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ABSTRACT
The research of geoscience plays a strong role in helping people
gain a better understanding of the Earth. To effectively represent
the knowledge from enormous geoscience research papers, knowl-
edge graphs (KG) can be a powerful means. However, the existing
geoscience KGs mainly focus on the external connection between
concepts, whereas the potential abundant information contained
in the internal multimodal data of the paper is largely overlooked
for more fine-grained knowledge mining. To this end, we propose
GAKG, a large-scale multimodal academic KG based on 1.12 million
papers published in various geoscience-related journals. In addition
to the bibliometrics elements, we also extracted the internal illus-
trations, tables, and text information of the articles, and obtain the
knowledge entities of the papers and the era and spatial attributes
of the articles, coupling multimodal academic data and features.
Specifically, GAKG realizes knowledge entity extraction under our
proposed Human-In-the-Loop framework, the novelty of which
is to combine the techniques of machine reading and information
retrieval with manual annotation of geoscientists in the loop. Con-
sidering the fact that literature of geoscience often contains more
abundant illustrations and time scale information compared with
that of other disciplines, we extract all the geographical information
and era from the geoscience papers’ text and illustrations, map-
ping papers to the atlas and chronology. Based on GAKG, we build
several knowledge discovery benchmarks for finding geoscience
communities and predicting potential links. GAKG and its services
have been made publicly available and user-friendly.1

CCS CONCEPTS
• Computing methodologies → Information extraction; Se-
mantic networks; Ontology engineering; Reasoning about belief
and knowledge.
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1 https://gakg.acemap.info/
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1 INTRODUCTION
Geoscience is a natural science that studies the earth, including Ge-
ography, Physics, Chemistry, and other disciplines [7]. Throughout
history, paleontologists investigate the characteristics of various
species and environmental evolution on the earth from 4.6 billion
years ago to the present and explore the impact of environmental
changes on biodiversity [9]. Geographers study topography, land-
forms, and climate, and find out that global warming caused by
human activities has a certain relationship with the earth’s axis
drift [1]. Geologists explore the sea to bring more important re-
sources such as rare earth minerals to mankind [13]. Thus it can be
seen that geoscience plays an important role in the academic field,
not only informing our understanding of the relationship between
human beings and the earth but also helping us understand current
change.

Figure 1: An Example of Illustrations in Geoscience Papers.

Academic papers have been employed as a major means to dis-
seminate knowledge. Over time, scientists have published a large
number of papers and accumulated a large knowledge system in
the process of exploration and discovery of the earth. Distinguish-
ing from other disciplines’ papers, geoscience papers contain more
abundant multimodal data such as geographical maps, tables, and
era descriptions, reflecting the time and spatial characteristics. On
one hand, different from other types of paper illustrations, maps
can allow people to obtain spatial perception through visual cogni-
tion based on geographic information visualization. The maps in
the geoscience papers’ illustrations also have geographic location
coordinates or atlas serving as small pieces of a world map (taking
watersheds of the Alaska Arctic Coastal Plain [33] as an example
in Figure 1, we can extract coordinates from it), so that the spatial
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Figure 2: Overview of Multimodal GeoScience Academic Knowledge Graph (GAKG). @ Cheng Deng

relationship of these papers can be connected through the world
map. Therefore, for geoscience, it is of great significance to collect
and manage the papers’ illustrations and mapping them to the geo-
graphic maps. On the other hand, geoscience papers not only share
spatial information but also reveal geologic time scale (GTS) charac-
teristics. For example, the GTS of [22] is early Precambrian instead
of its publication time. Meanwhile, the locations mentioned in [35]
include Brazil which is far away from the authors’ affiliation. Hence,
the era corresponding to papers may not be the publication time of
the paper, and the geographical locations described in the papers
may not be the residences of the scholars, showing the necessity
to extract and manage the geographic locations and description
GTS mentioned in the geoscience articles. As an extension, time
scale information gives researchers a chance to manage, model, and
analysis evolving knowledge. [17, 18]

Academic knowledge graphs (KGs) are usually an appropriate
choice for integrating all the papers and related elements like au-
thors and affiliations for specific disciplines. The existing academic
KGs are mostly data collections based on bibliometrics, with typ-
ical examples belonging to AceKG [37], MAG [30], and AMiner
Knowledge Graph [34]. These three academic KGs are mainly built
by articles in English of all the scientific fields. This type of aca-
demic KG consists of bibliometrics entities such as authors, jour-
nals, papers, etc., linked through a few relations. For geosciences,
academic-related knowledge graphs are rare. The existing KGs re-
lated to geoscience are mainly concept-level KGs that each entity
represents a geographic object. The Common Sense Geographic
Knowledge Base (CSGKB) [42] contains the edges that link the
concepts of geographic features, geographic locations, and spatial
relations. GeoKG [38] is a conceptual and formal geographic knowl-
edge representation model based on geographic entities and their
six elements such as state, location, change, attribute, time, and
relation. Since, distinguishing from other disciplines, the academic

data of geosciences are rich in geographic location, geologic time
scale, and geographical maps reflecting the multimodality in geo-
science. Bibliometrics information is not comprehensive towards
geoscience academic data, and the discrete images, texts, and time
scale within articles are not sufficiently coupled. As a whole, geo-
science KGs [44] break new ground where geoscience, computer
science, and information science converge. To this end, it is essen-
tial to have a job to manage multimodal geoscience knowledge,
including scholars’ elements and the knowledge, time scale infor-
mation, and illustrations in their papers. Thus we can use the map
as the building blocks to construct the geoscience academic knowl-
edge graph, and comb intellectual dot of geoscience to build the
knowledge system for this discipline. When it comes to using KG
to organize multimodal academic data, Deep Code Curator project
[12] puts forward a multimodal KG for deep learning with the code
and illustrations of papers, and COVID-KG [36] extracts proper
nouns and their illustrations. However, the information delivered
by their illustrations has less dimension compared to the geoscience
papers’ images.

As a core concept in the academic KG, paper shapes the body of
the academics world, and the internal knowledge of each paper is
the soul of academics. Thus, it is also of significance to mining the
inner knowledge of articles to expand academic KG. At present, the
works on extracting the internal information of research articles to
enrich the KGmainly focus onmedicine. COVID-KG also gathers all
the papers on the COVID-19 pandemic and process entity extraction
on genes, diseases, chemistry, and biology entities in the content
of the articles linking them to relevant external medical ontology.
However, this requires a lot of manual participation to perform
named entity annotation, and it may consumemore resources when
expanding to a larger academic field. Thus, minimizing manpower
becomes the key issue to mine academic knowledge mining with
high-precision requirements.



Contributions. As we will describe in the following sections in de-
tails, we design a novel multimodal academic knowledge graph for
geoscience by collecting geoscience bibliometrics data and extract-
ing each paper’s illustrations, geographical information, geologic
time scale, and inner knowledge entities, with Figure 2 illustrating
the overview of GAKG and detailed contributions are as follows:
• We propose a multimodal GeoScience Academic Knowledge
Graph (GAKG) framework by fusing papers’ images, text, and
bibliometric data. With multimodality, GAKG shed light on a new
perspective for academic data mining and the construction of aca-
demic knowledge graphs and enriches the diversity of academic
information retrieval.

• With a geographic world map, all the illustrations, text, and ge-
ologic time scale extracted from the selected geoscience papers
construct a strong correlation and high coupling relationship
between papers. In this way, scientists in the field of geology,
geography, and data mining can carry out rich scientific research
based on geographic locations.

• We put forward a Human-In-the-Loop knowledge extraction
pipeline to extract paper’s knowledge entities and mapping them
to a crowd-sourcing knowledge taxonomy. In this way, we min-
imize human efforts and increase the precision of knowledge
extraction using human-computer interactive annotation.

• To our knowledge, GAKG is currently the largest and most com-
prehensive geoscience academic knowledge graph, consisting
more than 68 million triples. In order to better serve the data
mining and knowledge discovery communities, GAKG is updated
regularly that can be queried at SPARQL query Endpoint and
explored at online applications.
The rest of the paper is organized as follows. In Section 2, we list

the ontologies of GAKG and share the currently dumped datasets.
In Section 3, the pipeline of multimodal GAKG is introduced. Based
on GAKG, benchmarks for community detection and link predic-
tion will be presented in Section 4. Moreover, we share the online
applications in Section 5. Finally, the observations and the related
works towards GAKG will be discussed in Sections 6 and 7.

2 OVERVIEW OF GAKG
As mentioned earlier, GAKG is a large-scale multimodal academic
KG, with all the data collected from AceMap ( https://www.acemap
.info/). In this section, we will introduce the ontology and schema
of the GAKG, followed by the current statistics of GAKG datasets.
GAKG is updated regularly in accordance with its ontology.

2.1 GAKG Ontology
GAKG’s schema-graph consists of 11 concepts connected by 19
relations. Five of them (has_concluded, has_designed, is_located_in,
has_developed and earn_in_the_way_of ) have a upper class relation
acer:mention_knowledge. Since GAKG is the union of academic
concepts and their relations, we manage GAKG as linked open data
(LOD), we provide #sameAs axioms linking to the entities in other
datasets.

The Graph base namespace (Graph IRI) is https://https://www.
acekg.cn, all the concepts and relations shared. GAKG defines 11
classes, 19 object properties, and 39 data properties. The PREFIX
set is shown in Figure 4(a).

Concepts. Each entity has a class type, a highly abstracted concept.
The concepts we design can be listed as follows:

Paper (ace:paper) Representation of the academic papers in the
field of geoscience. Concept ace:paper has 10 data properties
including title(label), abstract, DOI, original URL, year and date
the paper is published, ISSUE, volume as well as the start page
and the end page of the journal. Among above, property title
reuses the axiom rdfs:label and property original URL reuses
axiom foaf:page.

Journal (ace:journal) Representation of academic journals in the
field of geoscience. Concept ace:journal has 3 data properties
including normalized name (reusing axiom rdfs:label), url (reusing
axiom foaf:homepage) and ISSN.

Author (ace:author) Representation of the scholars in the field
of geoscience who have published research articles in the 194
journals we selected. Concept author has 2 data properties in-
cluding author’s name (reusing axiom rdfs:label) and a date that
the author published his/her last manuscript.

Affiliation (ace:affiliation) Representation of the affiliations
where authors in the field of geoscience work in. Con-
cept ace:affiliation has 5 data properties including its name
(reusing axiom rdfs:label), abbreviation, homepage (reusing axiom
foaf:homepage), its grid code and its introduction.

Topic (ace:topic) Representation of the academic topics of geo-
science. The AceMap system tag each paper with the key phrase,
we integrate them and establish the concept topic. Concept
ace:topic has 3 data properties including topic name (reusing ax-
iom skos:prefLabel) and definition (reusing axiom skos:definition)
and a related image url.

Illustration (ace:illustration) Representation of the pictures in
papers in the field of geoscience. Concept illustration has 3 data
properties including illustration’s tag, caption and dpi.

Papertable (ace:papertable) Representation of the pictures and
tables in papers in the field of geoscience. Concept papertable has
3 data properties including table’s tag, caption and dpi.

Knowledge (ace:knowledge) Representation of the item that
can express inherent key information in papers in geoscience.
Concept ace:knowledge has 3 data properties include the
name (reusing axiom skos:prefLabel), definition (reusing axiom
skos:definition) and original source. We will introduce the knowl-
edge extraction method amply in the next section.

Location (geo:location) Representation of the geographical, so-
cial, political locations. Concept geo:location has 3 data properties
including location name (reusing axiom rdfs:label), latitude and
longitude.

Timescale (geo:timescale) Representation of the geologic time
scale. Concept geo:timescale has 1 data properties including
timescale name (reusing axiom rdfs:label).

Geohash (http://geohash.org/) Representation of the GeoHash
value for the coordinate location. We generate a hash value of the
coordinate based on the Geohash algorithm and reuse it as a geo-
hash concept. Based on this hash value, we locate the geographic
location of the research articles.

Relations.Also can be deemed for concepts’ object properties. The
axioms corresponding to relations are defined as following:
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acer:is_cited_by connects two paper concepts. It means that the
latter paper refers to the former one.

acer:on_the_topic_of connects concept paper and concept topic,
and it shows what topic the paper is about.

acer:is_written_by connects concept paper and concept author,
which illustrate that who wrote the paper.

acer:is_published_in connects concept paper and concept jour-
nal shows that the journal in which the paper is published.

acer:has_illustration and acer:has_table connect concept pa-
per and concept illustration or papertable, which means that
the paper contains the picture or the table.

acer:mention_location connects concept paper and concept lo-
cation, showing that the paper mentions the location.

acer:mention_timescale connects concept paper and concept
timescale, showing that the paper is talking about the phenome-
non at that timescale.

acer:is_last_known_in connects concept author and concept af-
filiation, showing that the author works in the affiliation when
he/she published his/her last paper.

acer:is_located_in connects concept affiliation and concept loca-
tion, which means that a scientific research affiliation is located
in a geographic location.

acer:has_geohash not only connects concept illustration and geo-
hash entity but also connects concept location and geohash entity.
In this way, we shed light on the relationship between geoscience
papers and geographical maps.

geor:in_the_period_of and geor:before connect two concept
timescale. geor:in_the_period_of means that one era happens
during the period of the other, while geor:before claims that one
era happens before the other.

#sameAs , driven by the Semantic Web LinkedData Project, con-
nects concept topic, knowledge, affiliation, and country in GAKG
to Wikidata, thereby expanding the scope of usage of GAKG, and
also facilitating it to be retrieved and queried in conjunction with
other KGs.

acer:mention_knowledge is upper class object properties of re-
lations acer:has_concluded, acer:has_theme, acer:has_designed,
acer:learn_in_the_way_of and acer:has_developed, connects con-
cept paper and concept knowledge. It is used to express papers’
conclusions, themes, design ideas, and learning methodologies as
well as the progress of the disciplines promoted by papers. This
part will be introduced in detail in Section 3.

2.2 Statistics of GAKG Datasets
GAKG dataset is preserved in the format of RDF (N-Triple) and
currently consists of 68,629,515 triples, including 8,991,737 con-
cepts instance and 41,664,304 links. We provide 271,156 #sameAs
axioms linking paper’s topics and affiliations to the entities in Wiki-
Data. The statistics of all the GAKG’s entities and links are shown
in Table 1 while relations are in Table 2.

Among the statistics above, four social networks are extracted.
First, the collection of relation is_cited_by is a citation network in
the field of geoscience. Second, the collection of on_the_topic_of
is a bipartite network of papers and topics. Third, the collection
of is_written_by is a bipartite network of papers and authors, and
it can be converted to an author’s cooperation network. Figure

Table 1: Statistics of GAKG Concepts (Up to May 30, 2021).

Concept Count Concept Count
paper 1,122,094 knowledge 62,576
author 908,933 illustration 3,562,816
affiliation 27,175 papertable 760,054
topic 765,184 location 784,279
journal 194 geohash 996,731
timescale 1,701 Total 8,991,737

Table 2: Statistics of GAKG Relations (Up to May 30, 2021).

Relation Count Relation Count
is_cited_by 17,704,495 mention_knowledge 704,899
on_the_topic_of 10,401,972 mention_location 759,260
is_written_by 3,547,077 has_geohash 1,021,870
is_published_in 1,122,094 mention_timescale 1,120,398
is_last_known_in 662,850 in_the_period_of 189
is_located_in 25,019 before 155
has_illustration 3,562,816 #sameAs 271,156
has_table 760,054 Total 41,664,304

(a) (b)

(c) (d)

Figure 3: Degree Distribution of the Networks Generated by
GAKG, including (a) Citation Network, (b) Paper and topic’s
Network, (c) Paper and Author’s Network and (d) Coauthor
Network.

3 and Table 3 show the relevant attributes of these four social
networks. Moreover, we build the citation network and the cooper-
ation network as community detection benchmarks, which would
be detailedly stated in Section 3.

2.3 GAKG SPARQL Endpoint
To help researchers in the field of semantic web and geoscience
data mining explore GAKG, we provide a SPARQL Endpoint built
upon a Virtuoso triplestore on https://www.acekg.cn/sparql, a
simple endpoint for SPARQL query. For convenience sake, we adopt
SNORQL to construct a user-friendly SPARQL endpoint on https:
//snorql.acemap.cn/, so that related scholars can view the link to
each entity of each type of ontology including the pictures, tables,
and relevant geographic information of articles. The SPARQLQuery
prefixes and a query example are introduced in Figure 4(a) is the

https://www.acekg.cn/sparql
https://snorql.acemap.cn/
https://snorql.acemap.cn/


Table 3: Networks Generated by GAKG.

Network/Relation Concept Size Volume Max Degree Avg. Degree 𝛼 𝑝 𝑥𝑚𝑖𝑛
1

Co-author Network author 752,718 5,231,507 1,648 13.900 6.057 0.977 500
Citation Network paper 884,421 17,704,495 8,165 38.930 3.948 0.897 1,237

is_written_by paper 1,027,153 3,410,468 458 3.320 5.216 0.859 63
author 908,902 932 3.752 6.988 0.934 238

on_the_topic_of paper 944,052 10,182,977 144 10.786 4.068 0.896 33
topic 89,154 690,961 114.217 2.107 0.911 16,430

1 𝛼, 𝑝, 𝑥𝑚𝑖𝑛 is used to evaluate whether the degree distribution of the above four networks is a powerlaw distribution.

Figure 4: Query over GAKG SPARQL Endpoint.

PREFIX list that can be used in our SPARQL endpoint, 4(b) is a
sample query example and 4(c) is the result of 4(b). Besides, we
also provide a function of generating SPARQL queries according to
the keywords input by users on SPARQL Endpoint, where contains
more details and examples.

3 BUILDING MULTIMODAL GAKG

Figure 5: Multimodal Information Extraction for GAKG.

For the management of every piece of knowledge and informa-
tion mentioned in papers in the field of geoscience, we fuse every
single papers’ illustrations, tables, and their mentioned knowledge
entities, timescale as well as geographic locations to construct a
multimodal Knowledge Graph. In this section, we introduce the
pipeline of knowledge entities extraction, knowledge taxonomy
building, geologic time scale information mining, and geographic
information extraction. The pipeline of these processes is shown in
Figure 5.

3.1 Knowledge Entity Extraction
In this paper, we propose a Human-In-The-Loop knowledge en-
tity extraction method. First of all, we have to clarify what core
knowledge fragments can be abstracted as Knowledge Entities.

Definition 3.1. Knowledge Entity: A knowledge entity is a con-
ceptual entity that can highly summarize a group of words with

similar meanings, with an unambiguous label and definition. In a
sentence, the knowledge entity can express the main idea of the
sentence to some extent.

Refer to the division of geographic issues by IGU [4], com-
bined with the idea of a one-sentence summary of scientific re-
search papers from AceMap, we divide the paper’s internal knowl-
edge points in the field of geoscience into 5 categories, which
are also five questions that geoscience researchers need to an-
swer when understanding a research paper in their field. The five-
question is stated as follows and statistics of the subclass of relation
acer:mention_knowledge are shown in table 4.
• What is the conclusion of this paper? Corresponding to the
relation has_concluded, an object property of paper.

• What is the theme of the paper?Corresponding to the relation
has_theme, an object property of paper.

• What has the paper designed? Corresponding to the relation
has_designed, an object property of paper.

• What is the research method of the paper? Corresponding
to the relation learn_in_the_way_of, an object property of paper.

• What development in the field of geoscience has the paper
promoted? Corresponding to the information of the relation
has_developed, an object property of paper.

Table 4: Statistics ofmention_knowledge Subclass Relations.

Relation Types Count
has_concluded 203,860
has_designed 6,907
has_developed 45,132
has_theme 283,117
learn_in_the_way_of 165,883

In this way, we define 5 kinds of relations between concept
knowledge and concept paper. The pipeline for knowledge entity
extraction is introduced as follows.

First, we answer the above five questions from the papers’ ab-
stract. Based on the idea of ERNIE [43], we calculate the embedding
of each paper entity by deploying network embedding on GAKG’s
citation network, fuse themwith the embedding vectors of the anno-
tated article abstracts by using a pre-trained language model BERT,
then use ERNIE’s framework and the annotation of the answers
to these five questions on 2000 papers’ abstracts by geoscience ex-
perts to train a machine reading comprehension model and finally
generate machine reading answers for the rest of the articles. In
this way, for each paper, we get questions and answers pairs.

Second, we associate the answers of machine reading with the
knowledge entities.We aggregated 2,377,059 concepts fromAceMap



and DBpedia. The definition of each entity is different from the
others. What we want is to extract the entities mentioned in the
answers. Referring to explicit semantic analysis [8], where a word
is represented as a column vector in the TF–IDF matrix of the text
corpus and a document is represented as the centroid of the vectors
representing its words, we take 2.4 Million concept entities and
their descriptions as documents, denoted as𝐷 , and take the answers
to five questions for each article as queries (each paper has up to
five questions). So, for each pair of question and paper, denoted as
𝑞, we have obtained a number of candidate entities 𝐸 = {𝑒𝑖 }, 𝑖 ≥ 0.
This step can be summarized as equation 1.

𝐸 = 𝑄𝑢𝑒𝑟𝑦 (𝑞, 𝐷), 𝐸 = {𝑒𝑖 }, 𝑖 ≥ 0 (1)

Finally, we rank the candidate entities for each 𝑞 to obtain the top-
3 most similar entities to the answers to five questions. We first
construct the features of these candidate entities by calculating
the similarity score between the entities with title, abstract of the
original papers, and the answers after machine reading based on
their TF-IDF scores, and the length, complexity, and letters’ amount
of the entities. We combine the 6 features above as entity feature
vectors. Then, referring to learning to rank algorithms, LambdaRank
[26], we try to learn the function shown by equation 2.

𝑓 (𝑞, 𝐸) = 𝑆, 𝐸 = 𝑒𝑖 , 𝑆 = 𝑠𝑖 , 𝑖 ≥ 0 (2)

which means that given a paper and a question pair 𝑞 and a list
of candidate entities 𝐸 = {𝑒𝑖 }, 𝑖 ≥ 0, we can generate a score set
𝑆 = {𝑠𝑖 }, 𝑖 ≥ 0, which is used to rank. Therefore, we train a 2-layer
neural network model with entities features and a loss function as
equation 3:

𝐿𝑜𝑠𝑠𝑖 𝑗 = log
{
1 + 𝑒𝑥𝑝

(
−𝜎

(
𝑠𝑖 − 𝑠 𝑗

) )}
·
��Δ𝑁𝐷𝐶𝐺𝑖 𝑗

�� , (3)

where 𝜎 is a parameter determines the shape of the sigmoid func-
tion, 𝑠𝑖 and 𝑠 𝑗 are a pair of score we predict and Δ𝑁𝐷𝐶𝐺𝑖 𝑗 denotes
the differencewhen exchanging the order of 𝑒𝑖 and 𝑒 𝑗 , where𝑁𝐷𝐶𝐺

[11] is an evaluation metric of sorting. 𝑁𝐷𝐶𝐺 score is used to eval-
uate the accuracy of ranking, so that its value needs to be as large as
possible. The label we used in calculating 𝑁𝐷𝐶𝐺 is marked by geo-
science experts according to every pair of paper and its questions
pair 𝑞 and candidate entities 𝑒 generated by ESA step.

After training, to ensure that the mined entities can precisely
correspond to the knowledge points in the paper, we set a threshold
to ensure the model has high precision. Based on this threshold,
the precision of our model on the benchmark we set is 0.92, and
the recall rate is 0.34. The pipeline of the ranking model is shown
in Figure 6.

3.2 Geoscience Knowledge Taxonomy
Scientific articles are rich in the knowledge entities of disciplines,
and these knowledge entities can be connected by hyponymy rela-
tions. Geoscience articles are no exception where existing plentiful
knowledge entities, as well as subordination and inheritance rela-
tions between entities. Since geoscience accumulates a huge knowl-
edge system and numerous academic papers, therefore, building a
knowledge taxonomy for geoscience is essential. With the help of
senior geoscientists, we combine the taxonomy of the category in
Wikipedia and relations between the academic fields from AceMap
to construct the hierarchical structure of geoscience knowledge

Figure 6: The Workflow of the Ranking Model.

entities and map the knowledge entities extracted by our Human-
In-the-Loop system to this taxonomy. Finally, the geoscience knowl-
edge taxonomy is established.

3.3 Geographical Information Extraction
In the areas of geoscience, scientific articles’ geographical infor-
mation is abundant. For one thing, because of the discipline char-
acteristics, a large number of geoscience papers have geographic
illustrations, where geographical coordinates are shown so that the
places the papers mentioned can be seized. For another, distinguish
from other subjects, the locations would be directly shown in the
text, indicating the research locations or reference locations of the
articles. Consequently, we make effort to extract geographic illus-
trations as well as locations from the text and get their location
coordinates.

Geographic illustrations. We first use pdffigures2 [5] to ex-
tract pictures from PDFs from papers with open access certification,
perform rule-based screening on the extracted pictures according
to the picture features. Second, we not only extract the text rep-
resenting place names from these illustrations, and generate the
coordinates with geocoder pipeline, but also extract the latitude
and longitude range from the numbers representing the latitude
and longitude from these illustrations. Throughout this process,
we perform image enhancement and flipping in order to have a
better image recognition performance with PaddleOCR. Moreover,
we annotate 1000 illustrations as the ground truth benchmark and
adjust the input of the PaddleOCR by using rule-based methods
(illustrated in Figure 7) to ensure the accuracy on our benchmark
to reach above 85%. Finally, we apply the method to all the pictures
in GAKG to generate a geographic coordinate.

Geographical/Social/Political Entities. We build a BERT-
based named entity recognition model to extract the locations and
GPE (Geographical/Social/Political Entities). After the normaliza-
tion of the location entities, we use a geocoder pipeline to get the
location coordinates.

Finally, we use the Geohash algorithm to store coordinates for
the sake of the visualization of SPARQL query results.

3.4 Geologic Time Scale Extraction
In addition to the extensive distribution in geographic space, the
research of geosciences also has historical continuity. To more con-
veniently use the research findings of geoscientists to discover the
information of the geographic era involved, we extract the geologic
time scale entities mentioned in the title, abstract and introduction
of the papers through a rule-based enhance information extrac-
tion method that we developed. According to the geographic era
words’ positions in papers and the words appearing before and after,
the confidence scores are calculated. Finally, we map the geologic



Figure 7: An Example of Illustrations Coordinates Extrac-
tion. (a) is the result of OCR, (b) highlights the recogni-
tion error, (c) is the result of OCR after using a rule-based
method adjusting image, and (d) highlights the corrected co-
ordinates.

time scale words that reach a certain threshold to the normalized
high-precision geologic time scale vocabulary collected by senior
geoscientists. We have extracted more than 250k articles that have
geographic time scale information. Based on the evolution time of
the age, the most fine-grained time scales, the distribution of these
papers is shown in Figure 8.

4 BENCHMARKS
In this section, we discuss two kinds of benchmarks including three
datasets that we provide with the GAKG, including a citation net-
work and a cooperation network for community detection task as
well as a tiny KG extracted from GAKG for knowledge represen-
tation learning task. We discuss the details of these benchmark
datasets as follows. All the benchmarks can be downloaded from
the GAKG Github repository2.

4.1 Community Detection
Community detection is one of the classic issues in social net-
work analysis, targeting to find nodes’ groups, in some sense, one
node has more connection within its group than the others. There

2 https://github.com/davendw49/gakg

Figure 8: Papers Distribution along with Geologic Era.

are plenty of works to find community in undirected networks
[6, 15, 23, 27], while few works in directed networks [24].

Community detection over the undirected network is a classic
network science problem. A large number of works can successfully
performwell on specific benchmarks. However, most of the existing
benchmarks remain for model evaluation and have little practical
significance. Community detection on social networks in the real
world needs more sociological meanings benchmarks. When it
comes to clustering problems in directed networks, the issue has not
received attention from the scientific community. [19] The directed
network datasets with ground-truth communities are rare, like
email-Eu-core [16] and cora [41]. DBLP [34] provides a large-scale
citation network among all the fields however it lacks community
labels, which need to be generated by researchers.

4.1.1 Datasets. GeoScience Papers Citation Network (GPCN).
Based on GAKG, we construct a GeoScience Papers Citation Net-
work (GPCN), where papers are denoted as nodes while edges’
direction means one paper refers to the other paper. GPCN is a
weakly connected directed graph, with 1,598 weakly connected
components, and the largest weakly connected component has
838,219 nodes and 16,031,892 edges (both nodes and edges coverage
are over 0.99). Besides, each paper has a community label according
to the journal in which it was published.

GeoScience Authors Cooperation Network (GACN). Based
on GAKG, we also build a GeoScience Authors Cooperation Net-
work (GACN), where authors are denoted as nodes while edges
mean two authors have cooperation relation. Each edge has aweight
denoting two authors’ cooperation times. GACN is a unconnected
graph, with 32,863 connected components, and the largest one has
752,718 nodes and 5,231,507 edges (containing 87.5% nodes and
97.2% edges). Besides, each author has a disjoint community label
refer to the journal the author has published most articles on it.

GPCN and GACN can be accessed via GAKG resources pages,
and their statistics are shown with other benchmarks in Table 5.

4.1.2 Experiments and Results. For community detection problems
on both the directed and undirect network, we compare Mape-
quation [29], Louvain[2], and LPA [28] over 3 directed network,
Email-Eu-core [16], CORA [20], and GPCN, and 3 undirected net-
work, DBLP Collaboration Network, Amazon Product Network
[40], and GACN. For the record, we use the GPCN’s largest weakly
connected component and the GACN’s largest connected compo-
nent as the input data when evaluating models over GPCN and
GACN.

We observe two kinds of community detection tasks using NMI
[31] as the evaluation metric and the results are shown in Figure
9. According to the results, it is clear that these algorithms do
not perform well on our benchmarks, even though the algorithms

https://github.com/davendw49/gakg


Table 5: Statistics of Community Detection Benchmarks.

Benchmarks Number of Nodes Edges Nodes in Edges in Nodes in Edges in Average Triangles Diametercommunities Largest WCC Largest WCC Largest SCC Largest SCC Cluster Coefficient
GPCN 194 842,121 16,034,510 838,219 (0.995) 16,031,892 (0.999) 0 0 0.0699 38,789,469 176
GACN 194 860,280 5,381,861 752,718 (0.875) 5,282,032 (0.972) 752,718 (0.875) 5,282,032 (0.972) 0.6897 43,502,542 15

Email-Eu-core 42 1,005 25,571 986 (0.981) 25,552 (0.999) 803 (0.799) 24,729 (0.967) 0.3994 105,461 7
CORA 7 2,708 5,429 2,485 (0.918) 2,604 (0.493) 13 (0.005) 14 (0.003) 0.1314 1,630 15

DBLP (Collaboration Network) 2,547 317,080 1,049,866 317,080 (1.000) 1,049,866 (1.000) 317,080 (1.000) 1,049,866 (1.000) 0.6324 2,224,385 21
Amazon (Product Network) 5,000 334,863 925,872 334,863 (1.000) 925,872 (1.000) 334,863 (1.000) 925,872 (1.000) 0.3967 667,129 44

Figure 9: Community Detection Evaluation Results.

are efficient and suitable for detecting communities over large-
scale networks. Therefore, in the task of community detection,
our benchmark GPCN and GACN put forward a higher challenge.
Moreover, it is also very significant to use GPCN and GACN to
discover research groups in the world of geoscience research.

4.2 Knowledge Representation Learning
Knowledge representation learning (KRL) has always been a
hot research area, and many extraordinary works [3, 14, 25, 32, 39]
have performed well on link prediction task over FB15K and WN18
[3, 21] benchmark.

4.2.1 Dataset. Even though knowledge representation models can
be evaluated over FB15K and WN18, the models struggle with
academic KG, since academic KG representation learning lacks ap-
propriate benchmarks. Therefore, we extract a dataset from GAKG,
named GA16K and evaluate the current SOTA algorithm on it. We
first order each type of entity according to their degrees and select
the entities with a larger degree into an entity set 𝑉 . Then we add
edges into relation set 𝑅 if its source node and target node are in the
set 𝑉 . And the train, test, and valid data sets are randomly divided.
Table 6 shows the basic statistics of FB15K, WN18 and GA16K.

4.2.2 Experiments and Results. We use the link prediction task
defined in TransE [3] for evaluation. Assuming that a triple (ℎ, 𝑟, 𝑡)
in a KG consists of two entities, ℎ, 𝑡 ∈ 𝑉 and relation 𝑟 ∈ 𝑅, the
algorithm embeds the entities in the k-dimensional space and based
on the prediction of 𝑡 given ℎ and 𝑟 , or the result of ℎ given 𝑟 and 𝑡 ,
calculate MR, the average rank of correct entities, and hit@10, the
proportion of correct entities appearing in the top 10, to evaluate
the performance of the algorithms. We compare the performance
of these algorithms over the three benchmarks (FB15K, WN18 and
GA16K). The algorithms we take into evaluation are RESCAL [25],
TransE [3], TransH [39], SimplE [14] and RotatE [32].

The evaluation results on GA16K are produced with optimal
training parameters of each model, and the results on FB15K and
WN18 are extracted from the models’ original papers. The results
are shown in Table 7. We can see that GA16K has the same trend
as FB15K and WN18. Among the translation-based models, we
compared, from TransE, TransH to RotatE, it is getting better and
better, indicating that translation-based is effective on GA16K. The
performance of SimplE on GA16K is not as great as it is on other

Table 6: Statistics of KRL Benchmarks.

Benchmark relation entity triple
FB15K 1,345 14,951 483,142
WN18 18 40,943 141,442
GA16K 10 16,363 151,662

Table 7: Results of Link Prediction Task.

Models FB15K WN18 GA16K
MR hit@10 MR hit@10 MR hit@10

RESCAL 683 0.441 1,163 0.528 4,300 0.001
TransE 125 0.471 251 0.892 280 0.320
TransH 84 0.585 303 0.867 337 0.325
RotatE 40 0.884 309 0.959 214 0.366
SimpIE 74 0.876 412 0.947 311 0.260

benchmarks to some extent. The reason is that SimplE aims at the
canonical polyadic decomposition of entities in triples, but it is not
suitable for GA16K, since that if exchange the head entities and tail
entities, only one kind of edge, is_cited_by, will not be the wrong
edge, the rest are all wrong, which is a kind of noise in the training
process.

Comprehensive speaking, all the algorithms perform not quite
well on GA16K. GA16K is based on uniformly sample node and
all the relevant edges, acting as a subgraph of GAKG, GA16K is
more challenging on knowledge representation learning tasks than
other benchmarks. Compare to other benchmarks, except for the
paper entities, other entities only have one out-edge and one in-
edge, so the embedding of the paper entities are influential on the
whole training process since the paper entities are always the head
entities and only become tail entities when they are connected by
is_cited_by. Therefore, in the task of link prediction, our benchmark
GA16K puts a new challenge on the current knowledge embedding
models.

5 ONLINE APPLICATIONS
Benefit from the multimodality of GAKG, computer scientists inves-
tigate more about information retrieval and data mining techniques
on geoscience, while geoscientists conduct research in a more vi-
sual way. As a resource for the information technology community,
we provide two examples of applications based on the GAKG. The
screenshots of the demos are shown in Figure 10.

Geographic Information Retrieval. We provide a knowledge-
based search engine on a geographical map for the literature of
geoscience. First, researchers can query the paper-oriented informa-
tion in GAKG, including papers’ titles, abstracts, timescale, topics,
and knowledge entities. Researchers enter keywords in the input
box, e.g. "Carbonate rock", and the relevant papers would be shown
on the map (a demo screenshot is shown in 10(a)). Once there are
plentiful articles in the text that contain the input keywords, or



(a) Geographic Information Retrieval (b) Geoscience KBQA

Figure 10: GAKG Application Demos.

there are many articles’ topics or knowledge entities that are the
input keywords, a great number of papers will be returned. For a
better user experience, we only show the distribution of papers in
the display area of the window. If the researcher drags the window,
the distribution of the papers will change accordingly.

Geoscience KBQA. Based on GAKG, research can know more
information about the relation between papers. We carry out sev-
eral samples including one-hop queries, such as returning papers
targeting a particular topic, two-hop queries, such as querying il-
lustrations in a specific field, three-hop queries, such as querying
geographic locations that a certain affiliation often studies and
querying the relationship between geographic locations and affilia-
tions is a kind of four-hop queries. These template-based queries
can be applied in scientific research and academic communication.
These questions are also generally inextricable by existing Q&A
systems and search engines. (a demo screenshot is shown in 10(b))

6 DISCUSSIONS
In this section, we discuss the value of data, issues, and other ob-
servations regarding the construction and applications of GAKG.

6.1 Availablility and Quality
Availablility. The dump files of GAKG, stored in N-Triples format,

are available at the GAKG homepage: https://gakg.acemap.info
/. GAKG can be queried and explored via the SPARQL endpoint.
The implementation of the pipeline to extract knowledge entities
of GAKG, the benchmarks and the source code of the baselines’
implementation are available at the GAKG Github repository.

Quality. During constructing the GAKG, We have been ensuring
the quality of the KG included by manual verification of some core
data and extracting data from reliable sources. Rigorously, wemerge
AceMap, DBpedia, and DDE’s vocabulary to build an entity library,
checking periodically by experts in the domain of geoscience. In
future work, we will continue to improve our entity library’s quality
to make GAKG more precise, serving data mining tasks such as
relation extraction and reasoning.

6.2 Limitations
Despite the high coverage and value in the use of GAKG, its preci-
sion is limited by knowledge entity extraction. Unsupervised infor-
mation extraction systems do not have a good performance on sci-
entific text, because of the lacking annotation about the knowledge

entities and their relationships within the papers. [10]. Therefore,
the recall of our model was reduced to ensure the high precision
of the extracted entities. Apart from that, since we keep human
experts’ annotation in the loop, the amount of annotations needs to
be accumulated so that the model’s performance can be improved
by iterations.

6.3 Future Directions
We will maintain and update the GAKG in the future with the
promotion of GAKG and its query system sustainedly. Based on
GAKG, the observation directions in the future we expect and follow
are listed as follows:

Academic Knowledge System Construction with Human-In-the-
Loop. We propose a Human-In-the-Loop framework in this paper
to absorb the knowledge entities of each paper transferring the
unstructured data into graph data. It stands to reason that mining
the connection of two knowledge entities is much more impor-
tant. Therefore, we intend to mine the knowledge and construct
the knowledge systems of disciplines based on academic articles’
knowledge entities and their relations, with Human experts’ anno-
tation in the loop of academic knowledge system construction.

Social Community Detection in Geoscience. Despite sharing com-
munity detection benchmarks to evaluate the performance of mod-
els and algorithms, finding the collaboration between geoscientists
and seeking influential papers among the citation networks rather
than only considering their citation.

Scientific Articles’ Geographical Information Extraction. In this
paper, we have collected the locations mentioned by papers, while
the geographic positions the papers study may be omitted. There-
fore, it is important to sort out the location the geoscience papers
investigate, which sheds light on the connection between scientific
articles and geographical maps.

7 CONCLUSIONS
In this work, we present a novel multimodal academic knowledge
graph for geoscience, named GAKG, to facilitate the geoscience
experts to find the internal relations between the articles, the ge-
ographic location, and every scrap of the knowledge in papers.
GAKG brings out a pipeline to find key knowledge entities from
the scientific articles and connects these entities to the paper enti-
ties with geoscientists in the loop. In addition, GAKG extracts the
geographic location information and geologic time scale entities to
expand the dimension of papers parsing papers’ illustrations and
text. Based on the multimodal data, we build a SPARQL endpoint
and a search engine for research to explore GAKG. We also provide
benchmarks for community detection and knowledge representa-
tion learning tasks. Finally, we discuss the applications, availability,
quality, limitations, and future directions of GAKG.
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