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Abstract—Determination of source-destination connectivity in
networks has long been a fundamental problem, where most
existing works are based on deterministic graphs that overlook
the inherent uncertainty in network links. To overcome such
limitation, this paper models the network as an uncertain graph
where each edge e exists independently with some probability
p(e). The problem examined is that of determining whether
a given pair of nodes, a source s and a destination t, are
connected by a path or separated by a cut. Assuming that during
each determining process we are associated with an underlying
graph, the existence of each edge can be unraveled through edge
testing at a cost of c(e). Our goal is to find an optimal strategy
incurring the minimum expected testing cost with the expectation
taken over all possible underlying graphs that form a product
distribution.

Formulating it into a combinatorial optimization problem,
we first characterize the computational complexity of optimally
determining source-destination connectivity in uncertain graphs.
Specifically, through proving the NP-hardness of two closely
related problems, we show that, contrary to its counterpart in
deterministic graphs, this problem cannot be solved in polynomial
time unless P=NP. Driven by the necessity of designing an
exact algorithm, we then apply the Markov Decision Process
framework to give a dynamic programming algorithm that
derives the optimal strategies. As the exact algorithm may have
prohibitive time complexity in practical situations, we further
propose two more efficient approximation schemes compromising
the optimality. The first one is a simple greedy approach with
linear approximation ratio. Interestingly, we show that naive as
it is, it has comparable performance than some other seemingly
more sophisticated algorithms. Second, by harnessing the sub-
modularity of the problem, we further design a more elaborate al-
gorithm with better approximation ratio. The effectiveness of the
proposed algorithms are justified through extensive simulations
on three real network datasets, from which we demonstrate that
the proposed algorithms yield strategies with smaller expected
cost than conventional heuristics.

I. INTRODUCTION

Source and destination connectivity of networks has sig-
nificant applications in real life. It concerns crucial issues
such as reliability, routing, information diffusion [1], [2], etc.
Hence, in the past few decades, a lot of research has been
dedicated to this problem [3], [4], [5] and there have been
many efficient algorithms proposed under various types of
networks. A common feature shared by all those works is that
the networks investigated are modeled as deterministic graphs
[4], [5] with the source-destination connectivity problems
transformed to the corresponding graph reachability problems.

However, as indeterminacy plagues in our life, deterministic
graph often fails to serve as a suitable model for networks

nowadays. Usually, we do not have certain knowledge of
existence of network links. For instance, in social networks,
due to the variability of social ties [6], the relations between
network nodes may not be known in advance; in communi-
cation systems, established connections between nodes may
frequently fail because of the unreliability of data links [7],
[8]. It has also been pointed out that more than 90 percent of
network links are observed to be unreliable [9]. Consequently,
we may not obtain deterministic network configuration from
the predesigned topology; sometimes we even have to in-
tentionally blur the links for privacy reasons [10]. All those
factors motivate the modeling the network as an uncertain
graph [10], where, instead of appearing deterministically, each
edge is associated with some prior existence probability. The
existence probabilities not only are symbols of uncertainty, but
also bear important attributes of network links. Take social
network again for example. These probabilities may represent
the confidence of link prediction [11], or the strength of the
influence that a node has on the other [2]. In communication
networks such as data center networks, these probabilities
reflect the failure frequency of communication links [7].

When the graph is uncertain, traditional methods such as
depth-first-traversal, breadth-first-traversal and graph labeling
are no longer suitable for determining the source-destination
connectivity of networks due to the lack of deterministic
information on edges’ existence. To hedge the uncertainty, we
need to test the edges to determine whether they truly exist or
not. However, such edge testing involves far more complicated
procedures than simply identifying uncertain links and thus
may turn out to be more costly. For example, in citation
networks, we can establish probabilistic relationships between
papers just by reference information. In contrast, to unravel the
genuine relation between papers, we have to apply advanced
data mining approaches which involves considerably more
intensive computation. Consequently, it is extremely desirable
to test the most cost-effective edges, i.e., to design a testing
strategy that determines the source-destination connectivity of
uncertain networks incurring minimum cost. Furthermore, to
fully utilize the results of previous tests, the strategy should be
adaptive, which means that we may determine the next edge to
test based on the edge existence information we have already
acquired through previous tests.

In this paper, we are thus motivated to present a first
look into the problem of determining source-destination con-
nectivity in uncertain networks. Given a network modeled



as an uncertain graph with each edge associated with an
existence probability and a testing cost, together with two
network nodes s, t designated as source and destination, we
aim to derive efficient strategy specifying which edges to
test so that we can verify whether s and t are connected
by a path or separated by a cut with the minimum cost
incurred. Note that the source and destination connectivity
is also referred to as s-t connectivity. Comparing with s-t
connectivity in deterministic graphs that can be easily solved
by graph traversal methods in polynomial time, by proving the
NP-hardness of the problem, we find that the s-t connectivity
in uncertain graphs turns out to be far more complicated
and highly non-trivial. Driven by the necessity of pursuing
exact algorithms that can capture the features of the optimal
solutions, we proceed by converting our problem into an
equivalent Markov Decision Process (MDP) to give a dynamic
programming algorithm that yields optimal strategies but has
exponential running time. Considering that the prohibitive
time complexity of such exact algorithm renders it unsuitable
for practical applications, we therefore design approximation
schemes to compromise the optimality of computed strategy
for the efficiency of the algorithms. In doing so, we first put
forward a simple greedy approach that computes near optimal
solutions with linear approximation guarantee, which can be
further improved by a second algorithm we propose through
the exploration of submodularity in our problem.

Our key contributions are summarized as follows:
• Theory: We formally define the problem of determining
s-t connectivity in uncertain networks. We prove compu-
tational complexity-theoretic results of the problem show-
ing that it cannot be solved in polynomial time unless
P=NP. The results provide useful insights to the inherent
hardness and combinatoric nature of our problem.

• Algorithm: We derive an exact dynamic programming
algorithm by converting our problem into an equivalent fi-
nite horizon Markov Decision Process. To further counter
the problem, we design two approximation schemes. The
first one is a simple greedy approach and we show that
naive as it is, it can provide non-trivial performance
guarantee. More surprisingly, its performance is far better
than some other more complicated algorithms. Then, we
further improve the approximation ratio of the greedy
algorithm by utilizing the submodularity of the problem
in the second algorithm.

• Application: We demonstrate the effectiveness of our
algorithms on practical applications through extensive
simulations with real network datasets. It is shown that
our proposed algorithms are superior to the conventional
heuristics as they achieve better tradeoff between the
complexity of the algorithm and the optimality of the
solutions.

The rest of the paper is organized as follows. we review
related studies in Section II. In Section III, we formally
introduce the definitions and notations related to our problem.
In Section IV, we investigate the computational complexity
of the problem. We present our exact dynamic programming

algorithm based on Markov Decision Process framework in
Section V. In Section VI, we present the two approximation
algorithms and we evaluate our algorithms on real life data in
Section VII. We conclude the paper in Section VIII.

II. RELATED WORK
1) Uncertain Networks: Uncertain network has been under

intensive study for long. However, instead of verifying the
existence of some structures in uncertain networks, most
efforts have been devoted to calculating the existence prob-
ability of those structures. One of the fundamental problems
in this regard is the network reliability problem, which asks
the probability that uncertain networks are connected [1].
Following that, Jin et al. consider the distance-constrained
reachability, i.e., the probability that two nodes are connected
by a path shorter than a predefined threshold in an uncertain
network [12]. The issue of subgraph discovery with high
reliability measure is also investigated [13]. In recent years,
other types of study on uncertain networks (graphs) include
reliable topology design [14], extracting representative sub-
graphs for the acceleration of various querying processes [15],
and performance analysis of unreliable wireless networks [8].

2) Sequential Testing: The nature of our problem is anal-
ogous to a class of sequential testing problems which in-
volves diagnosing a system by determining the states of its
components through a series of tests. The dependency of the
whole system on its components’ states is given by explicit
function or via an oracle. Existing results include optimal
diagnosing strategies on series and parallel systems, double
regular systems, etc. See [16] for a comprehensive review. A
special class of sequential testing problems called Stochastic
Boolean Function Evaluation (SBFE) have close connection
to our problem. In SBFE, each component has two states and
thus can be considered as a Boolean variable with the system
explicitly given by a Boolean function. Some research efforts
are also directed toward proposing approximation algorithms
for evaluation of DNF, CNF and CDNF formulas [17], [18].
Deshpande et al. [19] propose a general method called the Q-
value approach to approximately solve SBFE problems based
on the adaptive submodular framework proposed in [20].

We note that, there are no previous works that study the
same problem as ours except the two from Kowshik [21]
and Fu et al. [22] [23], respectively, but in more restrictive
settings. Particularly, Kowshik derive the optimal solution for
s-t connectivity problem in parallel-series and series-parallel
uncertain graphs [21]. Fu et al. [22] [23] propose an efficient
algorithm and prove its optimality in an ER graph, i.e, a
complete graph where each edge has the same probability of
existence and the cost of testing each edge is uniform. Our
work is the first attempt to consider whether optimality exists
in the problem of determining s-t connectivity in a general
uncertain graph.

III. MODELS AND PROBLEM FORMULATION

A. Uncertain Graph Model
We denote an uncertain directed graph by G = (V,E, p, c),

where V is the set of vertices, E is the set of edges, p : E 7→
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Fig. 1. An uncertain graph with three edges and its eight possible underlying
graphs. The existence probability of each edge is labeled beside it. For
clearance, we do not show the direction of each edge.

(0, 1] is a function that assigns each edge e its corresponding
existence probability, and c : E 7→ R+ represents the testing
cost of each edge.

Following the state of art [12], we assume the existence
probability of each edge to be independent. And we interpret
G as a distribution on the set {G = (V,EG), EG ⊆ E} of 2|E|

possible underlying deterministic graphs. The probability of a
deterministic graph G(V,EG) being the underlying graph is:

Pr(G) =
∏
e∈EG

p(e)
∏

e∈E\EG

(1− p(e)).

We also use G ∈ G to represent that G is a possible underlying
graph for G. We define G to be s-t connected if there exists an
s-t path in the underlying graph of G. Figure 1 demonstrates
an example of a three-edge uncertain graph with its possible
underlying graphs.

B. Problem Formulation

Definition 1. (Temporary State) A temporary state s of an
uncertain graph G(V,E, p, c) is an |E|-dimension vector with
element “0”, “1” and “*”. And we define S = {0, 1, ∗}|E| to
be the set of temporary states associated with G.

Each temporary state s ∈ S represents a set of outcomes
during the testing process, where “0” means the corresponding
edge has been tested and found not existing, “1” means
the corresponding edge has been tested and found existing
and “*” means the corresponding edge has not been tested.
Additionally, we denote the condition of edge e in state s as
se. As our goal is to determine the s-t connectivity of the
underlying graph for G, for a temporary state s, we define it
to be a terminating state if either the edge set {e | se = 1}
forms a superset of an s-t path in G or edge set {e | se = 0}
forms a superset of an s-t cut in G. We successfully determine
the s-t connectivity by reaching a terminating state.

Definition 2. (Adaptive Testing Strategy) An adaptive testing
strategy is a mapping π : S 7→ E∪{⊥}. Initially starting from
the all-∗ state, an adaptive testing strategy specifies which
edge to test (or terminate as denoted by ⊥) based on the
previous testing outcomes.

In the present work, we restrict our consideration to reason-
able strategies where all the terminating states are mapped to⊥
and no state is mapped to any edge that has already been tested
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Fig. 2. The table in the left demonstrates an adaptive testing strategy with the
action of terminating states omitted. The right part illustrates the transition
of temporary states when the strategy is executed on the underlying graph in
the figure. For clearance, we do not show the direction of each edge.

in that state. Also note that some states may never be reached
but we still include them in the strategy for consistency.

During each determining process, we are associated with
an underlying graph. The outcome of tests are dictated by the
underlying graph and after each test the current temporary state
will evolve into a new state. Therefore, an adaptive testing
strategy may test different sets of edges before termination
when executed on different underlying graphs of G. For a
specific underlying graph G, we denote Eπ(G) as the set of
edges strategy π tests on it. Note that as G is deterministic,
Eπ(G) is also deterministic. It follows that the expected cost
of π is given by:

Cost(π) =
∑
G∈G

[Pr(G)
∑

e∈Eπ(G)

c(e)].

Figure 2 illustrates an example of adaptive testing strategy on
an uncertain graph.

Based on all the conditions above, now we give a formal
definition of our problem stated as follows.

Definition 3. (The Connectivity Determination Problem)
Given an uncertain directed graph1 G(V,E, p, c) with two
nodes s, t ∈ V designated as source and destination, respec-
tively, the goal is to find an adaptive testing strategy π that
incurs the minimum expected cost.

Remark: Apart from deriving the strategy’s action in all
temporary states at once, an algorithm for the Connectivity
Determination problem can instead compute the strategy se-
quentially, only deciding the next edge to test based on the
current state. In algorithmic point of view, we consider the
time complexity of an algorithm for Connectivity Determina-
tion problem as the maximum time it takes to compute all the
relevant actions of a determining process. Therefore, finding
the optimal strategy in a sequential fashion, on the surface,
may appear to simplify the problem compared to computing it
holistically. However, we show in next section that the problem
is NP-hard regardless of in which way we compute the optimal
strategy. Table I summarizes the notations that will be used
throughout the paper.

1Without loss of generality, we assume the graph with vertex set V and
edge set E is s-t connected, i.e., G is s-t connected if all its edges exist.



IV. COMPUTATIONAL COMPLEXITY

In this section, we investigate the computational complexity
of the Connectivity Determination problem. By demonstrating
the hardness of two closely related problems, we show both
computing the testing strategy with the minimum expected cost
holistically and sequentially are NP-hard. More specifically,
we first convert our problem into its corresponding decision
version that asks for the existence of an adaptive testing
strategy with expected cost less than some value l for a given
uncertain graph. Then, we consider the problem of deciding
which edge to test first in the optimal strategy. The inherent
tension of the Connectivity Determination problem is therefore
disclosed through demonstrating the NP-hardness of these two
problems, as stated in Theorems 1 and 2, respectively.
Theorem 1. The decision version of Connectivity Determina-
tion Problem is NP-hard.

Proof: Inspired by [24], we prove the theorem by re-
duction from the s-t reliability problem [1]: Given a directed
graph G and two nodes s and t, the s-t reliability is to
compute the probability of s being connected to t assuming
the edges in G exist independently with probability 1

2 . As s-t
reliability problem is #P-hard [1]2, its decision version that
quests whether the probability of s being connected to t is
larger than some predefined value r0 is NP-hard.

The reduction performs as follows. For a graph G(V,E),
we transform it to an uncertain graph G(V,E′, p, c) by adding
an edge M between s, t and set the rest of G is just the same
as G. Define n as the number of edges in G. We set the cost
of M as c(M) = n2n+1 and the cost of testing other edges
as 1. Then we assign the existence probability of all edges in
G as 1

2 . Finally, we designate s, t in G as the source and the
destination in the constructed instance.

Let r be the s-t reliability in G and l be the expected cost
incurred by the optimal testing strategy on G. We define a
generic G′ as a subgraph resulted from an underlying graph
of G with edge M removed. We will show that if we know l,
then we can efficiently compute r.

First, from the definitions, we have r = k
2n for some

integer k, and l must obey the following two constraints:
l ≥ (1−r)c(M) and l ≤ rn+(1−r)c(M) . The first inequality
follows from that we have to test M whenever we find out that
s and t is not connected in G′. The second inequality holds
since the expected cost of the optimal strategy is certainly
no greater than that of a simple strategy that first test all the
edges in E and test M if no s-t path is found. Combining
the two inequalities, we have 2n c(M)−l

c(M) ≤ k ≤ 2n c(M)−l
c(M)−n .

Consequently, k = b2n c(M)−l
c(M)−nc. Therefore, if we have a

polynomial time algorithm that solves the decision version of
Connectivity Determination problem, then we can efficiently
solve the decision version of s-t reliability problem. Since the
latter is NP-hard, we conclude that the decision version of
Connectivity Determination problem is also NP-hard.

2#P is a complexity class for counting problems. #P-hard is at least as hard
as NP-hard [1].

TABLE I
NOTIONS AND DEFINITIONS

Notation Definition
G uncertain directed graph
V vertex set of the uncertain graph
E edge set of the uncertain graph
p probability function indicating the existence probability

of edges in the uncertain graph
c cost function indicating the testing cost of edges in

the uncertain graph
G underlying deterministic graph
s, t source and destination
S set of temporary states
s, s′,a,b temporary states
se the element corresponding to edge e in state s
π adaptive testing strategy
Eπ(G) set of edges π tests before termination

when the underlying graph is G
Cost(π) the expected cost of strategy π
u utility function in the Markov Decision Process
g utility function in the Q-value approach
P the collection of s-t paths in G
C the collection of s-t cuts in G
Pe the subfamily of s-t paths in G that edge e lies on
Ce the subfamily of s-t cuts in G that edge e lies on
Q the goal value in the Q-value approach
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Fig. 3. The uncertain graph constructed for the set cover instance.

Theorem 2. Deciding the optimal first edge to test (the edge
tested by the optimal strategy in the intial state) is NP-hard.

Proof: Due to the space limitations, we only present a
proof sketch here. The proof is done by reduction from set
cover problem. Given a universe of elements, a family of
subsets of the universe and a predefined integer k, a cover
is a subfamily of sets whose union equals to the universe.
The set cover problem asks whether there exists a cover of
cardinality less than k. For a set cover instance, we construct
a corresponding uncertain graph as follows. We first create
a set vertex for each subset in the family and an element
vertex for each element in the universe. Next, we add three
special vertices: source s, destination t and a special set vertex
sM . Then, we add edges from s to each set vertex, from
each element vertex to t and from each set vertex to the
element vertices it contains in the original instance. Specially,
we add edges from sM to all the element vertices. By carefully
assigning the cost and probability of each edge, we prove that
the optimal first edge to test is the edge M from s to sM if and
only if there does not exist a cover of size smaller than k in
the original set cover instance. Figure 3 presents the uncertain
graph constructed for a set cover instance.

Remark: The two theorems characterize the complexity
of the Connectivity Determination problem from two aspects.
Theorem 1 establishes the NP-hardness of the decision version
of our problem, which implies the NP-hardness of computing



the optimal strategy in a holistic fashion. Theorem 2 shows
that even computing the optimal testing strategy sequentially
cannot be completed in polynomial time unless P=NP.

V. MDP-BASED EXACT ALGORITHM

The NP-hardness analysis in the previous section implies
that solving the problem exactly may lead to a prohibitively
large cost. However, it is still essential to design an exact
algorithm to capture the features of the optimal solutions
and gain insights of our Connectivity Determination problem.
The main idea of seeking for an exact algorithm is through
converting our problem into an equivalent Markov Decision
Process (MDP). Adopting the notations in [25], in the sequel,
we will first show how the elements in our problem can be
naturally mapped to the components in a finite horizon MDP.

A. Mapping the Problem into MDP
As a mathematical framework for navigating uncertain

systems, MDP models the way of a decision maker’s choosing
actions so that the system can perform optimally with regard
to some predefined criterion. The key components of an MDP
include decision epochs, state space, action sets, transition
probabilities, rewards, decision policy and optimality criterion.
Regarding this, now we show the mapping between these
components and the elements in our problem one by one.
• Decision Epochs: In an MDP, decisions are made at

points of time called decision epochs. In our problem the
decision epochs are the times we need to decide which
edge to test next or terminate. Since we at most need
to test |E| edges where |E| is the number of possible
edges in the uncertain graph, our corresponding MDP is
of finite horizon.

• State Space: The state space of an MDP represents
the possible states that a system can be in. It naturally
corresponds to the set of temporary states S in our
problem. We may also partition the state space S into
|E| disjoint subsets based on the number of edges having
been tested in the states as S = S0 ∪ S1 ∪ . . . ∪ S|E|. In
decision epoch i, the system can only be in a state in Si.

• Action Sets: For each state s ∈ S, there is a set of actions
that can be performed under it. We define the associated
action set As of state s as the set of edges that have
not been tested in s. Additionally, for terminating states,
their action set also contains the terminating action ⊥. As
a result, the whole action set A =

⋃
s∈S As = E ∪ {⊥}.

• Transition Probabilities and Rewards: The transition
probability function and reward function characterize the
result of choosing some action at some state. Generally
speaking, at each state, choosing an action will gain
some reward and the system will evolve into other states
probabilistically at the next decision epoch. Projecting
into our problem, the transition probability of action e
(testing edge e) is given by the existence probability
of edge e. Denote by s · e the temporary state evolved
from s by setting se as 1 and by s\e the temporary state
evolved from s by setting se as 0. Formally, the transition
probability function is given by:

P (s′|s, e) =


p(e) if s′ = s · e,
1− p(e) if s′ = s\e,
0 otherwise,

and

P (s′|s,⊥) =

{
1 if s′ = s,

0 otherwise.
Then it follows that the reward function is r(s, e) =
−c(e) and r(s,⊥) = 0. Note that the reward function is
negative, corresponds to the cost and the transition prob-
ability and reward function are independent with regard
to decision epochs or previous state, which demonstrates
the Markov property of our problem.

• Decision Policy: A decision policy is a mapping from
state space to action set. Therefore, in our problem, it is
equivalent to an adaptive testing strategy.

• Optimality Criterion: Obviously, in our case, the op-
timality criterion is the expected total reward criterion,
i.e., the decision policy with the maximum expected
total reward of the constructed MDP corresponds to the
optimal adaptive testing strategy.

Algorithm 1 The MDP-based Exact Algorithm
Input: Uncertain graph G(V,E, p, c), source s, destination t
Output: The optimal testing strategy π

1: Initialize: uπ(s) = 0, for all s ∈ S|E|
2: for i = |E| to 0 do
3: for All s in Si do
4: if s is a terminating state then
5: uπ(s) := 0, π(s) := ⊥.
6: else
7: e∗ := arg maxe∈As{−c(e) + p(e)uπ(s · e)

+(1− p(e))uπ(s\e)},
8: uπ(s) := −c(e∗) + p(e∗)uπ(s · e∗)

+(1− p(e∗))uπ(s\e∗),
9: π(s) := e∗.

10: return π

B. Exact Dynamic Programming Algorithm
From the equivalence between our problem and an MDP,

it follows that our problem also satisfies the “Principle of
Optimality” in MDP [25], i.e., starting at any states, the
optimal adaptive testing strategy incurs the minimum expected
cost among all strategies. This enables us to define the optimal
utility function u of states assigning each temporary state
the expected reward (negative cost) of the optimal strategy
starting at that state. Similarly, we define a utility function uπ
associated with strategy π as the reward gained by π starting
from each state. By the Bellman equation [25], we have the
following lemma.
Lemma 1. For any state s ∈ S, the optimal utility function
satisfies u(s) = maxa∈As{r(s, a) +

∑
s′∈S P (s′ | s, e)u(s′)}.

Particularly, if s is a non-terminating state, then u(s) =
maxe∈As{−c(e) + p(e)u(s · e) + (1 − p(e))u(s\e)} and for
any terminating state, its utility is 0.

Based on Lemma 1, we design an algorithm that computes
the optimal testing strategy π following the standard dynamic
programming paradigm, as shown in Algorithm 1.



We prove the correctness of the dynamic programming
algorithm in the following theorem.
Theorem 3. For an uncertain graph G, Algorithm 1 yields
an optimal adaptive testing strategy and has a complexity of
O((|V | + |E|)3|E|), where |V | denotes the number of nodes
and |E| denotes the number of edges in G.

Proof: Denote an optimal testing strategy as π∗, the
strategy given by Algorithm 1 as π. By backward induction,
we prove that the utility function uπ of π is no less than the
optimal utility function uπ∗ = u on every state, which implies
that π is an optimal strategy.

First, for all s ∈ S|E|, obviously uπ(s) = uπ∗(s) = 0.
Suppose for all states s ∈ Si, i ≥ k, uπ(s) ≥ uπ∗(s), then we
prove that for all states s ∈ Sk−1, uπ(s) ≥ uπ∗(s). Indeed, by
the selection criterion of the algorithm, for a state s ∈ Sk−1
that is non-terminating, we have
uπ(s) = max

e∈As

{−c(e) + p(e)uπ(s · e) + (1− p(e))uπ(s\e)}

≥ − c(π∗(s)) + p(π∗(s))uπ(s · π∗(s))
+ (1− p(π∗(s)))uπ(s\π∗(s))
≥− c(π∗(s)) + p(π∗(s))uπ∗(s · π∗(s))

+ (1− p(π∗(s)))uπ∗(s\π∗(s)) (1)
=uπ∗(s),

where Inequality (1) follows from the induction hypothesis.
And if s is a terminating state, then also uπ(s) = uπ∗(s) = 0.
Hence, we prove that under every state s, following π is
optimal, and particularly from the initial all-∗ state, π returns
the maximum expected reward, or equivalently, incurs the
minimum expected cost.

The time complexity of the algorithm can be justified as
follows. There are in total 3|E| temporary states associated
with the uncertain graph. Qualifying whether a state s is a ter-
minating state can be realized by querying the s-t connectivity
on two deterministic graphs G1

s(V,E1) and G2
s(V,E2), where

E1 = {e | se = 1} and E2 = {e | se = 1 or se = ∗}. This is
implementable in O(|V | + |E|) time by depth-first traversal,
and selecting the optimal action for each state requires O(|E|)
time. Hence, the algorithm terminates and finds the optimal
solution in O((|V |+ |E|)3|E|) time.

VI. APPROXIMATION ALGORITHMS
As stated previously, it is unrealistic to pursue efficient exact

algorithm on general uncertain graphs due to the inherent
tension of our problem. Therefore, in this section, we pro-
pose approximation schemes that have both polynomial time
complexity and good approximation guarantee.

A. A Simple Greedy Approach
An intuitive greedy algorithm is to test the edge with

the minimum cost (breaking ties arbitrarily). Surprisingly, we
show that this greedy algorithm has a non-trivial approxima-
tion ratio of O(|E|).
Theorem 4. Given an instance of our problem with uncer-
tain graph G(V,E, p, c) and two nodes s, t as source and
destination, let π be a strategy that tests the edges in G

according to their costs sorted in an increasing order. Then,
Cost(π) ≤ |E| · Cost(π∗), where π∗ is the optimal strategy.

Proof: Suppose that we know the underlying graph G
of G in advance. Denote Cert(G) as the certifier of G’s s-t
connectivity with the minimum cost. If s and t are connected
in G, then a certifier consists of an s-t path in G whose edges
exist in G. If s and t are disconnected in G, then a certifier
consists of an s-t cut in G whose edges do not exist in G.
Since π tests the edges from cheap to expensive, we must have∑
e∈Eπ(G) c(e) ≥ |E| · Cert(G) for any G. And due to the

fact that even the optimal strategy has no prior knowledge of
the underlying graph G, clearly

∑
e∈Eπ∗ (G) c(e) ≥ Cert(G).

Therefore, Cost(π) =
∑
G∈G [Pr(G)

∑
e∈Eπ(G) c(e)] ≤ |E| ·∑

G∈G [Pr(G)Cert(G)] ≤ |E| · Cost(π∗).
A further note regarding the greedy algorithm is that

although it only considers the testing costs of edges, as
demonstrated in the simulations, its performance is comparable
with some other more complicated algorithms that take into
account the existence probabilities of edges.
B. Adaptive Submodular Algorithm

To further improve the approximation ratio, we adopt the
Q-value approach in Stochastic Boolean Function Evalua-
tion problem (SBFE) proposed by [19]. Based on that, we
utilize the adaptive submodularity [20] in our Connectivity
Determination problem and propose the Adaptive Submodular
algorithm, of which the approximation ratio is logarithmic to
the number of edges for most uncertain graphs.

1) Preliminaries: First, we introduce some useful defini-
tions for the Q-value approach adapted in our problem. For
two temporary states a,b ∈ S, a is an extension of b, written
as a ∼ b, if ai = bi for all bi 6= ∗. A function g : S 7→ N is
said to be monotone if for s ∈ S and all s′ ∼ s, g(s′)−g(s) ≥
0. g is submodular if g(s · e) − g(s) ≥ g(s′ · e) − g(s′)
and g(s\e) − g(s) ≥ g(s′\e) − g(s′) whenever s′ ∼ s and
se = s′e = ∗. For a state s ∈ S and edge e with se = ∗, the
expected marginal gain of the edge to the current state with
respect to g is given by p(e)g(s ·e)+(1−p(e))g(s\e)−g(s).

The Q-value approach: The Q-value approach [19] states
that if we have a utility function g : S 7→ N that satisfies: (1)
g is monotone and submodular, (2) g(∗, ∗, . . . , ∗) = 0, and (3)
for any temporary state s ∈ S, g(s) = Q iff s is a terminating
state, then g is assignment feasible with goal value Q for our
problem. By using the adaptive submodular framework [20]
that suggests testing the edge with the maximum ratio between
its expected marginal gain and cost each time, we yield a
solution that is within a factor of (lnQ+ 1) of the optimum.

2) Applying the Q-value Approach: To harness the Q-value
approach, we need to choose appropriate utility function g.
And we present in the following the utility function that we
design for our algorithm.

Given an uncertain graph G(V,E, p, c), we denote by P
the collection of s-t paths in G, and by C the collection of
s-t cuts in G. For an edge e, we define Pe as the set of s-t
paths it lies on in G and Ce as the set of minimal s-t cuts3 it

3An s-t cut is minimal if and only if no proper subset of it is an s-t cut.



lies on in G. Note that the above definitions interpret G as a
deterministic graph with vertex set V and edge set E. Then,
for each temporary state s, we define two auxiliary functions
gp and gc as:

gp(s) = |
⋃

e:se=0

Pe|, gc(s) = |
⋃

e:se=1

Ce|,

where | · | denotes the cardinality of a set. Our utility function
g : S 7→ N is given by:

g(s) = |P||C| − (|P| − gp(s))(|C| − gc(s)).
The intuitive explanation for the functions gp, gc and g is that
if we view the determining process as a covering process, then
the non-existence of an edge can be regarded as covering the
paths it lies on and the existence of an edge is equivalent
to covering the cuts it lies on. If all the paths in G have
been covered in some state s, then we have gp(s) = |P| and
conclude that s and t in the underlying graph of G must be
disconnected and the converse is also true. The dual case holds
similarly. Therefore, when s is a terminating state, we must
have g(s) = Q. Theorem 5 demonstrates the validity of the
utility function that we construct.

Theorem 5. The utility function g is assignment feasible.

Proof: We prove the theorem by showing that g satisfies
the three conditions mentioned above. First, obviously both gp
and gc are monotone, it follows that g is also monotone. And
since gp and gc are easily verified to be submodular, we have

gp(s · e)− gp(s) ≥ gp(s′ · e)− gp(s′),
gp(s\e)− gp(s) ≥ gp(s′\e)− gp(s′),
gc(s · e)− gc(s) ≥ gc(s′ · e)− gc(s′),
gc(s\e)− gc(s) ≥ gc(s′\e)− gc(s′),

whenever s′ ∼ s and s′e = se = ∗. Note that actually,
gp(s · e) − gp(s) = gc(s\e) − gc(s) = 0 for all s and e such
that se = ∗. Then, combining the fact that g(s · e) − g(s) =
(|P|− gp(s · e))(gc(s · e)− gc(s)) and g(s\e)− g(s) = (|C| −
gc(s\e))(gp(s\e)− gp(s)), we have g is submodular. Second,
since gp(∗, ∗, . . . , ∗) = gc(∗, ∗, . . . , ∗) = 0, g(∗, ∗, . . . , ∗) is
also zero. The third condition is explained above. Hence, g is
an assignment feasible utility function.

3) The Adaptive Submodular Algorithm: By applying the
Q-value approach [19] with our utility function, we have our
Adaptive Submodular algorithm shown in Algorithm 2. Note
that the algorithm computes the testing strategy sequentially,
i.e., in one iteration, it only determines the next edge to test
based on the current temporary state.

4) Performance Guarantee: By results in [20], the Adaptive
Submodular algorithm yields an approximation of O(lnQ) =
O(ln(|P||C|)). Since for most graphs, the number of paths
and the number of cuts are polynomial to the number of
edges, Algorithm 2 has logarithmic approximation ratio in
most cases. However, in some extreme cases, the number
of paths or cuts can be exponentially large, making the
worst case approximation ratio still turn out to be O(|E|).
Also note that in the algorithm we do not specify how to
implement the selection rule in line 3 of Algorithm 2, hence

the algorithm can be viewed as a framework that can embody
any valid selection algorithm. Standard implementation of the
selection rule involves counting the number of paths and cuts
in graph G, which is #P-hard [1] in general. So, we may
use polynomial time approximate counting schemes [26], [27]
that can preserve an approximation ratio of O(ln(α|P||C|)),
if the scheme can guarantee that the expected marginal gain
of the selected edge is within a factor α of the optimal gain.
Furthermore, when the number of paths and the number of
cuts are polynomial to the number of edges, we can also use
efficient enumerating schemes [28] to select the next edge to
test following the criterion of Algorithm 2.

Algorithm 2 The Adaptive Submodular Algorithm
Input: Uncertain graph G(V,E, p, c), source and destination

nodes s, t.
Output: An approximate adaptive testing strategy

1: Initialize: Current state s := (∗, ∗, . . . , ∗), The set of
tested edges Eπ as an empty set.

2: Repeat until s becomes a terminating state.
3: e∗ := arg maxe∈E\Eπ{

p(e)g(s·e)+(1−p(e))g(s\e)−g(s)
c(e) }.

4: Eπ := Eπ ∪ {e∗}, test e∗ and observe the outcome.
5: if edge e∗ exists then
6: se∗ := 1
7: else
8: se∗ := 0

VII. SIMULATIONS

In this section, we present our simulations on the perfor-
mance of the proposed algorithms on various datasets. We
first introduce our simulation environment in the following
and show the detailed results in subsequent sections.

A. Simulation Settings
1) Simulation Datasets: We adopt three real life datasets in

our simulations. The basic descriptions and statistics are listed
as follows:
• Citation Networks (from Microsoft Academic Graph

[31]): We extract six citation networks of different sub-
fields in Microsoft Academic Graph ranging from 749
nodes (1429 edges) to 273751 nodes (993025 edges) to
generate six uncertain graphs.

• Internet Peer to Peer Networks [29]: This dataset con-
tains a snapshot of the Gnutella peer-to-peer file sharing
network in August 2002. We extract nine subnetworks
ranging from 1000 nodes (1700 edges) to 5000 nodes
(16469 edges) to form nine uncertain graphs.

• Twitter Ego Networks [30]: This dataset consists of ego
networks in Twitter. We select 10 ego networks ranging
from 95 nodes (1376 edges) to 213 nodes (17930 edges)
to create 10 uncertain graphs. Note that the ego networks
we use have high density.

For each uncertain graph generated above, we use Jaccard’s
coefficient [11], which is an established metric for link pre-
diction in social networks, to assign the existence probabil-
ities of the edges. Specifically, for an edge e = (x, y) in
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Fig. 4. The expected cost of the adaptive testing strategies yielded by different algorithms. The x-coordinates of the figure follow the increasing order of the
size of the uncertain graphs.

uncertain graph G, the existence probability of e is given as
p(e) = |Γ(x) ∩ Γ(y)|/|Γ(x) ∪ Γ(y)|, where Γ(·) denotes the
set of neighbors of a node in the graph. We construct the cost
function of the uncertain graphs by assigning the cost of each
edge from a Gaussian distribution with mean 50 and standard
deviation 10. The negative part of the distribution is truncated.

2) Calculation of the Performance Metric: The perfor-
mance metric in the simulations is the expected cost of the
strategies derived by the algorithms. However, to calculate
the exact expected cost of a strategy requires testing it on
all the possible underlying graphs of an uncertain graph, of
which the number is extremely large. Therefore, instead, we
first generate 1000 underlying graphs by sampling from the
distribution given by the uncertain graph and then use the
average cost of a strategy incurs on the 1000 underlying graphs
to approximate the expected cost of the strategy. To further
eliminate the random noise in data, we designate 10 pairs of
source and destination in each uncertain graph, and the final
results shown in the figures are the average costs incurred by
strategies among all pairs of source and destination.

3) Algorithms Involved in Performance Comparisons: To
evaluate the performance of our proposed algorithms, we
include three additional heuristics adapted from [16]. We
briefly introduce the algorithms as follows:
• Greedy Algorithm (Greedy): The greedy algorithm that

tests the edges from low cost to high cost proposed in
Section VI.

• Adaptive Submodular Algorithm (AdaSub): The
Adaptive Submodular algorithm based on the Q-value
approach proposed in Section VI.

• MDP-based Algorithm (MDP): The exact dynamic
programming algorithm applying the Markov Decision
Process framework proposed in Section 1.

• Optimistic Sort Algorithm [16] (OpSort): The algo-
rithm yields a strategy that tests the edges following
the increasing order of c/p. OpSort is optimal when the
uncertain graph is a parallel graph [16].

• Pessimistic Sort Algorithm [16] (PeSort): The algo-
rithm yields a strategy that tests the edges following the
increasing order of c/(1−p). PeSort is optimal when the
uncertain graph is a serial graph [16].

• Intersection Sort Algorithm [16] (IntSort): The algo-
rithm that tests the edge with the minimum cost that lies

on the intersection of a shortest s-t path and a minimum
s-t cut in the uncertain graph under the current state.

Due to the prohibitive time complexity of the MDP-based
algorithm, we only apply it on a sequence of subnetworks
with 20 edges that are extracted from the citation networks.
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Fig. 5. Comparisons with the exact MDP-based algorithm on six small
subgraphs of the citation networks.

B. Evaluation of Proposed Algorithms
We plot the expected costs of the strategies derived by

different algorithms on various uncertain graphs in Figures
4 and 5.

From Figure 5, we can see that the Adaptive Submodular al-
gorithm indeed yields near optimal testing strategies, of which
the expected cost is at most 8% higher than the minimum
expected cost achieved by the MDP-based algorithm. On the
other hand, although the Greedy algorithm is relatively simple,
the expected costs of the transmission schemes it derives are
within a factor of 2.7 times the optimal ones.

As demonstrated in Figure 4, the Adaptive Submodular
algorithm derives the strategies with the minimum expected
cost among the five compared algorithms in all three data
sets. However, the gap between it and the Intersection Sort
is small. This can be attributed to the fact that in many cases,
the intersection of a shortest s-t path and a minimum s-t cut
is identical to the edge selected by the rule in the Adaptive
Submodular algorithm. However, the Intersection Sort does not
possess such theoretical guarantee as the Adaptive Submodular
algorithm.

For the other three compared algorithms, although it seems
that the Optimistic Sort and Pessimistic Sort utilize more
information than the Greedy algorithm, as they take into
account the existence probabilities of edges. There exists



no significant gap between the Greedy algorithm and the
other two. An explanation is that the real life networks are
mixed with parallel and serial structures. Hence, the sole
selection criterion in OpSort or PeSort does not often match
the optimum, while the Greedy algorithm achieves a desirable
compromise between OpSort and PeSort.

Finally, an important observation from our simulation re-
sults is that: larger size is not equivalent to higher cost.
Despite that the largest uncertain graph generated by the
citation networks has about one million edges, the cost of
determining s-t connectivity in it is still considerably lower
than in Twitter networks. This phenomenon results from the
fact that the Twitter networks are far denser than the other
two datasets, which means that there are significantly larger
number of edges that lie on the paths from source and
destination, influencing the s-t connectivity. Therefore, instead
of the total number of edges, it is the number of relevant edges
that determines the scale of the expected testing cost.

VIII. CONCLUSION

In this paper, we modeled the network as an uncertain
graph where each edge e exists independently with some
probability p(e) and examined the problem of determining
whether a given pair of source node and destination node are
connected by a path or separated by a cut. Assuming that
during each determining process we are associated with an
underlying graph, the existence of each edge can be unraveled
through edge testing at a cost of c(e). We aimed to find an
optimal strategy incurring the minimum expected cost with
the expectation taken over all possible underlying graphs. We
have formulated it into a combinatorial optimization problem
and first investigated its computational complexity. Specifi-
cally, through proving the NP-hardness of two closely related
problems, we have shown that this problem cannot be solved
in polynomial time unless P=NP. Then, we have applied the
Markov Decision Process framework to give an exact dynamic
programming algorithm. Moreover, we have proposed two ef-
ficient approximation schemes: a simple greedy approach with
linear approximation ratio and a second Adaptive Submodular
algorithm with better performance guarantee. Finally, we have
justified the effectiveness and superiority of our algorithms.
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