
On the Topology of Wireless Sensor Networks
Sen Yang, Xinbing Wang, Luoyi Fu

Dept. of Electronic Engineering
Shanghai Jiao Tong University, China

Email: {twood,xwang8,fly}@sjtu.edu.cn

Abstract—In this paper, we explore methods to generate
optimal network topologies for wireless sensor networks (WSNs)
with and without obstacles. Specifically, we investigate a dense
network with n sensor nodes and m = nb (0 < b < 1) helping
nodes, and evaluate the impact of topology on its throughput
capacity. For networks without obstacles, we find that uniformly
distributed sensor nodes and regularly distributed helping nodes
have some advantages in improving the throughput capacity. We
also explore properties of networks composed of some isomorphic
sub-networks. For networks with obstacles, we assume there are
M = Θ(nv) (0 < v ≤ 1) arbitrarily or randomly distributed
obstacles, which block cells they are located in, i.e., sensor nodes
cannot be placed in these cells and nodes’ communication cannot
cross them directly. We find that the overall throughput capacity
is bounded by the transmission burden in areas around these
blocked cells and introduce a novel algorithm of complexity
O(M) to generate optimal sensor nodes’ topologies for any given
obstacles’ distributions.

I. INTRODUCTION

Capacity is a fundamental issue in wireless sensor networks
(WSNs). A typical WSN involves little or no infrastructure and
sensor nodes may communicate in an ad hoc manner. In Gupta
and Kumar’s seminal work, they adopt Protocol and Physical
Model to describe a successful transmission and show that
the per-node throughput capacity scales as Θ(1/

√
n log n) in

random networks, and the per-node transport capacity scales as
Θ(1/

√
n) in arbitrary networks, respectively [1]. These results

provide us not only a theoretical bound but also a foundation
in the network optimization and protocol design. Following
their work, extensive research are conduced to understand the
scaling laws in wireless sensor networks better. On the other
hand, in some applications, helping nodes are introduced to
improve the performance, which results in a heterogeneous
network. In heterogeneous networks, access control is studied
in [4], routing protocol is studied in [3], N. Li et al. studied
topology control in [5], P. Li et al. studied the throughput
capacity of networks with rectangular areas in [6]. Many other
schemes such as mobility [7], motioncast [8], multi-channel
multi-radio (MRMC) [9], network coding [10] and adding
infrastructure [11] are also explored in literatures to improve
the network capacity.

However, most of works above are for networks with
regularly or uniformly distributed sensor nodes. While in
practice, sensor nodes may not be placed uniformly, which
could have a huge impact on network properties, including the
capacity. For example, if lots of nodes are confined in a small
region, it would lead to great interference and deteriorates
the capacity. Also, if nodes are too sparse in a particular

area, communication might get difficult, which also harms
networks’ performance. To the best of our knowledge, only
a few works have dealt with the capacity of networks with
inhomogeneous node density. In [12], [13], [14], [15], [16],
capacity of inhomogeneous clustered networks are analyzed.
Corresponding scheduling and routing schemes to approach
the upper bounds are discussed in [17].

On the other hand, almost all the previous works on capacity
dealt with flat network region. While in practice, sensor
networks are often deployed in complex environments, such as
battle fields or mountainous areas, and there are often many
obstacles distributed in these regions. These obstacles may
constrain the distribution of sensor nodes and the transmission
of packets. For example, in a building monitoring WSN,
electromagnetic wave signal can be attenuated significantly
when passing through furniture, walls or floors, which could
have a great impact on network performance. Another example
is WSNs deployed in a mountainous area, in which both
routing strategy design and deployment of sensor nodes should
consider the constraint of the complex landform. Routing
strategy for network with obstacles (holes) is discussed in [18],
[19], [20]. However, the capacity problem has not been well
studied before. Generally, obstacles have a negative impact on
the network capacity. But if we design the network topology
appropriately, it could lead to a noneligible improvement.
For example, in building monitoring WSNs, capacity can
be improved if we place less nodes in areas shadowed by
obstacles. Also, in a mountainous region, if we deploy more
nodes in open areas, network capacity can be much larger than
that we put most of them in valleys or laps.

These motivate us to explore better network topologies for
given network regions, especially for networks with obstacles.
In this paper, we investigate how node distributions influence
the throughput capacity and explore the optimal nodes distri-
bution on given conditions. We obtain some useful conclusions
on generating the optimal topology for flat network areas.
For networks with obstacles, it’s difficult to derive a general
solution for various obstacle distributions. However, a feasible
algorithm with linear complexity can be proposed by dividing
the whole network region into some small pieces and dealing
with them respectively.

Our main contributions are as follows:
• For networks which consist of many isomorphic sub-

networks, compared with the topology of sub-networks,
the overall network’s topology results in a larger through-
put capacity.



• For networks without helping nodes, uniform sensor
nodes’ distribution is order optimal on maximizing
throughput capacity.

• For networks with uniformly distributed sensor nodes, we
find that regularly distributed helping nodes are optimal
to maximize the network throughput capacity.

• For networks with non-uniformly distributed sensor
nodes, though regularly distributed helping nodes are no
longer optimal, any improvement on the distribution of
helping nodes cannot make a significant change on the
throughput capacity in the sense of scaling law.

• For networks with obstacles, we introduce a novel algo-
rithm of complexity O(M) to generate the optimal sensor
nodes’ topology for any given obstacle distributions.

The rest of the paper is organized as follows. Section II gives
the network model. In Section III, we derive the throughput
capacity of networks with different topologies. In Section
IV and V, we explore some general properties of network
topologies. In Section VI, we study the throughput capacity of
networks with obstacles and introduce an algorithm to generate
the optimal sensor nodes’ topology for any given obstacle
distributions. We finally conclude this paper in section VII.

II. NETWORK MODEL

In this section, we introduce the heterogeneous wireless
sensor network model, definition of obstacles and routing
strategies.

A. Network Components

We consider dense networks with n sensor nodes and
m = nb (0 < b < 1) helping nodes. We assume that the
network has asymmetric traffic, i.e., all the n sensor nodes are
sources while only nd (0 < d < 1) sensor nodes are randomly
chosen as destinations. Also, sensor nodes can serve as relays
if needed. Differently, helping nodes do not have information
to transmit or receive. They only help relay packets. Similar
to [6], according to whether packets are forwarded by helping
nodes, we divide network traffic into two modes, namely,
normal mode and helping mode. In normal mode, packets
are forwarded by only sensor nodes. While in helping mode,
packets are firstly sent to the nearest helping node, and then
forwarded to their destinations by helping network. We split
the total bandwidth of sensor nodes into three parts: bandwidth
for ad hoc transmissions in normal mode, uplink bandwidth
in helping mode, and downlink bandwidth in helping mode,
denoted by W1, W2 and W3, respectively. We also assume
that helping nodes have an additional bandwidth, denoted by
W4, to forward packets among themselves.

B. Definition of Obstacles

To describe networks with obstacles, we assume the network
area is partitioned into K = Θ(nw) (0 < w ≤ 1) cells. When
there is no sensor node distributed in a cell, we assume that at
the cell’s center there is a relay working in the same bandwidth
as sensor nodes, which keeps the network’s connectivity. We
assume there are M = Θ(nv) (0 < v ≤ w) number of

obstacle nodes in the network area, which can be arbitrarily
or randomly distributed. Cells are blocked when there are
obstacle nodes in them. Here, “blocked” has two implications:
no sensor node can be distributed in these cells and nodes’
communication cannot cross them directly. If several blocked
cells are adjacent with each other, they form a polygon,
which can be either convex or concave, we call it “obstacle
polygons”.

C. Interference Model

Assume that the network is an unit square and we divide
it into non-overlapping cells with equal size. Nodes can
communicate with each other only when they are in the neigh-
boring cells. To bound the interference among simultaneous
transmissions, we apply a TDMA rotating scheduling scheme
as that described in [6]. According to the power propagation
model introduced in [21], the reception power at node Xj of
the signal from node Xi is

Pij = C
Pi

dγij

where dij is the distance between Xi and Xj , and Pi is the
power emitted by node Xi. Following Shannon’s Theorem,
the achievable rate Rij of transmission from node Xi to node
Xj is:

Rij = W log(1 + SINRij)

where W is the channel bandwidth, and SINRij =
C

Pi
d
γ
ij

N+
∑

k ̸=i C
Pk
d
γ
kj

is the Signal-to-Interference and Noise Ratio

at node Xj . In this paper we assume that sensor nodes use
the same transmission power Ps and helping nodes use the
same transmission power Ph, respectively. As derived in [6],
we have the following lemma.

Lemma 1. [6] Each cell in the network can work at a
transmission rate c1W , where c1 is a deterministic positive
constant relevant to the cells’ scale and W is the channel
bandwidth.

D. Routing Strategy

As sensor nodes can only communicate with nodes in
neighboring cells, packets need to be forwarded through multi-
hop transmissions to reach destination nodes. Thus, for net-
works with and without obstacles, we adopt following routing
strategies, respectively.

Routing Strategy I - for networks without obstacles:
Suppose a source node is located in cell Si and its destina-

tion is located in cell Sj . Packet sent from the source node is
forwarded along cells in the same vertical line of cell Si until
it gets the cell in the same horizontal line of cell Sj , then the
packet is forwarded along the cells in the same horizontal line
of cell Sj until it reaches the destination node.

Routing Strategy II - for networks with obstacles:
1) If packet sent from the source node can be relayed to its

destination by Routing Strategy I, do it.



Fig. 1. Centralized networks

2) Otherwise, if there are only convex obstacle polygons,
firstly forward the packet along the routing path gener-
ated by Routing Strategy I. When it can no longer be
forwarded in current direction (vertical or horizontal),
change the forwarding direction to another one (hori-
zontal or vertical). Repeat this until it arrives at the
destination node.

3) If there exist concave polygons obstacles and neither of
the source node and the destination node are in the groove
of a concave obstacles polygon, replace the concave
obstacle polygons by their convex hulls, respectively, and
then following Step 1) and 2) to forward the packet.

4) If source and destination nodes (or either of them) are in
the grooves of concave obstacle polygons, we can find
cells outside the corresponding convex hulls and nearest
to source and destination nodes, respectively. Denote
them by SA and SB , respectively. First we transmit the
packet from the source node to cell SA, then following
Step 1), 2) and 3) to forward this packet from cell SA to
cell SB , and finally we forward the packet from cell SB

to the destination node.

E. Network Topology

In this paper, we investigate throughput capacity of networks
with the following topologies and then generalize the results
to get some useful conclusions.

1) Uniform Distribution: For networks with uniformly dis-
tributed nodes, the probability density function (PDF) of the
distribution is {

f(x) = 1 (−1
2 < x < 1

2 )

f(y) = 1 (−1
2 < y < 1

2 )
(1)

2) Centralized Distribution: We consider a simple case of
the non-uniform distribution first. As shown in Figure 1, nodes
density is large at the center of the network and small at the
edge. We call it “centralized distribution”. One of its possible
PDFs can be described as follows:{

f(x) = (4a− 4)x+ 2− a (−1
2 < x < 1

2 )

f(y) = (4a− 4)y + 2− a (−1
2 < y < 1

2 )
(2)

where a (0 ≤ a ≤ 1) is the centralization coefficient, which
determines the extension that nodes aggregate to the center.

Fig. 2. Multi-centralized networks

The larger a is, the more uniform the nodes are, or vice versa.
Particularly, when a = 1 nodes are distributed uniformly;
when a = 0 probability that nodes distributed at the edge
of the network is 0.

3) Multi-centralized Distribution: In practice, network
nodes often clustered in several locations of the network, not
just the center of the network. We call it “multi-centralized
distribution”. As shown in Figure 2, We can divide the whole
network into many small sub-networks and each sub-network
has similar network topology. In this paper, we assume that all
the sub-network is a small centralized network, i.e., it satisfied
the probability density function given in (2).

III. THE THROUGHPUT CAPACITY OF HETEROGENEOUS
WIRELESS SENSOR NETWORKS WITHOUT OBSTACLES

In this section, we study the throughput capacity of hetero-
geneous WSNs without obstacles by deriving an achievable
per-node throughput. Communications in helping mode can
be divided into three phases: Firstly, packet is sent from
source node to the nearest helping node, then forwarded in
the helping-network until it reaches the helping node nearest
to the destination, and in the final phase packet is transmitted
from that helping node to its destination [6]. We analyze the
throughput capacity in normal mode and the three phases
of helping mode, respectively. Denote achievable per-node
throughput in normal mode and helping mode by Tn and Th,
respectively. Thus, the achievable per-node throughput of the
heterogeneous WSN, denoted by T , can be given as follows:

T = max{Tn, Th} (3)

where
Th = min{Th1, Th2, Th3} (4)

Here, Th1, Th2, Th3 are achievable per-node throughput in the
three phases of helping mode, respectively.

According to [6], for the network with n source nodes and
nd destination nodes, we have

Lemma 2. [6] For each destination node, with high probability
(w.h.p.), there are at most 2n1−d data flows destined to it.



Thus, using similar techniques in [6], we can calculate
networks’ throughput capacity as follows.

1) In normal mode, let Nx,max and Ny,max denote the
maximal number of source nodes located in one column
and the maximal number of destination nodes located in
one row, respectively. Since each source node generate
only one data flow and each destination node has at most
2n1−d flows destined to it w.h.p., the maximal number
of flows crossing a cell, denoted by Fij,max, is

Fij,max ≤ Nx,max + 2n1−dNy,max (5)

According to Lemma 1, each cell can achieve a constant
transmission rate. Thus, the achievable throughput in
normal mode is

Tn = Ω

(
W1

Fij,max

)
(6)

2) In helping mode, let Cmax, Dmax, N ′
x,max and N ′

y,max

denote the maximal number of source nodes in one cell,
the maximal number of destination nodes in one cell,
the maximal number of source nodes in one column
and the maximal number of destination nodes in one
row, respectively. Denote the maximal number of flows
crossing a cell in the second phase of helping mode by
F ′
ij,max, we have
• In the first phase

Th1 = Ω

(
W2

Cmax

)
(7)

• In the second phase

F ′
ij,max ≤ N ′

x,max + 2n1−dN ′
y,max (8)

Th2 = Ω

(
W4

F ′
ij,max

)
(9)

• In the third phase

Th3 = Ω

(
W3

n1−dDmax

)
(10)

In this section, we assume that all the helping nodes
are placed regularly and only investigate the impact of the
sensor nodes’ topology. Impacts of helping nodes’ topology
are studied in the following sections. Following this trace of
derivation, we can obtain the following theorems.

A. Uniform Network

The uniform network is a special case of [6], in which
network region is assumed to be rectangular. Hence the
following theorem can be derived from [6] directly.

Theorem 1. [6] An achievable throughput in uniform net-
works, denoted by Tuniform, is

Tuniform = Ω

(
max

{
min

{
1√

n log n
, nd−1

}
,

min
{
n

b
2−1, nd−1

}})
(11)

B. Centralized Network
To facilitate the calculation, here we will only consider the

case that centralization coefficient is 0, i.e., nodes density at
the center goes to the maximum. Results of such extreme case
are also easier for us to compare with that of the uniform
network.

1) Achievable Throughput in Normal Mode: Let N i
x and

N j
y denote the number of source nodes located in the ith

column and the number of destination nodes located in the
jth row, respectively. We have

E[N i
x] = 2n(−2i+ 1)

(
c2 logn

n

) 1
2

+ 2n
(

c2 logn
n

) 1
4

E[N j
y ] = 2nd(−2j + 1)

(
c2 logn

n

) 1
2

+ 2nd
(

c2 logn
n

) 1
4

(12)
Apply Chernoff bounds to equation (12), we can obtain the

following lemma. The detailed proof is omitted due to the
space limitation.

Lemma 3. For each cell, w.h.p.,
1) The number of source nodes which are located in the

same column is at most 4n(−2i + 1)
(

c2 logn
n

) 1
2

+

4n
(

c2 logn
n

) 1
4

.
2) The number of destination nodes which are located in

the same row is at most 4nd(−2j + 1)
(

c2 logn
n

) 1
2

+

4nd
(

c2 logn
n

) 1
4

when 1/4 < d < 1, and at most c3 when

0 < d < 1/4, where c3 is a constant and c3 > 2
1−4d .

Let F ij
k denote the number of data flows crossing cell

S(i, j). For each cell, we have

F ij
k ≤ N i

x + 2n1−dN j
y

≤



4n(−2i+ 1)
(

c2 logn
n

) 1
2

+ 4n
(

c2 logn
n

) 1
4

+2n1−d

[
4nd(−2j + 1)

(
c2 logn

n

) 1
2

+4nd
(

c2 logn
n

) 1
4

]
when 1

4 < d < 1

4n(−2i+ 1)
(

c2 logn
n

) 1
2

+ 4n
(

c2 logn
n

) 1
4

+2c3n
1−d when 0 < d < 1

4

(13)

Notice that the left part of (13) are monotonically decreasing
functions of i and j, we have

F ij
k,max = F 11

k

=



9n

[(
c2 logn

n

) 1
4 −

(
c2 logn

n

) 1
2

]
when 1

4 < d < 1

4n

[(
c2 logn

n

) 1
4 −

(
c2 logn

n

) 1
2

]
+ 2c3n

1−d

when 0 < d < 1
4

= O

(
max

{
n ·
(
logn

n

) 1
4

, n1−d

})
(14)



Denote the achievable throughput in normal mode by
T central
n , from (14), we can obtain that

T central
n = Ω

(
min

{
n−1 ·

(
n

log n

) 1
4

, nd−1

})
(15)

2) Achievable Throughput in Helping Mode: Since helping
nodes are regularly placed, we can divide the network into m
cells of length l′ =

√
1/m = n− b

2 . Let T central
h1 , T central

h2 and
T central
h3 denote the achievable throughput in phases I, II and

III, respectively. Employing similar techniques, we can obtain
that

T central
h1 = Ω

 W2

8n
(
−n−b + n− b

2

)2
 = Ω(nb−1)

T central
h2 = Ω

(
max

{
n

b
2−1, nd−1

})

T central
h3 =

{
Ω(nb−1) when 0 < b < d < 1

Ω(nd−1) when 0 < b < d < 1

Thus, we have

T central
h = min{T central

h1 , T central
h2 , T central

h3 }

= Ω
(
min

{
n

b
2−1, nd−1

})
(16)

Substituting (15) and (16) into (3), we can obtain the
following theorem

Theorem 2. An achievable throughput in centralized net-
works, denoted by T central, is

T central = Ω

(
max

{
min

{
n−1 ·

(
n

log n

) 1
4

, nd−1

}
,

min
{
n

b
2−1, nd−1

}})
(17)

C. Multi-centralized Network

Theorem 3. Denote the achievable throughput in multi-
centralized networks denoted by Tmulti, we have

Tmulti = Ω

(
max

{
min

{
k

n
·
( n

k2

log n
k2

) 1
4

, nd−1

}
,

min
{
kn

b
2−1, nd−1

}})
(18)

Proof: Similar to that in centralized network, we have
1) In normal mode

For multi-centralized network, in every sub-network,
there are n/k2 nodes. Thus, in normal mode, cells’ length

is 1
k · 4

√
c4

n
k2

log n
k2

. Similar to that in section III-B, we can

obtain that

Tmulti
n = min

{
k

n
·
( n

k2

log n
k2

) 1
4

, nd−1

}
2) In helping mode

The edge of cell in helping mode is still
√

1
m while the

area of each centralized sub-network is only 1
k2 . Thus,

we can obtain that

Tmulti
h1 = Ω

 W2

8 n
k2

(
−k2 · n−b + k · n− b

2

)2


= Ω
(
nb−1

)
Tmulti
h2 = Ω

min

 W4

9k · n
k2

(
−n−b + n− 2

b

) , nd−1




= Ω
(
min

{
kn

b
2−1, nd−1

})
Tmulti
h3 =

 Ω(nb−1) when 0 < b < d < 1

Ω(nd−1) when 0 < b < d < 1

Equation (18) can be obtained by substituting results above
into (3) and (4).

IV. GENERAL PROPERTIES OF “COMBINED NETWORKS”
From results in section III, we can see that compared

with centralized network, the multi-centralized network has a
larger throughput capacity. It seems that for network consisting
some small isomorphic sub-networks (we call it “combined
network”), if we extend the sub-network to the same scale1

as the overall network, its throughput capacity is still smaller
than the combine network. Thus, we can obtain the following
Theorem.

Theorem 4. For network composed of some isomorphic sub-
networks, the throughput capacity of the overall network,
denoted by T̃ , and the throughput capacity of sub-network
of same network scales, denoted by ˜̃T , have the following
relationship.

T̃ ≥ ˜̃
T (19)

Proof: From Section III, we can see that the achievable
throughput of a network without obstacles is determined by
cells and rows of the largest nodes density, or equvalently, by
variables Nx,max Ny,max, Cmax, Dmax, N ′

x,max and N ′
y,max.

In the combined network which consists of k×k sub-networks,
denote corresponding variables relevant to the overall network
by (̃·) and corresponding variables relevant to one particular
sub-network (has not be extended) by (·)(s). We have

C̃max = C
(s)
max

D̃max = D
(s)
max

Ñx,max = kN
(s)
x,max

Ñy,max = kN
(s)
y,max

Ñ ′
x,max = kN

(s)
′

x,max

Ñ ′
y,max = kN

(s)
′

y,max

(20)

1Here, “scale” means the size of network area, number of nodes and size
of cells.



Furthermore, we have

F̃ij,max = Ñx,max + 2n1−dÑy,max

= kN (s)
x,max + 2n1−dkN (s)

y,max

= kF
(s)
ij,max (21)

Similarly, we have

F̃ ′
ij,max = kF

(s)
′

ij,max (22)

Substituting (20), (21) and (22) into (6), (7), (9) and (10), we
can obtain that

T̃n = Ω

(
W1

F̃ij,max

)
= Ω

(
W1

kF
(s)
ij,max

)

T̃h1 = Ω

(
W2

C̃max

)
= Ω

(
W2

C
(s)
max

)

T̃h2 = Ω

(
W4

F̃ ′
ij,max

)
= Ω

 W4

kF
(s)

′

ij,max


T̃h3 = Ω

(
W3

D̃max

)
= Ω

(
W3

D
(s)
max

)
On the other hand, if we extend this sub-network to the same
scale as the combined network, the number of nodes and the
number of cells in this extended sub-network are both k2 times
larger than before. However, if the nodes distribution is not
uniform, the maximal node density in one cell or in one row is
larger than before. Denote the corresponding variables relevant

to this extended sub-network by
˜̃
(·). We have

˜̃
Tn = Ω

 W1˜̃
F ij,max

 ≤ Ω

(
W1

k2 · 1
k · F (s)

ij,max

)
= T̃n

˜̃
Th1 = Ω

(
W2˜̃

Cmax

)
≤ Ω

(
W2

k2 · 1
k2 · C(s)

max

)
= T̃h1

˜̃
Th2 = Ω

 W4˜̃
F

′

ij,max

 ≤ Ω

 W4

k2 · 1
k · F (s)

′

ij,max

 = T̃h2

˜̃
Th3 = Ω

(
W3˜̃

Dmax

)
≤ Ω

(
W3

k2 · 1
k2 ·D(s)

max

)
= T̃h3

Thus, we can obtain that

T̃ = max{T̃n, T̃h}

= max{T̃n,min{T̃h1, T̃h2, T̃h3}}

≥ max{ ˜̃Tn,min{ ˜̃Th1,
˜̃
Th2,

˜̃
Th3}}

=
˜̃
T (23)

Conclusion in Theorem 4 means that compared with the
topology of sub-networks, the overall network’s topology
results in a larger throughput capacity, which provide us a
method to generate a better topology to achieve a larger
throughput capacity. Intuitively, the overall network has a more
uniform distribution than the sub-networks. As discussed in
the following section, uniform distribution tend to result in a
larger capacity, which also demonstrates the conclusion in this
section.

V. IMPACT OF NETWORK TOPOLOGY ON THROUGHPUT
CAPACITY

A. Impact of Sensor Nodes’ Topology

Comparing the results in section III with each other, we
can find that they have similar scales (take k as a constant).
In general, we have the following theorem.

Theorem 5. For the topology of sensor nodes, if the value
range of nodes distribution’s PDF is limited, the gap in
achievable throughput of non-uniform networks and uniform
networks is at most a constant time.

Proof: Firstly, from the analysis in section IV, we can
see that if size of cells stay unchanged, interference can not
be changed by network topologies. Secondly, in the proof
of Theorem 4, we have concluded that in networks without
obstacles the achievable throughput is determined by the
busiest cells, i.e., by variables Nx,max Ny,max, Cmax, Dmax,
N ′

x,max and N ′
y,max. Let Nx,max and N̂x,max denote the the

maximal number of source nodes located in the same column
in uniform and non-uniform network, respectively. Since the
value range of the nodes distribution’s PDF is limited, i.e.,
∃M ∈ R+, for ∀ x, y we have |f(x)| ≤ M, |f(y)| ≤ M .
Thus, we have

E[Nx] = n · l
1

(24)

E[N̂ i
x] = n ·

∫ il

(i−1)l

f(y)dy

≤ n ·
∫ il

(i−1)l

Mdy

= Mnl

= ME[Nx]

Using Chernoff Bounds, we can prove that w.h.p. Nx ≤
2E[Nx] and N̂ i

x ≤ 2E[N̂ i
x]. Thus, we can obtain that

N̂x,max ≤ MNx,max (25)

Similar results can be proved for Ny,max, Cmax, Dmax,
N ′

x,max and N ′
y,max. Denoted the achievable throughput in

uniform and non-uniform network by T and T̂ , respectively.
Following similar trace of derivation in Theorem 4’ proof, we
can conclude that

T ≤ C(M)T̂ (26)

where C(M) is a constant relative to M .



B. Impact of Helping Nodes’ Topology

In analyses above, we have only considered regularly dis-
tributed helping nodes. In this subsection, we investigate the
impact of variability in helping nodes’ distribution. Generally,
we have the following theorem.

Theorem 6. For networks with uniformly distributed sensor
nodes, regularly distributed helping nodes are optimal to
maximize the network throughput capacity.

Proof: Firstly, we analyze the impact on interference.
In network with non-uniformly distributed helping nodes, we
have to divide network area into cells of different lengths. Let
l(r) denote length of cells in network with regularly distributed
helping nodes, and l

(n)
max denote the maximal cells’ length

in network with non-uniformly distributed helping nodes,
respectively. We can easily obtain that l

(n)
max ≥ l(r). Denote

the achievable rate per cell in networks with regularly and
non-uniformly distributed helping nodes by W (r) and W (n),
respectively. From the derivation of Lemma 1, we can obtain
that W (r) ≥ W (n).

Secondly, similar to the proof of Theorem 4, let C
(r)
max,

D
(r)
max, N (r)

′
x,max and N

(r)
′

y,max denote corresponding variables in
networks with regularly distributed helping nodes, and C

(n)
max,

D
(n)
max, N

(n)
′

x,max and N
(n)

′
y,max denote corresponding variables

in networks with non-uniformly distributed helping nodes, re-
spectively. In networks with non-uniformly distributed helping
nodes, there must be cells of length larger than the average
value. Thus, we can obtain that

C
(n)
max > C

(r)
max

D
(n)
max > D

(r)
max

N
(n)

′
x,max > N

(r)
′

x,max

N
(n)

′
y,max > N

(r)
′

y,max

(27)

Denote the achievable throughput capacity of network with
regularly and non-uniformly distributed network by T (r) and
T (n), respectively. Since that throughput capacity in helping
mode is inversely proportional to variables above, we can
conclude that

T (r) ≥ T (n) (28)

Theorem 7. For networks with non-uniformly distributed
sensor nodes, though regularly distributed helping nodes are
no longer optimal, any improvement on the helping nodes’
topology cannot change the scale of network throughput
capacity.

Proof: Firstly, consider the interference. According to
the proof of Theorem 6, non-uniformly distributed helping
nodes can only increase the interference and thus decrease the
achievable per-cell transmission rate. Thus, it has a negative
impact on the network throughput capacity.

}

Fig. 3. A wall with gate in the network area

Secondly, if we do not consider the change of interference,
network throughput capacity in helping mode is determined
by variables Cmax, Dmax, N ′

x,max and N ′
y,max. Thus, if

we change the helping nodes’ topology, network throughput
capacity achieves the maximum when each cell, each column
and each row has the same number of nodes, respectively.
However, similar to that in the proof of Theorem 5, we can
easily show that this improvement is not larger than a constant
time.

Combining conclusions above together, we can conclude
that improvement on helping nodes’ topology cannot change
the network throughput capacity in the sense of scaling law.

VI. OPTIMAL TOPOLOGY FOR NETWORKS WITH
OBSTACLES

In this section, we introduce a novel algorithm to generate
the optimal network topology for any given obstacle distribu-
tions and analyze its performance.

A. Algorithm to Obtain the Optimal Network Topology

To design the optimization algorithm, we consider a simple
scenario first. As shown in Figure 3, assume that there is
a “wall” with a “gate” in the network, which divides the
network area into two parts. In this case, area around the
gate is the communication bottleneck since any data flow
transmitting from one side of the wall to another side has to
pass through the gate. To maximize the throughput capacity,
we can reduce the transmission burden in this area by the
following algorithm.

Algorithm - “Wall with Gate”:
1) Assume that there are n̂, n1 and n2 number of nodes in

the gate area, the left and the right part of the network, re-
spectively, where n̂+n1+n2 = n. The expect number of
data flows passing through the gate is u = f(n̂, n1, n2),
where function f(·) can be decided using techniques
given in Section III. Thus the transmission burden of the
gate area is B0 = u/k0, where k0 is the number of cells
in the gate area (nodes’ distribution in the gate area is
assumed to be uniform since this area is relatively small).

2) Ignore the wall and the right part of the network. Put
φ1 = gs(n̂, n1, n2) number of virtual source nodes and
ϕ1 = gd(n̂, n1, n2) number of virtual destination nodes
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Fig. 4. Network dividing method I

uniformly in front of the gate (i.e., the area illustrated
in Figure 3) to replace the ignored sensor nodes. Vir-
tual source and destination nodes work as sources and
destinations, respectively, generating virtual date flows.
Functions gs(·) and gd(·) are designed according to the
routing strategy so that these numbers of virtual nodes
have the same influence on the left part of the network
as the ignored parts.2 Then we obtain a degraded sub-
network without any obstacles.

3) For the degraded sub-network, use techniques and conclu-
sions given in Sections III - V to generate an optimal sub-
network topology T1 = T1(n̂, n1, n2). The basic idea is
to reduce the transmission burden of the shadowed areas
and distribute it uniformly to the whole sub-network,
or equivalently, to minimize the maximal transmission
burden B1 = max (N i

x + 2n1−dN i
y) = h1(n̂, n1, n2).

4) Repeat Step 2 and 3 for the right part of the network,
respectively. Generate an optimal subnetwork topology
T2 = T2(n̂, n1, n2) and calculate the minimized sub-
network transmission burden B2 = h2(n̂, n1, n2).

5) Use appropriate optimization methods to minimize the
burden function B = max(B0, B1, B2). Calculate corre-
sponding n̂, n1 and n2. Thus, the optimal topology for
the whole network, denoted by T, can be obtained by
combining T1 and T2, i.e.,

T = T (n̂, n1, n2) = T ′(T1,T2)

where T (·) and T ′(·) are deterministic functions.
This “Wall with Gate” algorithm can be generalized to ob-

tain optimal topologies for any given networks with obstacles.
Firstly, divide the network region into pieces by the following
method.

Divide the network by walls - Method I: As shown in Figure
4, take blocked cells in a row (either vertical or horizontal) as
a wall and cells without obstacles in this row as gates. Thus,
the network region is divided into some sub-networks by these
walls.

The optimal topology for this network region can be ob-
tained by applying “Wall with Gate” algorithm to each of

2For the routing strategy given in Section II, we let gs(n̂, n1, n2) =
n1n2/n and gd(n̂, n1, n2) = n1n2/n, respectively.

Fig. 5. Network dividing method II

these sub-networks and gate areas. Note that since the gate
areas here might be relatively large, nodes distribution in these
areas can no longer be assumed to be uniform and Step 2 - 3
must be applied to these gate areas. Assuming that there are
S sub-networks and R gates, we have

T = T (n1, n2, . . . , nS , n̂1, n̂2, · · · , n̂R)

= T ′(T1,T2, . . . ,TS , T̂1, T̂2, . . . , T̂R)

where ni (i = 1, 2, . . . S) is the number of sensor nodes in the
ith sub-network, n̂j (j = 1, 2, . . . R) is the number of sensor
nodes in the jth gate area, Tk (k = 1, 2, . . . S) is the optimal
topology of the kth sub-network and T̂l (l = 1, 2, . . . R) is the
optimal topology of the lth gate area.

B. Complexity of the Algorithm

Noticing that the algorithm complexity is proportional to the
number of sub-networks S and number of gates R, to reduce
the algorithm complexity, we can simplify the division of the
network area. Note that in Figure 4, sub-networks I - IV can
be combined into a larger sub-network, so do sub-networks V
- V I , V II - V III , IX - XII and XIII - XV I . We can
modify the network dividing method as follows.

Divide the network by walls - Method II: As shown in
Figure 5, firstly construct a wall in the row (either vertical or
horizontal) with the most number of blocked cells, dividing
the network area into two parts. For each part, repeat this step
iteratively until all the blocked cells are crossed by at least
one wall.

The complexity of the algorithm is given by the following
lemma.

Lemma 4. The algorithm complexity is O(M2) when using
network dividing method I and is O(M) when using method
II.

Proof: Here, we consider the worst cases, i.e., cases that
all blocked cells are not collinear. When using method I to
divide the network area, there are 2M walls. Denote the
number of sub-networks and number of gates by SI and RI ,
respectively. In the worst case, these 2M walls divide the
network into M2 areas, i.e., SI = M2. Since there is a gate
between any neighboring sub-network areas, there are at least



Cell I

Fig. 6. Cell I add four gates to the divided network

4∗M2/2 gates, i.e., RI = 2M2. So the algorithm complexity
is

ηI = O(SI +RI) = O(M2) (29)

When using method II, each cell with obstacles generate at
most one wall, so there are at most M walls. Denote the
number of sub-networks and number of gates by SII and RII ,
respectively. These walls divide the network into M+1 areas,
thus, SII = M + 1. Furthermore, as shown in Figure 6, each
cell with obstacles can generate at most four additional gates
to the network, i.e., RII ≤ 4M . So the algorithm complexity
is

ηII = O(SII +RII) = O(M) (30)

Although method I generate more sub-networks, each sub-
network is relatively simple and easy to analyze. In some
particular cases, for example, in the case that the obstacle
distribution has some symmetry properties, using method I
might result in a smaller algorithm complexity.

VII. CONCLUSION

In this paper, we investigate the throughput capacity of
heterogeneous WSNs with different network topologies and
analyze the impact of topologies on network properties. We
find that compared to sub-networks of the same scale, com-
bined networks have a larger overall throughput capacity. We
also find that uniformly distributed sensor nodes and regularly
distributed helping nodes have some advantages in improv-
ing the network capacity. Compared to regularly distributed
helping nodes, any change of helping nodes’ topology cannot
improve the network throughput capacity in the sense of
scaling law. We further investigate the impact of obstacles and
introduce an algorithm to generate the optimal sensor nodes
distribution for any given network areas with obstacles.

VIII. ACKNOWLEDGMENT

This work is supported by National Fundamental research
grant (2011CB302701), NSF China (No. 60832005); China
Ministry of Education New Century Excellent Talent (No.
NCET-10-0580); China Ministry of Education Fok Ying Tung
Fund (No. 122002); Qualcomm Research Grant; Shanghai

Basic Research Key Project (No.11JC1405100); National Key
Project of China (2010ZX03003-001-01).

REFERENCES

[1] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transaction on Information Theory, vol. 46, no. 2, pp. 388-404, Mar.
2000.

[2] A. Keshavarz-Haddad, V. Ribeiro, and R. Riedi, “Broadcast capacity
in multihop wireless networks,” in Proc. ACM MobiCom, Sept. 2006.

[3] K. Yang, Y. Wu, and H.-H. Chen, “Qos-aware routing in emerging
heterogeneous wireless networks,” IEEE Communications Magazine,
45(2):74-80, 2007.

[4] P. Li, X. Geng, and Y. Fang, “An adaptive power controlled mac
protocol for wireless ad hoc networks,” IEEE Transactions on Wireless
Communications, 8(1):226-233, Jan. 2009.

[5] N. Li and J. Hou, “Topology control in heterogeneous wireless net-
works: Problems and solutions,” in Proc. IEEE INFOCOM, Hong
Kong, China, Mar. 2004.

[6] P. Li and Y. Fang, The “Capacity of heterogeneous wireless networks,”
in Proc. IEEE INFOCOM, 2010.

[7] J. Luo, X. Liu, D. Ye, “Research on Multicast Routing Protocols for
Mobile Ad-hoc Networks,” in Elsevier Computer Networks Journal,
Vol. 52, No. 5, pp. 988-997, Apr. 2008.

[8] X. Wang, W. Huang, S. Wang, J. Zhang, C. Hu, “Delay and Capacity
Tradeoff Analysis for MotionCast,” IEEE/ACM Transactions on Net-
working, Vol. 19, no. 5, pp. 1354-1367, Oct. 2011.

[9] D. Shila, Y. Cheng, T. Anjali, and P. Wan, “Extracting more capac-
ity from multi-channel multi-radio wireless networks by exploiting
power”, in Proc. IEEE ICDCS, Genoa, Italy, Jun. 2010.

[10] H. Li, X. Liu, W. He, J. Li, W. Dou, “End-to-End Delay Analysis in
Wireless Network Coding: A Network Calculus-Based Approach,” in
Proc. of ICDCS, Minneapolis, Minnesota, 2011.

[11] D. Shila, Y. Cheng, and T. Anjali, “Throughput and delay analysis
of hybrid wireless networks with multi-hop uplinks,” in Proc. IEEE
INFOCOM, Shanghai, China, Apr. 2011.

[12] S. R. Kulkarni, P.Viswanath, “Deterministic Approach to Throughput
Scaling in Wireless Networks”, IEEE Transaction on Information
Theory, vol. 50(6), pp. 1041-049, Jun. 2004.

[13] E. Perevalov, R. S. Blum, D. Safi, “Capacity of Clustered Ad Hoc Net-
works: How Large Is Large?” IEEE Transaction on Communication,
Vol. 54, No. 9, pp. 1672-1681, Sept. 2006.

[14] R. K. Ganti and M. Haenggi, “Interference and Outage in Clustered
Wireless Ad Hoc Networks,” IEEE Transaction on Information Theory.
Available at http://arxiv.org/abs/0706.2434v1

[15] A. Keshavarz-Haddad and R. H. Riedi, “Bounds for the capacity of
wireless multihop networks imposed by topology and demand,” in
Proc. ACM MobiHoc, pp. 256-265, Montreal, Canada, Sept. 2007.

[16] G. Alfano, M. Garetto, E. Leonardi, “Capacity Scaling of Wireless
Networks with Inhomogeneous Node Density: Upper Bounds,” IEEE
Journal on Selected Areas in Communications, vol. 27, no. 7, Sept.
2009.

[17] G. Alfano, M. Garetto, E. Leonardi, “Capacity Scaling of Wireless
Networks with Inhomogeneous Node Density: Lower Bounds,” in Proc.
INFOCOM, Rio de Janeiro, Brazil, Apr. 2009.

[18] M. Li and Y. Liu, “Rendered Path: Range-Free Localization in
Anisotropic Sensor Networks with Holes,” in Proc. ACM MobiCom,
Montreal, Quebec, Canada, Sept. 2007.

[19] J. Lian, Y. Liu, K. Naik, and L. Chen, “Virtual Surrounding Face
Geocasting with Guaranteed Message Delivery for Ad Hoc and Sensor
Networks,” IEEE/ACM Transactions on Networking (TON), vol. 17,
no. 1, Feb. 2009, pp. 200-211.

[20] Q. Fang, J. Gao, and L. Guibas. “Locating and bypassing routing holes
in sensor networks,” in Proc. INFOCOM, vol. 23, pp. 2458-2468, Mar.
2004.

[21] T. Rappaport, “Wireless Communications: Principles and Practice
(Second Edition),” Prentice-Hall PTR, 2002.

[22] A. E. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Optimal
Throughput-Delay Scaling in Wireless Networks-Part I The Fluid
Model,” Dept. Elect. Eng., Stanford Univ., Stanford, CA, 2005 [On-
line]. Available: http://www.standford.edu/ jmammen/


