
j=1 dj

)
is close to the von Neumann

graph entropy? Here di is the degree of the node i in a graph
of order n.

We emphasize the non-polynomial property of the func-
tion φ since most of previous works that are based on the
polynomial approximations fail to fulfill the interpretabil-
ity. The challenges from both the scalability and the in-
terpretability are translated directly into two requirements
on the function φ to be determined. First, the explicit ex-
pression of φ must exist and be kept simple to ensure the
interpretability of the sum over degree statistics. Second,
the function φ should be graph-agnostic to meet the scal-
ability requirement, that is, φ should be independent from
the graph to be analyzed. One natural choice yielded by
the entropic nature of the graph complexity measure for the
non-polynomial function φ is φ(x) = −x log2 x. The sum
−∑n

i=1

(
di/
∑n
j=1 dj

)
log2

(
di/
∑n
j=1 dj

)
has been named

as one-dimensional structural information by Li et al. [3] in
a connected graph since it has an entropic form and captures
the information of a classic random walker in a graph. We
extend this notion to arbitrary undirected graphs. Following
the question RQ1, we raise the second research question,

RQ2: Is the structural information an accurate proxy of the
von Neumann graph entropy?

To address the second question, we conduct to our knowl-
edge a first study of the difference between the structural
information and the von Neumann graph entropy, which we
name as entropy gap.

B. Contributions

To study the entropy gap, we are based on a fundamental
relationship between the Laplacian spectrum λ and the degree
sequence d in undirected graphs: d is majorized by λ. In
other words, there is a doubly stochastic matrix P such that
Pλ = d. Leveraging the majorization and the classic Jensen’s
inequality, we prove that the entropy gap is strictly larger than
0 in arbitrary undirected graphs. By exploiting the Jensen’s
gap [21] which is an inverse version of the classic Jensen’s
inequality, we further prove that the entropy gap is no more
than log2 e·tr(A

2)
δ·vol(G) for any undirected graph G, where A is the

weight matrix, δ is the minimum degree, and vol(G) is the
volume of the graph. The upper bound on the entropy gap
turns out to be log2 e for any unweighted graph. And both
the constant lower and upper bounds on the entropy gap can
be further sharpened using more advanced knowledge about
the Lapalcian spectrum and the degree sequence, such as the
Grone-Merris majorization [22].

In a nutshell, our paper makes the following contributions:

• Theory and interpretability: Inspired by the close relation
between the Laplacian spectrum and the degree sequence,
we for the first time bridge the gap between the von
Neumann graph entropy and the structural information by
proving that the entropy gap is between 0 and log2 e in
any unweighted graph. To the best of our knowledge, the
constant bounds on the approximation error in unweighted
graphs are sharper than that of any existing approaches
with provable accuracy, such as FINGER [9]. Therefore,
the answers to both RQ1 and RQ2 are YES! As shown
in Table I, the relative approximation error is around 1%
for small graphs, which is practically good. Besides, the
structural information provides a simple geometric interpre-
tation of the von Neumann graph entropy as a measure of
degree heterogeneity. Thus, the structural information is a
good approximation of the von Neumann graph entropy that
achieves provable accuracy, scalability, and interpretability
simultaneously.

• Applications and efficient algorithms: Using the structural
information as a proxy of the von Neumann graph entropy
with bounded error (the entropy gap), we develop fast algo-
rithms for two entropy based applications: network design
and graph similarity measure. Since the network design
problem aims to maximize the von Neumann graph entropy,
we combine the greedy method and a pruning strategy to
accelerate the searching process. For the graph similarity
measure, we propose a new distance measure based on the
structural information and the Jensen-Shannon divergence.
We further show that the proposed distance measure is a
pseudometric and devise a fast incremental algorithm to
compute the similarity between adjacent graphs in a graph
stream.
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Fig. 1: The close relation between Laplacian spectra and degree sequence in four representative real-world graphs (a-d) and
four common synthetic graphs (e-h). Both the Laplacian spectra and degree sequence are sorted in non-increasing order. The
x-axis represents the index of the sorted sequences, and the y-axis represents the value of Laplacian spectrum and degree.

TABLE I: Structural information and von Neumann graph entropy of the graphs in Fig. 1.

Measurements Zachary Dolphins Email Celegans ER BA Complete Ring

structural information H1 4.7044 5.7005 9.5665 7.9257 8.9497 8.5739 8.9659 8.9658
von Neumann graph entropy Hvn 4.5504 5.5489 9.5029 7.8631 8.9302 8.4935 8.9629 8.5231
entropy gap ∆H 0.1540 0.1516 0.0636 0.0626 0.0195 0.0804 0.0030 0.4427

relative error ∆H
Hvn

3.38% 2.73% 0.67% 0.80% 0.22% 0.95% 0.03% 5.19%

• Connection with community structure: While the two-
dimensional structural information [3] encodes the com-
munity structure, we find empirically that both the von
Neumann graph entropy and the one-dimensional structural
information are uninformative of the community structure.
However, they are effective in adversarial attacks on com-
munity detection, since maximizing the von Neumann graph
entropy will make the Laplacian spectrum uninformative
of the community structure. Using the similar idea, we
propose an alternative metric called spectral polarization
which is both effective and efficient in hiding the community
structure.

• Extensive experiments and evaluations: We use 3 random
graph models, 9 real-world static graphs, and 2 real-world
temporal graphs to evaluate the properties of the entropy
gap and the proposed algorithms. The results show that the
entropy gap is small in a wide range of simple/weighted
graphs. And it is insensitive to the change of graph size.
Compared with the prominent methods for approximating
the von Neumann graph entropy, the structural information
is superior in both accuracy and computational speed. It is
at least 2 orders of magnitude faster than the accurate SLaQ
[1] algorithm with comparable accuracy. Our proposed
algorithms based on structural information also exhibit
superb performance in downstream tasks such as entropy-
driven network design, graph comparison, and community
obfuscation.
An earlier version of this work appeared in our WWW 2021

conference paper [23]. In addition to revising the conference
version, this TIT submission includes the following new
materials:
• More experimental results to illustrate the relationship

between the Laplacian spectrum and the degree sequence
(Fig. 1);

• More straightforward results to illustrate the tightness of
the approximation (Table I);

• A fine-grained analysis on the lower bound of the entropy
gap to show that the entropy gap is actually strictly larger
than 0 (Theorem 1);

• A theoretical analysis on the entropy gap of several
classes of graphs, including complete graph, complete
bipartite graph, path graph, and ring graph (Table III and
Appendix B);

• An analysis and discussion over the connection between
graph entropy and community structure (Section VI and
Appendix A-D).

Roadmap: The remainder of this paper is organized as
follows. We review three related issues in Section II. In
Section III we introduce the definitions of the von Neumann
graph entropy, structural information, and the notion of entropy
gap. Section IV shows the close relationship between von
Neumann graph entropy and structural information by bound-
ing the entropy gap. Section V presents efficient algorithms
for two graph entropy based applications. In Section VI we
discuss the connection between von Neumann graph entropy
and community structure. Section VII provides experimental
results. Section VIII offers some conclusions and directions
for future research.

II. RELATED WORK

We review three issues related to the von Neumann graph
entropy: computation, interpretation, and connection with the
community structure. The first two issues arise from the broad
applications [13]–[15], [19], [24]–[27] of the von Neumann
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TABLE II: Comparison of methods for approximating the von
Neumann graph entropy in terms of fulfilled (3) and missing
(7) properties.

[9] [1] [10] Structural Information (Ours)

Provable accuracy 3 7 7 3
Scalability 3 3 7 3
Interpretability 7 7 7 3

graph entropy, whereas the last issue comes from spectral
clustering [28] and two-dimensional structural information
based clustering [3].

A. Approximate Computation of the von Neumann Graph
Entropy

In an effort to overcome the computational inefficiency of
the von Neumann graph entropy, past works have resorted
to various numerical approximations. Chen et al. [9] first
compute a quadratic approximation of the entropy via Taylor
expansion, then derive two finer approximations with accuracy
guarantee by spectrum-based and degree-based rescaling, re-
spectively. Before Chen’s work, the Taylor expansion is widely
adopted to give computationally efficient approximations [29],
but there is no theoretical guarantee on the approximation
accuracy. Following Chen’s work, Choi et al. [10] propose
several more complicated quadratic approximations based on
advanced polynomial approximation methods the superiority
of which is verified through experiments.

Besides, there is a trend to approximate spectral sums
using stochastic trace estimation based approximations [30],
the merit of which is the provable error-bounded estimation
of the spectral sums. For example, Kontopoulou et al. [11]
propose three randomized algorithms based on Taylor series,
Chebyshev polynomials, and random projection matrices to
approximate the von Neumann entropy of density matrices. As
another example, based on the stochastic Lanczos quadrature
technique [31], Tsitsulin et al. [1] propose an efficient and
effective approximation technique called SLaQ to estimate
the von Neumann entropy and other spectral descriptors for
web-scale graphs. However, the approximation error bound of
SLaQ for the von Neumann graph entropy is not provided.
The disadvantages of such stochastic approximations are also
obvious; their computational efficiency depends on the number
of random vectors used in stochastic trace estimation, and
they are not suitable for applications like anomaly detection
in graph streams and entropy-driven network design.

The comparison of methods for approximating the von
Neumann graph entropy is presented in Table II. One of the
common drawbacks of the aforementioned methods is the
lack of interpretability, that is, none of these methods provide
enough evidence to interpret this spectrum based entropy
measure in terms of structural patterns. By contrast, as a
good proxy of the von Neumann graph entropy, the structural
information offers us the intuition that the spectrum based
entropy measure is closely related to the degree heterogeneity
of graphs.

B. Spectral Descriptor of Graphs and Its Structural Counter-
part

Researchers in spectral graph theory have always been inter-
ested in establishing a connection between the combinatorial
characteristics of a graph and the algebraic properties of its
associated matrices. For example, the algebraic connectivity
(also known as Fiedler eigenvalue), defined as the second
smallest eigenvalue of a graph Laplacian matrix, has been used
to measure the robustness [16] and synchronizability [32] of
graphs. The magnitude of the algebraic connectivity has also
been found to reflect how well connected the overall graph
is [17]. As another example, the Fiedler vector, defined as
the eigenvector corresponding to the Fiedler eigenvalue of a
graph Laplacian matrix, has been found to be a good sign of
the bi-partition structure of a graph [33]. However, there are
some other spectral descriptors that have found applications
in graph analytics, but require more structural interpretations,
such as the heat kernel trace [34], [35] and von Neumann
graph entropy.

Simmons et al. [36] suggest to interpret the von Neumann
graph entropy as the centralization of graphs, which is very
similar to our interpretation using the structural information.
They derive both upper and lower bounds on the von Neumann
graph entropy in terms of graph centralization under some
hard assumptions on the range of the von Neumann graph
entropy. Therefore, their results cannot be directly converted
to accuracy guaranteed approximations of the von Neumann
graph entropy for arbitrary simple graphs. By constrast, our
work shows that the structural information is an accurate,
scalable, and interpretable proxy of the von Neumann graph
entropy for arbitrary simple graphs. Besides, the techniques
used in our proof are also quite different from [36].

C. Spectrum, Detectability, and Significance of Community
Structure

Community structure is one of the most recognized char-
acteristics of large scale real-world graphs in which similar
nodes tend to cluster together. Thus it has found applications
in classification, recommendation, and link prediction, etc.
Started from the Fiedler vector, spectral algorithms have been
widely studied for detecting the community structure in a
graph [37], [38] because they are simple and theoretically
warranted. Cheeger’s inequality µ2

2 ≤ hG ≤
√

2µ2 bounds
the conductance hG of a graph G using the second smallest
eigenvalue of the normalized Laplacian matrix. This is later
generalized to multiway spectral partitioning [39] yielding the
higher-order Cheeger inequalities µk

2 ≤ ρG(k) ≤ O(k2)
√
µk

for each k, where µk is the k-th smallest eigenvalue of
the normalized Lapalcian matrix and ρG(k) is the k-way
expansion constant. Since both hG and ρG(k) measure the
significance of community structure, the graph spectrum is
closely related to the community structure.

The coupling between graph spectrum and community
structure has been empirically validated in [37] where New-
man found that if the second smallest eigenvalue λ2 of the
Laplacian matrix is well separated from the eigenvalues above
it, the spectral clustering based on Lapalcian matrix often
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does very well. However, community detection by spectral
algorithms in sparse graphs often fails, because the spectrum
contains no clear evidence of community structure. This is
exemplified under the sparse stochastic block model with two
clusters of equal size [38], [40], where the second smallest
eigenvalue of the adjacency matrix gets lost in the bulk of
uninformative eigenvalues. Our experiments complement the
correlation between graph spectrum and community structure
by showing that the spikes in a sequence of spectral gaps are
good indicators of the community structure.

The significance and detectability of community structure
has found its application in an emerging area called com-
munity obfuscation [41]–[47], where the graph structure is
minimally perturbed to protect its community structure from
being detected. None of these practical algorithms exploit the
correlation between graph spectrum and community structure
except for the structural entropy proposed by Liu et al. [45].
Our work bridges the one-dimensional structural entropy in
[45] with the spectral entropy, elaborates both empirically and
theoretically that maximizing the spectral entropy is effective
in community obfuscation, and thus provides a theoretical
foundation for the success of the structural entropy [45].

III. PRELIMINARIES

In this paper, we study the undirected graph G = (V,E,A)
with positive edge weights, where V = [n] , {1, . . . , n}
is the node set, E is the edge set, and A ∈ Rn×n+ is the
symmetric weight matrix with positive entry Aij denoting the
weight of an edge (i, j) ∈ E. If the node pair (i, j) /∈ E,
then Aij = 0. If the graph G is unweighted, the weight
matrix A ∈ {0, 1}n×n is called the adjacency matrix of G.
The degree of the node i ∈ V in the graph G is defined
as di =

∑n
j=1Aij . The Laplacian matrix of the graph G

is defined as L , D − A where D = diag(d1, . . . , dn) is
the degree matrix. Let {λi}ni=1 be the sorted eigenvalues of
L such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, which is called
Laplacian spectrum. We define vol(G) =

∑n
i=1 di as the

volume of graph G, then vol(G) = tr(L) =
∑n
i=1 λi where

tr(·) is the trace operator. For the convenience of delineation,
we define a special function f(x) , x log2 x on the support
[0,∞) where f(0) , limx↓0 f(x) = 0 by convention.
In the following, we present the formal definitions of the
von Neumann graph entropy, the structural information, and
the entropy gap. Slightly different from the one-dimensional
structural information proposed by Li et al. [3], our definition
of structural information does not require the graph G to be
connected.

Definition 1 (von Neumann graph entropy): The von Neu-
mann graph entropy of an undirected graph G = (V,E,A)
is defined as Hvn(G) = −∑n

i=1 f(λi/vol(G)), where 0 =
λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the Laplacian
matrix L = D−A of the graph G, and vol(G) =

∑n
i=1 λi is

the volume of G.
Definition 2 (Structural information): The structural infor-

mation of an undirected graph G = (V,E,A) is defined as
H1(G) = −∑n

i=1 f(di/vol(G)), where di is the degree of
node i in G and vol(G) =

∑n
i=1 di is the volume of G.

Definition 3 (Entropy gap): The entropy gap of an undi-
rected graph G = (V,E,A) is defined as ∆H(G) = H1(G)−
Hvn(G).

The von Neumann graph entropy and the structural informa-
tion are well-defined for all the undirected graphs except for
the graphs with empty edge set, in which vol(G) = 0. When
E = ∅, we take it for granted that H1(G) = Hvn(G) = 0.

IV. APPROXIMATION ERROR ANALYSIS

In this section we bound the entropy gap in the undirected
graphs of order n. Since the nodes with degree 0 have no
contribution to both the structural information and the von
Neumann graph entropy, without loss of generality we assume
that di > 0 for any node i ∈ V .

A. Bounds on the Approximation Error

We first provide bounds on the additive approximation error
in Theorem 1, Corollary 1, and Corollary 2, then analyze the
multiplicative approximation error in Theorem 2.

Theorem 1 (Bounds on the absolute approximation error):
For any undirected graph G = (V,E,A), the inequality

0 < ∆H(G) ≤ log2 e

δ
· tr(A2)

vol(G)
(1)

holds, where δ = min{di|di > 0} is the minimum positive
degree.

Before proving Theorem 1, we introduce two techniques:
the majorization and the Jensen’s gap. The former one is
a preorder of the vector of reals, while the latter is an
inverse version of the Jensen’s inequality, whose definitions
are presented as follows.

Definition 4 (Majorization [48]): For a vector x ∈ Rd, we
denote by x↓ ∈ Rd the vector with the same components, but
sorted in descending order. Given x,y ∈ Rd, we say that x
majorizes y (written as x � y) if and only if

∑k
i=1 x

↓
i ≥∑k

i=1 y
↓
i for any k ∈ [d] and xᵀ1 = yᵀ1.

Lemma 1 (Jensen’s gap [21]): Let X be a one-dimensional
random variable with the mean µ and the support Ω. Let ψ(x)
be a twice differentiable function on Ω and define the function
h(x) , ψ(x)−ψ(µ)

(x−µ)2 − ψ′(µ)
x−µ , then E[ψ(X)] − ψ(E[X]) ≤

supx∈Ω{h(x)} ·var(X). Additionally, if ψ′(x) is convex, then
h(x) is monotonically increasing in x, and if ψ′(x) is concave,
then h(x) is monotonically decreasing in x.

Lemma 2: The function f(x) = x log2 x is convex, its first
order derivative f ′(x) = log2 x+ log2 e is concave.

Proof: The second order derivative f ′′(x) = (log2 e)/x >
0, thus f(x) = x log2 x is convex.
We can see that the majorization characterizes the degree of
concentration between the two vectors x and y. Specifically,
x � y means that the entries of y are more concentrated on its
mean yᵀ1/1ᵀ1 than the entires of x. An equivalent definition
of the majorization [48] using linear algebra says that x �
y if and only if there exists a doubly stochastic matrix P
such that Px = y. As a famous example of the majorization,
the Schur-Horn theorem [48] says that the diagonal elements
of a positive semidefinite Hermitian matrix are majorized by
its eigenvalues. Since xTLx =

∑
(i,j)∈E Aij(xi − xj)2 ≥ 0
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for any vector x ∈ Rn, the Laplacian matrix L is a positive
semidefinite symmetric matrix whose diagonal elements form
the degree sequence d and eigenvalues form the spectrum λ.
Therefore, the majorization λ � d implies that there exists
some doubly stochastic matrix P = (pij) ∈ [0, 1]n×n such
that Pλ = d.

Using the relation Pλ = d and the convexity of f(x) in
Lemma 2, we can now proceed to prove Theorem 1.

Proof of Theorem 1: For each i ∈ V , we define a discrete
random variable Xi whose probability mass function is given
by
∑n
j=1 pijδλj

(x), where δa(x) is the Kronecker delta func-
tion. Then the expectation E[Xi] =

∑n
j=1 pijλj = di and the

variance var(Xi) =
∑n
j=1 pij(λj − di)2 =

∑n
j=1 pijλ

2
j − d2

i .
First, we express the entropy gap in terms of the Lapalcian

spectrum and the degree sequence. Since

H1(G) = −
n∑

i=1

(
di

vol(G)

)
log2

(
di

vol(G)

)

= − 1

vol(G)

(
n∑

i=1

f(di)−
n∑

i=1

di log2 (vol(G))

)

= log2 (vol(G))−
∑n
i=1 f(di)

vol(G)
,

(2)

and similarly

Hvn(G) = log2(vol(G))−
∑n
i=1 f(λi)

vol(G)
, (3)

we have

∆H(G) = H1(G)−Hvn(G) =

∑n
i=1 f(λi)−

∑n
i=1 f(di)

vol(G)
.

(4)
Second, we use Jensen’s inequality to prove ∆H(G) > 0.

Since f(x) is convex, f(di) = f(E[Xi]) ≤ E[f(Xi)] for any
i ∈ {1, . . . , n}. By summing over i, we have
n∑

i=1

f(di) ≤
n∑

i=1

E[f(Xi)] =

n∑

i=1

n∑

j=1

pijf(λj) =

n∑

j=1

f(λj).

Therefore, ∆H(G) ≥ 0 for any undirected graphs. Actu-
ally, ∆H(G) cannot be 0. To see this, suppose that the
Laplacian matrix can be decomposed as L = UΛUᵀ where
Λ = diag(λ1, . . . , λn) and U = (u·,1| · · · |u·,n) is a unitary
matrix. Note that λ1 = 0 and u·,1 = 1n/

√
n. The i-th diagonal

element of the matrix UΛUᵀ =
∑n
j=1 λju·,ju

ᵀ
·,j is given by∑n

j=1 λj |uij |2. Since the i-th diagonal element of L is di and
L = UΛUᵀ, we have di =

∑n
j=1 λj |uij |2 for each i ∈ [n].

Recall that Pλ = d where P is a doubly-stochastic matrix,
therefore pij = |uij |2. Now suppose for contradiction that
∆H(G) = 0, which means that f(E[Xi]) = E[f(Xi)] for each
i ∈ [n]. Due to the strict convexity of f(·), the discrete random
variable Xi has to be deterministic. Since E[Xi] = di > 0,
we have P(Xi = di) = 1. However, it contradicts the fact
that P(Xi = 0) ≥ P(Xi = λ1) = pi,1 = 1

n . Therefore the
contradiction implies that ∆H(G) > 0 for any undirected
graphs.

Finally, we use the Jensen’s gap to prove the upper bound
on ∆H(G) in (1). Apply the Jensen’s gap to Xi and f(x),

E[f(Xi)]− f(E[Xi]) ≤ sup
x∈[0,vol(G)]

{hi(x)} · var(Xi), (5)

where

hi(x) =
f(x)− f(E[Xi])

(x− E[Xi])2
− f ′(E[Xi])

x− E[Xi]
.

Since f ′(x) is concave, hi(x) is monotonically decreasing in
x. Therefore, supx∈[0,vol(G)]{hi(x)} = hi(0). Since

hi(0) =
f(0)− f(di)

d2
i

+
f ′(di)

di
=

log2 e

di
≤ log2 e

δ
,

the inequality in (5) can be simplified as

n∑

j=1

pijf(λj)− f(di) ≤
log2 e

δ
·




n∑

j=1

pijλ
2
j − d2

i


 . (6)

By summing both sides of the inequality (6) over i, we get
an upper bound UB on

∑n
j=1 f(λj)−

∑n
i=1 f(di) as

UB =
log2 e

δ
·
n∑

i=1




n∑

j=1

pijλ
2
j − d2

i




=
log2 e

δ
·




n∑

j=1

λ2
j −

n∑

i=1

d2
i




=
log2 e

δ
·
(
tr(L2)− tr(D2)

)

=
log2 e

δ
·
(
tr(A2)− tr(AD)− tr(DA)

)

=
log2 e

δ
· tr(A2).

As a result, ∆H(G) =
∑n

i=1 f(λi)−
∑n

i=1 f(di)

vol(G) ≤ log2 e
δ

tr(A2)
vol(G) .

To illustrate the tightness of the bounds in Theorem 1,
we further derive bounds on the entropy gap for unweighted
graphs, especially the regular graphs. Via multiplicative error
analysis, we show that the structural information converges to
the von Neumann graph entropy as the graph size grows.

Corollary 1 (Constant bounds on the entropy gap): For any
unweighted, undirected graph G, 0 < ∆H(G) ≤ log2 e holds.

Proof: In unweighted graph G,

tr(A2) =

n∑

i=1

n∑

j=1

AijAji

=

n∑

i=1

n∑

j=1

Aij

=

n∑

i=1

di

= vol(G),

and δ ≥ 1, therefore 0 < ∆H(G) ≤ log2 e
δ

tr(A2)
vol(G) = log2 e

δ ≤
log2 e.

Corollary 2 (Entropy gap of regular graphs): For any
unweighted, undirected, regular graph Gd of degree d, the
inequality 0 < ∆H(Gd) ≤ log2 e

d holds.
Proof sketch: In any unweighted, regular graph Gd, δ =

d.
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Theorem 2 (Convergence of the multiplicative approxima-
tion error): For almost all unweighted graphs G of order n,
H1(G)
Hvn(G) − 1 > 0 and decays to 0 at the rate of o(1/ log2(n)).

Proof: Dairyko et al. [49] proved that for almost all
unweighted graphs G of order n, Hvn(G) ≥ Hvn(K1,n−1)
where K1,n−1 stands for the star graph. SinceHvn(K1,n−1) =

log2(2n−2)− n
2n−2 log2 n = 1+ 1

2 log2 n+o(1), H1(G)
Hvn(G)−1 =

∆H(G)
Hvn(G) ≤

log2 e
Hvn(K1,n−1) = o( 1

log2 n
).

B. Sharpened Bounds on the Entropy Gap

Though the constant bounds on the entropy gap are tight
enough for applications, we can still sharpen the bounds on
the entropy gap in unweighted graphs using more advanced
majorizations.

Theorem 3 (Sharpened lower bound on entropy gap):
For any unweighted, undirected graph G, ∆H(G) is lower
bounded by (f(dmax+1)−f(dmax)+f(δ−1)−f(δ))/vol(G)
where dmax is the maximum degree and δ is the minimum
positive degree.

Proof: The proof is based on the advanced majorization
[50] λ � (d1+1, d2, . . . , dn−1) where d1 ≥ d2 ≥ · · · ≥ dn is
the sorted degree sequence of the unweighted undirected graph
G. Similar to the proof of Theorem 1, we have

∑n
i=1 f(λi) ≥

f(d1 + 1) + f(dn − 1) +
∑n−1
i=2 f(di). Then the sharpened

upper bound follows from the equation (4) since d1 = dmax

and dn = δ.
Theorem 4 (Sharpened upper bound on entropy gap): For

any unweighted, undirected graph G = (V,E), ∆H(G) is up-
per bounded by min{log2 e, b1, b2} where b1 =

∑n
i=1 f(d∗i )

vol(G) −∑n
i=1 f(di)

vol(G) and b2 = log2(1 +
∑n
i=1 d

2
i /vol(G))−

∑n
i=1 f(di)

vol(G) .
Here (d∗1, . . . , d

∗
n) is the conjugate degree sequence of G

where d∗k = |{i|di ≥ k}|.
Proof: We first prove ∆H(G) ≤ b1 using the Grone-

Merris majorization [22]: (d∗1, . . . , d
∗
n) � λ. Similar to the

proof of Theorem 1, we have
∑n
i=1 f(d∗i ) ≥

∑n
i=1 f(λi),

thus b1 ≥
∑n

i=1 f(λi)−
∑n

i=1 f(di)

vol(G) = ∆H(G). We then prove
∆H(G) ≤ b2. Since

∑n
i=1 f(λi)

vol(G)
=

n∑

i=1

(
λi∑n
j=1 λj

)
log2 λi ≤ log2

(∑n
i=1 λ

2
i∑n

j=1 λj

)

and ∑n
i=1 λ

2
i∑n

i=1 λi
=

tr(L2)

vol(G)
= 1 +

∑n
i=1 d

2
i

vol(G)
,

we have ∆H(G) =
∑n

i=1 f(λi)−f(di)

vol(G) ≤ b2.

C. Entropy Gap of Various Types of Graphs

As summarized in Table III, we analyze the entropy gap
of various types of graphs including the complete graph, the
complete bipartite graph, the path graph, and the ring graph,
the proofs of which can be found in Appendix B.

V. APPLICATIONS AND ALGORITHMS

As a measure of the structural complexity of a graph,
the von Neumann entropy has been applied in a variety of
applications. For example, the von Neumann graph entropy is
exploited to measure the edge centrality [15] and the vertex
centrality [18] in complex networks. As another example, the
von Neumann graph entropy can also be used to measure the
distance between graphs for graph classification and anomaly
detection [9], [14]. In addition, the von Neumann graph
entropy is used in the context of graph representation learning
[27] to learn low-dimensional feature representations of nodes.
We observe that, in these applications, the von Neumann graph
entropy is used to address the following primitive tasks:
• Entropy-based network design: Design a new graph by

minimally perturbing the existing graph to meet the entropic
requirement. For example, Minello et al. [19] use the von
Neumann entropy to explore the potential network growth
model via experiments.

• Graph similarity measure: Compute the similarity score
between two graphs, which is represented by a real positive
number. For example, Domenico et al. [13] use the von
Neumann graph entropy to compute the Jensen-Shannon
distance between graphs for the purpose of compressing
multilayer networks.
Both of the primitive tasks require exact computation of

the von Neumann graph entropy. To reduce the computational
complexity and preserve the interpretability, we can use the
accurate proxy, structural information, to approximately solve
these tasks.

A. Entropy-based network design

Network design aims to minimally perturb the network to
fulfill some goals. Consider such a goal to maximize the
von Neumann entropy of a graph, it helps to understand
how different structural patterns influence the entropy value.
The entropy-based network design problem is formulated as
follows,

Problem 1 (MaxEntropy): Given an unweighted, undirected
graph G = (V,E) of order n and an integer budget k, find a
set F of non-existing edges of G whose addition to G creates
the largest increase of the von Neumann graph entropy and
|F | ≤ k.

Due to the spectral nature of the von Neumann graph
entropy, it is not easy to find an effective strategy to perturb the
graph, especially in the scenario where there are exponential
number of combinations for the subset F . If we use the
structural information as a proxy of the von Neumann entropy,
Problem 1 can be reduced to maximizing H1(G′) where
G′ = (V,E ∪ F ) such that |F | ≤ k. To further alleviate
the computational pressure rooted in the exponential size of
the search space for F , we adopt the greedy method in which
the new edges are added one by one until either the structural
information attains its maximum value log2 n or k new edges
have already been added. We denote the graph with l new
edges as Gl = (V,El), then G0 = G. Now suppose that
we have Gl whose structural information is less than log2 n,
then we want to find a new edge el+1 = (u, v) such that



IEEE TRANSACTIONS ON INFORMATION THEORY 8

TABLE III: Structural information, von Neumann graph entropy, and entropy gap of specific graphs.

Graph Types Structural information H1 von Neumann graph entropy Hvn Entropy gap ∆H

Complete graph Kn log2 n log2(n− 1) log2(1 + 1
n−1

)

Complete bipartite graph Ka,b 1 + 1
2

log2(ab) 1 + 1
2

log2(ab)− log2(1+ b
a

)

2b
− log2(1+ a

b
)

2a

log2(1+ b
a

)

2b
+

log2(1+ a
b

)

2a
Path Pn log2(n− 1) + 1

n−1
log2(n− 1) + 1− log2 e log2 e− 1

Ring Rn log2 n log2 n + 1− log2 e log2 e− 1

H1(Gl+1) is maximized, where Gl+1 = (V,El ∪ {el+1}).
Since H1(Gl+1) can be rewritten as

log2(2|El|+ 2)−
f(du + 1) + f(dv + 1) +

∑
i6=u,v f(di)

2|El|+ 2
,

the edge el+1 maximizing H1(Gl+1) should also minimize the
edge centrality EC(u, v) = f(du + 1)− f(du) + f(dv + 1)−
f(dv), where di is the degree of node i in Gl.

We present the pseudocode of our fast algorithm Entropy-
Aug in Algorithm 1, which leverages the pruning strategy to
accelerate the process of finding a single new edge that creates
a largest increase of the von Neumann entropy. EntropyAug
starts by initiating an empty set F used to contain the node
pairs to be found and an entropy value H used to record
the maximum structural information in the graph evolution
process (line 1). In each following iteration, it sorts the set
of nodes V in non-decreasing degree order (line 3). Note that
the edge centrality EC(u, v) has a nice monotonic property:
EC(u1, v1) ≤ EC(u2, v2) if min{du1

, dv1} ≤ min{du2
, dv2}

and max{du1 , dv1} ≤ max{du2 , dv2}. With the sorted list of
nodes Vs, the monotonicity of EC(u, v) can be translated into
EC(Vs[i1], Vs[j1]) ≤ EC(Vs[i2], Vs[j2]) if the indices satisfy
i1 < j1, i2 < j2, i1 < i2, and j1 < j2. Thus, using the
two pointers {head, tail} and a threshold T , it can prune the
search space and find the desired non-adjacent node pair as
fast as possible (line 4-12). It then adds the non-adjacent node
pair minimizing EC(u, v) into F and update the graph G
(line 13). The structural information of the updated graph is
computed to determine whether F is the optimal subset till
current iteration (line 14-15).

B. Graph Similarity Measure

Entropy based graph similarity measure aims to compare
graphs using Jensen-Shannon divergence. The Jensen-Shannon
divergence, as a symmetrized and smoothed version of the
Kullback-Leibler divergence, is defined formally in the fol-
lowing Definition 5.

Definition 5 (Jensen-Shannon divergence): Let P and Q be
two probability distributions on the same support set ΩN =
{1, . . . , N}, where P = (p1, . . . , pN ) and Q = (q1, . . . , qN ).
The Jensen-Shannon divergence between P and Q is defined
as

DJS(P,Q) = H((P +Q)/2)−H(P )/2−H(Q)/2,

where H(P ) = −∑N
i=1 pi log pi is the entropy of the distri-

bution P .
The square root of DJS(P,Q), also known as Jensen-

Shannon distance, has been proved [51] to be a bounded metric
on the space of distributions over ΩN , with its maximum value

Algorithm 1: EntropyAug
Input: The graph G = (V,E) of order n, the budget k
Output: A set of node pairs

1 F ← ∅, H ← 0;
2 while |F | < k do
3 Vs: list ← sort V in non-decreasing degree order;
4 head← 0, tail← |Vs| − 1, T ← +∞;
5 while head < tail do
6 for i = head + 1,head + 2, . . . , tail do
7 if EC(Vs[head], Vs[i]) ≥ T then
8 tail← i− 1; break;
9 if (Vs[head], Vs[i]) /∈ E then

10 u← Vs[head], v ← Vs[i],
T ← EC(u, v);

11 tail← i− 1; break;
12 head← head + 1;
13 E ← E ∪ {(u, v)}, F ← F ∪ {(u, v)};
14 if H1(G) > H then H ← H1(G), F ∗ ← F ;
15 if H = log2 n then break;
16 return F ∗.

√
log 2 being attained when min{pi, qi} = 0 for each i ∈ ΩN .

However, the Jensen-Shannon distance cannot measure the
similarity between high dimensional objects such as matrices
and graphs. Therefore, Majtey et al. [24] introduce a quantum
Jensen-Shannon divergence to measure the similarity between
mixed quantum states, the formal definition of which is
presented in the following,

Definition 6 (Quantum Jensen-Shannon divergence between
quantum states): The quantum Jensen-Shannon divergence
between two quantum states ρ and σ is defined as

DQJS(ρ,σ) = tr

(
ρ logρ + σ logσ

2
− ρ + σ

2
log

ρ + σ

2

)

where ρ,σ are symmetric and positive semi-definite density
matrices with tr(ρ) = 1 and tr(σ) = 1.

The square root of DQJS(ρ,σ) has also been proved to be
a metric on the space of density matrices [52], [53]. Since
the Laplacian matrix L of a weighted undirected graph G
is symmetric and positive semi-definite, we can view L

tr(L)
as a density matrix. Therefore, the quantum Jensen-Shannon
divergence can be used to measure the similarity between two
graphs G1 and G2, given that they share the same node set,
i.e. V (G1) = V (G2).

Definition 7 (Quantum Jensen-Shannon divergence between
graphs): The quantum Jensen-Shannon divergence between
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two weighted, undirected graphs G1 = (V,E1, A1) and
G2 = (V,E2, A2) on the same node set V is defined as

DQJS(G1, G2) = Hvn(G)− (Hvn(G1) +Hvn(G2))/2,

where G = (V,E1 ∪ E2, A) is an weighted graph with A =
A1/2vol(G1) +A2/2vol(G2).

Generally, the node sets of two graphs to be compared
are not necessarily aligned. For simplicity, we restrict our
discussion to the aligned case and recommend [54] for a more
detailed treatment of the unaligned case.

Based on the quantum Jensen-Shannon divergence between
graphs, we consider the following problem that has found
applications in anomaly detection and multiplex network com-
pression.

Problem 2: Compute the square root of the quantum Jensen-
Shannon divergence between adjacent graphs in a stream of
graphs {Gk = (V,Ek, tk)}Kk=1 where tk is the timestamp of
the graph Gk and tk < tk+1.

Since
√
DQJS(G1, G2) is computationally expensive, we

propose a new distance measure based on structural infor-
mation in Definition 8 and analyze its metric properties in
Theorem 5.

Definition 8 (Structural information distance between two
graphs): The structural information distance between two
weighted, undirected graphs G1 = (V,E1, A1) and G2 =
(V,E2, A2) on the same node set V is defined as

DSI(G1, G2) =

√
H1(G)− (H1(G1) +H1(G2)) /2,

where G = (V,E1 ∪ E2, A) is an weighted graph with A =
A1/2vol(G1) +A2/2vol(G2).

Theorem 5 (Properties of the distance measure DSI): The
distance measure DSI(G1, G2) is a pseudometric on the space
of undirected graphs:
• DSI is symmetric, i.e., DSI(G1, G2) = DSI(G2, G1);
• DSI is non-negative, i.e., DSI(G1, G2) ≥ 0 where the

equality holds if and only if di,1∑n
k=1 dk,1

=
di,2∑n

k=1 dk,2
for

every node i ∈ V where di,j is the degree of node i in
Gj ;

• DSI obeys the triangle inequality, i.e.,

DSI(G1, G2) +DSI(G2, G3) ≥ DSI(G1, G3);

• DSI is upper bounded by 1, i.e., DSI(G1, G2) ≤ 1 where
the equality holds if and only if min{di,1, di,2} = 0 for
every node i ∈ V where di,j is the degree of node i in
Gj .

Besides the metric properties, we further establish a connection
between DSI and

√
DQJS by studying their extreme values,

the results of which are summarized in Theorem 6.
Theorem 6 (Connection between

√
DQJS and DSI): Both√

DQJS(G1, G2) and DSI(G1, G2) attain the same maximum
value of 1 under the identical condition that min{di,1, di,2} =
0 for every node i ∈ V where di,j is the degree of node i in
Gj .

In order to compute the structural information distance
between adjacent graphs in the graph stream {Gk}Kk=1 where
Gk = (V,Ek, tk), we first compute the structural informa-
tion H1(Gk) for each k ∈ [K], which takes Θ(Kn) time.

Algorithm 2: IncreSim

Input: G1 and {∆Gk}K−1
k=1

Output: {DSI(Gk, Gk+1)}K−1
k=1

1 d← the degree sequence of the graph G1;
2 m←∑n

i=1 di/2;
3 H1(G1)← log2(2m)− 1

2m

∑n
i=1 f(di);

4 for k = 1, . . . ,K − 1 do
5 ∆d← the degree sequence of the signed graph

∆Gk;
6 ∆m←∑

i∈Vk
∆di/2;

7 Compute a, b, y, z in Lemma 3 via iterating over
Vk;

8 Compute H1(Gk+1) and H1(Gk) based on
Lemma 3;

9 DSI(Gk, Gk+1)←√
H1(Gk)− (H1(Gk) +H1(Gk+1))/2;

10 m← m+ ∆m;
11 foreach i ∈ Vk do di ← di + ∆di;
12 return {DSI(Gk, Gk+1)}K−1

k=1

Then we compute the structural information of Gk whose
adjacent matrix Ak = Ak/2vol(Gk) + Ak+1/2vol(Gk+1) for
each k ∈ [K − 1]. Since the degree of node i in Gk is
di,k =

di,k
2vol(Gk) +

di,k+1

2vol(Gk+1) and
∑n
i=1 di,k = 1, the structural

information of Gk is H1(Gk) = −∑n
i=1 f(di,k) which takes

Θ(n) time for each k. Therefore, the total computational cost
is Θ((2K − 1)n).

In practice, the graph stream is fully dynamic such that
it would be more efficient to represent the graph stream as
a stream of operations over time, rather than a sequence
of graphs. Suppose that the graph stream is represented as
an initial base graph G1 = (V,E1, t1) and a sequence of
operations {∆Gk = (Vk, E+,k, E−,k, tk)}K−1

k=1 on the graph
where tk is the timestamp of the set E+,k of edge insertions
and the set E−,k of edge deletions, and Vk is the subset of
nodes covered by E+,k ∪ E−,k. We can view the operation
∆Gk as a signed network where the edge in E+,k has positive
weight +1 and the edge in E−,k has negative weight −1.
The degree of node i ∈ Vk in the operation ∆Gk refers
to
∑
j∈Vk

I{(i, j) ∈ E+,k} − I{(i, j) ∈ E−,k}. Using the
information about previous graph Gk and current operation
∆Gk, we can compute the entropy statistics of the current
graph Gk+1 incrementally and efficiently via the following
lemma, whose proof can be found in the appendix.

Lemma 3: Using the degree sequence d of the graph Gk,
the structural information H1(Gk), and the degree sequence
∆d of the signed graph ∆Gk, the structural information of the
graph Gk+1 can be efficiently computed as

H1(Gk+1) =
f(2(m+ ∆m))− a− f(2m) + 2mH1(Gk)

2(m+ ∆m)
,

where m =
∑n
i=1 di/2, ∆m =

∑
i∈Vk

∆di/2, and a =∑
i∈Vk

f(di + ∆di) − f(di). Moreover, the structural infor-
mation of the averaged graph Gk between Gk and Gk+1 can
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be efficiently computed as

H1(Gk) = −b− (2m−y)f(c)− c(f(2m)−2mH1(Gk)− z),
where y =

∑
i∈Vk

di, z =
∑
i∈Vk

f(di), c = 2m+∆m
4m(m+∆m) , and

b =
∑
i∈Vk

f
(
di
4m + di+∆di

4(m+∆m)

)
.

The pseudocode of our fast algorithm IncreSim for com-
puting the structural information distance in a graph stream is
shown in Algorithm 2. It starts by computing the structural
information of the base graph G1 (line 1-3), which takes
Θ(n) time. In each following iteration, it first computes the
value of a, b, c, y, z (line 5-7), then calculates the structural
information distance between two adjacent graphs (line 8-9),
finally updates the edge count m and the degree sequence
d (line 10-11). The time cost of each iteration is Θ(|Vk|),
consequently the total time complexity is Θ(n+

∑K−1
k=1 |Vk|).

VI. CONNECTIONS WITH COMMUNITY STRUCTURE

In this section, we discuss the connections between the
graph entropy and the community structure in graphs.

A. Empirical Analysis of Stochastic Block Model

1) Preparations: To study the connections between graph
entropy and community structures in a specific ensemble of
graphs, suppose that a graph G is generated by the stochastic
block model. There are q groups of nodes, and each node
v has a group label gv ∈ {1, . . . , q}. Edges are generated
independently according to a probability matrix P ∈ [0, 1]q×q ,
with P(Auv = 1) = P[gu, gv]. In the sparse case, we have
P[a, b] = C[a, b]/n, where the affinity matrix C stays constant
in the limit n → ∞. For simplicity we make a common
assumption that the affinity matrix C has two distinct entries
cin and cout where C[a, b] = cin if a = b and cout if
a 6= b. For any graph generated from the stochastic block
model with two(three) groups, we use the spectral algorithm in
Algorithm 3(Algorithm 4) to detect the community structure.

Algorithm 3: 2-Spectral Clustering
Input: The graph G = (V,E) of order n
Output: A cluster membership vector cl ∈ {0, 1}n

1 cl← 0;
2 L← Laplacian matrix of the graph G;
3 v2 ← eigenvector corresponding to λ2 of L;
4 for i = 1, . . . , n do
5 if v2[i] < 0 then cl[i] = 1;
6 return cl

2) Evaluation Metrics: For each synthetic graph, we com-
pute the structural information, von Neumann graph entropy,
Laplacian eigenvalues λ2, λ3, λ4, . . . with small magnitude,
spectral gaps λk+1 − λk, and the detection error.

Specifically, let P = {P1, . . . , Pk} and Q = {Q1, . . . , Qk}
be two k-partitions of V . We view P as the ground-truth com-
munity structure and Q as the detected community structure,
then the detection error is

min
σ

k∑

i=1

|Pi4Qσ(i)|,

Algorithm 4: 3-Spectral Clustering
Input: The graph G = (V,E) of order n
Output: A cluster membership vector cl ∈ {0, 1, 2}n

1 L← Laplacian matrix of the graph G;
2 v2 ← eigenvector corresponding to λ2 of L;
3 v3 ← eigenvector corresponding to λ3 of L;
4 cl← k-means clustering of [v2,v3] with k = 3;
5 return cl

where σ ranges over all bijections σ : [k] → [k] and 4
represents the symmetric difference.

3) Empirical Results: The results are shown in Fig. 2 and
Fig. 3, from which we have the following observations:

• Observation 1 (Dynamics of graph entropy): Both the
von Neumann graph entropy and structural information
are stationary with small fluctuations and linearly corre-
lated as cout varies.

• Observation 2 (Dynamics of eigenvalues): In the stochas-
tic block model with two clusters of equal size, the
second smallest eigenvalue λ2 linearly increases and
finally reaches a steady state as cout increases, while the
eigenvalues λ3 and λ4 above it are stationary all the time.
In the stochastic block model with three clusters of equal
size, both the second smallest eigenvalue λ2 and the third
smallest eigenvalue λ3 linearly increase and finally reach
a steady state as cout increases, while the eigenvalues λ4

and λ5 above them are stationary all the time.
• Observation 3 (Phase transition): In the stochastic block

model with two clusters of equal size, both the detection
error of the spectral algorithm and the spectral gap λ3−λ2

undergoes a same phase transition as cout varies. The
spectral gap λ4 − λ3 is stationary and close to 0 all the
time. For example, in Fig. 2(b) when cout < 7 the spectral
algorithm can discover the true clusters correctly and λ3−
λ2 is significantly larger than λ4 − λ3. When cout > 11,
the spectral algorithm works like a random guess and
λ3 − λ2 is mixed with λ4 − λ3.
In the stochastic block model with three clusters of equal
size, both the detection error of the spectral algorithm and
the spectral gap λ4−λ3 undergo a same phase transition
as cout varies. The spectral gap λ5−λ4 is stationary and
close to 0 all the time.

Empirically, we conclude that

1) Graph entropy and community structure: Both the von
Neumann graph entropy and structural information reveal
nothing about the community structure and the assorta-
tivity/disassortativity of graphs.

2) Spectral gaps and community structure: If a graph has
significant community structure with k clusters, then the
spectral gap λk+1 − λk should be significantly larger
than λk+2 − λk+1 and λk − λk−1. Conversely, if there
is a significant peak in the sequence of spectral gaps
{λi+1−λi}n−1

i=1 of a graph, the graph should have signif-
icant community structure that could be easily detected
by some algorithms.
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Fig. 2: The structural information, von Neumann graph entropy, Laplacian spectrum, spectrum gap, and detection error of
synthetic graphs from stochastic block model with 100 nodes. There are two clusters of equal size 50.
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Fig. 3: The structural information, von Neumann graph entropy, Laplacian spectrum, spectrum gap, and detection error of
synthetic graphs from stochastic block model with 150 nodes. There are three clusters of equal size 50.

B. Adversarial Attacks on Community Detection

The empirical findings tell that the ground-truth community
structure would not be easily detected if the spikes in the
sequence of spectral gaps are suppressed. Therefore, we are
interested in solving the following community obfuscation
problem by exploiting the Laplacian spectrum.

Problem 3 (Community Obfuscation): Minimally perturb the
graph G = (V,E) with community structure P such that P
cannot be easily detected by algorithms.
Unlike the graphs generated from stochastic block model,

the real-world graphs have unknown number of clusters with
varying sizes. Therefore, it is hard to predict where the spike
is in the sequence of spectral gaps. And it is computationally
expensive to obtain the full spectral gaps. Since the spikes
represent the uneven distribution of spectrum, alternatively
we can hide the community structure by maximizing some
homogeneity measures on the Laplacian spectrum. Besides
the von Neumann graph entropy Hvn(G), we propose another
homogeneity measure called spectral polarization.

Definition 9 (Spectral polarization): The spectral polariza-
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tion P (G) of a graph G = (V,E) of order n is defined as

P (G) =

n∑

i=1

(
λi

vol(G)
− λ

vol(G)

)2

,

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the
Laplacian matrix of the graph G, λ = 1

n

∑n
i=1 λi is the

average eigenvalue, and vol(G) =
∑n
i=1 λi is the volume of

G.
Lemma 4: P (G) = 1

vol(G) − 1
n +

∑n
i=1 d

2
i

vol2(G)
.

Proof: Simple calculus shows that

P (G) =
1

vol2(G)

n∑

i=1

(λi − λ)2

=
1

vol2(G)

(
n∑

i=1

λ2
i − 2λ

n∑

i=1

λi + nλ2

)

=
1

vol2(G)

(
n∑

i=1

d2
i +

n∑

i=1

di − nλ2

)

=
1

vol(G)
− 1

n
+

∑n
i=1 d

2
i

vol2(G)
.

Now suppose that we are allowed to add at most k new
edges to G to hide the community structure, we can use Algo-
rithm 1 to approximately maximize spectral entropy Hvn(G)
or reset the edge centrality EC(u, v) = du + dv to minimize
the spectral polarization P (G).

C. Effectiveness of von Neumann Graph Entropy and Spectral
Polarization in Community Obfuscation

We use differential analysis to show that both maximizing
von Neumann graph entropy Hvn(G) and minimizing spectral
polarization P (G) are effective in community obfuscation.

Theorem 7: Minimally perturbing the graph G = (V,E)
by greedily maximizing the von Neumann graph entropy can
effectively hide the community structure.

Theorem 8: Minimally perturbing the graph G = (V,E) by
greedily minimizing the spectral polarization can effectively
hide the community structure.
Since the proofs of Theorem 7 and Theorem 8 are similar, we
only prove Theorem 7 for reference.

Proof of Theorem 7: Suppose that we minimally perturb
the graph G by adding a new edge e. The Laplacian spectrum
of the original graph G is denoted by λ(G) = (λ1, . . . , λn).
The Laplacian spectrum of the perturbed graph G′ = (V,E ∪
{e}) is denoted by λ(G′) = (λ′1, . . . , λ

′
n). According to the

classic matrix perturbation theory, λ′i = λi + δλi for any i ∈
{1, . . . , n} where δλi ≥ 0 is a very small increment. The sum
of these increments is

n∑

i=1

δλi =

n∑

i=1

λ′i −
n∑

i=1

λi = 2.

Since both G and G′ are assumed to be connected, λ′1 = λ1 =
δλ1 = 0 and λ′2 > λ2 > 0.

According to (3), maximizing Hvn(G′) is equivalent to
minimize

n∑

i=1

f(λ′i) =

n∑

i=1

f(λi + δλi)

=

n∑

i=2

f(λi) + f ′(λi) · δλi

=

n∑

i=2

f ′(λi) · δλi +

n∑

i=2

f(λi).

(7)

Therefore, the optimal edge e can be found by minimizing∑n
i=2 f

′(λi) · δλi subject to the constraints
∑n
i=2 δλi = 2,

λ′i ≤ λ′i+1 for any i ∈ {1, . . . , n − 1}, and δλi ≥ 0 for
any i ∈ {2, . . . , n}. Since f ′(λ2) ≤ f ′(λ3) ≤ . . . ≤ f ′(λn),
the optimal edge e maximizing Hvn(G′) assigns larger value
to δλ2, δλ3, . . . than δλn, δλn−1, . . .. Therefore, the spectral
gaps indicating the community structure should disappear very
quickly if we greedily maximizing Hvn(G) by adding edges
one by one.

Corollary 3: Minimally perturbing the graph G = (V,E) by
maximizing the structural information H1(G) can effectively
hide the community structure.

Corollary 4: Detecting the community structure in d-regular
graph Gd is hard.

Proof: According to Corollary 2, 0 < ∆H(Gd) ≤ log2 e
d .

Since H1(Gd) = log2 n, we have

Hvn(Gd) = H1(Gd)−∆H(Gd) ∈
[
log2 n−

log2 e

d
, log2 n

)
.

Therefore,Hvn(Gd) is close to its maximum value log2(n−1),
implying that the spectral gaps λi+1 − λi → 0 for any
i. According to the relation between spectral gaps and the
significance of community structure, Gd has no significant
community structure.

VII. EXPERIMENTS AND EVALUATIONS

We conduct extensive experiments over both synthetic and
real-world datasets to answer the following questions:
Q1. Universality of the entropy gap over arbitrary simple

graphs: Is the entropy gap close to 0 for a wide range of
graphs? Is the structural information a good proxy of the
von Neumann graph entropy for a wide range of graphs?

Q2. Sensitivity of the entropy gap to graph properties: How
do graph properties affect the value of the entropy gap?

Q3. Accuracy of the approximation: As a proxy of the von
Neumann graph entropy, is the structural information
more accurate than its prominent competitors?

Q4. Speed of the computation: Is the computation of the
structural information faster than its prominent competi-
tors?

Q5. Extensibility of the entropy gap to weighted graphs: Is
the entropy gap sensitive to the change of edge weights?
Is the entropy gap still close to 0 for weighted graphs?

Q6. Performance analysis (Appendix A): What is the per-
formance of EntropyAug (Algorithm 1) in maximizing
the von Neumann graph entropy? What is the perfor-
mance of IncreSim (Algorithm 2) in analyzing graph



IEEE TRANSACTIONS ON INFORMATION THEORY 13

TABLE IV: Real-world datasets used in our experiments.

Name #Nodes #Edges Category Statistics

Static graphs without timestamps Avg. degree

Zachary (ZA) 34 78 Friendship 4.59
Dolphins (DO) 62 159 Animal 5.13
Jazz (JA) 198 2,742 Contact 27.70
Skitter (SK) 1,696,415 11,095,298 Internet 13.08
Brightkite (BK) 58,228 214,078 Friendship 7.35
Caida (CA) 26,475 53,381 Internet 4.03
YouTube (YT) 1,134,890 2,987,624 Friendship 5.27
LiveJournal (LJ) 3,997,962 34,681,189 Friendship 17.35
Pokec (PK) 1,632,803 22,301,964 Friendship 27.32

Dynamic graphs with timestamps #Snapshots

Wiki-IT (WK) 1,204,009 34,826,283 Hyperlink 100
Facebook (FB) 61,096 788,135 Friendship 29

streams? Can the structural information distance be fur-
ther used to detect anomalies in a graph stream? Are max-
imizing the von Neumann graph entropy and minimizing
the spectral polarization effective in hiding community
structure?

A. Experimental Settings

Datasets: We consider both synthetic graphs and real-
world graphs. The synthetic graphs are generated from three
well-known random graph models: Erdös-Rényi (ER) model,
Barabási-Albert (BA) model [55], and Watts-Strogatz (WS)
model [56]. The real-world graphs [57]–[59] used in our exper-
iments are listed in Table IV, which contain both static graphs
with varying size and average degree, and temporal graphs
with varying size and time span. In every static graph, we
ignore the direction and weight of all edges and remove both
self-loops and multiple edges. We treat every temporal graph
as a stream of undirected weighted edges with timestamps.
For the convenience of analysis, we partition these edges into
several groups where each group is within a certain time
interval.
Hardwares: The experiments have been performed on a server
with Intel(R) Xeon(R) CPU 2.40 GHz (32 virtual cores) and
256GB RAM, averaging 10 runs for random algorithms and
random inputs unless stated otherwise.
Implementation: All of the proposed algorithms and baselines
are implemented in Python.

B. Q1. Universality (Fig. 4)

To evaluate the universality of the entropy gap, we measure
the structural information and the exact von Neumann entropy
on a set of synthetic graphs with 2,000 nodes. For the ER
and BA models, we generate graphs with average degree
in {2, 4, . . . , 200}. For the WS model, we generate graphs
with edge rewiring probability in {0, 1/20, . . . , 1} for each
average degree in {6, 10, 20, 50}. We additionally measure the
sharpened lower and upper bounds of the entropy gap. The
results are shown in Fig. 4.

The observations are three fold. First, the entropy gap
is close to 0 for a wide range of graphs. The entropy
gap of each synthetic graph is no more than 0.2, whereas
the exact von Neumann entropy is greater than 10. Second,

the entropy gap is negatively correlated with the average
degree. Dense graph tends to have very small entropy gap.
Third, the structural information is linearly correlated with
the von Neumann graph entropy, with only few exceptions.
There is no exception for the ER synthetic graphs. For the
BA synthetic graphs, the exceptions are those graphs with
extremely small average degree. For the WS synthetic graphs,
the exceptions are those graphs with extremely small edge
rewiring probability.

C. Q2. Sensitivity (Fig. 4, Fig. 5)

To evaluate the sensitivity of the entropy gap to graph
properties such as average degree, graph size, and rewiring
probability, we further measure the entropy gap of 10 syn-
thetic graphs with graph size in {500, 1000, . . . , 5000} for
each random model. The average degree is chosen from
{2, 5, 10, 20, 50, 100} for ER and BA models, and the edge
rewiring probability is chosen from {0, 0.1, 0.2, 0.4, 0.8, 1} for
the WS model.

The observations from Fig. 4 and Fig. 5 are three fold. First,
the entropy gap decreases as the average degree increases for
all the three random graph models. Second, the entropy gap
decreases as the edge rewiring probability increases for the
WS model. Third, the entropy gap is nearly insensitive to
the change of graph size.

D. Q3. Accuracy (Fig. 6)

To evaluate the accuracy of the structural information as
an approximation of the von Neumann graph entropy, we
measure the structural information, exact von Neumann en-
tropy (when the graph size is small), and three prominent
approximations (as competitors) in 9 real-world static graphs.
The competitors are 1) FINGER-Ĥ [9] defined as ĤF(G) =
−Q log2(λmax/tr(L)) where Q = 1 − tr(L2)/tr2(L), 2)
FINGER-H̃ [9] defined as H̃F(G) = −Q log2(2dmax/tr(L)),
and 3) SLaQ [1]. The results in Fig. 6 show that the structural
information is an accurate approximation of the von Neu-
mann graph entropy. The approximation error of structural
information is obviously much smaller than ĤF and H̃F. And
it is comparable to the approximation error of SLaQ with
only few exceptions such as YT and SK where the structural
information is slightly better.

E. Q4. Speed (Fig. 7)

To evaluate the computational speed of the structural infor-
mation, we measure the running time of structural information
and its three competitors in 9 real-world static graphs. The
results in Fig. 7 show that the computation of structural
information is fast. It is about 2 orders of magnitude faster
than ĤF, at least 2 orders of magnitude faster than SLaQ,
and comparable to H̃F. Combining Fig. 6 and Fig. 7, we
conclude that the structural information is the only one that
achieves both high efficiency and high accuracy among the
prominent methods.
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Fig. 4: The structural information, von Neumann graph entropy, and entropy gap of synthetic graphs generated from three
random graph models with 2, 000 nodes, varying average degree, and edge rewiring probability.
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Fig. 5: Effects of input graph properties on the entropy gap for three random graph models.
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F. Q5. Extensibility (Fig. 8)

To evaluate the extensibility of the entropy gap to weighted
graphs, we measure the entropy gap of synthetic weighted
graphs. Specifically, we choose 3 real-world graphs (ZA, DO,
JA) with small size, a complete graph K1000 and ring graph
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Fig. 8: The entropy gap is insensitive to the edge weights.

R1000 each with 1000 nodes. The weight of each edge is
set uniformly at random in the range [1, w]. We repeat the
experiments for each w ∈ {1, 2, . . . , 20}. The results in Fig. 8
show that the entropy gap is insensitive to the change
of edge weights in these graphs. Therefore, it is of high
probability that the entropy gap is still very small for a wide
range of weighted graphs.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we suggest to use the structural information
as a proxy of the von Neumann graph entropy such that
provable accuracy, scalability, and interpretability are achieved
at the same time. Since the experimental results show that the
entropy gap is insensitive to the graph size, we can estimate the
entropy gap of a very large graph using small graphs generated
from the same generative random graph model. We believe
that our idea also provides new insights into approximations
of graph spectral descriptors: besides function approximation,
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we can try to approximate the graph spectrum using simple and
easily available graph statistics, such as the degree sequence.

There are multiple tangible research fronts we can pursue.
First, in some access limited scenarios such as the World Wide
Web, the complete degree sequence is often not available,
therefore we need to develop sampling-based methods to
estimate the structural information. Second, both the von
Neumann graph entropy and the structural information can
be viewed as a function on the edge set. Their properties such
as the submodularity and monotonicity are under exploration.
Last, the approximation of the von Neumann graph entropy
defined on the eigenvalues of normalized Laplacian matrix is
still in its infancy.

APPENDIX A
ADDITIONAL EXPERIMENTS

A. Performance of EntropyAug (Fig. 9)

To evaluate the performance of EntropyAug (Algorithm 1)
in maximizing the von Neumann graph entropy, we measure
the running time and dynamics of the von Neumann graph
entropy for EntropyAug and two competitors in three small
real-world graphs ZA, DO, and JA. The two baselines are
1) “random” referring to the random addition of k non-
existing edges, and 2) “algebraic” [17] referring to the greedy
addition of k non-existing edges that leads to the largest
increase of the algebraic connectivity λn−1, which is the
second smallest eigenvalue of the Laplacian matrix. We believe
the “algebraic” algorithm is a competent competitor since
maximizing λn−1 would make the Laplacian spectrum con-
centrated on its mean, thereby maximizing the von Neumann
entropy. The results in Fig. 9 show that EntropyAug is the
only one that achieves both high efficiency and large
increments of von Neumann graph entropy.

B. Performance of IncreSim (Fig. 10)

To evaluate the performance of IncreSim (Algorithm 2)
and its relation with the VEO score, we measure the distance
between two adjacent graphs in two real-world temporal
graphs. We choose three methods (IncreSim, VEO score, and
deltaCon) along with two simple measures (the number of
added edges and the number of deleted edges). The VEO
score [60] between two adjacent graphs Gt and Gt+1 is
defined as 1 − 2(|Vt∩Vt+1|+|Et∩Et+1|)

|Vt|+|Vt+1|+|Et|+|Et+1| , which measures the
change rate of edge set and node set. The deltaCon [61] is
a prominent method to measure graph similarity based on fast
belief propagation. The results are shown in Fig. 10.

The observations are two fold. First, the structural infor-
mation distance is linearly correlated with the VEO score,
indicating that the structural information distance is not domi-
nated by only local information, but rather a global measure on
the graphs. For the FB temporal graph, the Pearson correlation
coefficient and Spearman rank-order correlation coefficient of
DSI with the VEO score are (0.95, 0.97) respectively, which
is much higher than (0.70, 0.77) with deltaCon. For the WK
temporal graph, the two correlation coefficients of DSI with the
VEO score are (0.96, 0.96) respectively, which is also much
higher than (−0.14, 0.00) with deltaCon. Second, all of the

three methods effectively capture the dynamics of graph
streams. For the FB temporal graph, the trends of the three
distance measures are similar. For the WK temporal graph, we
can see that the distance measure changes dramatically in the
beginning, then gradually turns to be flat, which implies that
the structure of WK temporal graph gradually becomes stable.

C. Performance in Anomaly Detection (Fig. 11)

We further evaluate the effectiveness of the structural infor-
mation distance in detecting the distributed denial-of-service
(DDoS) attacks in a graph stream. We first generate 10
synthetic graphs G = {Gt}10

t=1 from the BA model, each of
which has 100 nodes and average degree d = 4. We believe
that the synthetic graph stream G is a good representative of
the real-world scale-free graph streams. Then we model the
DDoS attack with strength k as follows: (1) Randomly select
a graph Gt∗ from G. (2) Transform Gt∗ into an anomalous
graph G′t∗ . Specifically, we first randomly select a target node
v, then randomly select k source nodes S = {si}ki=1. Finally,
we connect the target node v with the source node si for each
i ∈ {1, . . . , k}. (3) Generate the anomalous graph stream G′
via replacing the graph Gt∗ from G with G′t∗ .

We use a graph distance measure to rank the anomalous
graph in a graph stream. Suppose that the distance between
Gt and Gt+1 is θt,t+1, then the anomalous score for Gt is
θt−1,t+θt,t+1

2 . We rank the graphs according to their anomalous
scores in descending order. Then we use the rank of the
true synthetic anomalous graph to measure the effectiveness
of the graph distance measure in detecting DDoS attacks.
We choose four candidates for the graph similarity measure:
DSI, DQJS, VEO score, and deltaCon. And we repeat the
random DDoS attacks for 100 times for each attack strength
k ∈ {5, 10, 20, 30, 40}. The results are shown in Fig. 11.

The observations are two fold. First, DSI and DQJS have
similar behaviors in analyzing graph streams. Their trends in
analyzing the synthetic graph stream G are nearly identical.
Second, the structural information distance DSI is very suitable
for detecting DDoS attacks in a graph stream. The structural
information distance DSI behaves better than the other com-
petitors for the attack strength k ∈ {20, 30, 40, 50}. When
k ∈ {5, 10}, the performance of all the distance measures are
mainly affected by the properties of the original normal graph
stream.

D. Performance in Community Obfuscation

To evaluate the performance of maximizing the von Neu-
mann graph entropy (denoted as A0) and minimizing the
spectral polarization (denoted as A1) in community obfus-
cation, we measure the dynamics of spectral gaps, detection
error, graph entropy, and spectral polarization in the greedy
edge addition process. We evenly allocate the budget of edge
additions among all the community pairs. The results are
shown in Fig. 12 and Fig. 13.

The observations are four folds. First, the graph entropy is
monotonically increasing w.r.t. the number of added edges.
Second, the spectral polarization is monotonically decreasing
w.r.t. the number of added edges. Third, the detection error
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Fig. 9: Compared with the other two methods, our structural information based method is the only one that achieves both high
efficiency and large increments of von Neumann graph entropy.
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is monotonically increasing w.r.t. the number of added edges.
Therefore, both A0 and A1 are effective in community ob-
fuscation. Fourth, the spectral gap indicating the existence of
community structure slightly increases in the beginning and
then goes down quickly as more edges are added.

APPENDIX B
PROOF OF TABLE III

A. Preliminaries: Several Integrations

Lemma 5: The integration

I1 ,
∫ π

0

log2(1− cos(x))dx = −π.

Proof: Let x = t+ π/2, then dx = dt and

∫ π

π/2

log2(1− cos(x))dx =

∫ π/2

0

log2(1− cos(t+ π/2))dt

=

∫ π/2

0

log2(1 + cos(π/2− t))dt.

Let z = π/2− t, then dz = −dt and

∫ π/2

0

log2(1 + cos(π/2− t))dt = −
∫ 0

π/2

log2(1 + cos(z))dz.

Therefore,

∫ π

π/2

log2(1− cos(x))dx =

∫ π/2

0

log2(1 + cos(x))dx.

Then

I1 =

∫ π/2

0

log2(1− cos(x))dx+

∫ π

π/2

log2(1− cos(x))dx

=

∫ π/2

0

log2(1− cos(x))dx+

∫ π/2

0

log2(1 + cos(x))dx

=

∫ π/2

0

log2(sin2(x))dx

= 2

∫ π/2

0

log2(sin(x))dx.

Let x = π/2− t, then dx = −dt and

∫ π/2

0

log2(sin(x))dx = −
∫ 0

π/2

log2(sin(π/2− t))dt

=

∫ π/2

0

log2(sin(π/2− t))dt

=

∫ π/2

0

log2(sin(π/2 + t))dt

=

∫ π

π/2

log2(sin(x))dx.

Therefore,

I1 =

∫ π

0

log2(sin(x))dx

=

∫ π/2

0

log2(sin(2t))d(2t)

= 2

∫ π/2

0

log2(2 sin(t) cos(t))dt

= 2

(
π

2
+

∫ π/2

0

log2(sin(t))dt+

∫ π/2

0

log2(cos(t))dt

)

= π + I1 + 2

∫ π/2

0

log2(cos(t))dt.
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Fig. 11: Structural information distance is well suited for detecting DDoS attacks in a graph stream.
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Fig. 12: Community obfuscation on two graphs generated from
stochastic block model with 100 nodes. There are two clusters
of equal size 50.

As a result,

0 = π + 2

∫ π/2

0

log2(cos(x))dx

= π + 2

∫ π/2

0

log2(sin(π/2− x))dx

= π − 2

∫ 0

π/2

log2(sin(z))dz

= π + 2

∫ π/2

0

log2(sin(z))dz

= π + I1.

Therefore, I1 = −π.
Lemma 6: The integration

I2 ,
∫ π

0

cos(x) log2(1− cos(x))dx = −π log2 e.

Proof: Let t = sin(x), then dt = cos(x)dx, cos(x) =√
1− t2 for x ∈ (0, π/2), and cos(x) = −

√
1− t2 for x ∈
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Fig. 13: Community obfuscation on three graphs generated
from stochastic block model with 150 nodes. There are three
clusters of equal size 50.

(π/2, π). Therefore

I2 =

∫ π/2

0

cos(x) log2(1− cos(x))dx

+

∫ π

π/2

cos(x) log2(1− cos(x))dx

=

∫ 1

0

log2(1−
√

1− t2)dt+

∫ 0

1

log2(1 +
√

1− t2)dt

=

∫ 1

0

log2

(
1−
√

1− t2
1 +
√

1− t2

)
dt

=

∫ 1

0

log2

(
(1−

√
1− t2)2

t2

)
dt

= 2

∫ 1

0

log2(1−
√

1− t2)dt− 2

∫ 1

0

log2 tdt.

Define I3 ,
∫ 1

0
log2(1−

√
1− t2)dt, I4 ,

∫ 1

0
log2 tdt, and
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a new function G(t) , t ln(1−
√

1− t2)− t− sin−1(t). Then

dG(t)

dt
= ln(1−

√
1− t2) +

t2√
1− t2(1−

√
1− t2)

− 1− 1√
1− t2

= ln(1−
√

1− t2),

therefore,

I3 =
1

ln 2

∫ 1

0

ln(1−
√

1− t2)dt

= log2 e(G(1)−G(0))

= −
(

1 +
π

2

)
log2 e.

I4 =
1

ln 2

∫ 1

0

ln tdt

= log2 e

(
t ln t|10 −

∫ 1

0

td ln t

)

= − log2 e

∫ 1

0

t · 1

t
dt

= − log2 e.

Finally,
I2 = 2I3 − 2I4 = −π log2 e.

Define a new function g(x) , f(2− 2 cos(x)), then we have
the following corollary.

Corollary 5: The integration

I5 ,
∫ π

0

g(x)dx = 2π log2 e.

Proof:

I5 =

∫ π

0

(2− 2 cos(x)) log2(2− 2 cos(x))dx

= 2

∫ π

0

log2(2− 2 cos(x))dx

− 2

∫ π

0

cos(x) log2(2− 2 cos(x))dx

= 2(π + I1)− 2

(∫ π

0

cos(x)dx+ I2

)

= 2(π + I1 − I2)

= 2π log2 e.

Corollary 6:
∫ 2π

0

g(x)dx = 2

∫ π

0

g(x)dx = 2

∫ 2π

π

g(x)dx.

Proof: Let x = π − t, then dx = −dt and
∫ π

0

g(x)dx = −
∫ 0

π

g(π − t)dt =

∫ π

0

g(π − t)dt.

Let x = π + t, then dx = dt and
∫ 2π

π

g(x)dx =

∫ π

0

g(π + t)dt.

Since cos(π − t) = cos(π + t), g(π − t) = g(π + t). Thus
∫ π

0

g(π − t)dt =

∫ π

0

g(π + t)dt.

Therefore
∫ π

0

g(x)dx =

∫ 2π

π

g(x)dx =
1

2

∫ 2π

0

g(x)dx.

B. Complete Graph

The Laplacian spectrum of complete graph Kn is λ =
(n, n, . . . , n, 0) and the degree sequence of Kn is d = (n −
1, n− 1, . . . , n− 1), thus H1(Kn) = log2 n and Hvn(Kn) =
log2(n − 1) yielding ∆H(Kn) = H1(Kn) − Hvn(Kn) =
log2(1 + 1

n−1 ).

C. Complete Bipartite Graph

The Laplacian spectrum of complete bipartite graph Ka,b is

λ = (a+ b, a, . . . , a︸ ︷︷ ︸
b−1

, b, . . . , b︸ ︷︷ ︸
a−1

, 0),

and the degree sequence of Ka,b is

d = (a, . . . , a︸ ︷︷ ︸
b

, b, . . . , b︸ ︷︷ ︸
a

),

therefore

H1(Ka,b) = log2(2ab)− ba log2 a+ ab log2 b

2ab

= 1 +
1

2
log2(ab),

and

Hvn(Ka,b) = log2(2ab)− ba log2 a+ ab log2 b

2ab

− (a+ b) log2(a+ b)− a log2 a− b log2 b

2ab

= 1 +
1

2
log2(ab)− log2(1 + b

a )

2b
− log2(1 + a

b )

2a
.

The entropy gap

∆H(Ka,b) = H1(Ka,b)−Hvn(Ka,b)

=
log2(1 + b

a )

2b
+

log2(1 + a
b )

2a
.

D. Path Graph

The Laplacian spectrum of path graph Pn is

λ =

(
2− 2 cos

(
πk

n

)
, k = 0, . . . , n− 1

)
,

and the degree sequence of Pn is

d = (1, 2, . . . , 2︸ ︷︷ ︸
n−2

, 1),

therefore

H1(Pn) = log2(2n− 2)− (n− 2) · 2 log2 2

2n− 2

= log2(n− 1) +
1

n− 1
,
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and

Hvn(Pn) = log2(2n− 2)−
∑n−1
k=0 f(2− 2 cos(πkn ))

2n− 2
.

Then Hvn(Pn)− log2(2n− 2) can be expressed as

−
∑n−1
k=0 g(πkn )

2n− 2
=

[
π

n

n−1∑

k=0

g

(
πk

n

)]
· n
π
· −1

2n− 2

n→∞−−−−→ − 1

2π

∫ π

0

g(x)dx = − log2 e.

Therefore, Hvn(Pn)− log2(n− 1)
n→∞−−−−→ 1− log2 e.

E. Ring

The Laplacian spectrum of ring graph Rn is

λ =

(
2− 2 cos

(
2πk

n

)
, k = 0, . . . , n− 1

)
,

and the degree sequence of Rn is d = (2, 2, . . . , 2), therefore
H1(Rn) = log2 n and

Hvn(Rn) = log2(2n)−
∑n−1
k=0 f(2− 2 cos( 2πk

n ))

2n
.

Then Hvn(Rn)− log2(2n) can be expressed as

−
∑n−1
k=0 g( 2πk

n )

2n
=

[
2π

n

n−1∑

k=0

g

(
2πk

n

)]
· n

2π
· −1

2n

n→∞−−−−→ − 1

4π

∫ 2π

0

g(x)dx = − log2 e.

Therefore, Hvn(Rn)− log2 n
n→∞−−−−→ 1− log2 e.

APPENDIX C
PROOF OF THEOREM 5

We are going to establish a close relation between DSI and
the Jensen-Shannon divergence DJS, then the pseudometric
properties of DSI simply follow from the metric properties of√DJS.

The structural information

H1(Gj) = −
n∑

i=1

f

(
di,j

vol(Gj)

)
= H(Pj)

where Pj =
(

d1,j
vol(Gj) , . . . ,

dn,j

vol(Gj)

)
is a distribution on the set

V .
In the graph G = (V,E1 ∪E2, A), the degree di of node i

is

di =

n∑

j=1

Aij

=

n∑

j=1

Aij,1
2vol(G1)

+
Aij,2

2vol(G2)

=
di,1

2vol(G1)
+

di,2
2vol(G2)

.

Then the volume of G is vol(G) =
∑n
i=1 di = 1. Therefore

the structural information of G is

H1(G) = −
n∑

i=1

f

(
di

vol(G)

)

= −
n∑

i=1

f

(
di,1

2vol(G1)
+

di,2
2vol(G2)

)
,

which is equivalent to the entropy of the distribution (P1 +
P2)/2. As a result, DSI(G1, G2) =

√
DJS(P1, P2).

APPENDIX D
PROOF OF THEOREM 6

As shown in Theorem 5, the claim is true for DSI. It remains
to prove that DQJS(G1, G2) ≤ 1, and if min{di,1, di,2} = 0
for every node i ∈ V then DQJS(G1, G2) = 1.

We prove DQJS(G1, G2) ≤ 1 using the inequality [24], [62]
for the von Neumann entropy: if ρ =

∑
i piρi is a mixture

of density matrix ρi with pi a set of positive real numbers
such that

∑
i pi = 1, then Hvn(

∑
i piρi) ≤

∑
i piHvn(ρi) +

H({pi}). Note that the scaled Laplacian matrix Li/tr(Li) of
the graph Gi can be viewed as a density matrix. Then

DQJS(G1, G2) = Hvn(G)− (Hvn(G1) +Hvn(G2))/2

= Hvn(L̃1 + L̃2)− (Hvn(L̃1) +Hvn(L̃2))/2

≤ Hvn(L̃1 + L̃2)−Hvn((L̃1 + L̃2)/2) + 1

= 1.

We denote by Sj the set of singletons in the graph Gj
for j ∈ {1, 2}. Since min{di,1, di,2} = 0 for every node
i ∈ V , we have S1 ∪ S2 = V which implies that (V \S1) ∩
(V \S2) = ∅ by the De Morgan’s laws. Therefore, the node
set V can be partitioned into three disjoint subsets V \S1,
V \S2, and S1 ∩ S2. Notice that one singleton contributes
one eigenvalue of 0 to the Laplacian spectrum, and the
Laplacian spectrum of a graph is composed of the Lapla-
cian spectrum of its each connected components. We denote
by λj,1, . . . , λj,n−sj , 0, . . . , 0 the Laplacian spectrum of Gj ,
where sj = |Sj | for j ∈ {1, 2}. It follows that

∑n−sj
i=1 λj,i =

vol(Gj). Since A = A1/2vol(G1) + A2/2vol(G2), L =
L1/2vol(G1) + L2/2vol(G2). Then the Laplacian spectrum
of G is composed of Laplacian spectrum of Gj divided by
2vol(Gj) for j ∈ {1, 2} and zeros. As a result,

DQJS(G1, G2)

= −
2∑

j=1

n−sj∑

i=1

f

(
λj,i

2vol(Gj)

)
+

1

2

2∑

j=1

n−sj∑

i=1

f

(
λj,i

vol(Gj)

)

=

2∑

j=1

n−sj∑

i=1

λj,i
2vol(Gj)

log2 2 =

2∑

j=1

vol(Gj)

2vol(Gj)
= 1.
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APPENDIX E
PROOF OF LEMMA 3

Denote by d̃ the degree sequence of Gk+1, then

H1(Gk+1) = −
n∑

i=1

f

(
d̃i

2(m+ ∆m)

)

=
f(2(m+ ∆m))−∑n

i=1 f(d̃i)

2(m+ ∆m)

=
f(2(m+ ∆m))−∑i∈Vk

f(di + ∆di)−
∑
i∈V k

f(di)

2(m+ ∆m)

=
f(2(m+ ∆m))− a−∑n

i=1 f(di)

2(m+ ∆m)

=
f(2(m+ ∆m))− a− f(2m) + 2mH1(Gk)

2(m+ ∆m)
.

The structural information H1(Gk) is equal to

−
n∑

i=1

f

(
di
4m

+
d̃i

4(m+ ∆m)

)

= −b−
∑

i∈V k

f

(
2m+ ∆m

4m(m+ ∆m)
di

)

= −b−
∑

i∈V k

cdi(log2 c+ log2 di)

= −b− f(c)
∑

i∈V k

di − c
∑

i∈V k

f(di)

= −b− f(c)(2m− y)− c(f(2m)− 2mH1(Gk)− z)
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