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Abstract—Location-aware viral marketing is crucial in modern
commercial applications for attracting customers to certain
Points Of Interests (POIs). Prior works are mainly based on
formulating it into a location-aware influence maximization (IM)
problem in Geo-social Networks (GSNs), where K initial seed
individuals are selected in hope of maximizing the number of
final influenced users. In this paper, we present a first look into
group-level location promotion which can potentially enhance its
performance, with the phenomenon that users belonging to the
same geo-community share similar moving preferences.

We propose GLP, a new and novel framework of group-level
location promotion by virtue of geo-communities, each of which
is treated as a group in GSNs. Aiming to attract more users
to designated locations, GLP firstly carries out user grouping
through an iterative learning approach based on information
extraction from massive check-ins records. The advantage of
GLP is three-folded: i) by aggregating movements of group
members, GLP significantly avoids the sparsity and sporadicity
of individual check-ins, and thus obtains more reliable mobility
models; ii) by generalizing a new group-level social graph, GLP
can exponentially reduce the computational complexity of seed
nodes selection that is algorithmically executed by a greedy algo-
rithm; iii) in comparison with prior individual-level cases, GLP
is theoretically demonstrated to drastically increase influence
spread under the same given budget. Extensive experiments on
real datasets demonstrate that GLP outperforms four baselines,
with notably up to 10 times larger influence spread and 100 times
faster seed selection over two individual-level cases, meanwhile
verifying the impact of group numbers in final influence spread.

I. INTRODUCTION

In viral marketing, location promotion is a newly flourishing
topic in both academia and industry. There has been a variety
of applications of location promotion in our daily lives,
including promoting newly opened restaurants, libraries and
plazas. As the development of Geo-social Networks (GSNs),
which provide a platform where the locations can be added
as the auxiliary information of online posts, users are able to
make check-in records at Points of Interest (POIs) and share
the records with their friends. Many popular online social
networks (e.g., Gowalla, Foursquare and Wechat) can be taken
as the typical examples of GSN since the online posts over
them can be tagged with the location information. Considering
the fact that users are more willing to accept advertisements
propagated from their friends, as the posts being propagated
over the online social networks, a large number of users would
be influenced through the word-of-mouth effect [1]-[4]. Thus
location promotion can be modeled as a kind of location-aware
Influence Maximization (IM) problem. Specifically, given a
Geo-social network G and an integer K, which K seed users

should be selected to maximize the number of users eventually
moving to the promoted location under probabilistic influence
diffusion models [5]-[8]?

Clearly, instead of being mainly affected by the social
relationships between nodes, as is the case for traditional IM
issues, the final influence of a seed set in above location-
aware IM problems also depends on the moving probability
of users to the promoted location. This is because in reality
the users who are geographically close to the promoted POI
are more likely to move to it. Hence, in previous efforts there
are generally two steps in designing location promotion: (1)
Obtaining the moving probability of users to the promoted
location. (2) Designing effective algorithms for the location-
aware IM problem which has been proved to be NP-hard
[2][3][5][9]. Following these two steps, existing studies are
mainly on the individual level, which proposed to compute
moving probability based on users’ individual mobility models
and greedy algorithms are designed to select K individual seed
users [1][2][10]. In contrast, in this paper we claim that it will
be more practical to design location promotion on group level
given the large scale GSNs and sparse individual check-ins
data. Our insight is that users with common properties may
share similar mobility patterns, which naturally lead to the
geo-communities that are widely observed in real situations
[11][12]. One typical example is the mobility pattern of
residents in the same town, where there are multiple common
well-visited locations like residential areas, shopping malls
and churches. Another instance belongs to the students of a
same university, as they may regularly move from halls to their
labs, and from classrooms to restaurants or playgrounds. Thus,
defining the users with similar mobility as a group in GSNs,
we intend to investigate the following group-level location
promotion problem: Given the generalized group-level Geo-
social graph Ggroup , which K groups should be selected
to maximize the final influence of location promotion? By
elevating the location promotion from individual level to the
group level, its performance could be significantly improved
from the following three aspects:

(1) The mobility model on group level is far more
reliable. In reality, each user is unlikely to make check-ins at
every visited location, but instead prefer to make check-ins at
which impresses them [13]. Such selective check-in behaviors
result in the sparsity and sporadicity of individual check-ins,
which brings the unreliability of determining moving probabil-
ity from individual mobilities in step (1). In contrast, on group
level, members of a same geo-community share significant
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regular movements. By aggregating their movements, we can
deal with the sparsity and sporadicity of individual check-ins
and generalize group-level mobility models.

(2) Computational complexity on group level can be
largely reduced. Recall step (2), the state-of-the-art greedy
algorithms are unscalable to very large GSNs due to the
exponential computational complexity [1][2][14]. On group
level, we transfer social graph from individual level to group
level, over which the number of groups can be scaled as
m = log(n) (where n is the number of individuals) in very
large-scale networks [14]. Thus the computational complexity
of solving IM problem on group level can be largely reduced.

(3) Group-level promotion can significantly increase the
influence spreading. On individual level, even though the
selection of K seed users can be completed through efficient
heuristics [3] in step (2), it still remains very challenging to
attract the selected K users to visit the promoted location
where they can make check-ins, e.g., advertising via local
celebrities may be extremely expensive. On group level, a far
larger number of seed users can be convinced through initial
propagation under the same budget.

The following motivated example illustrates the above three
advantages.

Fig. 1: A motivated example

A Motivated Example: Let us consider the case where
there are two groups of users around a newly opened restau-
rant, with residences of a housing estate forming group 1 and
students of a same university being group 2, as illustrated
in Figure 1. The moving probability of the two groups can
be obtained based on the distance from the restaurant to
their well-visited locations, i.e., a nearby library and cinema
respectively. Assuming that the moving probability is same for
the two groups, the objective of step (2) is to select a more
influential one to maximize the number of users eventually
moving to the promoted restaurant. As shown in Figure 1, the
initial propagation for the two groups can be the cinema ad-
vertising and a billboard near the library respectively. The cost
for cinema advertising in North America is roughly $30 per
screen per week [15], while the weekly rental for a billboard is
about $150-$600 [16]. Due to the cost-effectiveness of cinema
advertising, group 1 is selected as seed and the audience of
the cinema are all the potential seed users in the location
promotion process. While on the individual level, the same
budget may only be able to activate a few seed users. Thus
the initial propagation on group level is much more effective
than that on individual level.

Incorporating the three advantages brought by groups, we
propose GLP, a novel framework for the location promotion on
group level. While we defer the details of GLP to later sections
(Sections IV and V), here we briefly summarize its main

ingredients: it firstly designs an iterative approach to mine
geo-communities from massive sparse individual check-ins
data. Since users belonging to a same geo-community spatially
transit among several well-visited locations, we characterize
the common mobility models as Hidden Markov Models
(HMMs). Then the Bayesian Classifier is adopted to group
users sharing similar mobilities under HMMs, thus the reliable
moving probabilities can be extracted from common group-
level mobility models. Jointly considering the intra and inter-
group influences among groups (geo-communities) which refer
to influences diffused among group mates and members of
different groups, we redefine the influences diffusion model
among groups which enables us to efficiently select seed
groups from a generated group-level social graph. Upon prov-
ing that the location-aware IM is still an NP-hard problem
under this new model, we propose a greedy algorithm (GLP)1

that efficiently selects the K seed groups and thus leads to
largely reduced computational complexity in the group-level
graph. Meanwhile, GLP is proved to achieve an approxima-
tion ratio of nearly (1 − 1

e ). Finally, we theoretically prove
that the GLP framework can significantly improve the expected
influence diffusion size compared with that on individual level.
The superiority of GLP is also empirically justified.

Our principle contributions are summarized as follows.
1. We formally introduce a novel framework, GLP, for group-

level location promotion (a location-aware IM problem).
To the best of our knowledge, this is the first study that
designs location-aware IM problem on the group level.

2. We innovatively propose to select well visited locations of
seed groups to conduct initial propagation, which leads to
a larger number of influenced seed users. Furthermore, we
theoretically prove that GLP can drastically improve the
performance of location promotion under the same budget.

3. We empirically evaluate GLP on three real GSNs
(Brightkite, Gowalla and Foursquare) datasets, where GLP
is demonstrated to increase final influence up to 10 times,
along with a node selection that is 100 times faster
than that on individual level. The results also exhibit the
heterogeneous geographical distribution of users, as well
as the effect of such heterogeneous distribution on the
performance of location promotion.

Paper structure: We review related studies in Section II.
The problem is formulated in Section III. In Section IV,
we introduce the approach for mining geo-communities and
computing group-level moving probability. In Section V, we
investigate the group-level location promotion algorithm. We
evaluate our framework on real-life GSNs data in Section VI
and conclude the paper in Section VII.

II. RELATED WORK

(1) Location-aware influence maximization. In general,
location promotion can be formulated as a location-aware IM
problem that has been widely studied in recent years. In [1],
each user is supposed to stay at a fixed location. Given a
specific area R, the authors design to select K seed users

1Throughout the paper, GLP refers to the proposed framework while GLP
means the proposed algorithm under the GLP framework.
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in order to maximize the influence spread to users stay in R.
However, for location promotion, it is difficult to determine the
appropriate target area around the promoted location. In [10],
the authors proposed a distance-based location distribution
and validate its effectiveness in describing users’ moving
probabilities by experimental results. The major shortcoming
of this model is that it does not consider the social relations
among users. In [2] and [3], the authors adopted distance-
based location distribution to describe moving probability
and simultaneously consider social relations among users. [3]
calculates the influence of each user on their social neighbors
and simply chooses K users with highest direct influence,
while [2] adopts the bound based pruning strategies and
achieves an approximating ratio of β(1− 1

e ).
(2) Group/community based influence maximization.

Community, as a prevalent social network structure, refers to
a group of users formed with similar social properties (e.g.,
students of the same university). Eftekhar et al. [14] and Lu
et al. [17] proposed to select K groups/communities to maxi-
mize the influence diffusion in online social networks without
considering users’ locations. [14] also proved that solving IM
problem on group-level graph can achieve better performance
and higher speed comparing with that on individual level. Xiao
et al. [18] and Fan et al. [19] found that members of a same
group frequently visit common locations and the groups can
be tagged by locations, i.e., geo-community. [18] and [19]
focus on designing the routing algorithms for transmitters to
fast spread information among groups.

We note that all the existing works on location promotion
are focused on individual level. Besides, existing group-based
IM models are based on predefined groups in online social
networks and neglect the offline moving probability, and fail
to be directly applied to the case of location promotion. In
this paper, we conduct the first study for taking advantages of
geo-communities to fundamentally improve the performance
of location promotion on group level.

III. PRELIMINARIES

A. Individual-Level Location Promotion
For a clearer representation of the group-level case of

interest, we start from introducing the individual-level loca-
tion promotion, which has been previously formalized as a
location-aware Influence Maximization (IM) problem over a
Geo-Social Network (GSN) G = (V,E), where V and E
respectively denote the set of nodes and edges. Recall that
traditional studies on individual level characterize the location
promotion process by the location-aware Independent Cascade
(IC) model with multiple steps [1]-[3]. Concretely, at step 0, a
set Sin of seed users make check-ins at the promoted location
L and share them over GSNs. The users who are convinced
by the check-ins and then moving to location L are tagged as
influenced. If user ui is first influenced at step s, the check-ins
made by him will influence his social neighbor uj at and only
at step (s+ 1) successfully with probability Iij . The process
converges when there is no newly influenced user.

Under the above location-aware IC model, the individual
influence of user ui on user uj (i.e., Iij) is divided into two
stages: (1) online stage, where ui convinces uj through the

check-in records in GSNs; (2) offline stage, where uj moves to
the promoted location L after having been convinced online.
Concretely, in stage (1), the online influence is modeled by
the traditional IC model [3][5][14], which specifies that when
user ui is influenced, he has a single chance to influence his
friend uj successfully with probability wij . wij is the weight
of the directed edge from ui to uj and is independent of the
influence diffusion process. In stage (2), how uj moves to the
promoted location is characterized by the moving probability
which decreases with the distance from his historical check-in
locations to the promoted location L [1]-[3], i.e., PLj . Thus the
influence of ui on uj in the individual-level location promotion
can be defined as:

Definition 1. (Location-aware individual influence.) The in-
fluence of user ui on uj in location promotion is equal to:

Iij = wijP
L
j ,

where PLj is the moving probability of uj to the location L.

Remark. In the formulation of the location-aware individ-
ual influence as defined in Definition 1, the influence from
the friend ui (denoted by wij) and the moving probability
(denoted by PLj ) respectively correspond to the influences on
the online and the offline stages. The influence from the friend
ui is propagated online via the posts shared over the GSNs,
and whether or not the user uj could be convinced by the
posts is independent of his offline state. Then in the case that
the user uj is convinced by the posts shared by his friend ui
online, he would decide whether to visit the promoted location
according to his offline state. Thus we treat the influences
on the two stages as independent events, and formulate the
location-aware individual influence Iij as Iij = wij ∗PLj . The
same formulation of the location-aware individual influence is
also adopted in [2][3].

Let I(Sin, v) denote the expected probability that a set of
users Sin successfully influence user v under the location-
aware IC model. The goal of individual-level location pro-
motion is to select a set Soptin with size K to maximize the
influence over G, i.e.,

Soptin = argmaxSin⊆V
∑
v∈V

I(Sin, v), |Sin| = K.

However, as noted in Section I, the inherent sparsity and
sporadicity of individual check-ins brings unreliability to the
moving probabilities of individual users (i.e., PLj ). Besides,
the task of selecting and activating seed users suffers from
the limitations such as low efficiency and the high cost in
seeding individual users. Hence, to fundamentally improve the
performance of location promotion, in this paper, we focus on
a novel group-level location promotion that takes advantages
of the widely existing phenomenon of geo-communities. Par-
ticularly, modeling each geo-community as a group in GSNs,
we can obtain the reliable moving probabilities by aggregating
the users sharing similar mobility models. Based on that, the
limitations incurred by the individual cases can be potentially
tackled over the group-level GSNs. The rationale behind is that
conducting initial propagation at well-visited locations of geo-
communities can influence much more seed users and resolv-
ing location-aware IM problem on group-level GSNs is of high
efficiency. Given the definitions and formulation of individual-
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TABLE I: The summary of Notations
Notation Meaning

G = (V,E) Individual-level social graph
Ggroup = (G,B) Group-level social graph

si,h The h− th steady state of group gi
Pgi Moving probability of users in group gi
Bij weight of edge from group gi to group gj
ρi closeness of groupgi
Sk the selected seed groups set after kth iteration

I(gi, gj) Influence of gi on gj

I(g|Sk, v)
marginal influence of group g on group v under
selected seed set Sk

M(gi|Sk)
marginal influence of group gi on whole network
under selected seed set Sk

Fig. 2: The framework of GLP

level location promotion, in the sequel, we will elaborate on
the formulation of group-level location promotion.

B. Group-level Location Promotion
In group-level location promotion, we consider the influ-

ences among groups instead of individual users. Different from
that of individuals, the state of a group cannot be simply tagged
by a binary variable, i.e., influenced or uninfluenced. Thus we
quantify the state of groups, as well as the influences among
groups, by percentages of influenced members. Specifically,
the influence of group gi on gj is the aggregating location-
aware individual influences of group gi’s members on gj’s,
and the influenced fraction of gj is denoted by I(gi, gj).
Particularly, I(gi, gi) is the fraction of gi’s own influenced
members, and I(S, v) is the influence of a set S of seed groups
on group v. Based on the influences among groups, the goal of
group-level location promotion over a given GSN is formally
stated as follows.

Problem Statement: The objective of group-level location
promotion is to select a set of K seed groups, i.e., Sopt to
maximize the number of influenced members in all groups:

Sopt = argmaxS⊆G
∑
v∈G

I(S, v)Nv, |S| = K, (1)

where G is the set of all groups in the given GSN, and Nv is
the size of members in group v.

Table I summarizes the notations that will be frequently
used throughout the paper. Here we note that raw input for the
group-level location promotion is social relations and check-
ins of individual users. However, it still remains unknown
which users are the members of a same geo-community
(group) and what the mobility model of each group is. Besides,
the formulations of I(gi, gj) and I(S, v) depend on how
influences diffused among groups and remain unknown as
well. Such unknown factors provide obstacles for resolving
the problem in Eqn. (1). In the present work, we thus propose
a novel group-level location promotion (GLP) framework to
systematically resolve the difficulties above.

For ease of understanding, we present an overview of our
proposed GLP framework, as illustrated in Figure 2. The input
of GLP is the check-ins data of individual users, which record
their historical locations, and the social relations among them.
As shown in Figure 2, an iterative learning framework is firstly
proposed to mine geo-communities, which are modeled as
groups in GLP, from massive check-ins data. By aggregating
the individual mobilities and influences of group members,
we can obtain the group-level moving probabilities and social
graph respectively. Then a set of seed groups is selected
to maximize the expected number of users moving to the
promoted location.

In next section, we will first illustrate how to mine geo-
communities and determine group-level moving probabilities
from massive check-ins data.

IV. GROUP-LEVEL MOVING PROBABILITY

In this section, we first illustrate how to mine geo-
communities from massive check-ins data, and then utilize the
learnt mobility models and group membership to compute the
group-level moving probability.

A. Learning Mobility Model
In daily activities, users may be driven to move both by

social and spatial factors [11][20] and thus there are multiple
states in their mobility models, e.g., students studying on cam-
pus (state s1) sometimes go shopping on a commercial street
(state s2). For the mobilities of users, the observing values are
users’ check-in records (e.g., a post at a restaurant published
on Facebook), and the states behind them are unobservable.
Furthermore, the next state of a user depends on the previous
one (e.g., students in classrooms will move to a restaurant after
class). Therefore, we model group-level mobilities as Hidden
Markov Models (HMMs), in which the state of users can be
characterized as hidden contextual variables (e.g., studying,
having dinner and exercising) [21][22]. Each state has a
spatial probability distribution to generate check-in locations,
describing the location distribution of users in a given state.
[21] assumes check-in locations are generated from a bivariate
Gaussian, while it is difficult to approximate the integrating
area around the promoted location for computing moving
probability. [10] and [13] find that the probability of moving
from one location to another is proportional to negative
power of the distance between them, i.e., p ∝ ∆l−α. Such
probability decay of moving distance enables us to estimate
the moving probabilities of users based on distances from
their well-visited locations to the promoted location. Thus we
adopt the distance-based Pareto distribution as the generating
distribution of each state:

p(∆l) =
τ

(∆l + ε)τ+1
(ε ≥ 1, τ > 0), (2)

where ∆l is the distance to the core location of a given state.
[10] also experimentally proves that the distance-based Pareto
distribution can effectively model moving probability because
of the self-similar properties of movements distance in GSNs.
Based on such distribution, we define the group-level mobility
model as below.
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Definition 2. (Group-level mobility model.) The group-level
mobility models are formulated as HMMs with H latent
states. An H-dimensional vector π defines the steady state
distribution of the H states and an H × H matrix A de-
fines the transition probabilities among them. Given a user
in state sh, his check-in location l is generated based on
p(l|sh) = τ

(||l−l̃h||2+ε)τ+1
, where l̃h is the core location of

state sh.

l l
Nll

p l s p l s p l s N Np l s

l l l Nl

S S S
NS

Fig. 3: Framework of Group-level mobility model

Now we introduce how to learn group-level mobility models
and mine geo-communities from massive check-ins data. A
geo-community is formed as a group in GSNs, and each
group gi has a HMM based mobility model with H latent
states, i.e., πi = {si,1, si,2, . . . , si,H}. According to Definition
2, each HMM has a shaping parameter τ that represents
the moving preference of group members, and each state
respectively has a core location l̃h, e.g., a shopping mall in
the commercial street. Hence, the parameter space for a HMM
is Θ = {π,A, l̃, τ}, where π is the steady distribution of
states in Πi and l̃ = {l̃1, l̃2, . . . , l̃H} is an H-dimensional
vector which contains the H core locations of the H states.
Let V =

{
u1, u2, . . . , u|V |

}
denote the set of users. The

input for mobility models learning is check-ins of individual
users in V , and N consecutive check-ins locations of a user
constitute a trajectory, i.e., lr = {lr,1, lr,2, . . . , lr,N} with the
corresponding latent states being Dr = {sr,1, sr,2, . . . , sr,N}.
The framework of the group-level mobility model over a given
trajectory is shown in Figure 3. We use Tu to denote user
u’s trajectories set, where each trajectory lr consists of N
consecutive check-in locations. Given the number of check-
ins of user u is Nu, we set the number of his trajectories
as floor(N

u

N ) (floor(·) is the Integer-valued function) and
|Tu| = floor(N

u

N ).
Given the trajectories of all users, the geo-communities min-

ing is to iteratively train the parameters in HMMs and group
users based on the posterior probability of their trajectories
under each HMM. Specifically, in every loop, we first train the
HMM for each group based on the Expectation-Maximization
(EM) algorithm, then adopt the Bayesian Classifier to refine
membership vectors which are probabilities of users belonging
to each group, i.e., p(gi|u) under the refined parameters Θi.
Notably, the initial parameters Θ of each HMM and initial
membership vectors in every loop are set to those learnt from
the last loop to make sure the learning process finally converge.
The detail of each module is presented as below.

Initialization: The membership vector for each user u is
randomly generated under the condition that

∑
gi∈G p(gi|u) =

1. Then, for ∀gi ∈ G, we randomly initialize the parameters
Θi for the HMM-based mobility model.

EM Algorithm: The objective in the (t + 1)-th iteration
of the EM algorithm for training Θ of a group g is to
maximize the log likelihood under parameters learnt in the

t-th iteration, i.e., Θt+1 = argmaxΘ Q(Θ|Θt). The objective
function Q(Θ|Θt) in the (t+ 1)-th iteration is

Q(Θ|Θt) =

R∑
r=1

∑
Dr

wrP (Dr|lr, Θt) · ln p(sr,1) (3)

+

R∑
r=1

∑
Dr

N∑
n=2

wrP (Dr|lr, Θt) · ln p(sr,n|sr,n−1) (4)

+

R∑
r=1

∑
Dr

N∑
n=1

H∑
h=1

wrP (Dr|lr, Θt)δ(sr,n, h) · ln p(lr,n|sr,n), (5)

where wr is the mixture coefficient of lr depends on the prob-
ability of the user of lr belonging to group g (

∑R
r=1 wr = 1),

R is the total number of trajectories, and δ(sr,n, h) = 1 holds
only when sr,n = h. The derivation of Q(Θ|Θt) and updating
rules in M-step can be deferred to Appendix.

E-step: To maximize Q(Θ|Θt), the E-step is to compute
P (Dr|lr, Θt), which is the distribution of latent states in
r-th trajectory under parameters Θt learnt in last iteration.
To this end, we first use Baum-Welch algorithm to compute
two distributions, i.e., α(sr,n) = P (lr,1, lr,2, . . . , lr,n, sr,n|Θt)
and β(sr,n) = P (lr,n+1, lr,n+2, . . . , lr,N |sr,n, Θt). Based on
α(sr,n) and β(sr,n), we compute the following two variables
of the r-th trajectory: (1) γ(sr,n) = p(sr,n|lr, Θt) and (2)
ξ(sr,n−1, sr,n) = p(sr,n−1, sr,n|lr, Θt). Then in M-step that
maximizes the objective function Q(Θ|Θt), new parameters
Θt+1 are refined with γ(sr,n) and ξ(sr,n−1, sr,n). The formu-
lations for α, β, γ and ξ can be deferred to Appendix.

M-step: In the M-step, the updating rule for parameters in
the (t+ 1)-th iteration Θt+1 is given by

πt+1
h =

R∑
r=1

wrγ(sr,1 = h), (6)

at+1
ij =

∑R
r=1

∑N
n=2 wrξ(sr,n−1 = i, sr,n = j)∑R
r=1

∑N−1
n=1 wrγ(sr,n = i)

, (7)

l̃ t+1
h =

∑R
r=1

∑N
n=1 wrγ(sr,n = h)lr,n∑R

r=1

∑N
n=1 wrγ(sr,n = h)

, (8)

τ t+1 =

∑R
r=1

∑N
n=1

∑H
h=1 wrγ(sr,n = h)∑R

r=1

∑N
n=1

∑H
h=1 wrγ(sr,n = h) ln(||lr,n − l̃h||2 + ε)

.

(9)

Bayesian Classifier: In every loop, we suppose the EM
algorithm for training each HMM continues to the (T + 1)-th
iteration. After obtaining the refined parameters in (T + 1)-th
iteration ΘT+1, we adopt the Bayesian classifier to compute
the probability that users belong to each group p(gi|u,ΘT+1

i ).
Based on the Bayesian theory, we have

p(u|gi;ΘT+1
i ) =

|Tu|∏
r=1

p(lur |gi, ΘT+1
i ),

where p(lur |gi, ΘT+1
i ) =

∑H
h=1 α(sr,N = h|gi, ΘT+1

i ),
and the probability that u belongs to gi is
p(gi)p(u|gi;ΘT+1

i )/p(u). Here, p(gi) is the prior probability
of group gi, which is computed based on p(gi|u) in
previous loop, i.e., p(gi) =

∑
u∈V p

last(gi|u)/|V |, and
p(u) =

∑|G|
i=1 p(gi)p(u|gi, Θ

T+1
i ) is the normalization divisor

in the computation. Thus the probability of a user belonging
to group gi can be updated as
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p(gi|u) =
p(gi)p(u|gi;ΘT+1

i )∑|G|
i=1 p(gi)p(u|gi, Θ

T+1
i )

.

Then, we update wr of each trajectory for each group and
enter next loop until p(gi|u)(gi ∈ G, u ∈ V ) converges or the
learning process reaches preset loop times. Completing the
learning process, we obtain the mobility model of each group
which is an HMM parameterized by Θ = {π,A, l̃, τ}. At the
same time, users are grouped by their membership vectors
p(gi|u)(gi ∈ G), i.e., user u belongs to group gi with the
probability p(gi|u), belongs to group gj with the probability
p(gj |u), and so on.

B. Computing Moving Probability

From the learnt group-level mobility models, we extract the
state matrix for each group,

gsi =

[
πi,1 πi,2 . . . πi,H
l̃i,1 l̃i,2 . . . l̃i,H

]
, 1 ≤ i ≤ |G|.

The state matrix represents the steady-state distribution of the
members belonging to a geo-community, and the correspond-
ing core location of each state. The membership vector of
group gi is the probability of each user belonging to it, i.e.,
gmi = {p(gi|u)}, u ∈ U . The number of members in each
group is Ngi =

∑
u∈U pu,i, where pu,i = p(gi|u) denotes

the probability of user u belonging to group gi. Based on the
above parameters of each group, we can determine the moving
probability of their members as follows.

Group-level moving probability. The mobility model of a
geo-community lies on an HMM with steady distribution be-
ing {πi,1 πi,2 . . . πi,H}. Under the distance-based movements
distribution in Eqn. (2), the probability of users starting from
state si,h to the promoted location L, i.e., P (L|si,h) decreases
with the distance between L and the core location li,h, i.e.,
||L − l̃i,h||2. Notably, if a user in state si,h tends to move a
larger distance than that between his location to the promoted
location L (i.e., ||L− li,h||2), there is a higher chance that he
is willing to move a distance equal to ||L − l̃i,h||2 and visit
location L. Hence, the moving probability of users in state
si,h is equivalent to the probability that users moves a farther
or a same distance of ||L− li,h||2, i.e., P (∆l ≥ ||L− li,h||2).
Thus the moving probability P (L|si,h) in state si,h is given
by

P (L|si,h) =

∫ ∞
||L−li,h||2

τ

(x+ ε)τ+1
dx =

1

(||L− li,h||2 + ε)τ
.

Under the HMM based mobility model, the group-level mov-
ing probability defined in Definition 3 is determined as the
expectation of moving probability in each steady state.

Definition 3. (Group-level moving probability.) The moving
probability of members in group gi to the promoted location
L can be formulated as Pgi =

∑H
h=1 πi,hP (L|si,h), where

P (L|si,h) is the moving probability in state si,h.

The group-level moving probability of a geo-community
quantifies the possibility of its members moving to the pro-
moted location after having been convinced by check-ins of
their social neighbors. By modeling each geo-community as a
group in the GSN, group-level location promotion focuses on

selecting K seed groups to maximize the influence of loca-
tion promotion among groups under the group-level moving
probabilities as shown in Eqn. (1), whose solution is detailedly
studied in the following section.

V. GROUP-LEVEL LOCATION PROMOTION

In this section, we investigate the solution for group-level
location promotion problem in Eqn. (1). On the basis of the
mined geo-communities, location promotion is elevated from
individual level to group level by modeling geo-communities
as groups in GSNs. However, the problem of selecting K seed
groups is still NP-hard, as proved in Lemma 1.

Lemma 1. Finding a set of K seed groups SK ⊆ G
that has the maximum influence on the whole network (i.e.,∑
v∈G I(SK , v)Nv) among all the subsets of G with size K is

an NP -hard problem.

Proof. We first consider an instance of the NP-hard set cover
problem. Given a universal U = {x1, x2, . . . , xn} and a
collection C = {C1, C2, . . . , Cm} of subsets of the universal
U , the goal of the set over is to determine whether there is a
cover S ⊂ C of size K whose union equals U . We then show
that the group-level location promotion problem in Lemma 1
can be concluded as the set cover problem.

We construct a corresponding bipartite graph T . The left
part of T is m nodes representing the subsets in collection C,
and the right partition consists of the elements in universal U .
Here, we set n = |G|, and U represents the set of groups in
Ggroup (i.e., U = G). There exist an edge with weight 1 from
Cj to xi whenever xi ∈ Cj . The set cover over T is equivalent
to finding a set of K nodes in T who can finally influence
(K+n) nodes over the bipartite graph T under condition that
both the moving probability and the size of each group equal
1. Since the set cover problem is NP-hard, the group-level
location promotion problem in Lemma 1 is NP-hard.

For effectively solving the above NP-hard problem, the seed
selection in our proposed Group-level Location Promotion
framework (GLP) is conducted over the group-level GSNs,
which takes each group (geo-community) as a node in its cor-
responding graph. However, the formulation of the influences
among groups (i.e., I(S, v) in Eqn. (1)) still remains to be
derived. To tackle the issue, in the sequel, we first show how
the influences are diffused over the group-level graph and then
present the formulation of influences among groups.

A. Graph Structure in GLP
GLP is designed over a group-level social graph, in which

each node represents a group of users. Different from that
in individual-level graphs, the state of a node in influence
diffusion cannot be simply defined as influenced or uninflu-
enced. We shall define the state of a node as the percent
of its influenced members and the influence among nodes is
also measured as percents. In location promotion, members
of a group are both influenced by their group mates (intra-
group influence) and members of other groups (inter-group
influence). Specially, the intra-group influence depends on the
closeness of gi.
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Fig. 4: The sketch of GLP

Definition 4. The closeness of group gi can be expressed as

ρi =

∑
m,n∈gi wmnpn,i

Ngi
,

where pm,i is the probability that user m belongs to group gi,
Ngi is the number of members in gi. wmn is the individual
influence of user m on user n under IC model.

The closeness ρi quantifies that given the newly influenced
fraction of gi’s members in step s, what percentage of gi’s
members can be expectedly influenced in step (s + 1). In
addition, the inter-group influence, which is the aggregating
influence of a group’s members on others, depends on the
weights of edges among groups as defined in Definition 5.

Definition 5. The weight of the edge from group gi to group
gj in group-level location promotion is

Bij =
B{gi − gj , gj − gi}+B{gi ∩ gj}

Ngj
,

where gi ∩ gj denotes the users concurrently belong to
group gi and gj , gi − gj denotes those who belong to
group gi while do not belong to group gj , B{gi − gj , gj −
gi} =

∑
m∈gi−gj ,n∈gj−gi wmnpn,jPgj , and B{gi ∩ gj} =∑

m∈gi∩gj pm,j .

In Definition 5, we consider the following two cases:
(1) m ∈ gi − gj , n ∈ gj − gi: The condition for user m
successfully influencing user n is: m belonging to gi makes
a check-in record at L and the record convinces n through
GSNs, then n belonging to gj moves to location L after
been convinced. Hence, in this case, the aggregating influence
B{gi − gj , gj − gi} =

∑
m∈gi−gj ,n∈gj−gi wmnpn,jPgj/Ngj .

(2) m ∈ gi∩gj : In case that a user m simultaneously belonging
to group gi and gj is influenced, then a pm,j/Ngj fraction of
members in gj is certainly influenced. Thus in this case, the
aggregating influence is proportional to the number of mem-
bers in both groups, i.e., B{gi ∩ gj} =

∑
m∈gi∩gj pm,j/Ngj .

Combining the above two cases, the influence of group
gi on gj is equal to Bij =

B{gi−gj ,gj−gi}+B{gi∩gj}
Ngj

, which
quantifies that given the influenced fraction of gi’s members,
what percentage of gj’s members can be expectedly influenced
in the diffusion from gi to gj .

In summary, we transfer the social graph from the individual
level, i.e., G = (V,E) to the group level, i.e., Ggroup =
(G,B), where G denotes the set of all groups and B denotes
the set of edges among them. The nodes (groups) in Ggroup
have four key attributes: state matrix gs, membership vector
gm, moving probability Pg and closeness ρ.

Over the group-level graph Ggroup, Figure 4 shows a

mini technical example of group-level location promotion.
There is a network of three nodes in Figure 4, each node
represents a geo-community that has three steady states (i.e.,
si,s, 1 ≤ i ≤ 3, 1 ≤ s ≤ 3), and Pgi(1 ≤ i ≤ 3) denotes
the group-level moving probability of group gi(1 ≤ i ≤ 3).
For group g1 and g2, B1,2 and B2,1 respectively represent
the weight of edge from g1 to g2 and that from g2 to g1.
The goal of GLP in this mini example is to select a group
who can maximize the influences among the three networks
and one of its three core locations is selected for conducting
initial promotion. In following context of the section, we will
illustrate the formulation of influences among groups and then
design the seed groups selection algorithm in the general cases.

B. Formulation of Group-level Influence
Now, we proceed to give the formulation of influences

among groups over the group-level graph (i.e., I(S, v) in Eqn.
(1)). We first show the case when |S| = 1, and then extend it
to general values.

1) Influence of a single seed group.: For a selected seed
group, we first consider the intra-group diffusion among group
mates after the initial propagation. Similar to the influence
process under classical IC model, the intra-group influence is
also characterized by steps. Due to the budget constraints, we
assume that only one steady state is chosen for conducting
initial propagation to a seed group. If group gi is chosen as a
seed group, the core location l̃∗i,h = argmax πi,h · P (L|si,h)
is chosen as the initial propagation location. Then the initial
influenced fraction of gi in step 0 can be given by

qi = π∗i,hP (L|s∗i,h)p,

where p is the probability that initial propagation can convince
a user. Recall the motivated example shown in Fig. 1, the
cinema is selected as the site for the initial propagation,
and thus, the π∗i,h and the P (L|s∗i,h) respectively denote
the steady-state probability of users around the cinema and
the probability of users in this steady state moving to the
promoted location. Since the cinema can consistently give
influence, the fraction of users who are activated by the initial
propagation is estimated as qi = π∗i,hP (L|s∗i,h)p. Then in the
subsequent steps of the IC model, the influence diffusion is
via the check-ins shared over the GSNs where each user only
has one single chance to influence their inactivated friends.
The subsequent steps of the intra-group influence diffusion is
concretely presented as follows.

In step 1, the fraction qi of group members move to the
promoted location L and make check-ins records there. Then
these records spread through GSNs and activate the intra-group
propagation, which leads to an expected fraction of qiρiPgi
additional influenced members. Then in step 2, the fraction
of qiρiPgi newly influenced members will further incur an
additional fraction of qi(ρiPgi)2 influenced members in gi.
Accordingly, we obtain the final influenced fraction of the seed
group gi through intra-group propagation:

φ0
i =

∞∑
n=0

qi(ρiPgi)
n =

qi
1− ρiPgj

. (10)

Now, we consider the influence of the seed group on the
other groups. Since the seed group gi has a fraction of φ0

i
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influenced members, the aggregating influence of this fraction
of members on group gj is φ0

iBij . The fraction of φ0
iBij is

the initial influenced fraction of group gj , and such influenced
members will activate intra-group propagation in group gj with
steps as well. Similar to Eqn. (10), the influence of group gi
on group gj is given by

I(gi, gj) =

∞∑
n=0

φ0
iBij(ρjPgj )

n =
φ0
iBij

1− ρjPgj
. (11)

In GLP, the influence of the seed group on the whole
network is the sum of its own influenced members, i.e.,
φ0
iNgi and the influence it has on all the other groups,

i.e.,
∑
gj∈G\gi I(gi, gj)Ngj . Hence, if group gi is selected as

the single seed group, its influence on the whole network is

M(gi) = φ0
iNgi +

∑
gj∈G\gi

I(gi, gj)Ngj . (12)

Thus when K = 1, the idea of selecting seed group is to find
the group with the maximum influence on the whole network,
i.e., : s1 = argmaxgi∈GM(gi).

2) Influence of a set of K(K > 1) seed groups.: We consider
a set of K seed groups, i.e., SK = {s1, s2, . . . , sK}. For one
of the groups s in SK , its influence on itself is I(s, s) =
φ0
s, and the influence it has on one of the other groups v is
I(s, v) =

φ0
sBsv

1−ρvPv . To compute the influence of the seed set
SK on any group in G, we need to consider the intersections
of seed groups’ influence on a same group. Thus the influence
of seeds set SK on one of the groups in G is given by

I(SK , v) =

K∑
i=1

(−1)i−1
∑

n1,...,ni:
1≤n1<···<ni≤i

i∏
m=1

I(snm, v) (13)

= 1−
∏
s∈Sk

(1− I(s, v)). (14)

For Eqn. (14), taking K = 2 as an example, we have
I(S2, v) = I(s1, v) + I(s2, v) − I(s1, v)I(s2, v). Similar to
Eqn. (12), the influence of SK on the whole network is equal
toM(SK) =

∑
gj∈G I(SK , gj)Ngj . Thus the idea of selecting

a seeds set with size K is to maximize the influenceM(SK),
i.e., SK = argmaxS⊆G

∑
v∈G I(S, v)Nv, |S| = K, which is

algorithmically elaborated as follows.

C. Algorithm of Seed Group Selection

1) Algorithm design. Based on the influences among groups
as illustrated above, we proceed to present our group-level
location promotion algorithm GLP whose pseudo code is
shown in Algorithm 1. The input for GLP includes the learnt
groups set G, the state matrices gs, the transition probability
matrices A and the membership vectors gm of each group.
Overall, GLP is composed of both offline and online phases.
In the offline phase, GLP computes another two key attributes
for each group to generate the group-level graph Ggroup, i.e.,
Pgi and ρi, and the weight of edges among groups, i.e., Bij . In
the online phase, GLP greedily selects K seed groups through
K iterations. In the (k + 1)-th iteration, the selecting rule is
maximizing the marginal influence under the having been se-
lected seed groups Sk, i.e., sk+1 = argmaxgi∈G\SkM(gi|Sk).
At last, the output of GLP is the seed groups set with a size

of K. In lines 17-19, the marginal influence of seed groups in
each iteration is computed as follows.

Algorithm 1: GLP
Input: group set G, group state gsi , transition probability

Ai, promoted location L, group membership gmi ,
individual graph G = (V,E);

Output: S: K seed groups set
1 // Offline-Precomputing
2 for each gi in G do
3 Compute Pgi (Theorem 3) and ρi(Definition 4) ;
4 end
5 for each group couple (gi, gj) in G do
6 Compute Bij for group couple (gi, gj) (Definition 5);
7 end
8 // Online-Searching
9 Initialize seed set S = Φ;

10 for k : 1 to K do
11 for each v ∈ G do
12 I(Sk, v) = 1−

∏
s∈S(1− I(s, v));

13 end
14 for each g ∈ G\Sk do
15 M(g|Sk) = 0;
16 for each v ∈ G do
17 I(Sk ∪ g, v) = 1−

∏
s∈Sk∪g(1− I(s, v));

18 I(g|Sk, v) = I(Sk ∪ g, v)− I(Sk, v);
19 M(g|Sk) =M(g|Sk) + I(g|Sk, v)Nv;
20 end
21 end
22 sk = argmaxg∈G\SkM(g|Sk);
23 Sk = Sk ∪ sk;
24 end
25 return seed set SK .

Marginal influence. If group gi is selected as the seed
group in the (k+1)-th iteration, its marginal influence on any
group v is I(gi|Sk, v) = I(Sk ∪ gi, v) − I(Sk, v). For itself,
the initial propagation can bring a fraction of φ0

i influenced
members. Since there are a fraction of I(Sk, gi) members that
have been influenced by Sk, its marginal influence on itself
can be expressed as

φ0(gi|Sk) = φ0
i − φ0

i · I(Sk, gi). (15)

Now, we consider its marginal influence on other groups.
Assuming gi is added to the seed set, the influence of the
new seed set Sk ∪ gi on one of the groups in G is given by

I(Sk ∪ gi, v) = 1−
∏

s∈Sk∪gi

(1− I(s, v)). (16)

Thus the marginal influence of gi on any other group in G
is equal to I(gi|Sk, v) = I(Sk ∪ gi, v) − I(Sk, v). Similar to
Eqn.(12), the marginal influence of gi on the whole network
can be given by

M(gi|Sk) = φ0(gi|Sk)Ngi +
∑

gj∈G\gi

I(gi|Sk, gj)Ngj .

The idea of finding the (k + 1)-th seed group is to select the
group with maximum marginal influence on the whole network
under seed set Sk. Consequently, the (k+1)-th seed group is:
sk+1 = argmaxgi∈G\SkM(gi|Sk).

Remark. As shown in GLP , we only consider the direct
influence (single hop) of seed groups. The reason behind
is that the uninfluenced fraction of each group dynamically
and randomly changes in the influence diffusion process,
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which hinders us from accurately determining the influence
of seed groups if multi-hop diffusion is considered. However,
in the group-level location location promotion, we prove that
the influence on a group through multi-hop diffusion can
be approximated by the direct influence within a factor of(

1−Θ
(

1
∆lτ log2 n−1

))
, as stated in Lemma 2. Here, ∆l

scales the distance from well-visited locations to the promoted
location L, and n equals the number of individual users in G.

Lemma 2. In the group-level location promotion, the direct
influence of seed groups is a tight lower bound of the influence
through multi-hop diffusion with an approximating ratio of
more than

(
1−Θ

(
1

∆lτ log2 n−1

))
.

Proof. In group-level location promotion, the influence of seed
groups through multi-hop diffusion can be approximated by
the direct influence. Without loss of generality, we take the
first seed, i.e., S1 = {gi} as an example. Based on Eqn.(11),
the direct influence of gi on other groups is I(gi, gj) =
φ0
iBij

1−ρjPgj
, gj ∈ G\gi. Then the newly influenced members in

these groups will attempt to influence inactive members in gi
through the second hop. The marginal influence of such groups
on gi through the second hop is given by

I(gj |gi, gi) =
I(gi, gj)(1− φ0

i )Bji
1− ρiPgi

.

We set Z = G\gi, based on Eqn.(13), we have

I(Z|gi, gi) =

|G|−1∑
h=1

(−1)h−1
∑

n1,...,nh:
1≤n1<···<nh≤h

h∏
m=1

I(znm|gi, gi)

≤
∑
gj∈Z

I(gj |gi, gi) ≤ (|G| − 1)I(v|gi, gi),

where I(v|gi, gi) = maxgj∈Z I(gj |gi, gi). Since the direct
influence on gi equals φ0

i , we have

I(Z|gi, gi)
φ0
i

≤ (|G| − 1)I(v|gi, gi)
φ0
i

=
(|G| − 1)(1− φ0

i )

(1− ρvPv)(1− ρiPgi)
·
(
BivBvi −

B2{gi ∩ gj}
NgiNv

)
. (17)

Since |G| ≤ Θ(log n) (n is the number of individual users and
|G| = Θ(log n) only occurs in very large networks) [14], and
we use B′iv as the abbreviation of B{gi − v, v − gi} and B′′iv
as the abbreviation of B{gi ∩ v}, then Eqn.(17) becomes

Eqn.(17) = Θ(logn) · B
′
ivB
′
vi +B′′iv(B′iv +B′vi)

NgiNv

=
Θ(logn)

{
Θ( n

log3 n∆lτ
)2 + Θ( n

log2 n
)Θ( n

log3 n∆lτ
)
}

Θ( n2

log2 n
)

= Θ

(
1

∆lτ log2 n

)
.

For the influence on gi through next |G| − 2 hops, since the
inactive fraction of group gi is less than (1 − φ0

i ), the upper
bound of the influence of group gi on itself is expressed as

I(gi, gi)

<φ0
i + φ0

i ·Θ
(

(∆lτ log2 n)−1 + · · ·+ (∆lτ log2 n)−(|G|−1)
)

=φ0
i + φ0

i ·Θ
(

(∆lτ log2 n)−1(1− (∆lτ log2 n)−(|G|−1))

1− (∆lτ log2 n)−1

)

<φ0
i + φ0

i ·Θ
(

1

∆lτ log2 n− 1

)
.

Thus the upper bound of I(gi, gi) is

IU (gi, gi) = φ0
i + φ0

i ·Θ
(

1

∆lτ log2 n− 1

)
.

As IU (gi,gi)−φ0
i

φ0
i

= Θ
(

1
∆lτ log2 n−1

)
� 1, the influence

through the next |G| − 1 hops is much smaller than direct
influence. Therefore, the direct influence of seed groups is an
tight lower bound of their influence through multi-hop with an
approximating ratio more than

(
1−Θ

(
1

∆lτ log2 n−1

))
.

2) Performance analysis. Based on the approximating ratio
of influence estimation in Lemma 2, we prove that GLP
can return a

(
1−Θ

(
1

∆lτ log2 n−1

)) (
1− 1

e

)
-approximate so-

lution to the group-level location promotion problem. The
fundament of performance guarantee lies on the monotonicity
and submodularity of objective function as described below.
Lemma 3. In GLP model, the influence function, i.e.,
M(S) =

∑
v∈G I(S, v)Nv is monotone and submodular.

Proof. We use In as the abbreviation of I(sn, v), and the
monotonicity and submodularity of the objective function are
respectively proved as follows.
Monotonicity: Without loss of generality, for A = {s1, s2, s3}
and B = {s1, s2}, A ⊆ B and Nv = 1, we have:

I(A, v)− I(B, v) = I3 − I2I3 − I1I3 + I1I2I3

= I3(1− I1)(1− I2) > 0.

Hence, the influence function, i.e., I(S, v) is monotone.
Submodularity: Without loss of generality, for A =
{s1, s2, s3}, B = {s1, s2}, C = {s1, s3} and D = {s1},
D ⊆ B, we have:

(I(C, v)− I(D, v))− (I(A, v)− I(B, v))

=(I3 − I1I3)− (I3 − I1I3 − I2I3 + I1I2I3) = I3(I2 − I1I2) > 0.

Hence, the the influence function, i.e., I(S, v) is submodular.
SinceM(S) =

∑
v∈G I(S, v)Nv , influence functionM(S) is

also monotone and submodular.
With the monotonicity and submodularity of the objective

function, referring the property proved by Nemhauser et al.
[23], the exact greedy algorithm which iteratively selects the
node with maximum marginal gain can achieve a (1 − 1

e )-
approximate solution to the IM problem. Then combining the
approximating ratio of influence estimation stated in Lemma
2, we draw the following theorem for GLP .

Theorem 1. GLP returns a
(

1−Θ
(

1
∆lτ log2 n−1

)) (
1− 1

e

)
-

approximate solution to the group-level location promotion
problem in Eqn (1).

Theorem 1 proves that GLP nearly achieves an approx-
imating ratio of (1 − 1

e ), which theoretically justifies its
effectiveness. Next, we give the complexity of GLP to show
the efficiency of group-level location promotion.
Lemma 4. (Complexity of GLP .) The computational com-
plexity for GLP is O(|E|+ |G|+K2(|G|+ |G|2)).

Proof. As shown in Algorithm 1, GLP is consisted of the
online and offline phases, and we respectively give the com-
plexity of the two phases as below.

In the offline precomputing phase, the social group on
individual level G = (V,E) is transferred to that on group
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level Ggroup = (G, B). Since the number of groups is |G|, the
process for calculating moving probability Pi of each group
takes O(|G|). From Definition 4 and Definition 5, we can see
that closeness ρi and weights Bij of all groups both correlate
with the weight of edges among individual users wuv . Thus
ρi and Bij of all groups can be calculated simultaneously by
traversing all edges in E. This process costs O(|E|).

In the online searching phase, the K seed groups are
selected through K iterations. In the (k + 1)-th iteration, the
selecting idea is to maximize the marginal influence under the
selected groups set Sk. We first compute the influence of Sk
on each group and this process consists of |G| rounds. Since
|Sk| = k in the (k+ 1)-th iteration, the polynomial in line 13
cost O(K(K−1)

2 ). Then we compute the marginal influence of
each group in G\S on the whole network, and this process
takes O(|G|2K(K+1)

2 ). Thus the computation complexity for
online phase is O(K2(|G|+ |G|2)).

Therefore, combining the two phases, the computation com-
plexity for GLP is O(|E|+ |G|+K2(|G|+ |G|2)).

At the end of this section, we further prove that given
the same budget, location promotion on group level can
significantly improve the expected size of influenced users,
which refers to the benefits gaining that will be discussed in
details in the sequel.

D. Benefits Gaining on Group-level

As illustrated in Sections IV and V-C, there are two
major advantages of GLP: (1) reliable moving probability;
(2) reasonable computation complexity. Now we proceed to
demonstrate the third advantage of GLP, i.e., benefits gaining.
Here the benefits gaining means that given the same budget,
location promotion on group level can expectedly influence
much more users over the whole network compared with
that on individual level. In the proposed GLP, the benefits
gaining over the whole network is fundamentally brought by
the gaining of the expected size of initial influenced users in
each seed group, as given in Lemma 5.
Lemma 5. The benefits gaining of group gi can be expressed
as Fi =

π∗i,hNgipbi
Bi

, which is the expected gaining of the size
of initial influenced users in seed group gi. Here, Bi is the
budget for initial propagation of group gi and bi is the budget
for convincing an individual user.
Proof. As described in section V-B, the core location l̃∗i,h =

argmax πi,h · P (L|l̃i,h) is chosen as the initial propaga-
tion location for each seed group gi with the corresponding
budget being Bi. The budget Bi depends largely on the
initial advertising methods, i.e., the cost for purchasing the
advertising time of a cinema or the rent for billboards in a
campus. Through initial propagation, the expected number of
influenced users in gi at step 0 is equal to π∗i,hNgiPgip, where
πi,h is the steady-state probability of the chosen state, Ngi and
Pgi is the size and moving probability of the group and p is
the probability that initial propagation can convince a user.
On individual level, let us assume the budget for convincing
an individual user is bi. If budget Bi for group gi is used to
convince users directly, the number of influenced seed users

can be given by Bi
bi
Pgi . Thus we obtain the benefits gaining

for group gi, i.e., Fi =
π∗i,hNgipbi

Bi
.

Based on the benefits gaining of a single seed group,
Theorem 2 describes the gaining of K seed groups’ influence
on the whole network as follows.
Theorem 2. In GLP, the benefits gaining of influence on the
whole network scales as Θ

(
1−(1−I)K

1−(1− I
F )K

)
, where I approxi-

mates the influence among groups and F approximates the
benefits gaining of a single seed group.

Proof. Based on Eqn. (13), the influence of
K seed groups on group v is I(SK , v) =∑K
i=1(−1)i−1

∑
n1,...,ni:

1≤n1<···<ni≤i

∏i
m=1 I(snm, v). If the

same amount of budget are spent for convincing individuals
directly, according to Lemma 5 and Eqn.(13), their influence
on group v can be expressed as

I(Sin, v) =
K∑
i=1

(−1)i−1
∑

n1,...,ni:
1≤n1<···<ni≤i

i∏
m=1

1

Fnm
I(snm, v).

Then the benefits gaining on group level is given by

I(SK , v)

I(Sin, v)
=

∑K
i=1(−1)i−1∑

n1,...,ni:
1≤n1<···<ni≤i

∏i
m=1 I(snm, v)∑K

i=1(−1)i−1
∑

n1,...,ni:
1≤n1<···<ni≤i

∏i
m=1

I(snm,v)
Fnm

=Θ

( ∑K
i=1(−1)i−1

(
K
i

)
Ii∑K

i=1(−1)i−1
(
K
i

)
Ii

F i

)
= Θ

(
1− (1− I)K

1− (1− I
F

)K

)
. (18)

Since M(SK) =
∑
v∈G I(SK , v)Nv , and M(Sindv) =∑

v∈G I(Sin, v)Nv , we have M(SK)
M(Sin) = Θ

(
1−(1−I)K

1−(1− I
F )K

)
.

From Theorem 2, we further conclude the relationship
between benefits gaining of GLP and the cost for seeding
individual users as below:

(1) I
F = Θ(1): In this case, the budget for seeding a group can
seed individual users with the size equals a Θ(1) fraction
of group size. Thus we have 1 − (1 − I)K = Θ(1) and
1 − (1 − I

F )K = Θ(1), then the right hand side of equal
sign in Eqn.(18)=Θ(1), meaning the benefits gaining on
group level in this case scales as Θ(1);

(2) I
F < Θ(1),K · IF ≥ Θ(1): The budget for seeding a
group can only seed individual users with a size far smaller
than group size, while the budget for K groups can seed
a size equals a Θ(1) fraction of group size. Since 1 −
exp(−KIF ) < 1− (1− I

F )K < 1− exp(− 2KI
F ) and KI

F ≥
Θ(1), thus 1−(1− I

F )K = Θ(1) and 1−(1−I)K = Θ(1),
then the right hand side of equal sign in Eqn.(18)=Θ(1).
Thus in this case the benefits gaining also scales as Θ(1).

(3) I
F < Θ(1),K · IF < Θ(1): The budget for seeding K
groups can only seed individual users with a size far
smaller than group size. Since x− x2

2 < 1− exp(−x) <

x(x > 0), thus KI
F −

(KIF )2

2 < 1− exp(−KIF ) < KI
F , and

1− (1− I
F )K = Θ(KIF ), then:

(a) I ≤ Θ(1),KI ≥ Θ(1): 1 − (1 − I)K = Θ(1), then
the right hand side of equal sign in Eqn.(18)=Θ( F

KI );
(b) I < Θ(1),KI < Θ(1): 1− (1− I)K = Θ(KI), then

the right hand side of equal sign in Eqn.(18)=Θ(F ).



11

Thus in this case, group-level location promotion can
largely improve the expected influence diffusion size with
the benefits gaining larger than Θ(1).

The benefits gaining shown above implies that for the
promotion mission in tough scenarios, where the cost for
convincing an individual user is great, GLP can largely im-
prove the expected number of influenced users under the same
budget. While in easy scenarios where the promoted location
is popular and users are easily to be influenced, GLP can also
improve the influence as long as Fi > 1.

In summary, together with Theorem 1, Lemma 4 and The-
orem 2, we theoretically show that our proposed framework
GLP largely improves the performance of location promotion
in terms of influence diffusion size and efficiency. In the next
section, we evaluate the performance of GLP on real geo-
social networks to justify our theoretical results.

VI. EXPERIMENTS

In this section, we present the experimental results of a
comprehensive performance study of GLP. All the experiments
were implemented in Python and conducted on a computer
running Ubuntu 16.04 LTS with 40 cores 2.30 GHz (Intel
Xeon E5-2650) and 126 GB memory.

A. Experimental Datasets and Settings
1) Datasets. We evaluated GLP on three real location-

based social networks, Brightkite, Gowalla and Foursquare.
The datasets of Brightkite and Gowalla are downloaded
from an open dataset website SNAP 2, and the dataset of
Foursquare is downloaded from the check-ins visualization
website Weeplaces 3. In the experiments, we set wmn =
|adj(m)∩adj(n)|
|adj(n)| , where adj(m) is the set of friends of user m.

The rationale behind is that the more co-friends of a pair of
users, the closer their relationship. The statistics of the datasets
are shown in Table II.

TABLE II: Statistics of Datasets

Datasets Brightkite Gowalla Foursquare
# of Nodes 58,228 196,591 15,799
# of Edges 214,078 950,327 59,970

# of Check-ins 4,491,143 6,442,890 7,658,368

2) Settings. We first implement the iterative approach in
Section IV-A to group users and learn group-level mobil-
ity models. Users in three GSNs (Brightkite, Gowalla and
Foursquare) are all grouped into |G| (|G|=30, 60, 100, 150)
groups and each group has a HMM based mobility model.
For Brightkite, we select the users whose daily activity area
is near San Francisco (location: (37.8◦N , 122.4◦W ), pop-
ulation: 900 thousands). For Gowalla and Foursquare, we
select San Jose ( location:(37.3◦N , 121.8◦W ), population: 950
thousands) and Los Angeles ( location: (34.1◦N , 118.3◦W ),
population: 3.9 millions) respectively. In the initialization, for
each HMM model, the steady-state distribution and the transi-
tion probabilities are randomly initialized under the condition∑H
h=1 πh = 1 and

∑H
j=1 aij = 1, respectively. The core

locations (i.e., l̃h) are randomly initialized by the coordinates

2https://snap.stanford.edu/data/index.html
3http://www.yongliu.org/datasets/

around the location of the corresponding city for each dataset.
Then the moving preference parameter τ is randomly sampled
as a positive number. After obtaining mobility models and
user groups, we then evaluate the performance of location
promotion. To evaluate the expected influence diffusion size
of selected groups / individuals, our method is simulating the
diffusion process round by round. In each round, the newly
influenced users in last round attempt to influence those who
are uninfluenced. The evaluating metric for effectiveness is the
number of final influenced users in the whole network, and for
efficiency, is the running time of algorithms.

B. Performance Evaluation of GLP

1) Effectiveness study.: We define Ngiπi,k as the steady
number of users at each core location and the steady-state
population distributions of three GSNs are shown in Figures
5, 6 and 7. The users in the three datasets are treated as
samples of residents in the three cities, and we accordingly
enlarge the size of each group to make the total number of
users equal the three urban populations. Taking Brightkite, in
which the users are from San Francisco, as an example, the
sum of the members in all the groups is equal to

∑
gi∈G Ngi ,

given the population in San Francisco is N , when plotting
Figure 5, the size of the members in each group is enlarged
by a multiple N∑

gi∈G
Ngi

to present the steady-state distribution
of the residents in San Francisco.

From Figures 5-7, it can be observed that when |G| is
smaller, users are centralized at several discrete areas, and the
steady distributions tend to be smooth with the increase of
|G|. This is because there are more geographical distinctions
of the geo-communities when |G| is smaller, and the hetero-
geneous distribution of users results in the larger difference
among the sizes of different groups. Based on the steady-state
distributions, we select two locations with distinctly different
population density for each dataset as the promoted locations
in our experiments as shown in Figures 8-13. The promoted
locations are:

(a) Brightkite: (38.053◦N , 121.611◦W ) and (38.289◦N ,
122.602◦W );

(b) Gowalla: (38.039◦N , 122.379◦W ) and (37.604◦N ,
122.047◦W );

(c) Foursquare: (33.932◦N , 118.340◦W ) and (34.251◦N ,
118.439◦W ).

We compare GLP with three location-based influence maxi-
mization algorithms, i.e., Greedy [2], TPH [3] and EBA [1],
and two group-level baseline algorithms, Largest and Nearest:

• Greedy [2]: Iteratively selecting K most influential indi-
viduals with maximum marginal influence in the location-
based influence maximization, where the expected influ-
ences of the users are computed based on the location-
aware IC model as described in Section III-A.

• TPH [3]: The TPH first computes a heuristic parameter
Hi =

∑
j∈adj(i) wijP

L
j for each user, and then selects K

users with the largest Hi. Here PLj = 1−
∏
ci∈C(1−pi),

C is the set of user j’s all historical locations and pi is
the moving probability to the promoted location from ci.

https://snap.stanford.edu/data/index.html
http://www.yongliu.org/datasets/
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Fig. 5: Steady-state population distribution of Brightkite
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Fig. 6: Steady-state population distribution of Gowalla
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Fig. 7: Steady-state population distribution of Foursquare
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Fig. 8: Effectiveness study on Brightkite with K

• EBA [1]: The objective of the EBA [1] is maximizing
the influence diffused to users who are in a given geo-
graphical range around the promoted location, and EBA
[1] assumes each user is always in a fixed location. In the
experiments section of [1], EBA selects a given number
of users who are geographically nearest to a promoted
location as the objective of influence diffusion. Given
such selected objective users, EBA selects seed users
through a greedy manner similar to the traditional IM.

• Largest: Select K groups having most members.
• Nearest: Select K groups whose daily activity areas are

most close to the promoted location (highest Pgi ).

Note that the two individual baseline algorithms Greedy [2]
and TPH [3] cannot be applied in the group-level promotion
framework directly, since moving probabilities of individual
users in the two frameworks are determined from individ-
ual mobility models. Thus, in the experiments, we compute
the moving probability of each individual user as pLu =∑
g∈G p(g|u)PLg , where pLu denotes the moving probability

of individual user u. In conducting EBA [1], similar to its
original settings, we set the objective users as the top 10%
users in each dataset who are geographically nearest to the
promoted location. Then the number of seed individual users
in the three individual-level location-aware IM algorithms are
set to Bi

bi
·K (K is the number of seed groups).

Effect of the seeds set size K. For each selected seed group,
the initial influenced fraction is set to qi = π∗i,hP (L|l̃∗i,h)p
as described in Section V-B. We set p = 0.05, 0.07, 0.1
for |G| = 60, 100, 150 respectively considering the size and
centrality of groups. In Figures 8-10, we fix Bi

bi
= 20 to

show the effect of K, and the effect of Bi
bi

is investigated
in Figures 11-13. Figures 8-10 plot the influence spread over
three GSNs with K = 5, 10, 25, 50. As we can see, designing
location promotion on group level can significantly improve
the effectiveness compared with that on individual level as
expected. Selecting the well-visited locations of the group
members for initial propagation can achieve much more initial
influenced users, which contributes to the improvements of
influence spread. The increase of K, representing the increase
of the initial propagation budget, can raise the final influence
spread for all nine scenes. From Figures 8-10 , we find that
improvements of influence spread are more significant when
K is smaller, due to the submodularity of influence function.
The influence spread curves of GLP, Largest, Greedy TPH
and EBA all grow stably with increasing K, while the curves
for Nearest have much more fluctuations. The reason behind
is that some nearby groups may have small size, only when
K = 25, 50, the seed set of Nearest may contain a few
influential large groups. This insight demonstrates that only
selecting several nearby locations for initial propagation may
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Fig. 9: Effectiveness study on Gowalla with K
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Fig. 10: Effectiveness study on Foursquare with K
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Fig. 11: Effectiveness study on Brightkite with Bi
bi
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Fig. 12: Effectiveness study on Gowalla with Bi
bi

not achieve good performance especially for the POIs not
in bustling regions. Comparing with Largest, GLP is 50%
larger in influence spread, this superiority arises from the
consideration of both social ties and co-influences among
groups in selection. The curves for TPH grow far more slowly
than others due to the loss of consideration of co-influence of
individual seed users in seed selection.

Effects of group size |G| and cost ratio Bi
bi

. From Figures
8-10, it can be found that the influence spread of |G| = 100 is
larger than that of |G| = 60 and |G| = 150. When |G| = 60,
there are several very large groups, and considering the low
centrality of large groups, the propagation naturally decreases,
resulting in a lower final influenced size compared with that of
|G| = 100. When |G| = 150, the fraction of initial influenced
users is lower than that of |G| = 100 because the number of
seed groups is the same for the two cases. Such results show
the effect of group numbers on GLP. Then we evaluate the
influence of the cost for conducting initial propagation. Figures
11-13 show the influence spread with Bi

bi
=100, 50, 20, 10, 5,

respectively, and K is fixed as 25. Bibi is the ratio of the cost
for seeding a group to the cost for seeding an individual user.
For example, Bi

bi
= 100 means the number of seed users in

Greedy and TPH is the 100 times that of seed groups in GLP.
As expected, GLP can significantly improve the performance
of location promotion especially in tough scenarios, where

the cost for convincing an individual seed user is extremely
expensive. From Figures 11-13, it can also be observed that,
with the increase of Bi

bi
, influence spread on individual-level

grows as well and the relative gain of GLP decreases since the
same budget can convince more individual seed users. Even in
case Bi

bi
=100, the influence spread of GLP is still 30% more

than that on individual level.
2) Efficiency Study.: In the efficiency study, we present

the running time of the seed selection in GLP and two
individual-level baselines Greedy [2] and TPH [3]. The seed
selection in the framework GLP is specifically conducted
by the algorithm GLP . Since users’ social behavior patterns
usually remain stable within a relatively long interval [19],
learning group-level mobility models and users grouping can
be pre-conducted offline. Thus we compare the running time
of the selecting algorithm GLP with the seed selection time
in both Greedy and TPH to demonstrate the efficiency for
supporting real-time applications. Figure 14 shows the running
time of the seed selection in GLP , Greedy [2] and TPH [3]
with K = 5, 10, 25, 50, respectively. From Figure 14, it can
be observed that the running time of GLP is as long as about
1% of the two individual algorithms. The Greedy needs to
sample the whole network to estimate the marginal influence
of all remaining individuals in each iteration, which is a time
consuming task. For the TPH, it needs to recompute moving
probability to new promoted locations for each individual user
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Fig. 13: Effectiveness study on Foursquare with Bi
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Fig. 14: Efficiency study
and thus all heuristic parameters H has to be recomputed.
Since TPH considers all historical check-ins records of each
user, the recomputing process brings high time complexity.
While GLP is conducted on group-level graphs, and the
number of nodes in which is far smaller than that of individual-
level graphs. Meanwhile, the running time of GLP increases
superlinearly with K, due to the fact that the time complexity
of GLP is quadratic with K as shown in Lemma 4.

VII. CONCLUSION

In this paper, we propose GLP, a novel framework for group-
level location promotion. Our insight is that users belonging
to a same geo-community may have a few well visited
locations and conduct initial propagation at such locations
can influence much more seed users. We design an iterative
learning approach to group them and extract common mobility
models from massive check-ins data. Then GLP generates
a new group-level graph considering social relationship and
group-level moving probability of each group, and a greedy
algorithm is proposed to effectively select K seed groups over
the graph. Furthermore, we theoretically prove that GLP can
largely improve the influence spreading under the same budget.
Finally, the extensive experiments on real datasets justify the
high performance of GLP in location promotion.
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log likelihood is Qr(Θ|Θt) = EDr|lr,ΘtLL(Θ|Dr, lr). Since
LL(Θ|Dr, lr) = lnP (Dr, lr|Θ), we have

Qr(Θ|Θt) =
∑
Dr

P (Dr|lr, Θt) lnP (Dr, lr|Θ). (19)

In training HMM for group g, different trajectories have
different weights because the users of them have different
probabilities belonging to group g. Hence, the mixture likeli-
hood is expressed as

Q(Θ|Θt) =

R∑
i=1

∑
Dr

wrP (Dr|lr, Θt) lnP (Dr, lr|Θ). (20)

Since P (Dr, lr|Θ) represents the joint distribution of a hidden
Markov process, we have

P (Dr, lr|Θ) = P (lr,1, sr,1, lr,2, sr,2, . . . , lr,N , sr,N )

= p(sr,1)p(lr,1|sr,1)

N∏
n=2

p(sr,n|sr,n−1)p(lr,n|sr,n). (21)

Taking Eqn. (21) into Eqn. (20), we obtain the objective
function Q(Θ|Θt).

2. Formulations for α, β, ξ and γ. α(sr,n) =
P (lr,1, lr,2, . . . , lr,n, sr,n|Θt) is the probability distribution of
the n-th state with the observing sequence {lr,1, lr,2, . . . , lr,n},
and can be calculated by the forward algorithm. Specially,

α(sr,n = h) = P (lr,1, lr,2, . . . , lr,n, sr,n = h|Θt)

= p(lr,n|sr,n = h)

H∑
i=1

α(sr,n−1 = i)p(sr,n = h|sr,n−1 = i),

where the initial value is α(sr,1 = h) = πhp(lr,1|sr,1 = h);
β(sr,n) = P (lr,n+1, lr,n+2, . . . , lr,N |sr,n, Θt) is the proba-
bility of the observable sequence {lr,n+1, lr,n+2, . . . , lr,N}
conditioned on the n-th state and can be calculated via the
backward algorithm. Hence, we have

β(sr,n = h) = P (lr,n+1, lr,n+2, . . . , lr,N |sr,n = h,Θt)

=

H∑
i=1

β(sr,n+1 = i)p(lr,n+1|sr,n+1 = i)p(sr,n+1 = i|sr,n = h),

where the initial value is β(sr,N = h) = 1. Based on
α(sr,n) and β(sr,n), γ(sr,n) = p(sr,n|lr, Θt) is the probability
distribution of the n-th latent state, and ξ(sr,n−1, sr,n) =
p(sr,n−1, sr,n|lr, Θt) is the joint distribution of two consecu-
tive latent states p(sr,n−1, sr,n|lr, Θt). Specifically,

γ(sr,n = h) =
α(sr,n = h)β(sr,n = h)∑H
i=1 α(sr,n = i)β(sr,n = i)

,

ξ(sr,n−1 = i, sr,n = j)

=
α(sr,n−1 = i)p(lr,n|sr,n = j)aijβ(sr,n = j)∑H

i=1

∑H
j=1 α(sr,n−1 = i)p(lr,n|sr,n = j)aijβ(sr,n = j)

.

3. Derivations for updating rules in M-step.
1) From Eqn. (3), the updating object for πh is to maximize

Q(π) =

R∑
r=1

∑
Dr

H∑
h=1

wrP (Dr|lr, Θt)δ(sr,1, h) ln p(sr,1)

=

R∑
r=1

H∑
h=1

wrγ(sr,1 = h) lnπh,

with the constraining condition
∑H
h=1 πh = 1, we obtain the

updating rule in Eqn. (6) with Lagrange multiplier algorithm.
2) From Eqn. (4), the updating object for aij is to maximize

Q(aij) =

R∑
r=1

N∑
n=2

H∑
i=1

H∑
j=1

wrP (Dr|lr, Θt)δ(sr,n−1, i)δ(sr,n, j) ln aij

=

R∑
r=1

N∑
n=2

H∑
i=1

H∑
j=1

wrξ(sr,n−1 = i, sr,n = j) ln aij .

Since
∑H
j=1 aij = 1, we obtain the updating rule in Eqn. (7)

based on the Lagrange multiplier algorithm.
3) When the user of lr is in state h, the probability that she is
at location lr,n equals f(lr,n|sr,n = h) = τ

(||lr,n−l̃h||2+ε)τ+1
.

Thus from Eqn.(5), the updating object for l̃h is to maximize

Q( l̃h ) = −
R∑
r=1

N∑
n=1

H∑
h=1

wrγ(sr,n = h) ln ||lr,n − l̃h||2,

and we obtain the updating rule in Eqn.(8).
4) From Eqn.(5), the updating objective for τ is to maximize

Q(τ) =

R∑
r=1

N∑
n=1

H∑
h=1

wrγ(sr,n = h)
{

ln τ − τ ln(||lr,n − l̃||2 + ε)
}
,

and we obtain the updating rule in Eqn.(9).
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