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Abstract—Since wireless channel is vulnerable to eavesdrop-
pers, the secrecy during message delivery is a major concern
in many applications such as commercial, governmental and
military networks. This paper investigates information-theoretic
secrecy in large-scale networks and studies how capacity is
affected by the secrecy constraint where the locations and channel
state information (CSI) of eavesdroppers are both unknown. We
consider two scenarios: 1) non-colluding case where eavesdrop-
pers can only decode messages individually; and 2) colluding case
where eavesdroppers can collude to decode a message. For the
non-colluding case, we show that the network secrecy capacity is
not affected in order-sense by the presence of eavesdroppers. For
the colluding case, the per-node secrecy capacity of Θ( 1√

n
) can

be achieved when the eavesdropper density ψe(n) is O(n−β),
for any constant β > 0 and decreases monotonously as
the density of eavesdroppers increases. The upper bounds on
network secrecy capacity are derived for both cases and shown
to be achievable by our scheme when ψe(n) = O(n−β) or
ψe(n) = Ω(log

α−2
α n), where α is the path loss gain. We show

that there is a clear tradeoff between the security constraints and
the achievable capacity.

I. INTRODUCTION

Although facilitating communications through quick de-
ployment and low cost, the broadcast nature of wireless
channel makes it vulnerable to attacks such as eavesdropping
and jamming, which are important concerns for commercial,
governmental and military networks. Traditional solutions are
based on cryptographic methods such as the well-known RSA
publickey cryptosystem. However, due to the expensive key
distribution, the rapid growth of computation power and im-
provement on decoding technology, cryptographic techniques
encounter some limitations, especially as the network size
increases. Hence, to avoid such limitations, this paper focuses
on information theoretic security where eavesdroppers are
assumed to have infinite computational power.

The basis for information theoretic security stems from
Shannon’s notion of perfect secrecy [1]. Information theoretic
security is achieved by exploiting the difference between
channels of legitimate nodes and that of eavesdroppers, which
requires the intended receiver to have a stronger channel than
eavesdroppers. Recently, secure wireless communications at
the physical layer is intriguing renewed interests among re-
search area. Haenggi [2] and Pinto et al. [3] study the in-degree
and out-degree distributions under the security constraints. As
is shown in both papers, even a small number of eavesdrop-
pers will cause dramatic decreasing in nodes’connectivity. To

guarantee the secret transmission, Geol and Negi [4] propose
artificial noise generation to suppress eavesdroppers’ receiving
signal. The independence of fading channels is exploited to
generate noise to suppress eavesdroppers’ channels taking
advantage of cooperative schemes [5]. Furthermore, Barros et
al. [6] show that theoretic information secrecy can be achieved
by fading alone if channel state information (CSI) is available.

However, so far the research about information theoretic
security mainly focuses on distinctive techniques to enhance
the security, yet little is known about their impact on network
performance such as capacity, delay, etc, especially in large
scale wireless networks. As some exceptions, Vasudevan et al.
[7] study the secrecy capacity issue in a large-scale network.
Specifically, they introduce helper nodes around transmitters
to generate noise to degrade eavesdroppers’ channel and
utilize channel fading gain of receivers to enhance secure
communications. The impact of secrecy guard zone or mobility
on capacity is investigated by Koyluoglu et al. [8] , Zhou et
al. [9] and [10]. All these works are based on the assumption
of either the pre-known CSI information of receivers or some
pre-known location information of eavesdroppers which can
be used by transmitters to differentiate receivers’ channels
from eavesdroppers’. However, since in real applications it is
difficult to obtain such information a prior, especially in large
scale wireless networks, a fundamental question arises: what
will be the performance of secrecy capacity, if both the CSI
and location information are unknown to legitimate nodes?

We are thus motivated to investigate this issue in static
wireless networks. Our main idea to solve the aforementioned
problem is to let a receiver distinguish its own channel
by adopting self-interference cancelation. More precisely, we
assume each receiver is equipped with three antennas, one for
message reception and the other two for simultaneous artificial
noise generation to suppress eavesdroppers’ channels. Since
the three antennas are all equipped on one node, the noise
generated by the receiver itself can be eliminated through the
technique of antenna cancelation proposed in [11]. This differs
our noise generation pattern from the work in [4] and [7] and
we will show in later part that such difference can dramatically
improve network secrecy capacity.

Our main contributions are summarized as follows:
• In the non-colluding case, the optimal per-node secrecy

capacity Θ( 1√
n
) is achievable in the presence of eaves-

droppers. This result holds even in the scenario where
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there are more eavesdroppers than legitimate nodes in
the network.

• In the colluding case, we establish the relationship be-
tween the secrecy capacity and the tolerable number
of eavesdroppers. The corresponding capacity-achieving
communication schemes are proposed to meet the upper
bound derived.

• We identify the underlying interference model to cap-
ture the fundamental impact of secrecy constraints. This
model relies weakly on the specific settings such as traffic
pattern and mobility models of legitimate nodes. Hence,
our study can be flexibly applied to more general cases
and shed insights into the design and analysis of future
wireless networks.

The rest of this paper is organized as follows. In Section II,
we present the system model. Asymptotic analysis on different
scenarios is carried out in Section III and IV. Concluding
remarks are given in the end.

II. NETWORK MODELS AND DEFINITIONS

In this paper, we consider a static ad hoc network in an
extended network B = [0,

√
n]× [0,

√
n].

Legitimate Nodes: Legitimate nodes follow a Poisson dis-
tribution with unit intensity over the whole network. And
transmitter-receiver pairs are randomly chosen such that each
node is the destination of exactly one source. We denote T
and R as the subsets of nodes simultaneously transmitting and
receiving at a given time-slot. We assume that each legitimate
node is equipped with three antennas. When a legitimate node
acts as a receiver, one antenna is used for message reception
while the other two are devoted to simultaneous artificial noise
generation to suppress eavesdroppers’ channels. The distances
between the receive antenna and the two respective transmit
antennas should satisfy a difference of half the wavelength.
The interference can therefore be eliminated using the tech-
nique of self-interference cancelation proposed in [11].

Eavesdroppers: Independently of legitimate nodes, eaves-
droppers also follow a Poisson distribution in the network
with intensity λe. Let E be the set of eavesdroppers. We
assume eavesdroppers always keep silent since they will be
easily detected if active. In order to have an insight on
the fundamental information theoretical secrecy capacity, we
assume eavesdroppers have infinite computation ability which
means that traditional cryptography method can not be applied
here. We also assume that both CSI and location information
of eavesdroppers are unknown to legitimate nodes.

The Physical Model: For simplicity, we denote uniform
transmission power as Pt and uniform noise generation power
as Pr. The path loss between node i and node j is denoted by
l(xi, xj), which can be expressed as l(xi, xj) = min(1, d−α

ij ).
Here dij is the transmission distance and the loss exponent
α > 2. When node i is transmitting messages to node j, the
signal to interference and noise ratio (SINR) received by node
j over a channel of unit bandwidth can be given by:

SINRij =
Ptl(xi, xj)

N0 +
P

k∈T \{i} Ptl(xk, xj) +
P

k∈R\{j} Prl(xk, xj)
,

where N0 denotes the ambient noise power at the receiver.
The SINR received by eavesdropper e can be represented by:

SINRie =
Ptl(xi, xe)

N0 +
P

k∈T \{i} Ptl(xk, xe) +
P

k∈R Prl(xk, xe)
.

Secrecy Throughput Per Hop: As is defined in [3], the secure
throughput between any active transmitter-receiver pair is:

Rs
ij = Rij −Rie = log2(1 + SINRij)− log2(1 + SINRie)

where SINRie = maxe∈E SINRie.
Asymptotic Capacity: Similar to [14], asymptotic per node

capacity λ(n) is said to be achievable if there is a scheduling
and routing scheme such that every node can transmit λ(n)
bits per second on average to its destination in the long term.

III. SECURITY CAPACITY FOR INDEPENDENT
EAVESDROPPERS CASE

In this section, we investigate secrecy capacity for indepen-
dent eavesdroppers. Since our scheme should guarantee the
secrecy communication, it seems that the capacity should be
degraded. However, we show that the secrecy capacity remains
the same as that in the network without eavesdroppers at least
in order sense. We first present the following lemma which
will be quoted throughout this paper.

Lemma 1: When a legitimate node t is transmitting to a
legitimate receiver r, the maximum rate that an independent
eavesdropper e can obtain is upper-bounded by

Re ≤ min

�
Ptd

−α
te

N0
,
Pt

Pr
(1 + dtr)

α

�
, (1)

where dtr is the Euclidean distance between legitimate node
t and node r and dte is the distance between legitimate node
t and eavesdropper e.

Proof: Notice that Re = log(1 + max(SINRe)) and
SINRe is smaller than Ptd

−α
te

N0
, we now prove the maximum

SINR that eavesdroppers can obtain is Pt

Pr
(1 + drt)

α. First
consider the case when dte and dre are both greater than 1,

SINRe =
Ptl(xt, xe)

N0 +
P

k∈T \{t} Ptl(xk, xe) +
P

k∈R Prl(xk, xe)

<
Ptl(xt, xe)

Prl(xr, xe)
=
Ptd

−α
te

Prd
−α
re

≤ Ptd
−α
te

Pr(drt + dte)−α
≤ Pt

Pr
(1 + drt)

α.

(2)
Under similar derivation, we can show that this lemma is also
hold when dte or dre is smaller than 1.

A. The Highway System

The network is divided into non-overlapping cells with side
length of c, where c is a constant .We say that a cell is open
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if there is at least one node in it. Hence cells are open with
probability p = 1− e−c2 independently.

For ease of exposition, denote m as
√
n/

√
2c and we

assume m to be an integer, which will not change our results in
order sense. As is shown in [13], when the constant c is large
enough, there are a lot of crossing paths in the network which
behave almost as straight lines. For any κ > 0, partition the
network into rectangles of size m×(κ logm−ϵm) and choose
ϵm = o(1) as the smallest value such that the side length is an
integer. Denote Ri as the ith rectangle and Ci as the number
of edge-disjoint crossings of Ri. Then the minimal number of
disjoint crossing paths Np = mini Ci can be upper bounded by
δ logm when m goes to infinity and δ is a constant. Further,
to make sure that there are at least as many paths as slices
inside each rectangle, each rectangle is sliced into horizontal
strips with constant w = κ logm/Np.

Our packet routing scheme includes three steps:
Step 1: Each source in the i-th slice transmits directly to a

legitimate relay located on the i-th path. The relay is chosen
in a way such that it is closest to the source among all other
nodes on the i-th path.

Step 2: Packets are relayed horizontally through the high-
way and then along a vertical highway until it arrives at an
exit point closest to the destination in a multi-hop fashion.

Step 3: Packets are directly delivered from the highway to
the destination similar to the first step.

B. Analysis of Secrecy Capacity

Next we present our scheduling scheme and compute the
lower bound of the legitimate receiver’s rate. Note that our
scheduling scheme is different from that proposed in [13],
since we should take the issue of secrecy into account. And
the basic idea is to space concurrent transmission sufficiently
far away so that the interference is tolerable.

Lemma 2: When a legitimate node is transmitting to a
legitimate receiver which is located d cells apart, the minimum
rate that the legitimate node can receive is lower-bounded by
c2Ptd

−α, where c2 is a constant.
Proof: First we compute the interference at the receiver.

Divide the network into disjoint subsquares of (k+d)×(k+d)
cells, where k will be explained later. Every cell in each
subsquare takes turn to transmit. Consider a given transmitter-
receiver pair, the eight closest transmitters and receivers are
located at distance of at least ck and c(k + d − 1) from
the receiver and so on. Taking into consideration all the
interferences in the whole network, the interference at the
intended destination can be upper-bounded as follows:

I(d) ≤
∞X
i=1

8i(Ptl(c(i(k + d)− d)) + Prl(c(i(k + d)− 1)))

≤
∞X
i=1

8i(Pt + Pr)l(cik)

= (Pt + Pr)(kc)
−α

∞X
i=1

8i(ci)−α.

(3)

Note that
P∞

i=1 8i(ci)
−α converges to a constant c1 when α ≥

2.
And the receiving signal S(d) can be lower-bounded by

S(d) ≥ Ptl(c(d+ 1))

= Pt(c(d+ 1))−α,
(4)

.
Now the minimum rate that the legitimate receiver can

achieve can be derived as follows:

R(d) = log

�
1 +

S(d)

N0 + I(d)

�

≥ log

�
1 +

Pt(c(d+ 1))−α

N0 + c1(Pt + Pr)(kc)−α

�
≥ c2Ptd

−α,

(5)

when choosing k = Θ(P
1
α
r ) and c2 is a constant.

Theorem 1: For any legitimate transmitter-receiver pair
which is spaced at a distance of d cells apart, there exists
an Rs(d) = Ω(d−α−4), so that the receiver can receive at a
rate of Rs(d) securely from the transmitter.

Proof: According to the definition of secure rate and
combining with Lemma 1 and Lemma 2, the secrecy rate
Rs(d) each cell can transmit can be denoted as:

Rs(d) =
1

(k + d)2
(R(d)−Re)

≥ 1

(k + d)2

�
c2Ptd

−α − c3
Pt

Pr
dα
� (6)

where 1
(k+d)2 is the time utilization factor, c2 and c3 are both

constants.
Let Pr = 2 c3

c2
d2α. Hence, to bound the interference in-

curred to the intended receiver, according to Equation (5),
k = Θ(P

1
α
r ) = Θ(d2). Therefore, the secrecy rate each cell

can receive is Ω(d−α−4).
Theorem 1 indicates positive secrecy rate is achievable even

under the worst attack. To calculate per-node secrecy capacity,
we first give two lemmas which can be proved using Chernoff
bounds and union bounds.

Lemma 3: There are at most log n legitimate nodes in each
cell of constant size c2 w.h.p.1.

Lemma 4: If nodes are poisson distributed with intensity
ψ(n) in the network B, partition the network into disjoint
regions with same size f(n), let Ni be the number of nodes
inside region i. We have

P

�
1

2
f(n)ψ(n) ≤ Ni ≤ 2f(n)ψ(n), ∀i

�
= 1

when f(n)ψ(n) ≥ log4/e n and f(n) = Ω(1).
Theorem 2: With n legitimate nodes poisson distributed

in B, the achievable per-node secrecy throughput under the
existence of independent eavesdroppers is Ω( 1√

n
).

Proof: As is shown in the routing scheme, the maxi-
mum distance between source and relay is no larger than

1In this paper, w.h.p stands for with high probability, which means the
probability tends to 1 as n goes to infinity.



4

κ logm + 2c in the first step. Applying Theorem 1, we
obtain that one node in the cell can transmit securely at rate
Ω(log−α−4 n) to the relay. Since there may be multiple nodes
inside the cell, they should share the transmission chances. The
number of nodes inside each cell can be bounded as O(log n)
according to Lemma 3. Hence, the achievable secrecy capacity
is Ω(log−α−5 n) in the draining phase.

In the highway phase, the transmission range between T-R
pairs is at most 2

√
2c. Hence each node on the highway can

transmit securely at rate Ω(1) to the next relay by applying
Theorem 1.By Lemma 4, we obtain that the maximum number
of legitimate nodes inside each slice is no larger than 2w

√
n.

Therefore, the secrecy capacity of the highway phase is
Ω( 1√

n
).

Since the per-node throughput without the secrecy constraint
is O( 1√

n
) [12], the per-node secrecy capacity is also bounded

by O( 1√
n
) which indicates the optimality of our scheme.

IV. COLLUDING EAVESDROPPERS

A. Analysis of Secrecy Capacity

To get a fundamental insight on how the colluding eaves-
droppers will affect the secrecy transmission, we assume that
all eavesdroppers in the network can collaborate to decode the
messages and maximum ratio combing is adopted to maximize
the SINR eavesdroppers obtained. Hence we can regard all
eavesdroppers as a super-eavesdropper.

Assume that eavesdroppers are poisson distributed with
parameter ψe(n) in the network. For a given transmitter-
receiver pair, we partition the network into disjoint rings with a
same size of f(n). The transmitter is at the center of all these
rings. Let ri be the external diameter of the ith ring. Since
f(n) = πr21 = π(r2i −r2i−1) for any i > 1, we have ri =

√
ir1

for any i ≥ 1. Denote Φei as the set of eavesdroppers located
inside the i-th ring. Hence the number of eavesdropper Nei in
Φei is a poisson variable with parameter ψe(n)f(n).

Notice that the distance between the transmitter and eaves-
droppers is at least ri−1, the signal power received by eaves-
droppers in the i-th ring is at most Ptr

−α
i−1 for any i ≥ 2. For

each ψe(n), we choose f(n) such that f(n)ψe(n) ≥ log4/e n
and f(n) = Ω(1). Denote SINRei as the SINR received by
eavesdroppers in the i-th ring. Taking all the summation up,
we have

SINRe ≤
X
i

SINRei

=
X

j∈Φe1

SINR1j +
+∞X
i=2

X
j∈Φei

SINRij

≤ 2f(n)ψe(n)
Pt

Pr
(1 + drt)

α +
+∞X
i=2

2f(n)ψe(n)
Ptr

−α
i−1

N0

= 2πψe(n)

 
r21
Pt

Pr
(1 + drt)

α +
Pt

N0
r2−α
1

+∞X
i=1

i−
α
2

!
,

(7)

where the third row of this inequality follows from Lemma 1.

Case 1: When the transmission is on the highway phase
where drt = Θ(1), it is obvious that there is a constant c4
satisfying Re ≤ c4ψe(n)(r

2
1/Pr + r2−α

1 ). As is shown in
Lemma 2, the rate R(d) received by the intended receiver can
be Θ(1). Note that there are two constraints in the derivation
of Equation (7), i.e., f(n)ψe(n) ≥ log4/e n and f(n) = Ω(1).

With r1 = max (Ω(1),Θ(ψe(n)
1

α−2 )) and Pr = Θ(ψe(n)r
2
1),

the secure transmission can be guaranteed and secure rate each
node in the highway can transmit is Ω( 1

k2 ) where k = Θ(P
1
α
r )

is the concurrent transmission range.

Hence if ψe(n) = Ω(log
α−2
α n), Pr = ψe(n)r

2
1 =

Θ(ψe(n)
α

α−2 ). The secure rate each node in the highway can
transmit is Ω(ψe(n)

− 2
α−2 ). Since the traffic load at each node

in the highway is at most O(
√
n), the per-node throughput

should be Ω( 1√
n
ψe(n)

− 2
α−2 ). If ψe(n) = O(log

α−2
α n), the

noise generation power can be Θ(log n) and we can obtain
per-node secrecy capacity of Ω( 1√

n
log−

2
α n).

Case 2: When the transmission is on the draining and
delivery phases where drt = Θ(log n), there exists a con-
stant c5 such that SINRe ≤ c5ψe(n)(r

2
1 log

α n/Pr + r2−α
1 ).

Following Lemma 3, the rate allocated at each cell is
log−α n. Choosing r1 = max (Ω(1),Θ(ψe(n)

1
α−2 )) and Pr =

Θ(ψe(n)r
2
1 log

α n), the secure transmission could be guaran-
teed and secure rate Rs allocated at each cell is Ω( 1

k2 logα n ),

where k = Θ(P
1
α
r ). When ψe(n) = Ω(log

α−2
α n), the per-node

secrecy capacity is bounded by Ω(ψe(n)
− 2

α−2 log−α−3 n).
When ψe(n) = O(log

α−2
α n), we can obtain that the per-node

secrecy capacity is Ω((log n)−(α+1)(1+ 2
α )).

Combining these two cases, we present the following the-
orem which demonstrates the tradeoff between the secrecy
capacity and the tolerable eavesdroppers’ density.

Theorem 3: Consider the wireless network B where le-
gitimate nodes and eavesdroppers are independent poisson
distributed with parameter 1 and ψe(n) respectively, the per-
node secrecy capacity is

λs(n) =

8<
:

Ω( 1√
n
ψe(n)

− 2
α−2 ), ψe(n) = Ω(log

α−2
α n)

Ω( 1√
n
log−

2
α n), ψe(n) = O(log

α−2
α n)

.

(8)

Intuitively, when ψe(n) = o(n−1), the number of eaves-
droppers will be at most 1 w.h.p. according to the weak
law of large numbers. Hence, the secrecy capacity will be
Ω( 1√

n
) with Theorem 2 which is much higher than the

results in Theorem 3. The main reason is that the inequality
f(n)ψe(n) ≥ log4/e n should be satisfied throughout the proof
of Theorem 3. Therefore, the noise generation power should
be Θ(log n) which will degrade the throughput performance.
We re-investigate this problem from another perspective in the
following context.

Lemma 5: When the intensity of the eavesdroppers is
ψe(n) = O(n−β) for any constant β > 0, partitioning the
network into disjoint regions with constant size c and denoting
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Fig. 1: An illustration of both upper bound and lower bound of
secrecy capacity in large-scale networks. The scales of the axes are
in terms of the orders in n.

by Nei the number of nodes inside region i, we have

P (Nei ≤ v, ∀i) = 1,

where v = ⌈ 1
β ⌉+ 1.

Theorem 4: If eavesdroppers are poisson-distributed in the
network with intensity ψe(n) = O(n−β) for any constant β >
0, the per-node secrecy capacity is Ω( 1√

n
).

Remark: Due to the space limit, we only present the basic
idea behind this theorem. There are not enough eavesdroppers
near the receiver according to Lemma 5. And the eavesdrop-
pers far away can not affect the scaling law of secrecy capacity.

B. The Optimality of Our Scheme

Theorem 5: Consider the wireless network B where le-
gitimate nodes and eavesdroppers are independent poisson
distributed with parameter 1 and ψe(n) respectively, the per-
node secrecy capacity is

λs(n) =

(
O( 1√

n
ψe(n)

− 2
α−2 ) ψe(n) = Ω(1)

O( 1√
n
) ψe(n) = O(1)

. (9)

Proof: When the transmission is on the highway, we as-
sume that the concurrent transmission range is k and partition
the network into disjoint subsquares with size k × k. Denote
the two squares with length 3k

4 and length k
4 whose centers

are both at node i as A1i and A2i respectively. Let the region
A1i−A2i be Ai . Denote the number of eavesdroppers located
in Ai as Nei where i ranges from 1 to n

k2 . Since the expectation
of the number of eavesdroppers located in all the regions Ai

is n
2ψe(n), there are at least n

4ψe(n) eavesdroppers in all the
regions Ai when ψe(n) ≥ log4/e n

n according to Lemma 4.
Hence there exists a node i such that Nei will be greater than
k2

4 ψe(n).
Consider a specific eavesdropper j in region i. Since the

minimum distance between eavesdropper j and the eight
closest concurrent transmission is at least k

4 and the next
sixteen is at least 5k

4 , the interference eavesdropper j suffers
from can be bounded as Ij ≤ c6Prk

−α where c6 is a constant.

As is shown in Theorem 1, k should be Ω(P
1
α
r ). The

maximum distance between eavesdropper j and the closest
transmitter is at most 3k

4 . Hence, the SINR received by all the
eavesdroppers in region Ai can be lower bounded by

SINRe ≥
X
j

Sj

N0 + Ij

≥ Nei

( 3k4 )−α

N0 + Ij

≥ c7ψe(n)k
2−α,

(10)

when c7 is a constant.
Since the rate at which each T-R pair can transmit is Θ(1),

we should choose k = Ω(ψe(n)
1

α−2 ) to ensure the secrecy of
transmission. Note that there are k2 cells in each subsquare
taking turn to transmit and each node in the highway should
carry the traffic load of Θ(

√
n) nodes. Hence the per-node

secrecy capacity is O( 1
k2

√
n
) = O( 1√

n
ψe(n)

− 2
α−2 ).
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