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ABSTRACT
We investigate the fundamental relationship between node
density and transmission delay in large-scale wireless ad hoc
networks with unreliable links from percolation perspective.
Previous works[11][2][10] have already showed the relation-
ship between transmission delay and distance from source
to destination. However, it still remains as an open ques-
tion how transmission delay varies in accordance with node
density. Answering this question can provide guidance for
determining the number of nodes to meet the delay require-
ment when designing ad hoc networks. In this paper, we
study the impact of node density λ on the ratio of delay and
distance, denoted by γ(λ). We analytically characterize the
properties of γ(λ) as a function of λ. And then we present
upper and lower bounds to γ(λ). Next, we take propagation
delay into consideration and obtain further results on the
upper and lower bounds of γ(λ). Finally, we make simula-
tions to verify our theoretical analysis.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communications

General Terms
Theory and Performance
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1. INTRODUCTION
Wireless communication sees an explosive growth in the

number of customers in the past few decades, making large-
scale wireless ad hoc network an important part of modern
life. In such a large-scale wireless network, information are
transmitted in a multi-hop fashion. However, due to the
unreliability of links in severe environment, such a multi-hop
path may not exist all the time, making delay a significant
issue. Besides, some power saving mechanism, e.x., turning
off some base stations intermittently, can even exacerbate
the delay performance. Therefore, it is important to study
the relationship between node density and delay, so that we
can control the delay in a desirable way.

To make our study meaningful, we assume the large-scale
network is connnected. Full connectivity[3] can ensure the
successful communication between node pairs in a wireless
network, . However, it is overly power consuming to achieve
full connectivity in large-scale networks(i.e., the power re-
quired to maintain full connectivity increases with the size
of the network). Thus, it is necessary to introduce a slightly
weaker connectivity criterion, i.e., an infinite connected com-
ponent containing a high fraction of the network nodes ex-
ists in a network. Thanks to percolation theory[9][14], it
is possible to achieve this weaker connectivity in large-scale
networks with power bounded.

Percolation theory[9], especially continuum percolation,
has become a useful mathematical tool when analyzing the
capacity and the connectivity of wireless networks. The
most general model in Continuum Percolation, Random Con-
nection Model(RCM), describes the behavior of connected
clusters in a random geometric graph in which nodes are
distributed according to poisson point process with node
density λ, and two nodes share a link according to a connec-
tion function h(r). A fundamental result of RCM points out
a phase transition effect1. For λ > λc(supercritical), there
exist a unique connected component containing an infinite
number of nodes(we also say the network is percolated). For
λ < λc(subcritical), all connected component in the network
are finite almost surely.

1The condition for the existence of phase transition is 0 <∫
R2 h(r)dr < ∞.



Applying percolation theory to wireless networks with un-
reliable links, we introduce two important concepts, i.e., in-
stantaneous connectivity and long-term connectivity. In-
stantaneous connectivity requires wireless network perco-
lated all the time. Long-term connectivity requires wire-
less network percolated in the long run(we will elaborate
it more clearly later in section2.2.1). The instantaneous
critical density, denoted by λI , is the critical density for
instantaneous connectivity and the long-term critical den-
sity, denoted by λL, is the critical density for long-term con-
nectivity. Long-term connectivity is a weaker criterion for
connectivity, thus λL < λI . The Prerequisite for communi-
cation in wireless networks is connectivity, so we only focus
on the case λ > λL.
In wireless ad hoc networks, delay is mainly composed of

the waiting delay and the propagation delay. The waiting
delay is caused by the lack of instantaneous connectivity.
Information cannot be transmitted to a distant destination
instantaneously since the connected component is finite al-
most surely. It must wait for some time until some com-
munication links are established and can transmit forward
again. Usually, such a waiting time is in the order of sec-
onds, minutes or more. As for the propagation delay, it
depends on the channel condition, scheduling and routing
algorithm, arrival rate, etc. Mostly, the propagation delay
is in the order of milliseconds if the network is not heavy
loaded. Therefore, it is negligibly small compared to the
waiting delay. For ease of analysis, we first ignore the im-
pact of propagation delay and will consider its effect in the
last.
Previous works [11][2][10] have showed that if λL < λ <

λI , the transmission delay scales linearly with distance be-
tween source and destination(γ(λ) > 0), and if λ > λI , the
transmission delay scales sub-linearly with distance(γ(λ) =
0). We can operate the network at λ > λI , but it is usu-
ally too costly and sometimes unnecessary to build so much
nodes(base station). Another choice is to operate the net-
work at λL < λ < λI . Then the cost deceases, however, if we
want the network to meet some delay requirement for those
important flooding information, simply knowing γ(λ) > 0 is
far from enough. Therefore, we need to know the exact value
or the lower and upper bounds of γ(λ) for ease of designing
a proper network.
In this paper, we present a theoretical analysis about the

delay in wireless networks with unreliable links. We present
3 properties of γ(λ) as a function of λ. Using coupling tech-
niques, we prove that γ(λ) is a monotone decreasing func-
tion.
And then, we come to the upper and lower bounds of

γ(λ), while ignoring the propagation delay. For the upper
bound, we first find a path between two nodes. And then
we calculate the number of hops along this path and the
delay at each hop. We obtain the result on upper bound
through multiplication of the above two items. For the lower
bound, we first introduce a concept called cluster to cluster
transmission process and establish the relationship between
delay and the cluster to cluster transmission process, which
reveals the essence of delay in networks. Then, using the
definition of delay of a cluster to cluster transmission, we
obtain a lower bound of γ(λ).
Next, we take propagation delay into consideration and

reformulate γ(λ) in this case. Propagation delay increases
the delay in Large-Scale Networks, making γ(λ) > 0 even

when λ > λI . Using similar methods, we present new upper
and lower bounds to γ(λ) for all λ > λL.

Finally, we make enormous simulation and further verifies
our theoretical results.

The original contributions that we have made in the paper
are highlighted as follows:

• We present three properties to γ(λ), i.e., γ(λ) is uni-
formly bounded; γ(λ) = 0 whenever λ > λI ; γ(λ) is a
monotone decreasing function.

• Ignoring propagation delay, we provide the upper bound
and the lower bound to reflect the range of variation
on γ(λ).

• Taking propagation delay into consideration, we obtain
further results.

• We conduct simulations to obtain experimental val-
ues of γ(λ) in the above two cases. A new observa-
tion arises from our comparison between theoretical
and simulation results is that the delay-distance ratio
γ(λ) can be estimated by the lower bound in relative
dense networks while the experimental values of γ(λ)
get closer to the upper bound as λ decreases. This also
justifies the soundness of our theoretical conclusion.

The rest of the paper is organized as follows. In section
2, we introduce our network model, several useful mathe-
matical tools and some important notations. In section 3,
we first give three properties of γ(λ), and then present our
main results concerning the upper and lower bound of γ(λ).
The analysis process to obtain the upper and lower bounds
is given in section 4. Simulation results are presented in
Section 5 to support our theoretical findings. We summa-
rize the paper in Section 6. Some proofs of the theorems
and lemmas are presented in line or in Appendix.

2. BACKGROUND AND NETWORK MODEL
In this section, we present the background and network

model. At first, we list some properties of poisson point
process that are frequently used in this paper, and give a
brief description of Random Connection Model. Then, we
model the network as a random geometric graph, and define
delay using first passage percolation model. Finally, we list
some important notations in this paper.

2.1 Background

2.1.1 Poisson Point Process
In large-scale wireless networks with unreliable links, usu-

ally base stations cannot be placed anywhere due to severe
environment. Or in the case that we have mobile stations,
we cannot predict precisely the real time location of base
stations. In these scenarios, a common way to model the
location of base stations is to assume that those base sta-
tions are distributed uniformly in a given area, w.l.o.g., we
assume λn2 base stations are evenly distributed in a n × n
area. If we let n → ∞, then the distribution of base sta-
tions will converge in distribution to Poisson Point Process



with rate λ2. The nice part of Poisson Point Process is the
following two classical results on Poisson Point Process.

Lemma 2.1. [13]Let Γ be a potentially inhomogeneous Pois-
son process on Rd with density function λ(x), where x =

(x1, x2, ..., xd) ∈ Rd. Suppose that we obtain Γ
′
by indepen-

dently coloring points x ∈ Γ according to probabilities p(x).

Then Γ
′
and Γ − Γ

′
are two independent Poisson processes

with density function p(x)λ(x) and (1 − p(x))λ(x), respec-
tively.

Lemma 2.2. Let Γ,Γ
′
be two independent inhomogeneous

Poisson process on Rd with density functions λ(x) and λ
′
(x),

respectively, where x = (x1, x2, ..., xd) ∈ Rd. Suppose that

we obtain Γ + Γ
′
by superposing Γ

′
on Γ. Then Γ + Γ

′
is a

Poisson processes with density function λ(x) + λ
′
(x).

The above two lemmas point out that the decomposition
or superposition of Poisson Point Processes remains to be
Poisson Point Process. This is very useful in coupling tech-
niques. Moreover, we will use node and base station inter-
changeably if causing no confusion.

2.1.2 Random Connection Model
Before introducing the network model, we need a brief

introduction to Continuum Percolation. Connectivity is a
significant issue in wireless network, which has been exten-
sively explored by [3][4][5][6][7][8] .In this part, we present
the definition of connectivity in percolation perspective. To
make the results in this paper applicable to more scenarios,
we focus on the most general model in Continuum Percola-
tion Theory, i.e., Random Connection Model(RCM).
In Random Connection Model, nodes are distributed ac-

cording to Poisson point process [12] in Rd. Here we only
focus on the case of R2 with node density λ > 0. Each node
x connect to another node y according to the connection
function h(r), where r is the distance between x and y, and
h(r) satisfy 0 <

∫
R2 h(r)dr < ∞.

We denote the RCM by G(λ, r0, h(r)), where λ is the
node density, r0 = sup{r|h(r) > 0}, h(r) is the connec-
tion function. Then G(λ, r0, h(r)) is a set of nodes con-
nected by random links. For convenient, we assume the
origin 0 ∈ G(λ, r0, h(r)).
Obviously, G(λ, r0, h(r)) is composed of one or several

disjointed connected clusters. Let us denote W (A), A ⊆
G(λ, r0, h(r)), the set of nodes attainable from nodes in set
A, i.e.,

W (A) = {x ∈ G(λ, r0, h(r))|∃a ∈ A, a ↔ x},

where, a ↔ x means that nodes a and x are in the same
connected component.
Besides, we use |W | to represent the cardinality of set W .

And we write θh(λ) = Pλ,h(|W ({0})| = ∞)3 and χh(λ) =
Eλ,h(|W ({0})|)4.
Then, the critical density can be determined in two ways,

i.e.,

λθ(h) = inf{λ|θh(λ) > 0}; (1)
2We fail to find the original statement in the related refer-
ences. However, this statement can be justified by simply
calculating the distribution of the number of base stations
in a given area and then letting n → ∞.
3P is the probability of a event.
4E(x) is the expectation of random variable x

λχ(h) = inf{λ|χh(λ) = ∞}. (2)

According to Theorem 6.2 in [14], λθ(h) = λχ(h) = λc(h).
Furthermore, 0 < λc(h) < ∞. And there exists a unique
infinite connected cluster if λ > λc(h) (supercritical). This
infinite connected cluster is also called the giant component,
denoted by C(G(λ, r0, h(r))). On the other hand, if λ <
λc(h)(subcritical), all the connected components are finite
almost surely.

Random Connection Model is just one kind of continuum
percolation model. Another continuum percolation model is
Poisson Boolean Model B(λ, r). In Poisson Boolean Model
B(λ, r), nodes are distributed according to Poisson Point
Process with density λ, and two nodes can communicate if
and only if their distance is smaller than r. Poisson Boolean
Model can also be seen as a collection of discs with radius
r
2
. Poisson Boolean Model is a special case of Random Con-

nection Model, thus the conclusions for Random Connection
Model still hold for Poisson Boolean Model.

2.2 Model

2.2.1 Network Model
We present the network model in this part. We model a

large-scale network as a random geometric graph. Assume
nodes are distributed according to Poisson Point Process
with node density λ in an infinite two-dimensional space R2.
For each node u, we use u to represent both this node and
its location without causing confusion. We say two nodes
share a link if and only if their distance is smaller than r0.
However, due to the severe natural hazards, enemy attack
or energy depletion, each link suffers the possibility to fail.
We model this failure as each link opening or closing inter-
mittently.

(a) Illustration of connec-
tion function g(r).

(b) Illustration of connec-
tion function f(r).

Figure 1: Illustration of two connection functions.

Assume time is slotted. Consider a link with length r,
at time slot t, we let it open with probability g(r)(Fig. 1),
independent of its former states. In reality, the farther two
nodes are apart, the more difficult for a successful communi-
cation. Moveover, when r > r0, there exists no link. Thus,
it is reasonable to assume that g(r) is a monotone decreasing
function and g(r) = 0 whenever r > r0. Besides, we place
another restriction on g(r), i.e.,

1 > g(0) ≥ g(r) ≥ g(r0) > 0, 0 ≤ r ≤ r0. (3)

Then the network at each time slot t can be represented by
a Random Connection Model Gt(λ, r0, g(r)). Here, we use
subscript t to indicate that the network is dynamic. Note
that if λ > λc(g(r)), Gt(λ, r0, g(r)) is percolated for all t(we
also say the network has instantaneous connectivity); while
if λ < λc(g(r)), Gt(λ, r0, g(r)) is not percolated for all t.
Thus, the instantaneous critical density λI = λc(g(r)).



Next, we introduce the concept of long-term connectiv-
ity. We first construct a new geometric graph. The lo-
cation of all nodes in this graph is the same as that in
Gt(λ, r0, g(r)). Two nodes x and y share a link in this graph
if and only if there exist t, such that x and y share an open
link in Gt(λ, r0, g(r)). Note that x and y has the poten-
tial to share a link in Gt(λ, r0, g(r)) for some t, whenever
g(r) > 0(equivalently, r > r0). Thus this new geometric
graph can be represented by a Random Connection Model
G(λ, r0, f(r))(it can be also represented by Poisson Boolean
Model B(λ, r0)). Here, f(r) = 1 when r < r0, and f(r) = 0
when r > r0(Fig. 1). We say the wireless network has long-
term connectivity if and only if G(λ, r0, f(r)) is percolated.
And the critical density λL = λc(f(r)) is defined as the
long-term critical density.
As for the instantaneous critical density and the long-term

critical density, we have the following relationship.

Lemma 2.3. λL ≤ λI .

The proof of this statement is quite trivial, so we omit it
here.
Since the prerequisite for communication in large-scale

wireless network is connectivity, it is enough to only focus
on the case λ > λL.

2.2.2 Modeling Delay in Large-Scale Networks
This paper aims to find the relationship between node

density and delay. The definition of delay of large-scale
network is based on the First Passage Percolation. First
Passage Percolation, first formulated by Hammersley and
Welsh[1] in 1965, can be a very powerful tool for analysis of
transmission delay in large-scale networks.
Given a Random Connection Model G(λ, r0, h(r)), attach

each link e of G(λ, r0, h(r)) a random variable Tc(e), repre-
senting the time needed to pass through the link e. Consider
a path π, the passage time is defined as

Tp(π) =
∑
e∈π

(Tc(e)).

And for any two nodes x and y(x, y are not necessarily
adjacent), the first-passage time Tλ(x, y) is given by

Tλ(x, y) = inf {Tp(π) : π is a pass from x to y}.

In this paper, the time needed to cross a link is composed
of two parts. The dominating part is called waiting delay,
which is caused by the unreliability of links. Sometimes,
information must wait at one end of a link until this link is
on. The unreliability of a link may be caused by a sudden
wind, a sudden rain, etc. Usually, a link is more likely to
remain in a state(good or bad) for several seconds, minutes,
or even longer. The time slot in this paper is an enough long
period for links to change states.
Another part of delay is caused by the bandwidth, schedul-

ing and routing algorithm, the actual propagation speed.
Usually such kind of delay is in the order of milliseconds,
which is negligible small compared to the waiting delay. We
don’t want to go deep into this part. At first, we just ig-
nore this part of delay. After that, when we are studying
the impact of this part of delay, we simply model it as the
propagation delay. We assume all active links can transmit
simultaneously. Because the interference constraints is just
equivalent to increasing the propagation delay a little bit.

We first only focus on the waiting delay. This is equivalent
to introducing a random crossing time Tc(e) to each link
e ∈ G(λ, r0, f(r)). Assume that the length of the link e is
0 < r < r0, Tc(e) satisfy the Geometric distribution(here we
have ignored the propagation delay),i.e.,

P(Tc(e) = k) = (1− g(r))kg(r). (4)

Eqn. (3) assures that 0 < E(Tc(e)) < ∞. Using Liggett’s
subadditive ergodic theorem[15], previous works have proved
that, for x, y ∈ C(G(λ, r0, f(r))), when λ > λL,

lim
d(x,y)→∞

Tλ(x, y)

d(x, y)
= γ(λ). (5)

Moveover, if λL < λ < λI , γ > 0; while if λ > λI , γ = 0.
Eqn. (5) is also the definition of γ(λ). From the former

result, we can also see that γ must depend on λ. However,
the existing results only point out when γ(λ) equals to 0,
and when it is larger than 0. The exact relationship between
γ(λ) and λ still remains as an open question. In this paper,
we will give a more precise description on γ(λ).

2.3 Useful Notations
Some useful notations are listed as follows.

• (Section 2.1.2)G(λ, r0, h) is a Random Connection Model,
and h is the connection function; B(λ, r) is the Poisson
Boolean Model; we use C(G(λ, r0, h)) and C(B(λ, r))
to represent the giant component of G(λ, r0, h) and
B(λ, r) respectively.

• (Section 2.2.1) Gt(λ, r0, g) is the instantaneous geomet-
ric graph at time slot t and its critical density is λI ;
G(λ, r0, f) is the long-term geometric graph and its
critical density is λL.

• P(•) represents the probability of some event;E(•) rep-
resents the expectation of a random variable;zx( zy)
represents the x(y)-coordinate of z; d(u, v) =∥ u− v ∥
is the Euclidean distance between node u and v.

• (Section 4.3)H(z0, a) is a circular region defined as
H(z0, a) = {z = (zx, zy) ∈ R2| ∥ z − z0 ∥< a}.
The random variable Sg,t,u(λ) is defined as Sg,t,u(λ) =
sup{a|∃ node v ∈ Hc(u, a), v and u are connected at t-
ime slot t}. Actually, the distribution of Sg,t,u(λ) is in-
dependent of t and u. Thus, we write Sg,t,u(λ) as Sg(λ)
for short.

• (Section 2.2.2) Tc(e) is the passage time for a link e;
Tp(π) is the passage time for a path π; Tλ(x, y) is the
first passage time from node x to y; (Section 4.2) Tp(Π)
is the passage time for a cluster to cluster transmission
process Π;

• (Section 4.1)Nλ(d(u, v)) is the minimum number of
hops from node u to v.

• π represents a path; Π represents a cluster to cluster
transmission process.



3. MAIN RESULTS
In this section, we first give some properties on the delay-

distance ratio γ(λ). And then we present our main results
concerning the tradeoff between node density and γ(λ) in
wireless networks with unreliable links, in which an upper
bound and a lower bound for γ(λ), are given.

3.1 Properties of γ(λ)

γ(λ) can be seen as a function mapping from [λL,∞) to
R. The properties of γ(λ) are listed below.

Theorem 3.1. γ(λ) has the following three properties:

• there exists γM < ∞, such that for ∀λ, γ(λ) ≤ γM ;

• for ∀λ > λI , γ(λ) = 0;

• γ(λ) is a monotone decreasing function.

Proof. The first property can be proved later, so we do
not elaborate it here. The second property has already been
proved by previous literatures[11] [10][2][16]. Thus, we only
present the proof of property 3 here.
Given λ1 > λ2, consider two Random Connection Models

Gt(λ1, r0, g(r)) and Gt(λ2, r0, g(r)). We use coupling tech-
nique to prove γ(λ1) ≤ γ(λ2).
Note that nodes in Gt(λ1, r0, g(r)) and Gt(λ2, r0, g(r)) are

distributed according to Poisson Point Process Γ1 and Γ2

with node densities λ1 and λ2, respectively. According to
lemma 2.2, Γ1 can be seen as the superposition of Γ2 and

another Poisson Point Process Γ
′
with node density λ2−λ1.

Consider nodes x, y ∈ Γ2, since Γ2 ⊆ Γ1, we obtain x, y ∈
Γ1. For any path π connecting x and y in Gt(λ2, r0, g(r)),
this path also exists in Gt(λ1, r0, g(r)). And the delay from
x to y, Tλ(x, y), is defined as the minimum delay among all
paths connecting x and y. Thus,

Tλ1(x, y) ≤ Tλ2(x, y).

Divide the above inequality by d(x, y), and let d(x, y) →
∞, we obtain

γ(λ1) ≤ γ(λ2).

We also have a conjecture about γ(λ), i.e., γ(λ) is a con-
tinuous function. However, we fail to prove it.
According to Theorem 3.1, we can sketch γ(λ) out(Fig.

2).

3.2 Main results on γ(λ)

We have obtained several properties of γ(λ). Now we are
ready to present our main results.

Theorem 3.2. Given a RCM Gt(λ, r0, g(r)) with λL <
λ < λI , the corresponding γ(λ) satisfies

1

E(Sg(λ) + r0)
≤ γ(λ) ≤ inf

λ
′∈[λL,λ]

κ

√
λ′

λL
(

1

g
(
r0
√

λL

λ
′

) − 1),

(6)
where κ is a constant independent of λ.

If we take propagation delay into consideration, we have
the following results.

Figure 2: Sketch of γ(λ)(without considering propa-
gation delay).

Theorem 3.3. Given a RCM Gt(λ, r0, g(r)) with λ > λL,
τ is the propagation delay for a existing link and τ < 1. Then
the corresponding γ(λ) satisfies

1

E(min{Sg(λ),
r0
τ
}) + r0

≤ γ(λ) ≤ inf
λ
′∈[λL,λ]

κ
√

λ′/λL

g
(
r0
√

λL

λ
′

)
(7)

where κ is a constant independent of λ.

Our results provide a theoretical way to estimate delay in
large-scale wireless networks. We use connection function
g(r) to represent the condition of a large-scale wireless net-
work, making our results applicable to most cases in real
networks. Also, waiting delay and propagation delay are
both taken into account in our formulation, making our re-
sults more reliable.

4. UPPER AND LOWER BOUNDS OF γ(λ)

In this section, we first give an upper bound to the delay-
distance ratio, γ(λ). And then, we make further analysis on
transmission delay and introduce a concept called cluster to
cluster transmission. Using this concept, we derive a lower
bound. Finally, we take propagation delay into considera-
tion, and formulate its impact on γ(λ).

Turn back to the definition of γ(λ)(Eqn. 5).

γ(λ) = lim
d(x,y)→∞

Tλ(x, y)

d(x, y)
,

where x, y belong to the giant component of G(λ, r0, f(r)).
However, we needn’t calculate the limit for all pairs of x, y ∈
C(G(λ, r0, f(r))). The correctness of this assertion is assured
by the following lemma.

Lemma 4.1. Given a convergent sequence {xk}, k = 1, 2, ...,
and limk→∞ xk = x0. {yk}, k = 1, 2, ..., is a subsequence of
{xk}, and limk→∞ yk = y0. Then x0 = y0.

Obviously, the number of nodes in C(G(λ, r0, f(r))) is count-
able. We enumerate for all nodes. We randomly select a
node and label it as x0, and then label other nodes accord-
ing to the distance from x0(larger subscript means larger dis-
tance from x0). Define sequence {mk, k = 1, 2, ..., },mk =



Tλ(x0,xk)
d(x0,xk)

, then limk→∞ mk = γ(λ). According to lemma

4.1, we only need to find a subset of nodes of C(G(λ, r0, f(r)))
(the cardinality of this subset must be infinity), and calcu-
late γ(λ) from this subset. This technique is used in deriving
the upper bound.

4.1 Upper Bound of γ(λ)

The definition of of delay is defined as the minimum de-
lay along all paths connecting source and destination nodes.
Thus, it must be smaller than or equal to the delay along
one path. In this part, we will first find a subset of nodes
of C(G(λ, r0, f(r))). And then we find a path for each node
pair in this subset. After that, we calculate the delay along
this path. Finally, dividing the delay by distance, we obtain
an upper bound of γ(λ).
Before proceeding, we need the following lemma.

Lemma 4.2. Consider Poisson Boolean models in R2. Let
λc(r) denote the critical density in the case where the trans-
mission range is r. Then it is the case that

λc(r1)r
2
1 = λc(r2)r

2
2,

where r1, r2 > 0.

Proof. See Proposition 2.10 in [14].

The long-term critical density λL is also the critical den-
sity of Poisson Boolean Model with transmission range r0.
Consider the network with density λ > λL, according to
lemma 4.2, we immediately know that when λr2 > λLr

2
0,

i.e., r >
√

λL
λ

· r0, Poisson Boolean Model B(λ, r) is perco-

lated.

Let 0 < ε <
√

λ
λL

− 1 and r̃ = r0

√
λL
λ
(1 + ϵ), then

B(λ, r̃) is percolated. Note that, in Random Connection
Model G(λ, r0, f(r)), the transmission range is r0 > r̃. Thus,
B(λ, r̃) is a subgraph of G(λ, r0, f(r)). We denote the gi-

ant component of B(λ, r̃) by C(B(λ, r̃)). According to the
uniqueness of giant component in supercritical case, there
must be C(B(λ, r̃)) ⊆ C(G(λ, r0, f(r))). According to lemma
4.1, when calculating γ(λ), we only need to focus on the case
that both nodes belong to C(B(λ, r̃)).
Assume that nodes u, v ∈ C(B(λ, r̃)). Then there exists at

least one path in B(λ, r̃) from u to v. We choose the path
with minimum number of hops, and denote it by πm.
Up to now, we have found a path connecting u and v.

Next, we are to calculate the delay along this path. To start
with, we need to work out the number of hops, denoted by
Nλ(d(u, v)), in πm. We needn’t calculate each Nλ(d(u, v))
for different λ. We can find the relationship of Nλ(d(u, v))
for different λ in the following way.

Scale the network up by
√

λ
λL

, and then the node density

becomes λL, the transmission range becomes (1 + ϵ)r0, and

the distance between u and v becomes d(u, v)
√

λ
λL

. As a

result, calculating Nλ(d(u, v)) is equivalent to calculating

NλL(d(u, v)
√

λ
λL

). Next, we present the lemma concerning

NλL(d).

Lemma 4.3. Given B(λL, (1 + ϵ)r0), and u, v ∈ C(B(λL

, 1+ϵ)), the minimal number of hops needed for transmitting
information from u to v is NλL(d(u, v)). Then there exist κ

such that

lim
d(u,v)→∞

NλL(d(u, v))

d(u, v)
= κ.

The proof of lemma 4.3 uses Liggett’s subadditive er-
godic theorem. This technique has already been explored
in [2][10]. For detailed proof, please refer to our technical
report [17].

According to lemma 4.3, we immediately get

lim
d(u,v)→∞

Nλ(d(u, v))

d(u, v)
= lim

d(u,v)→∞

NλL(d(u, v)
√

λ
λL

)

d(u, v)

= κ

√
λ

λL
. (8)

Then we calculate the delay Tp(πm) along path πm. Ac-
cording to Strong Large Number Theory, with high proba-
bility, we have

Tp(πm) =
∑

e∈πm

Tc(e) = Nλ(d)E[Tc(e)].

Therefore,

γ(λ) = lim
d→∞

Tλ(u, v)

d(u, v)

≤ lim
d→∞

Tp(πm)

d(u, v)

= E[Tc(e)] lim
d→∞

Nλ(d(u, v))

d(u, v)

= κ

√
λ

λL
E[Tc(e)]. (9)

From the definition of the path πm, we know that the

length of each hop is smaller than r̃ = r0

√
λL
λ
(1 + ϵ). Be-

sides, the connection function g(r) is monotone decreasing.

Thus, for a link e
′
whose length is r̃, there must be

E[Tc(e)] ≤ E[Tc(e
′
)]

=

∞∑
k=0

kP(Tc(e
′
) = k)

=
∞∑

k=0

k(1− g(r̃))kg(r̃)

=
1

g(r̃)
− 1. (10)

Thus,

γ(λ) = κ

√
λ

λL
E[Tc(e)]

≤ κ

√
λ

λL
(

1

g(r̃)
− 1)

= κ

√
λ

λL
(

1

g

(
r0

√
λL
λ
(1 + ϵ)

) − 1).

Let ϵ → 0, we obtain

γ(λ) ≤ κ

√
λ

λL
(

1

g

(
r0

√
λL
λ

) − 1).



Furthermore, from property 3 of theorem 3.1, we know
γ(λ) is a monotone decreasing function. Thus,

γ(λ) ≤ inf
λ
′∈[λL,λ]

κ

√
λ′

λL
(

1

g
(
r0
√

λL

λ
′

) − 1).

4.2 Cluster to Cluster Transmission
In section 4.1, we have obtained the upper bound of γ(λ)

by calculating the delay along one path. However, the method
used in section 4.1 cannot be generalized to study the lower
bound of γ(λ). We don’t know the number of paths connect-
ing two nodes, nor do we know the delay along each path.
Thus, it is impossible to find the minimum delay along all
the paths.
To find a lower bound of γ(λ), we need to make clear that

when delay is introduced to network.
Consider transmitting information from node u to v. As-

sume that at time slot t1, node u1(u1 = u) transmits infor-
mation to other nodes. Since we have ignored the propa-
gation delay, all nodes connected to u1 in geometric graph
Gt1(λ, r0, g(r)), denoted by w1, receive the information in-
stantaneously. Then, the transmission process stops. The
transmission process will restart at time slot t2 > t1

5, when
at least one node in w1 find the opportunity to forward the
information to a new node, denoted by u2. At this time
slot, u2 transmits information to those nodes which are con-
nected to u2 in geometric graph Gt2(λ, r0, g(r)), and do not
belong to w1, denoted by w2, instantaneously. This process
goes on, until at time slot tM , node uM and the destination
node v are in the same connected cluster and information is
transmitted to node v instantaneously.
We can see that the cluster to cluster transmission as a se-

ries of outbursts. During each outburst, some new nodes re-
ceive the information. wk, k = 1, 2, ...,M is the set of nodes
which receive the information right at the kth outburst. A
cluster to cluster transmission process can be represented
by Π = {(t1, u1), (t2, u2), ..., (tM , uM )}. Information can be
transmitted from u to v through Π. Define the passage time
for the cluster to cluster transmission process Π as

Tp(Π) = tM − t1.

Then, we have the following lemma.

Lemma 4.4. Given nodes u, v ∈ C((G)(λ, r0, f(r))), the
first passage time

Tλ(u, v) = inf{Tp(Π)|Π is a cluster to cluster

transmission process from u to v}.
(11)

Proof. For convenience, we use L to denote the set of
cluster to cluster transmission process from u to v. Then
Eqn.(11) can be rewritten as

Tλ(u, v) = inf{Tp(Π)|Π ∈ L }.

It is easy to see that for each cluster to cluster transmission
process Π from u to v,

Tp(Π) ≥ Tλ(u, v).

5Here, we do not require t2 to be the smallest, i.e., there

may exist t1 < t
′
< t2, such that at least one node in w1

have the opportunity to forward the information to a new

node at time slot t
′
.

Thus,

inf{Tp(Π)|Π ∈ L } ≥ Tλ(u, v). (12)

Next, we show that

inf{Tp(Π)|Π ∈ L } ≤ Tλ(u, v).

Recall the definition of Tλ(u, v), i.e.,

Tλ(x, y) = inf {Tp(π) : π is a pass from x to y}.

Let π0 be the path with minimum delay from u to v,
we prove that there exists a cluster to cluster transmission
process Π0, such that Tp(Π0) = Tp(π0).

Assume that π0 = i0i1i2...iK(i0 = u, iK = v). At time
slot t1, some nodes in path π0 may be in the same connected
cluster as i0. Let iη1−1 be the node attainable from i0 with
largest subindex, then the link between iη1−1 and iη1 must
be off at this time slot. Let t2 > t1 be the first time slot
that this link is on. At time slot t2, let iη2−1 be the node
attainable from iη1 with largest subindex. Then the link
between iη2−1 and iη2 must be off until time slot t3 > t2...At
time slot tk, node iηk−1 and destination node v are in the
same connected cluster and the information transmit to v
instantaneously. We denote by Π0 this cluster to cluster
transmission process. And

Π0 = {(t1, i0), (t2, iη1), ..., (tk, iηk−1)}.

From the construction of Π0, it is obvious that Tp(Π0) =
Tp(π0).

Thus,

Tλ(u, v) = Tp(π0)

= Tp(Π0)

≥ inf{Tp(Π)|Π ∈ L }. (13)

Combining Eqn.(12) and Eqn.(13), we obtain

Tλ(u, v) = inf{Tp(Π)|Π ∈ L }.

Lemma 4.4 establishes the relationship between delay and
cluster to cluster transmission process. Cluster to cluster
transmission process can represent the information dissemi-
nation process more precisely. Our following results on the
lower bound of γ(λ) are just based on the cluster to cluster
transmission.

4.3 Lower Bounds of γ(λ)

In this section, we use the concept of cluster to cluster
transmission process to derive a lower bound of γ(λ).

To start with, we need to introduce a random variable
Sg,t,u(λ)(g is the connection function, u is a node) to rep-
resent the size of connected cluster in the instantaneous ge-
ometric random graph Gt(λ, r0, g(r)). We establish a carte-
sian coordinate in R2. We define H(z0, a) as

H(z0, a) = {z = (zx, zy) ∈ R2| ∥ z − z0 ∥< a}.

The random variable Sg,t,u(λ) is defined as

Sg,t,u(λ) = sup{a|∃ node v ∈ H(u, a), v ↔ u at time slot t}.

According to the translation invariance and time indepen-
dence of our dynamic random connection model Gt(λ, r0, g(r)),
Sg,t,u(λ) is independent of t and u. Thus, we can write
Sg,t,u(λ) as Sg(λ) if causing no confusion.
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Figure 3: Illustration of a cluster to cluster trans-
mission process.

Now, given two nodes u(source) and v(destination), con-
sider a cluster to cluster transmission process(Fig. 3)

Π = {(u(1), t1), (u
(2), t2), ..., (u

(M), tM )},

where u(1) = u, and u(M), v are in the same connected clus-
ter at time slot tM . Then the delay along this cluster to
cluster transmission process is

Tp(Π) = tM − t1 =

M−1∑
k=1

(tk+1 − tk) ≥ M − 1.

Note that, for ∀k = 1, 2, ...,M − 1, u(k+1) is connected to

a node in wk, denoted by u
′
. Then

∥ u(k+1) − u(k) ∥ ≤ ∥ u(k+1) − u
′
∥ + ∥ u

′
− u(k) ∥

≤ Sg,tk,u
(k)(λ) + r0.

And for k = M ,

∥ vx − u(M) ∥≤ Sg,tM ,u(M)(λ).

Combining the above two inequalities together, we obtain,

d(u, v) = ∥ v − u ∥

≤
M−1∑
k=1

∥ u(k+1) − u(k) ∥ + ∥ v − u(M) ∥

≤
M−1∑
k=1

(Sg,tk,u(k)(λ) + r0) + S
g,tM ,u

(M)
x

(λ)

<

M∑
k=1

(Sg,tk,u(k)(λ) + r0). (14)

For ∀k, Sg,tk,u(k)(λ) admit the same distribution as Sg(λ).
Moreover, according to the spatial independence of Poisson
Point Process, Sg,tk,u

(k)(λ) are i.i.d. random variables. Ac-
cording to the law of strong large numbers, we have

lim
M→∞

∑M
k=1(Sg,tk,u(k)(λ) + r0)

M
= E(Sg(λ) + r0).

That is, for ∀ϵ > 0, ∃Mϵ, such that ∀M > Mϵ(this condi-
tion is satisfied for large enough d(u, v)), we have∑M

k=1(Sg,tk,u(k)(λ) + r0)

M
< E(Sg(λ) + r0) + ϵ.

Combined with Eqn. (14), we have

d(u, v) < M(E(Sg(λ) + r0) + ϵ).

Then

Tp(Π) ≥ M − 1 >
d(u, v)

E(Sg(λ) + r0) + ϵ
− 1.

Note that the right part of the above equation does not
depend on the selection of the cluster to cluster transmission.
Thus,

Tλ(u, v) ≥
d(u, v)

E(Sg(λ) + r0) + ϵ
− 1.

Therefore,

γ(λ) = lim
d(u,v)→∞

Tλ(u, v)

d(u, v)

≥ 1

E(Sg(λ) + r0) + ϵ

(15)

Let ϵ → 0, we finally obtain

γ(λ) ≥ 1

E(Sg(λ) + r0)
.

4.4 Impact of Propagation Delay
The delay in a large-scale wireless network is composed of

two parts, i.e., the waiting delay and the propagation delay.
In previous sections, we have formulated the waiting delay,
while ignoring the propagation delay. However, propagation
delay may become dominant in some cases especially when
the node density is large enough6. In the following discus-
sion, we denote by τ the propagation delay for a existing
link. For ease of analysis, we assume that the propagation
delays are the same for different links. Moreover, we assume
that τ < 1. This is because propagation delay is relatively
small compared to the waiting delay.

After introducing propagation delay, γ(λ) increases obvi-
ously. Now, γ(λ) > 0 even when λ > λI . Thus, the second
property of γ(λ) in theorem 3.1 no longer holds. Instead,
γ(λ) is uniformly lower bounded by a constant larger than
0. And γ(λ) tends to this uniform lower bound as λ goes to
infinity. A representation of γ(λ) is given in Fig. 4.

Figure 4: Sketch of γ(λ)(considering propagation de-
lay).

6This is because the waiting delay is caused by the lack of
instantaneous connectivity of wireless network. When node
density is large enough, the wireless network has instanta-
neous connectivity, making waiting delay negligible.



Now, we present the following theorem. Here, both up-
per bound and lower bound have taken propagation delay
into consideration. The proof of Theorem 4.1 follows similar
techniques we used before, thus we omit the proof here.

Theorem 4.1. Given RCM Gt(λ, r0, g(r)) with λ > λL, τ
is the propagation delay for a existing link and τ < 1. Then
the corresponding γ(λ) satisfies

1

E(min{Sg(λ),
r0
τ
}) + r0

≤ γ(λ) ≤ inf
λ
′∈[λL,λ]

κ
√

λ′/λL

g
(
r0
√

λL

λ
′

)
(16)

where κ is a constant independent of λ.

Proof. We first consider the upper bound. We have al-
ready obtained Eqn.(9),i.e.,

γ(λ) ≤ κ

√
λ

λL
E[Tc(e)],

where the length of link e is smaller than r̃ = r0

√
λL
λ
(1+ ϵ).

Using similar method in deriving Eqn. (10), we obtain

E[Tc(e)] ≤ E[Tc(e
′
)]

=

∞∑
k=0

(k + τ)P(Tc(e
′
) = k)

<

∞∑
k=0

(k + 1)(1− g(r̃))kg(r̃)

=
1

g(r̃)

=
1

g

(
r0

√
λL
λ
(1 + ϵ)

) (17)

where e
′
is link whose length is r̃. The inequality above is

slightly different from Eqn. (10). This is because we have
taken propagation delay into consideration.
Thus,

γ(λ) ≤ κ

√
λ

λL

1

g

(
r0

√
λL
λ
(1 + ϵ)

) .

Let ϵ → 0, we obtain,

γ(λ) ≤ κ

√
λ

λL

1

g

(
r0

√
λL
λ

) .

Note that γ(λ) is a monotone decreasing function, thus

γ(λ) ≤ inf
λ
′∈[λL,λ]

κ

√
λ′

λL

1

g
(
r0
√

λL

λ
′

) . (18)

Then we consider the lower bound. Similar to the previous
part, we still focus on the cluster to cluster transmission.
Consider a cluster to cluster transmission process

Π = {(u(1), t1), (u
(2), t2), ..., (u

(M), tM )},

similarly, we have, for ∀k = 1, 2, ...,M − 1,

∥ u(k+1) − u(k) ∥≤ Sg,tk,u
(k)(λ) + r0.

And for k = M ,

∥ v − u(M) ∥≤ S
g,tM ,u

(M)
x

(λ) < Sg,tM ,u(M)(λ) + r0.

Besides, the distance transmitted is also limited by the
finite hops in one time slot. Since each hop takes τ time
slot, then the message can experience at most 1

τ
hops in

one time slot. As a result, the longest distance transmitted
in one time slot is upper bounded by r0

τ
. Then for ∀k =

1, 2, ...,M − 1,

∥ u(k+1) − u(k) ∥≤ r0
τ

+ r0.

And for k = M ,

∥ v − u(M) ∥≤ r0
τ

<
r0
τ

+ r0.

Integrating the above four inequalities, we obtain, for ∀k =
1, 2, ...,M − 1,

∥ u(k+1) − u(k) ∥≤ min{Sg,tk,u(k)(λ),
r0
τ
}+ r0.

And for k = M ,

∥ v − u(M) ∥≤ min{Sg,tM ,u(M)(λ),
r0
τ
}+ r0.

Again, using the method in section 4.3, we immediately
obtain

γ(λ) ≥ 1

E(min{Sg(λ),
r0
τ
}) + r0

.

Theorem 4.1 formulates the impact of both waiting delay
and propagation delay to delay-distance ratio γ(λ). This
makes our results more applicable and more reliable.

5. SIMULATION

In this section, we make simulations to uphold our theo-
retical results. First, we give a further discussion on some
parameters in our expressions. Then, enormous simulations
are done to justify several assertions in this paper. Our
theoretical results are based on a relatively general model,
Random Connection Model. Many Network Models can be
converted to a Random Connection Model, making our re-
sults applicable to many different cases. The difference is
that the connection functions are different in different cases.
In this paper, we don’t specify specific interference model
and channel fading model, therefore, we cannot give the
exact connection function. As a result, we just randomly
choose one for simulation. In the following discussion, we
simply let r0 = 1, and the connection function g be defined
as

g(r) =

{
1
4
(2− r)2 : r ≤ 1

0 : r > 1

5.1 Discussion on Several Parameters
In our expression of theoretical bounds Eqn. (6), two

terms κ and E(Sg(λ)) are applied. Besides, In Eqn. (16),
E(min{Sg(λ),

r0
τ
}) is applied. It is very hard to get these

values mathematically, which might be mathematically in-
tractable. Therefore, we make a compromised to obtain
these parameters by simulation. Our goal in this paper is



to bound a parameter, which takes more effort to calcu-
late(even using simulation), by some other parameters that
are easier to obtain(maybe by simulation).
κ is a constant, and we simply obtain its value through

simulation; while E(Sg(λ)) and E(min{Sg(λ),
r0
τ
}) are func-

tions depend on λ, and we find two analytical expressions
to approximate them.
We first focus on κ(defined in lemma 4.3). In our simu-

lation, we simulated 2304 points in a 40 × 40 region. The
node density is λ = λL ≈ 1.44, and the transmission range
is 1.01. A message is originated from a node located at the
center of the region, we record down the minimum number
of hops and the distance from the source for each node, and
present it in Fig. 5.(a).
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Figure 5: Simulation results on κ. The first Figure
reveals the linear relationship between Nλ(d) and d,
and the second indicates κ ≈ 1.7153.

From Fig. 5.(a), we can see that Nλ(d) grows linearly with

d. To find κ, we calculate Nλ(d)
d

for each node, and present
its probability distribution graph in Fig. 5.(b). It can be

seen from Fig. 5.(b) that the probability Nλ(d)
d

= 1.7153 is
the largest. Thus, κ ≈ 1.7153.
Next, we turn to E(Sg(λ)). The physical meaning of

E(Sg(λ)) is the average size of the connected component
intersected with the origin. It is obvious to note that when
λ = 0, E(Sg(λ)) = 0. And when λ = λI , E(Sg(λ)) = ∞
since the network is percolated in this case. Thus, we give a
conjecture about the analytical expression of E(Sg(λ)), i.e.,

E(Sg(λ)) =
c1λ

λI − λ
. (19)

We make enormous numerical computations to find the
experimental values of E(Sg(λ)) with respect to different λ,
ranging from 1.44(λL ≃ 1.44) to 2.4. We then rewrite Eqn.
(19) as

1

E(Sg(λ))
=

λI

c1
· 1
λ
− 1

c1
.

Using least square method, we can easily obtain c1 ≈
1.2841, λI ≈ 2.4886.
Then we make a comparison between the fitting value and

the experimental value of E(Sg(λ)). From Fig. 6.(a), It can
be seen that there is a good agreement between fitting and
experimental results.
Next, we come to estimate E(min{Sg(λ),

r0
τ
}). Similar to

E(Sg(λ)), E(min{Sg(λ),
r0
τ
}) = 0 whenever λ = 0. More-

over, E(min{Sg(λ),
r0
τ
}) ≤ r0

τ
for ∀λ, and is monotone in-

creasing with λ. Thus, we conjecture that the analytical
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Figure 6: Comparison between experimental and fit-
ting value of E(Sg(λ)) and E(min{Sg(λ),

r0
τ
}).

expression of E(min{Sg(λ),
r0
τ
}) has the format

E(min{Sg(λ),
r0
τ
}) = c2λ

c3 + λ
. (20)

Similarly, we make enormous numerical computations to
find the experimental values of E(min{Sg(λ),

r0
τ
}) with re-

spect to different λ, ranging from 1.44 to 20. We rewrite
Eqn. (20) as

1

E(min{Sg(λ),
r0
τ
}) =

c3
c2

· 1
λ
+

1

c2
.

Using least square method, we can easily obtain c2 ≈
2.0845, c3 ≈ 1.6813.

Then we make a comparison between the fitting value and
the experimental value of E(min{Sg(λ),

r0
τ
}). From Fig.

6.(b), It can be seen that there is a good agreement between
fitting and experimental results.

5.2 Comparison between Two Bounds
This paper is originated from the idea that the delay-

distance ratio γ(λ) may depend on the node density λ. We
calculate γ(λ) under different node densities. From Fig. 7,

we can see that γ(1.6) = limd→∞
Tλ(d)

d
≈ 0.68, γ(1.9) ≈



0.35, γ(2.2) ≈ 0.11, γ(2.5) ≈ 0. This justify the fact that
γ(λ) depend on λ7, making our discussion meaningful.
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Figure 7: Simulation results on different λ.

Now, we are ready to compare our theoretical bounds and
the experimental values of γ(λ). We first ignore the prop-
agation delay, Fig. 8 shows the comparison between the
experimental value and our theoretical value of both the up-
per bound and the lower bound. In our simulations, We
work out the experimental values of γ(λ) where λ is set to
be evenly distributed in the interval of [λL, λI ]. From Fig. 8,
we find the experimental values are right bounded by both
the upper and the lower bounds.
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 closer to the lower bound

when λ get closer to λ
I

Figure 8: Comparison between upper bound and
lower bound(propagation delay is ignored).

Then, we take propagation delay into consideration. In
the following part, we take τ = 0.2. We first examine the
effect of introducing propagation delay to the delay-distance
ratio γ(λ).
We consider two networks, whose node densities λ are 1.5

and 2.2(1.5 is near λL, 2.2 is near λI) respectively. For each

7To be more exact, γ(λ) decreases with λ.

network, we make simulations to find γ(λ) in the cases τ = 0
and τ = 0.2. The result is show in Fig. 9.
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(a) λ = 1.5, τ = 0, γ(λ) ≈
1.8
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(b) λ = 1.5, τ = 0.2, γ(λ) ≈
2.1
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(c) λ = 2.2, τ = 0, γ(λ) ≈
0.1
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(d) λ = 2.2, τ = 0.2, γ(λ) ≈
1.8

Figure 9: The influence of propagation delay τ to
the delay-distance ratio γ(λ).
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Experimental Results
Upper Bound
Lower Bound

The Experimantal Results 
get closer to the upper bound

when λ is small

The Experimantal Results get closer 
to the lower bound when λ is large

Figure 10: Comparison between upper bound and
lower bound(propagation delay is considered).

From Fig. 9, we can also see that when λ is small, the
influence of τ to γ(λ) is small; and the influence becomes
more significant as λ grows larger. This also indicate that
when node density is small, delay is mainly caused by the
waiting delay(waiting delay is mainly caused by the lack
of instantaneous connectivity); while when node density is
large, delay is mainly caused by propagation delay.

Next, we compare our theoretical bounds and experimen-
tal results of γ(λ) in the case τ = 0.2. In our simulation, the
node densities λ are chosen from [1.44, 20]. As the change
of γ(λ) is larger when λ is small, we choose more simulation
points for smaller node density. The comparison between
our theoretical bounds and experimental results is shown in



Fig. 10. The experimental values are right bounded by both
the upper and the lower bounds.
From Fig. 8 and Fig. 10, it can be also seen that when

λ is large, γ(λ) is much closer to the lower bound. An ex-
planation to this phenomena is that the larger γ(λ) is, the
larger the size of clusters in the cluster to cluster transmis-
sion process. Larger cluster size provides more opportunity
to forward messages. Thus, when the node density is large
enough, it is probably that the message can transmit again
right at the next time slot. This makes our lower bound
more accurate. However, our upper bound is a little bit
loose. But we can see that γ(λ) gets closer to the upper
bound when the node density λ decreases. This is because
our upper bound is obtained from the delay of just one path.
And the smaller λ is, the smaller the number of paths con-
necting two nodes. This makes γ(λ) get closer to the upper
bound.

6. CONCLUSION
In this paper, we study the tradeoff between γ(λ) and λ

using percolation theory. We point out that the lack of in-
stantaneous connectivity incurs waiting delay and prove that

γ(λ) is upper bounded by inf
λ
′∈[λL,λ]

κ
√

λ
′

λL
( 1

g

(
r0

√
λL

λ
′

) − 1),

and lower bounded by 1
E(Sg(λ)+r0)

. Then we take propaga-

tion delay into consideration, and obtain further results. Fi-
nally, through simulations based on the exact value of γ(λ),
we further obtain a new observation that the lower bound
serves as a good estimate to the value of γ(λ) in dense net-
works. And γ(λ) gets closer to the upper bound when λ
decreases. Simulation results conform our theoretical find-
ings.
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