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Abstract—In recent years there has been a wide range of
applications of crowdsensing in mobile social networks and
vehicle networks. As centralized learning methods lead to un-
reliabitlity of data collection, high cost of central server and
concern of privacy, one important problem is how to carry out
an accurate distributed learning process to estimate parameters
of an unknown model in crowdsensing. Motivated by this,
we present the design, analysis and evaluation of FINE, a
distributed learning Framework for Incomplete-data and Non-
smooth Estimation. Our design, devoted to develop a feasible
framework that efficiently and accurately learns the parameters
in crowdsensing networks, well generalizes the previous learning
methods in that it supports heterogeneous dimensions of data
records observed by different nodes, as well as minimisation
based on non-smooth error functions. In particular, FINE uses a
novel Distributed Record Completion algorithm that allows each
node to obtain the global consensus by an efficient communication
with neighbours, and a Distributed Dual Average algorithm that
achieves the efficiency of minimizing non-smooth error functions.
Our analysis shows that all these algorithms converge, of which
the convergence rates are also derived to confirm their efficiency.
We evaluate the performance of our framework with experiments
on synthetic and real world networks.

I. INTRODUCTION

Recently, there emerge massive applications of crowdsens-
ing/participatory sensing in mobile social networks and vehicle
networks [1]–[7]. The crowd acquire some (potentially high
dimensional) data from the environment and each user in
the crowd can exploit the cooperatively acquired data to
perform a learning process for an accurate estimation of the
parameters of some specific models. This, in turn, leads to an
accurate prediction of future events and correct decision of the
following action.

In this paper, we aim to address the issue of the accurate
learning in the undirected-static-random crowdsensing net-
works. In order to solve this problem, there have been var-
ious proposed approaches [8]–[10] whose learning processes
are usually formulated as optimizations of the total training
error, likelihood function and etc [11] (e.g.,, liner regression,
support vector machines or expectation-maximization [12]).
However, these methods usually employ centralized learning
algorithms, which leads to three major problems. First, in real
world crowdsensing settings, mobile devices are likely to be
located over an enormous space, which makes it both energy

consuming and prone to error for central server collecting data
from all mobile devices, especially those who are distributed
far away from the server. Second, dealing with large volume
of data by centralized algorithms requires an expensive high-
configuration data center that possesses huge memory for
data storage and processing. Third, managing data by central
servers make the private information of users more likely to be
exposed to the adversary [13]–[15], which might cause severe
information leakage.

The three problems above imply the necessity of a dis-
tributed realization of parameter learning in crowdsensing
environments. However, when applying existing distributed
learning methods to our scenarios, restrictions of two charac-
teristics in the common distributed framework spawn addition-
al problems. To illustrate, first, for mathematical tractability,
the error function is usually assumed to be smooth and
convex for the design of efficient algorithms; while as the
emerging crowdsensing applications may incorporate different
properties, the training error functions may be non-smooth in
nature [16], [17]. For instance, in distributed detections [18],
source intensity functions may be non-smooth, resulting in
non-smoothness in training error as well. Second, the common
framework requires each terminal to acquire a set of complete
records, i.e., each record with data elements in all dimensions
to ensure the accuracy of the learning process. This implicitly
assumes that the terminals are homogeneous in functionalities
so that each of them should record the same types of signals
(e.g., each mobile phone can record traveling speed, waiting
time as well as ambient noise at every position). In contrast, it
is impossible for each terminal to record full-dimension data in
the crowdsensing applications. For example, one mobile phone
can only be responsible for data acquisition at its own position,
leaving the observation of elements in other positions (i.e.,
dimensions) a job of other mobile phones. Moreover, mobile
phones may hold different types of sensors, and therefore are
unable to acquire all kinds of signals.

We are thus motivated to propose a distributed learning
Framework of Incomplete-data and Non-smooth Estimation
(FINE), which aims to exhibit high compatibility to learning
applications in crowdsensing environments. There are two
major challenges in the design: 1) It is difficult for each node
to supplement the unknown dimensions of the observed vector,
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especially when users hesitate to upload the acquired data
to the central server for privacy concerns.1 2) Due to the
huge amount of data collected and the high dimensionality
of each record, it is often required that the learning process
should be operated by each terminal in a distributed fashion.
The efficiency of minimizing a single non-smooth function is
notoriously low [19], yet a distributed processing is even more
challenging due to intricate interdependency among the mul-
tiple non-smooth optimizations processed by each respective
terminal.

We overcome the difficulties above by designing two al-
gorithms in FINE. First, we design a Distributed Record
Completion (DRC) algorithm to allow each node to obtain
global consensus. Specifically, each terminal consistently ob-
tains incomplete record and completes the missing elements
from its neighbors. The combined successive observation and
consensus design ensure that each node can acquire unbiased
and accurate multidimensional global parameters in spite of
the originally fragmentary inputs. Second, we design a novel
Distributed Dual Average (DDA) algorithm to solve the non-
smooth convex optimization problems with efficiency. To sum
up, our major contributions are listed as follows:

• We propose FINE, a novel framework addressing a class
of distributed learning problems in heterogeneous crowd-
sensing networks. FINE is robust to observation noises,
capable of handling fragmentary data inputs as well as
non-smooth objective functions, and efficient to solve
distributed learning problems with a convergence rate2

of O(
log

√
|V|

1−C ).
• We design two important algorithms in FINE: a DRC

algorithm to ensure each node to acquire complete in-
formation based on its incomplete data acquisition, and
a DDA algorithm to solve non-smooth convex optimiza-
tions with efficiency.

• We formally prove the convergence of the above two
algorithms, and further derive their convergence rates.
We provide the insights on the relationship between the
convergence rate and the network topology, and reveal
important design principles for such networks.

The rest of the paper is organized as follows. In Section II,
we provide problem description and the design insights of our
framework FINE. In section III, we propose two important
algorithms and demonstrate the implementation of such a
framework. Section IV presents a detailed analysis of proposed
algorithms. Section V provides detailed proofs of lemmas and
theorems. We give performance evaluation of our framework
in Section VI and literature review in Section VII. Section
VIII is contributed to the concluding remarks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model and then

1The privacy concern of information leakage is not new in crowdsensing
networks, which often stems from the centralized management of crowd-
sensing systems [13]–[15]. Therefore, users might be reluctant to upload the
acquired data to the central server..

2|V| is the number of agents and 1−C represents the spectral gap of the
network.

formulate our problems, followed by giving insights of our
algorithm design.

A. System Model

We consider a heterogeneous sensor network described by
an undirected graph G = (V, E) consisting of |V| nodes. We
use V and E to denote the set of nodes and edges, respec-
tively. The undirected graph implies that the sensor network
allows each pair of connected sensors can communicate in
bi-direction.

The heterogeneity refers to the fact that terminals observe
different dimensions of data. We let yk(i) denote an incom-
plete data vector observed by each terminal k at time i. For
practical consideration, we allow the observation to include
noise εk(i). Assume that y∗ is an M -dimensional complete
correct data vector, the incomplete observations of the k-th
agent, yk(i), could be expressed by a linear mapping, Hk,
from the global data vector y∗:

yk(i) = Hky
∗ + εk(i) ∈ RM , (1)

where Hk is a matrix in RM×M .
Each terminal requires the full dimensional data to conduct

learning process. Assume that terminals have various error
functions fk. We allow each local error function to be non-
smooth. The local training error ϵk at node k is a function
of global tunable parameter vector θ and global data y, i.e.,
ϵk = fk(θ,y), which is convex and non-smooth on θ.

B. Problem Formulation

In consideration of the above settings, we should first
guarantee that each node can obtain an accurate estimation
ŷ on the global data vector. This encourages us to design the
DRC algorithm. In short, the goal of the DRC is to make each
node k hold the complete estimation which satisfies:

lim
i→∞

ŷk(i) = y∗.

Then, with the estimations and the settings of error func-
tions, we find the optimal parameter θ∗ to minimize the total
training error:

θ∗ := argmin
θ

|V|∑
k=1

fk(θ, ŷ), s.t., θ ∈ Θ, ŷ ∈ Y,

where Θ ⊂ RQ,Y ⊂ RM are both convex sets. This encourage
us to design the DDA algorithm. Note that the solution needs
information exchange between a node and its neighbors, which
involves the consideration of the network topology.

To sum up, our formulation deals with the non-smooth
learning. We extend the previous dual averaging approach [20],
[21] by taking the incomplete observation and observation
noise into account.
Remark: As a contrast, the traditional formulation [8]–[10],
[22], [23] considers the smooth optimization problem based
on a homogeneous sensor network. The homogeneity implies
that each agent k should record the same types of signals, and
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full dimensional observations yk. The learning problem is to
find θ∗ which minimizes the summation of the local training
error:

θ∗ := argmin
θ

|V|∑
k=1

f(θ,yk), s.t.,θ ∈ Θ,yk ∈ Y,

where Θ and Y are both convex sets. θ is a globally tunable
parameter vector and the function f is assumed to be convex
and smooth on the parameter θ.

C. Algorithm Design Insights

In this section, we briefly describe the insights of algorithm
design and explain how FINE can efficiently and accurately
deal with the challenging distributed learning problems in het-
erogeneous crowdsensing networks. FINE uses a Distributed
Record Completion (DRC) algorithm (Section III-A) to ensure
each node to obtain global consensus in spite of the incomplete
local observations and a Distributed Dual Average (DDA)
algorithm (Section III-B) to efficiently solve the non-smooth
optimization problems.

1) DRC Algorithm: Our DRC allows each node to com-
municate with each other to complete the data and achieve
consensus, on the condition that each node’s successive ob-
servations are required. This combined successive observation
and consensus design ensure that each node can acquire
unbiased and accurate multidimensional global parameters y∗.
On the one hand, if nodes cooperate but only process the
initial noisy observations (i.e., only {yk(0)} are employed),
as in traditional consensus [24]–[26], they all converge to the
average of initial estimates which might result in severe bias.
Therefore, the requirement of both successive observations and
consensus in DRC ensures that each node converges to an
unbiased and accurate estimate of the global vector y∗.
Remark: The communication overhead, which quantifies the
weight of communication among sensors or mobile phone
users during reaching to a consensus, is an important per-
formance metric of consensus-based learning algorithms [27]–
[30]. However, in our paper, we are interested in measuring the
time it takes for the whole network to discover the convergence
of optimization, i.e., the optimal parameter θ∗. Here the time
refers to communication complexity in reaching convergence
of optimization, while neglecting local computation complex-
ity inside mobile devices as it is highly determined by the
sensors required in a crowdsensing task and is considerably
small – can be completed during clock ticks.

2) DDA Algorithm: A well-known sub-gradient method
[31] used for solving a single non-smooth optimization has
a time efficiency of O( 1

ε2 ), where ε is the tolerable error.
For solving distributed non-smooth optimization problem con-
sisting of multiple interdependent functions, the efficiency of
the sub-gradient would be O( |V|3

ε2 ) [21], [32], [33], where |V|
is the network size. This order does not reflect the explicit
influence of the network topology, but only reflects the worst
case of efficiency. References [23], [34], [35] provide the
convergence rate of the optimization error under some special
network topologies. Aiming at the general network topology

with the network size |V| and networking topological param-
eter C, literature [36]’s method can achieve the convergence
rate of the error ε with O( log |V|

1−C ).
In the context of crowdsensing, more practical factors,

i.e., partial observation and observation noise, need to be
considered, and these factors will lead to the increase of
the time complexity. Therefore, it is worthwhile to propose
a non-smooth algorithm to improve the efficiency. Towards
this end, we build our algorithm on an efficient non-smooth
optimization methodology called the dual averaging method
introduced in [20]. The dual averaging in nature is an efficient
non-smooth convex optimization method. By realizing the
dual averaging method into a distributed manner, as will be
prescribed in later sections, we will show that our algorithm
can return a consistent estimate θ∗ for each node. Additionally,
as we will also provably demonstrate later, the convergence

rate of our distributed algorithm can also achieve O(
log

√
|V|

1−C ).
Remark: The DDA algorithm, as we will unfold in se-

quel, is designed by extending the centralized dual averaging
method into a distributed form, requiring that each node
performs local information exchange that follows a weight-
ing process (where each edge is assigned a weight). Thus,
intuitively the process is heavily correlated with the network
topology. Compared to [36], the DDA algorithm provides
consistent efficiency despite that it is applied to solve more
complicated distributed learning problems that take practical
factors like partial observation and observation noise into
account.

Up till now, we have presented our problem, and articulate
all insights which inform FINE’s design. In the sequel, we
will detail the design of DRC and DDA in FINE.

III. ALGORITHMS

In this section, we describe the details of the design of DRC
and DDA algorithms used in FINE. We firstly introduce the
notations. Let En denote n × n identity matrix; let 1n, 0n

denote the column vectors of ones and zeros, defined in Rn

respectively; let ∥·∥ denote the standard Euclidean 2-norm for
a vector and the induced 2-norm for matrixes, equavelent to
the matrix spectral radius for symmetric matrixes. Besides, we
use ∥·∥∗ to denote the dual norm to ∥·∥,defined by ∥u∥∗ :=
sup∥v∥ ⟨u, v⟩, which refer to the value of the linear function
u ∈ X∗ at v ∈ X (X is a vector space and X∗ is its dual
space). We further let P[·] and E[·] denote the probability and
the expectation operators, respectively. We use the symbol ⊗
to denote the Kronecker product manipulation, commonly used
in matrix manipulations. For instance, the Kronecker product
of the n×n matrix L and Em is an nm×nm matrix, denoted
by L⊗ Em.

In the undirected graph G we consider, we denote the neigh-
bor of an arbitrary node v ∈ V by Nv = {u ∈ V|euv ∈ E},
the number of edges incident to v by the degree dv = |Nv| of
node v, and the degree matrix by D = diag(d1, ..., d|V|). Then,
we use an adjacent matrix, A = [Auv]|V|×|V|, to describe the
network connectivity. We set Auv = 1, if euv ∈ E ; or 0
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otherwise. Further, we define the graph Laplacian matrix3 L
as L = D − A, a positive semidefinite matrix with ordered
eigenvalues 0 ≤ λ1(L) ≤ λ2(L) ≤ ... ≤ λ|V|(L). Moreover,
for an n×n matrix B, it has a series of order singular values
σ1(B) ≥ σ2(B) ≥ ... ≥ σn(B) ≥ 0. Interested readers may
refer to [37], [38] for more details on spectral graph theory.

A. Distributed Record Completion

The Distributed Record Completion, or DRC algorithm,
allows each node k to obtain an accurate and complete global
data vector ŷk. DRC algorithm is an iteratively updating
process as described below.

Algorithm 1 Framework of DRC for Each Terminal.

Start:
Initial non-random observation yk(0) ∈ RM , and let
uk(0) = yk(0).

Output:
Estimation on the global data, ŷk.

1: for i = 1 to T do
2: Receiving neigbors’ estimation on the global data, i.e.,

{uv(i), v ∈ Nk}.
3: Comparing its own estimation with its incomplete ob-

servation, i.e., Hkuk(i)− yk(i);
4: Comparing its own estimation with its neighbors esti-

mation, i.e.,
∑

v∈Nk
(uk(i)− uv(i));

5: Updating estimation uk(i+ 1) based on Eq. (2);
6: end for
7: return ŷk = uk(T );

Alg. 1 summarizes the outline of DRC. To illustrate, the se-
quence {uk}k≥0 is defined to represent the estimated records
on all dimensions of data, generated by each node k as follows.
Starting from the initial non-random observation y(0) ∈ RM ,
at each iteration i, after observing an incomplete data yk(i),
each node k updates uk(i) by a distributed iterative algorithm.
In this algorithm, each node compares its estimated record
uk(i) with its neighbors’, and also with the observation yk(i).
Then he determines the estimated record of the next time slot
with the difference between uk(i) and the deviations, as shown
in what follows:

uk(i+ 1) = uk(i)− α(i)
∑
v∈Nk

(uk(i)− uv(i))

− β(i)HT
k (Hkuk(i)− yk(i)),

(2)

where α(i)
∑

v∈Nk
(uk(i)− uv(i)) is the deviation of records

from neighbors and β(i)HT
k (Hkuk(i) − yk(i)) implies the

deviation from observations. Since uk is node k’s estimation
on all dimensions, for the comparison between the record
and the observation, we use the linear mapping Hk. Both the
positive weight sequence {α(i)}i≥0 and {β(i)}i≥0 satisfy the
persistence condition C.5 given in Appendix A. For the ease

3Numerical natures of the graph can be investigated with the graph
Laplacian matrix, for example, connectivity, expanding properties, diameter
and etc. In this paper, we define the network connectivity using the Laplacian
spectrum, which will be illustrated in the following assumption A.2.

of notation, we rewrite iterations in Equation (2) in a compact
form, which can describe the consensus process of all nodes.
To begin with, we store the incomplete observations of all n-
odes at iteration i in a long vector y(i) = [yT

1 (i), ...,y
T
|V|(i)]

T ,
store updates of the i-th iteration in another long vector
u(i) = [uT

1 (i), ...,u
T
|V|(i)]

T , and define the following two
matrices:

H̄ = diag
[
HT

1 , ..., H
T
|V|

]
, (3)

H̃ = diag
[
HT

1 H1, ..., H
T
|V|HV

]
. (4)

Then, using the Kronecker product symbol, we can rewrite the
Equation (2) in a compact form as

u(i+ 1) = u(i)− α(i)(L ⊗ EM )u(i)

− β(i)H̄(H̄Tu(i)− y(i)).
(5)

Given the total number of iteration steps T , each node k will
obtain a data vector uk(T ) in the end. Let ŷk = uk(T ), in
Section IV-A, we will show ŷk is in fact an unbiased estimate
on y. As now we have the detailed updating process used
in DRC algorithm, we will solve the distributed non-smooth
minimization problem based on ŷk.

B. Distributed Dual Average

Based on ŷk, we now use Distributed Dual Average, or
DDA algorithm to provide an accurate estimate θ̂∗

k on the
optimal parameter θ∗ for each node in a distributed style.
Formally, we need to solve the following minimization:

min
θ

|V|∑
k=1

fk(θ, ŷk), s.t., θ ∈ Θ, ŷk ∈ Y. (6)

Note that fk is a non-smooth function, where non-
smoothness implies that the function does not have a con-
tinuous gradient, which makes solving such function more
difficult than the smooth function. To deal with the non-smooth
function, the sub-gradient method should be employed, while
a slow convergence has to be endured [39]. For example,
solving a single non-smooth optimization has an efficiency
estimate of O( 1

ε2 ) [40], where ε is the desired accuracy of
the approximation solution, while minimizing a single smooth
function only requires an efficiency estimate of the order
O(
√

1
ε ) [31]. Furthermore, solving the distributed non-smooth

optimization problem consisting of multiple interdependent
non-smooth functions has even lower efficiency. Therefore,
we propose the DDA algorithm to improve the efficiency
of the distributed non-smooth optimization of Eq. (6) in
crowdsensing networks.
Distributed Dual Averaging (DDA) Algorithm:

In Alg. 2, we summarizes the outline of DDA. It is designed
by extending the centralized dual averaging method [20] into a
distributed form. Now we provide the details of the algorithm.

The DDA algorithm requires each node to exchange in-
formation with its neighbors, and the exchange follows a
weighting process, where the edge is assigned a weight. Thus,
the process is strongly correlated with the network topology.
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Algorithm 2 Framework of DDA for Each Terminal.
Start:

Initial pair of vectors (θk(0),µk(0)) ∈ Θ× RM , and let
µk(0) = ŷk.

Output:
Estimation on the optimal parameter θ∗.

1: for i = 1 to T do
2: Computing the sub-gradient gk(t) ∈ ∇θfk(θk(t), ŷk);
3: Receiving estimated information from neigobors, i.e.,

{µj(t), j ∈ Nk};
4: Updating (θk(t),µk(t)) with Eq. (7) and (8);
5: end for
6: return θ̂k(T ) with Eq. (9);

At each iteration t, each node k maintains a pair of
vectors (θk(t),µk(t)) ∈ Θ × RM , computes its own sub-
gradient gk(t) ∈ ∇θfk(θk(t), ŷk), and receives information
on sequences from its neighbor nodes, i.e., {µj(t), j ∈ Nk}.
Next, at each iteration, each node updates its maintained vector
(θk(t),µk(t)) by weighting values from its neighbors. To
model this weighting process, we use P ∈ R|V|×|V| to denote
the edge weights matrix of the graph G. Thus, Pkl > 0 if and
only if ekl ∈ E and k ̸= l. This matrix represents the weight
of each link, which can capture some natures of the link.
For instance, the value can represent the intimacy between
two nodes. A higher value implies the neighbor on this link
will contribute more in the information exchange. Note that
Pkl > 0 only if (k, l) ∈ E , and Pkl > 0 only if (k, l) ∈ E , the
weight update is described with the following equations:

µk(t+ 1) =
∑
l∈Nk

Pklµl(t) + gk(t), (7)

θk(t+ 1) = πω(t+1)(−µk(t+ 1)), (8)

where the function πω(u) is defined by

πω(µ) = argmin
ξ∈Θ

{− ⟨µ, ξ⟩+ ωϕ(ξ)},

and {ω(t)} is the non-decreasing sequence of positive step-
sizes.

Specifically, we assume the matrix P is a doubly stochastic
matrix, so

|V|∑
l=1

Pkl =
∑
l∈Nk

Pkl = 1 for all k ∈ V;

|V|∑
k=1

Pkl =
∑
k∈Nl

Pkl = 1 for all l ∈ V .

To sum up, each node k computes its new dual sequence
µk(t + 1) by weighting both its own sub-gradient gk(t) and
the sequences {µl(t), l ∈ Nk} stored in its neighborhood Nk,
and the node also computes its next local primal parameters
θk(t+ 1) by a projection defined by the proximal function ϕ
and step-size ω(t) > 0.

The intuition behind this method is: based on its current
iteration (θk(t),µk(t)), each node k chooses its next iteration

θk(t+1) so as to minimize an averaged first-order approxima-
tion to the function f =

∑
k fk, while the proximal function ϕ

and step-size ω(t) > 0 ensure that {θk(t)} does not oscillate
wildly during iterations.

At the end of iteration T , each node k has obtained a
sequence {θk(t)}1≤t≤T . We run a local average for each node
as follows:

θ̂k(T ) =
1

T

T∑
t=1

θk(t). (9)

This means if we let θ̂∗
k = θ̂k(T ) at the end of iteration T , we

will have limT→∞ f(θ̂∗
k) = f(θ∗). Thus, with this iteration,

each node k can obtain an estimate of the optimal parameter
with any desired accuracy. We will prove the convergence of
DDA in Section IV.

To sum up, in order to solve distributed non-smooth min-
imization problems in heterogeneous crowdsensing networks,
we first present a DRC algorithm to allow each heterogeneous
node to obtain an accurate estimate on the globally required
data vector y. Based on this, we design a DDA algorithm
to ensure that each node obtains an accurate estimate on the
optimal parameter θ∗. In the next section, we will present a
formal analysis on the convergence and convergent rates of
both algorithms.

IV. MAIN PROPERTIES OF DRC AND DDA

In this section, we present the main properties of the DRC
and DDA algorithms. We defer detailed proofs in Section V.

A. Main Properties of DRC

To begin with, we present main properties with regard
to the asymptotic unbiasedness and the consistency of the
DRC algorithm. Furthermore, we carry out a convergence rate
analysis by studying the deviation characteristic of DRC.

The results rely on the following three assumptions:
(A.1) Observation Noise: For i ≤ 0, the noise{
ε(i) = [εT1 (i), ..., ε

T
|V|(i)]

T
}
i≥0

is i.i.d. zero mean. More-

over, at each node k, the noise sequence {εk(i)}1≤k≤|V|,i≥0

is independent with each other, and the covariance of the
observing noise, Sε, is independent over time i, i.e.,

E[ε(i)ε(j)T ] = Sεδij , ∀i, j ≥ 0, (10)

where δij = 1 iff i = j or 0 otherwise.
(A.2) Networking Connectivity: The second eigenvalue of
graph Laplacian L is non-negative, i.e., λ2(L) ≥ 0. We
require the graph to be connected to allow communication
among nodes. This can be guaranteed if λ2(L) > 0. See [37],
[38] for details.

Before presenting the final assumption, we first give the
following definition:

Definition 1. The observations formulated by Equation (1)
is distributedly observable if the matrix H, defined by H =∑|V|

k=1 H
T
k Hk, is of full rank.

Remark: This distributed observability is essentially an
extension of the observability condition for the centralized
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observing system which is designed to obtain consistent and
complete observation on the vector y.

Now let us present the last assumption.
(A.3) Observability: The observations formulated by Equa-
tion (1) is distributedly observable defined by Definition 1.

1) Unbiasedness and consistency of DRC: In this part, we
show the unbiasedness and the consistency of DRC algorithm,
and we provide two theorems to illustrate them respectively.

Theorem 1. Consider the DRC algorithm is under the
assumptions A.1-A.3 (Section III-A), the record sequence
{uk(i)}i≥0 at node k is asymptotic unbiased

lim
i→∞

E[uk(i)] = y∗, ∀1 ≤ k ≤ |V|. (11)

We defer the proof in Section V-A. Theorem 1 shows
the unbiasedness of the algorithm. It indicates that each
node’s estimation on the global data would be correct on the
average in the long run. The consistency of DRC algorithm is
guaranteed by the following theorem.

Theorem 2. Consider the DRC algorithm is under the
assumptions A.1-A.3 (Section III-A),the records sequence
{uk(i)}i≥0 at node k is consistent

P
[
lim
i→∞

uk(i) = y∗, ∀1 ≤ k ≤ |V|
]
= 1.

We provide the proof in Appendix B. Based on Theorem 2,
record sequence {uk(i)}i≥1 at every node, with probability 1,
converges to the true vector y∗.

2) Convergence rate analysis: We now analyze the conver-
gence rate of the DRC algorithm via its deviation character-
istic. We first present a relative definition which is used to
characterized the convergence rate of sequential process.

Definition 2. A sequence of records {u(i)}i≥0 is asymptoti-
cally normal if a positive semidefinite matrix S(y) exists and
satisfies that

lim
i→∞

√
i(uk(i)− y∗) → N (0M , Skk(y(i))), ∀1 ≤ k ≤ n.

The matrix S(y(i)) is called the asymptotic variance of the
observing sequence {y(i)}i≥0, and Skk(y) ∈ RM×M denotes
the k-th principal block of S(y(i)).

In the following part, we analyze the asymptotic normality
of the DRC algorithm. Let λmin(γL ⊗ EM + H̃) denote the
smallest eigenvalue of [γL ⊗ EM + H̃]. Recalling the noise
covariance Sϵ in (10), we present the following theorem to
establish the asymptotic normality of the DRC algorithm.

Theorem 3. Consider the DRC algorithm is under the
assumptions A.1-A.3 (Section III-A), with weight sequence
{α(i)}i≥0 and {β(i)}i≥0 that are given by

α(i) =
a

i+ 1
, lim
i→∞

α(i)

β(i)
= γ > 0,

for some a > 0. Let the record sequence {u(i)}i≥0 be the state
sequence generated by (5). Then, for a > 1

2λmin(γL⊗EM+H̃)
,

we obtain√
(i)(u(i)− 1|V| ⊗ y∗) =⇒ N (0, S(y(i))),

where

S(y(i)) = a2
∫ ∞

0

eΣvS0e
Σvdv, (12)

Σ = −a[γL ⊗ EM + H̃] +
1

2
EM |V|, (13)

and

S0 = H̄SϵH̄T . (14)

Especially, the record sequence {uk(i)}i≥0 at any node k is
asymptotically normal:√

(i)(uk(i)− y∗) =⇒ N (0, Skk(y(i))).

We provide the proof in Appendix B. Therefore, the error
sequence {uk(i) − y∗}i≥0 at each node can be regarded as
being convergent to a normal distribution with a rate of 1√

i
.

Up until now, we have presented asymptotic unbiasedness,
the consistence and the asymptotic normality of the DRC
algorithm. In the next section, we present main properties of
the DDA algorithm.

B. Main Properties of DDA

In this section, we prove the convergency of running average
θ̂k(T ) to the optimal parameter θ∗ and derive the convergence
rate of the DDA algorithm.

Now we present the following theorem.

Theorem 4. The random family {θk(t)}∞t=0 and {µk(t)}∞t=0

are generated by iteration (8) and (7), with the positive non-
decreasing step-size sequence {ω(t)}∞t=0, where ϕ is strongly
convex with respect to the norm ∥·∥ with dual norm ∥·∥∗.
Let the record error

∥∥E[ŷk]− 1|V| ⊗ y∗
∥∥ be bounded by an

arbitrary small constant Cerr. For any θ∗ ∈ Θ and each node
k ∈ V , we have

f(θ̂k(T ), ŷk)− f(θ∗,y∗) ≤ OPT + NET + SAMP,

where

OPT =
ω(T )

T
ϕ(θ∗) +

L2

2Tτ

T∑
t=1

1

ω(t)
,

NET =
L

T

T∑
t=1

1

ω(t)
E

[
2

|V|

|V|∑
j=1

∥∥µ̄(t)− µj(t)
∥∥
∗

+ ∥µ̄(t)− µk(t)∥

]
,

SAMP = LCerr,

µ̄(t) =
1

|V|

|V|∑
k=1

µk(t).

Recall that τ is the convexity parameter.

Theorem 4 explicitly shows the difference between the
estimated results from the true optimality. It is bounded by
a value which is a sum of three types of errors: (1) The OPT
error can be viewed as the optimization error; (2) the NET
error is induced by various estimations of nodes; and (3) the
SAMP error is incurred on account of the input noisy. The
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theorem indicates the relationship between the difference and
T , which will help us understand the convergency of the DDA
algorithm. The detailed proof will be given in Section V.

We next investigate the relationship between the conver-
gence rates and the spectral property of the network. For
a given graph G, we assume that communications between
nodes are controlled by a double stochastic matrix P . In the
following, we show that the spectral gap of the network, i.e.,
γ(P ) = 1 − σ2(P ) of P severely influences the convergence
rate of DDA, where σ2(P ) is the second largest singular value
of P .

Theorem 5. Following Theorem 4 and recalling that ϕ(θ∗) ≤
A2, if we define the step-size ω(t) and the record error∥∥E[ŷk]− 1|V| ⊗ y∗

∥∥ as:

ω(t) = A
√
t and Cerr =

2L

A
√
T

·
ln(T

√
|V|)

1− σ2(P )
,

we will have

f(θ̂k(T ),y)− f(θ,y∗) ≤ 16L2

A
√
T

ln(T
√
|V|)

1− σ2(P )
, for all k ∈ V.

We defer the proof in Section V-C. Theorem 5 shows
that the convergence rate of distributed subgradient methods
heavily relies on the graph spectral property. The dependence
on the spectral quantity 1−σ2(P ) is quite natural, since lots of
work have noticed that the propagation of information severely
relies on the spectral property of the underlying network.

As we have presented all main properties of our algorithms,
we will next turn to the detailed proof of each theorem.

V. PROOF OF THEOREMS

A. Proof of Theorem 1

Proof: Taking the expectation of both sides of Eq. (5), it
follows

E[u(i+ 1)] = E[u(i)]− α(i)(L ⊗ EM )E[u(i)]
+ β(i)H̄E[y(i)]− β(i)H̄H̄TE[u(i)].

(15)

Given that

(L ⊗ EM )(1|V| ⊗ y∗) = 0|V|M , (16)

H̃(1|V| ⊗ y∗) = H̄E[y(i)], (17)

subtracting both sides of Eq. (15) by 1|V| ⊗ y∗, we have

E[u(i+ 1)]− 1|V| ⊗ y∗ = [E|V|M − α(i)L ⊗ EM

− β(i)H̃][E[u(i)]− 1|V| ⊗ y∗].
(18)

Continuing the iteration in (18), we have, for each i ≥ i0 =
max{i1, i2},

∥∥E[u(i)]− 1|V| ⊗ y∗∥∥ ≤

(
i−1∏
j=i0

∥∥∥∥∥EM |V| − α(j)L ⊗ EM

−β(j)H̃

∥∥∥∥∥
)

×
∥∥E[x(i0)]− 1|V| ⊗ y∗]

∥∥ .
(19)

To further derive the above formulation, we have the fol-
lowing facts.

First, since α(i)
β(i) → γ, we have

∃i1 ∋: γ
2
≤ α(i)

β(i)
≤ 2γ, ∀i ≥ i1. (20)

Second, let λmin(γL⊗EM +H̃) be the smallest eigenvalue
of the positive definite matrix4 [γL⊗EM + H̃]. Since α(i) →
0, we have

∃i2 ∋: α(i) ≤ 1

λmin(γL ⊗ EM + H̃)
.∀i ≥ i2 (21)

Third, the other facts include: 1) λmin(A + B) ≥
λmin(A)+λmin(B) (Courant-Fischer Minimax Theorem [41]),
2) λmin(L ⊗ EM ) = λmin(L) ≥ 0.

Based on above facts, the multiplicand of Equation (19)
follows from (21), for each j ≥ i0

||EM |V| − α(j)L ⊗ EM − β(j)H̃||

=

∥∥∥∥EM |V| − β(j)(
α(j)

β(j)
L ⊗ EM + H̃)

∥∥∥∥
= 1− β(j)λmin(

α(j)

β(j)
L ⊗ EM + H̃)

= 1− β(j)λmin((
α(j)

β(j)
− γ

2
)L ⊗ EM +

γ

2
L ⊗ EM + H̃)

≤ 1− β(j)λmin(
γ

2
L ⊗ EM + H̃).

(22)

From (19) and (22), we now have for each i > i0,

∥∥E[u(i)]− 1|V| ⊗ y
∥∥ ≤

(
i−1∏
j=i0

(1− β(j)λmin(
γ

2
L ⊗ EM + H̃))

)
×
∥∥E[u(i0)]− 1|V| ⊗ y∗]

∥∥ .
(23)

Finally, from the inequality 1− a ≤ e−a, 0 ≤ a ≤ 1, we get

∥∥E[u(i)]− 1|V| ⊗ y∗∥∥ ≤ exp

[
−λmin(

γ

2
L ⊗ EM + H̃)

i−1∑
j=i0

β(j)

]
×
∥∥E[u(i0)]− 1|V| ⊗ y∗]

∥∥ , i > i0.
(24)

With the facts that λmin(γL ⊗ EM + H̃) > 0 and the sum
of β(j) approaches to infinity, we have

lim
i→∞

∥∥E[u(i)]− 1|V| ⊗ y∗∥∥ = 0.

Thus we complete the proof.

B. Proof of Theorem 4

Before proving the theorem of algorithm convergency, we
present here some basic assumptions and necessary lemmas.

(A.4) A prox-function ϕ : Θ → R exists to be τ -strongly
convex with respect to the norm ∥·∥, i.e.,

ϕ(θ1) ≥ ϕ(θ2) + ⟨∇θϕ(θ2),θ1 − θ2⟩+
τ

2
∥θ1 − θ2∥2 ,

for θ1, θ2 ∈ Θ. Function ϕ is non-negative over Θ and ϕ(0) =
0. The prox-center of Θ is given by θ0 = argminθ{ϕ(θ) : θ ∈

4Due to the page limit, we omit the proof of the positive semidefiniteness
of the matrix.
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Θ}. Moreover, we assume that for the optimal parameter θ∗,
ϕ(θ∗) ≤ A2.

(A.5) The error function fk at each node k is L-Lipschitz
with respect to the norm ∥·∥, i.e., for θ1, θ2 ∈ Θ, we have

|fk(θ1, ŷk)− fk(θ2, ŷk)| ≤ L ∥θ1 − θ2∥ .

Lemma 1. Define the function

Vω(θ) = max
ζ∈Θ

{⟨θ, ζ − θ0⟩ − ωϕ(ζ)}.

Then function Vω(·) is convex and differentiable on Θ. More-
over, its gradient is L-Lipschitz continuous with respect to the
norm ∥·∥

∥∇Vω(u)−∇Vω(v)∥ ≤ 1

ωτ
∥u− v∥ , ∀u, v ∈ Θ,

where the gradient is defined as follows

∇Vω(u) = πω(u)− u0, πω(u) = argmin
v∈Θ

{− ⟨u, v⟩+ ωϕ(v)}.
(25)

Note that u0 = πω(0).

Lemma 2. Let {g(t)}∞t=1 be an arbitrary sequence of vectors,
and consider the sequence {θ(t)}∞t=1 generated by

θ(t+ 1) = arg min
θ∈Θ

{
t∑

r=1

⟨g(r),θ⟩+ ω(t)ϕ(θ)

}

= πω(t)

(
−

t∑
r=1

g(r)

)
.

For any non-decreasing positive step-sizes {ω(t)}∞t=0, and any
θ̂ ∈ ΘC , we have

T∑
t=1

⟨
g(t),θ(t)− θ̂

⟩
≤ 1

2τ

T∑
t=1

∥g(t)∥2∗
ω(t)

+ ω(T )C.

For any θ̂ ∈ ΘC ⊂ Θ∗, we have

T∑
t=1

⟨
g(t),θ(t)− θ̂

⟩
≤ 1

2τ

T∑
t=1

∥g(t)∥2∗
ω(t)

+ ω(T )ϕ(θ∗).

In addition, we establish the convergency of algorithm via
two auxiliary sequences

φ(t+ 1) = πω(t)(µ̄(t+ 1)) (26)

and present the following lemma.

Lemma 3. With definitions of the random family {θk(t)}∞t=0,
{µk(t)}∞t=0 and {φk(t)}∞t=1 in Eq. (7), (8) and (26), and the
L-Lipschitz condition of each fk, for each node k ∈ V , we
have

T∑
t=1

[f(θk(t),yk)− f(θ∗,y∗)] ≤
T∑

t=1

[f(φ(t),yk)− f(θ∗,yk)]

+
T∑

t=1

[L ∥θk(t)−φ(t)∥+ L ∥yk − y∗∥].

Similarly, defining φ̂(T ) = 1
T

∑T
t=1 φ(t) and

θ̂k(T ) =
1
T

∑T
t=1 θk(t), we have

f(θ̂k(t),yk)− f(θ∗,x∗) ≤ f(φ̂(t),yk)− f(θ∗,yk)

+
L

ω(t)T

T∑
t=1

∥θk(t)−φ(t)∥+ L ∥yk − y∗∥.

Based on above lemmas, we now present the proof of
Theorem 4.

Proof: We perform our proof by analyzing the random
family {φ(t)}∞t=0. Given an arbitrary θ∗ ∈ Θ, we have
T∑

t=1

[f(φ(t), ŷk)− f(θ∗, ŷk)]

=
1

|V|

T∑
t=1

|V|∑
k=1

[fk(φ(t), ŷk)− fk(θ
∗, ŷk)]

≤
T∑

t=1

1

|V|

 |V|∑
k=1

[L ∥φ(t)− θk(t)∥+ fk(φ(t))− fk(θk(t))]

 .

The inequality of the above equation is resulted by the L-
Lipschitz condition on fk.

Let gk(t) ∈ ∂fk(θk(t)) and use the convexity of the
function, then we will obtain the following bound:

|V|∑
k=1

[fk(θk(t))− fk(θ
∗)] ≤

|V|∑
k=1

⟨gk(t),θk(t)− θ∗⟩

=

|V|∑
k=1

⟨ĝk(t),φ(t)− θ∗⟩+
|V|∑
k=1

⟨ĝk(t),θk(t)−φ(t)⟩

+

|V|∑
k=1

⟨gk(t)− ĝk(t),θk(t)− θ∗⟩

(27)

For the first term in the right hand side of Equation (27),
from the Lemma 2, it follows that

1

|V|

T∑
t=1

⟨ |V|∑
k=1

ĝk(t),φ(t)− θ∗

⟩

≤ 1

2τ

T∑
t=1

1

ω(t)

∥∥∥∥∥∥ 1

|V|

|V|∑
k=1

ĝk(t)

∥∥∥∥∥∥
2

∗

+ ω(T )ϕ(θ∗).

(28)

Holder’s inequality implies that E[∥ĝl(t)∥∗ ∥ĝk(s)∥∗] ≤ L2

and E[∥ĝk(t)∥∗] ≤ L2 since ∥ĝk(t)∥∗ ≤ L for any k, l, s, t.
We use these two inequalities to bound (28),

E

∥∥∥∥∥∥ 1

|V|

|V|∑
k=1

ĝk(t)

∥∥∥∥∥∥
2

∗

≤ 1

|V|2
|V|∑

k,l=1

E[∥ĝk(t)∥∗ ∥ĝl(t)∥∗] ≤ L2.

For the second term in the right hand side of Equation (27),
θk ∈ Ft−1 and φ(t) ∈ Ft−1 by assumption, so

E ⟨ĝk(t),θk(t)−φ(t)⟩ ≤ E ∥ĝk(t)∥ ∥θk(t)−φ(t)∥
=E(E[∥ĝk(t)∥ |Ft−1] ∥θk(t)−φ(t)∥)
≤LE ∥θk(t)−φ(t)∥

≤ L

ω(t)τ
E ∥µ̄(t)− µk(t)∥∗ .

(29)
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Thus we have

E

 T∑
t=1

|V|∑
k=1

∥φ(t)− θk(t)∥+
T∑

t=1

|V|∑
k=1

⟨ĝk(t),θk(t)−φ(t)⟩


≤ 2L

T∑
t=1

|V|∑
k=1

E ∥µ̄(t)− µk(t)∥∗
ω(t)

.

For the third term in the right hand side of Equation (27),
recalling that θk(t) ∈ Ft−1, we get

E[⟨gk(t)− ĝk(t),θk(t)− θ∗⟩]
= E[⟨E(gk(t))− ĝk(t)|Ft−1,θk(t)− θ∗⟩] = 0.

(30)

Combining these equations, we obtain the running sum bound
T∑

t=1

[f(φ(t))− f(θ∗)] ≤ ω(T )ϕ(θ∗) +
L2

2τ

T∑
t=1

1

ω(t)

+
2L

|V|

T∑
t=1

|V|∑
k=1

E ∥µ̄(t)− µk(t)∥∗
ω(t)τ

.

(31)

Applying Lemma 4 to (31), it gives that
T∑

t=1

[f(θk(t), ŷk)− f(θ∗,y∗)] ≤ ω(T )ϕ(θ∗) +
L2

2τ

T∑
t=1

1

ω(t)

+
2L

|V|

T∑
t=1

|V|∑
k=1

E ∥µ̄(t)− µk(t)∥∗
ω(t)τ

+ L
T∑

t=1

∥ŷk − y∗∥

+
T∑

t=1

∥µ̄(t)− µk(t)∥
ω(t)τ

.

Dividing both sides of the inequality by T , we can obtain the
theorem based on convexity of f .

C. Proof of Theorem 5

Proof: The proof concentrates on deriving the bound of

the network error in Theorem 4,
∑|V|

j=1

E∥µ̄(t)−µj(t)∥∗
ω(t) . We

first define the matrix P(t, l) = P t−l+1, where [P(t, l)]ij is
the element in the i-th row and j-th column of the matrix
P(t, l). From Equation (7), based on the record at time l, i.e.
µj(l), we can obtain the record at time t+ 1 as follows:

µj(t+ 1) =

|V|∑
i=1

[P(t, l)]ijµj(l)

+
t∑

k=l+1

|V|∑
i=1

[P(t, k)]ij ĝi(k − 1) + ĝj(t).

(32)

If t = l, this iteration will be terminated in our algorithm.
From the definition of µ̄(t) in Lemma 2, it follows:

µ̄(t)− µj(t) =
t−1∑
k=1

|V|∑
i=1

(
1

|V|
− [P(t− 1, k)]ij

)
ĝi(k − 1)

+
1

|V|

|V|∑
i=1

[ĝi(t− 1)− ĝj(t− 1)],

(33)

which further implies that

∥∥µ̄(t)− µj(t)
∥∥
∗ ≤

t−1∑
k=1

|V|∑
i=1

∣∣∣∣ 1

|V|
− [P(t− 1, k)]ij

∣∣∣∣ ∥ĝi(k − 1)∥∗

+
1

|V|

|V|∑
i=1

[∥ĝi(t− 1)∥∗ +
∥∥ĝj(t− 1)

∥∥
∗].

(34)

Taking the expectation on both sides of Inequality (34) and
using the fact that E ∥ĝi(t)∥∗ ≤ L, we have

E
∥∥µ̄(t)− µj(t)

∥∥
∗ ≤

t−1∑
k=1

L

∥∥∥∥1|V|

|V|
− P(t− 1, k)ej

∥∥∥∥
1

+ 2L,

(35)
where ej represents the j-th standard basis vector in
the |V|-dimensional Euclidean space. To further bound∥∥µ̄(t)− µj(t)

∥∥
∗, we break the sum in Inequality (35) into

two terms, with a cutoff point t̃. From the Perron-Frobenius
theory presented in [42], we have∥∥∥∥P(t, k)ej −

1|V|

|V|

∥∥∥∥
1

≤
√

|V|σt−k+1
2 (P ).

From the above inequality, it follows that if

1 ≤ k ≤ t− lnCerr

lnσ2(P )
+1, then

∥∥∥∥P(t, k)ej −
1|V|

|V|

∥∥∥∥
1

≤
√

|V|Cerr.

Specifically, setting Cerr = 1/T
√

|V|, for ∀l : 1 ≤ k ≤
t− lnCerr

lnσ2(P ) + 1, we have∥∥∥∥P(t, k)ej −
1|V|

|V|

∥∥∥∥
1

≤ 1

T
.

For k > t− lnCerr

lnσ2(P ) + 1, we have∥∥∥∥P(t, k)ej −
1|V|

|V|

∥∥∥∥
1

≤ ∥P(t, k)ej∥1 +
1

|V|
∥∥1|V|

∥∥
1
= 2.

(36)

The above clearly suggests that the cutoff point is t̃ = lnCerr

lnσ2(P ) .
Since there are at most T steps in the summation, we have

E
∥∥µ̄(t)− µj(t)

∥∥
∗ ≤ L

t−1∑
k=t−t̃

∥∥∥∥P(t− 1, k)ej −
1|V|

|V|

∥∥∥∥
1

+ L

t−t̃−1∑
k=1

∥∥∥∥P(t− 1, k)ej −
1|V|

|V|

∥∥∥∥
1

+ 2L

≤ 2Lt̃+
L

T
(t− t̃− 1) + 2L

≤ 2Lt̃+ L+ 2L (by t ≤ T )

= 2L
ln(T

√
|V|)−1

ln(σ2(P ))
+ 3L

= 2L
ln(T

√
|V|)

lnσ−1
2 (P )

+ 3L

≤ 2L
ln(T

√
|V|)

1− σ2(P )
+ 3L,
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Fig. 1. The real world test and the communication network

which follows the upper bound of the network error in (4)

NET ≤ 3L

T

(
2L

ln(T
√
|V|)

1− σ2(P )
+ 3L

)
T∑

t=1

1

ω(t)
.

Therefore, the learning error f(θ̂i(T ), ŷi) − f(θ,y∗) at the
i-th node can be further bounded by

f(θ̂i(T ), ŷi)− f(θ∗,y∗) ≤ ω(T )

T
ϕ(θ∗) + LCerr

+

(
6L2

T

ln(T
√
|V|)

1− σ2(P )
+

9L2

T
+

L2

2Tτ

)
T∑

t=1

1

ω(t)
.

If we choose the weight sequence {ω(t)}Tt=1 and arbitrary
small error Cerr to be

ω(t) = A
√
t, Cerr =

2L

A
√
T

·
ln(T

√
|V|)

1− σ2(P )
,

then we have

f(θ̂i(T ), ŷi)− f(θ∗,y∗) ≤ Aϕ(θ∗)√
T

+
2L2

A
√
T

ln(T
√

|V|)
1− σ2(P )

+
2

A

(
6L2

√
T

ln(T
√
|V|)

1− σ2(P )
+

9L2

√
T

+
L2

2
√
Tτ

)

≤ 16L2

A
√
T

ln(T
√

|V|)
1− σ2(P )

.

Therefore, we obtain

f(θ̂i(T ), ŷi)− f(θ∗,y∗) = O

(
1√
T

ln(T
√
|V|)

1− σ2(P )

)
and thereby completing the proof.

VI. PERFORMANCE EVALUATION

In this section, we present our testing results on the conver-
gence feature of both DRC and DDA algorithms. Besides, we
compare the DDA with other methods in [33], [43] and show
the efficiency of our algorithms.

We perform simulations on the network of |V| = K nodes
with two different graph topologies, e.g., Random (RD) and
Small-World (SW). These graphs are generated by NetworkX
[44]. We also perform the real world test with ten cellphones,
as shown in Fig. 1. The cellphones are held by each person in
an office room. Each cellphone records the brightness of the
natural light at its location and communicates with others in
a network. The task is to learn the linear relationship between
one certain cellphone’s record with others’.

A. Performance of DRC

We first evaluate the convergence feature of DRC. The
evaluation compares the estimated set uk against the global
set of data y to measure how incomplete and accurate the
estimated set is. We use the step size α(i) and β(i) specified
in Theorem 3. Besides, for the simulation, we preset an
M -dimensional global required data vector y and an M -
dimensional orthogonal vector θ∗, i.e., ⟨y,θ∗⟩ = 0. Each
node can only observe a single element of y with an additive
Gaussian noise. Without loss of generality, we let the k-th node
observe the k-th element of y. For example, node 1 observes
a vector yk(i) with the first element y1k(i) = y1 + ξ1(i),
while all other elements yjk = 0, j ̸= 1, where y1 is the
first element in vector y and ξ1(i) is the observation error,
i.e., local variation, following N (0, 1). We learn the relation
between the normalized error for each node and the number
of iterations. The normalized error for k-th node is defined
as ∥uk(i)− y∥ /K, i.e., the estimation error normalized by
the dimension of the vector y 5. As Fig. 2 demonstrates, the
error first rises and then decreases sharply. After the inflection
point of the curve, the error declines gradually, when the error
is small and close to zero, as proved in Theorem 1. The
real world test (Fig. 2-c) presents more fluctuating than the
simulation since the ξk(i) in the real world is not only affected
by the optical noise and the sensor noise, but also deviated
by the participator’s uncertainty of the direction of holding
the cellphone. The latter results in a larger variance than the
simulation’s setting. Nevertheless, the normalized error still
approaches to zero.

B. Performance of DDA

In this section, we evaluate the DDA algorithm based on the
results obtained above. Via comparison with other algorithms,
we prove that our algorithm has higher efficiency.

In the simulation, we consider a distributed minimization
of a sum of loss functions in an l1-regression based on the
data generated by DRC. After I = 100 iterations, each node
obtains an estimate uk(I) on y. Here, we let ŷk = uk. Thus,
the problem becomes that given K vectors, ŷk, to estimate the
orthogonal vector θ∗, i.e., a vector θ is needed for minimizing

f(θ) :=
1

K

K∑
i=1

| ⟨ŷk,θ⟩ |. (37)

We find that f is L-Lipschitz and non-smooth at point
⟨ŷk,θ⟩ = 0. We perform simulations on two graph structures,
e.g., Random and Small-World as the simulation on DRC. In
addition, the step size ω is chosen in the way presented in
Theorem 5.

Fig. 3 shows the plot of the function error maxk[f(θ̂k(T )−
f(θ∗))] vs. the number of iterations T for Small-World graphs
with size K ∈ [100, 300, 500]. Also, we show how the
convergence time varies as a function of the graph size K.

Next, we show the comparison between our theoretical
results (Theorem 5 provides an upper bound of the required
iterations) with the simulation results. We show how the

5In the figure, we use the average value of all the nodes’ estimation errors.
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Fig. 3. Function error maxk[f(θ̂k(T ))− f(θ∗)] decreases as the number
of iterations increases (simulations in Small-World network).

number of iterations required varies with respect to the graph
size K to achieve a given error ϵ = 0.1. Red curve and red
triangles in Fig. 4 represent theoretical bound and simulation
results respectively, and both the random graph and small-
world graph are considered. In the plot, each point on the
line curve denotes the average of 20 trials. Fig. 4 shows a
match between our theoretical analysis and simulation results.
Moreover, the algorithm presents different trends under the
two types of network topology. This implies that the conver-
gence of the algorithm is correlated with the network topology,
which corresponds to Theorem 5.

Fig. 4 also compares DDA algorithm with the traditional
methods for solving the non-smooth optimization, i.e., the
Distributed sub-gradient method (DGM) in [33] and the in-
cremental gradient descent (MIGD) method in [43]. Fig. 4
clearly shows that DDA algorithm has higher efficiency than
the other methods.

In the real world test, we use 70% of the data to train the
function and the remaining data to estimate the test error. Fig.
5 displays the function error as well as the test error vs. the
number of iterations. For ϵ = 0.1, the three methods (DDA,
DGM and MIGD) require 103, 237, 678 iterations to achieve
the accuracy. These results display similarly to the simulation
results, and the test error implies that the process does not
result in overfitting problem.

VII. RELATED WORK

In this section, we briefly discuss the related works
that have inspired the design of FINE. As the crowdsouc-
ing/crowdsensing has been the promising technique, many
works, for instance [1]–[7], have focused on this issue recently.

In these literature, participants report their observations to the
coordinator (who is always the decision maker); While in
our scenario, every node can be both the participant and the
decision maker, who can share its record with neighbors and
exploit the data from the network to make a decision.

One of motivations of our work is the concern of privacy.
As centralized management of is susceptible to information
leakage, FINE chooses to launch the learning process in a dis-
tributed manner. However, in distributed systems, components
are still vulnerable to adversarial attacks. Previous works [29],
[30] therefore constructed consensus-bassed learning model,
which leveraged Byzantine Gradient Descent to protect users’
privacy in distributed learning. Inspired by their methods,
in FINE, we use a simple Distributed Record Completion
algorithm to allow each node to obtain global consensus and
complete data. To be noticed, as we focus on measuring the
communication complexity FINE takes for the whole network
to discover the convergence of optimization, the analysis of
the cost of local data volume is unfortunately shelved, while
existing literatures [27]–[30] provide proper design of reducing
the communication overhead in consensus-based learning.

In conventional sensor networks, the existing methods such
as [8]–[10], [23], [45]–[48] focus on solving the learning
problems in homogeneous networks where each node can
obtain complete datasets. In contrast, in order to deal with
our crowdsensing scenario, we must consider some practical
factors, i.e., heterogeneous in functionality and data errors.

The design of DRC algorithm allows each node to reach
global consensus. Different from the previous proposed con-
sensus approaches [24]–[26], [49]–[53], FINE tries to address
a more challenging problem in which nodes are heterogeneous
in functionality and thereby having incomplete inputs. More-
over, the traditional consensus only processes the initial noisy
observations, which might result in severe bias. Conversely,
our DRC algorithm processes the successive observation data,
and we can thus ensure that all nodes converge to the same
global information.

In terms of distributed learning problem, the earlier works
[22], [54] based on the well known sub-gradient methods
which target at smooth function, produce the convergence rate
scaling exponentially in the network size. Then [32], [33]
sharpened the result, and obtain an efficiency of O( |V|3

ε2 ).
This expression, nevertheless, cannot capture the explicit in-
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Fig. 4. The iterations number required to achieve a given precision ϵ for DDA
and MIGD vs. network size K for (a) Random Graph and (b) Small-World
Graph.

fluence of the network topology [21]. Moreover, in [22], the
observation is only a scalar rather than a vector in our paper,
which is easier to be handled. For the non-smooth function,
the incremental based approach in [43], [55]–[57] are argued
that has a slow asymptotic convergence rate [21]. Therefore, in
[39], researchers proposed a consensus based approach, where
the non-smooth function has to be pre-processed by the smooth
approximation algorithm. In contrast, in our approach, we do
not require the approximation. Besides, the above literature
did not handle the issue of data errors. The design of DDA
algorithm is inspired by the efficient non-smooth optimization
methodology introduced in [20], [21]. Inspired by the method
proposed in [20], we realize it in a distributed manner to
support the distributed learning problems, and extend [21]’s
analysis on the convergence rate by taking the observation
noise into consideration.

VIII. CONCLUSION

In this paper, we present FINE, a learning framework
addressing a class of distributed learning problems in heteroge-
neous crowdsensing networks. FINE allows that (1) terminals
obtain incomplete datasets, (2) local error functions are non-
smooth, and (3) observation noise is taken into account. There-
fore FINE is adaptive to a much wider range of real-world
learning applications. We design two important algorithms in
FINE: a Distributed Record Completion (DRC) algorithm to
ensure each node to acquire complete information in spite
of its originally incomplete data acquisition, and a Distribut-
ed Dual Average (DDA) algorithm to efficiently solve non-
smooth convex optimization problems with observation noise.
We prove the convergence of the two algorithms and further
derive their convergence rates that guarantee the efficiency
of the algorithms. Via extensive simulations and real world
examinations, we validate the effectiveness of our design.

APPENDIX A

In this section, we introduce some classic results which are
used to prove the theorems of DRC. We summarize the results
from [58] into the following theorem.

Theorem 6. Define the random sequence
{
u(i) ∈ RN

}
i≥0

as:

u(i+ 1) = u(i) + α(i) [R(u(i)) + Γ(i+ 1,u(i))] ,

0 100 200 300 400

Iterations

0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

function error

testing error

Fig. 5. Function error maxk[f(θ̂k(T ))− f(θ∗)] decreases as the number
of iterations increase (tests in the cellphone network).

where R(·) : RN → RN is Borel measurable and
{Γ(i,u(i))}i≥0 is a random sequence in RN on a probability
space F , P , we assume the following five assumptions
C.1 Let B be the Borel algebra of RN , then for time i,

Γ(i, ·) : RN × Ω → RN is B ⊗ F measurable;
C.2 The zero-mean random family Γ(i,u(i)) is Fi measurable,

where Fi ∈ F , and it is also independent of Fi−1.
C.3 We have the function V (u(i)) and its gradient Vy that

satisfies

V (y∗) = 0, V (y) > 0, y ̸= y∗, lim
∥y∥→∞

V (y) = ∞

sup
ϵ<∥y−y∗∥< 1

ϵ

(R(y), Vy(y)) < 0, ∀ϵ > 0,

and the function’s second-order partial derivatives are
bounded.

C.4 We can find a pair of numbers k1, k2 to make the following
inequality hold

∥R(u(i))∥2 + E
[
∥Γ(i+ 1,u(i))∥2

]
< k1(1 + V (u(i)))− k2(R(u(i)), Vy(y)).

C.5 {α(i)}i>0 can be defined properly such that

α(i) > 0,
∑
i≥0

α(i) < ∞,
∑
i≥0

α2(i) < ∞.

D.1 R(u(i)) can be represented by

R(u(i)) = B(u(i)− y∗) + δ(u(i)), (38)

where
lim

u(i)→y∗

∥δ(u(i))∥
∥u(i)− y∗∥

= 0,

and B is a matrix.
D.2 Following C.5, we define the {α(i)}i≥0 as

α =
a

i+ 1
, ∀i ≥ 0, (39)

where a > 0 is a constant.
D.3 We also define the stable matrix as

∑
= aB+ 1

2E, where
E is the M ×M identity matrix.

D.4 For the matrix,

M(i,u(i)) = E
[
Γ(i+ 1,u(i))ΓT (i+ 1,u(i))

]
,

we have

lim
i→∞,u(i)→y∗

M(i,u(i)) = S0.
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D.5 There exists ε > 0 such that

lim
R→∞

sup
∥u(i)−y∗∥<ε

sup
i≥0

∫
∥Γ(i+1,u(i))∥>R

∥Γ(i+ 1,u(i))∥2 dP = 0.

Then we can obtain the following results.
1) With C.1-C.5,

P
[
lim
i→∞

u(i) = y∗
]
= 1.

2) With C.1-C.5 and D.1-D.5, if i → ∞, we have
√
i(u(i)− y∗) → N (0, S), (40)

where → represents the weak convergence, and

S = a2
∫ ∞

0

e
∑

vS0e
∑T vdv.

Proof: For a proof, see [58].

APPENDIX B

In this section, we present proofs of rest theorems.

A. Proof of Theorem 2

Proof: Based on Theorem 6, we demonstrate that the
sequence {y(i)}i≥0 meet the assumptions C.1-C.5.

1) Verification of Assumptions C.1-C.2: Now we reorga-
nize Eq. (5) as Theorem 6. First, noting that (L⊗EM )(1|V|⊗
y∗) = 0|V|M , for Eq. (5), we have

u(i+ 1) = u(i)− α(i)(L ⊗ EM )(u(i)− 1|V| ⊗ y∗)

− β(i)H̃(u(i)− 1|V| ⊗ y∗) + β(i)H̄(y(i)− H̄T (1|V| ⊗ y∗)).
(41)

Then, we define R(u(i)) and Γ(i + 1,u(i)) as in (42) and
(43), and we then obtain the form of equation in Theorem 6:

u(i+ 1) = u(i) + α(i)[R(u(i)) + Γ(i+ 1,u(i))] (42)

R(u(i)) = −[(L ⊗ EM ) +
β(i)

α(i)
H̃](u(i)− 1|V| ⊗ y∗) (43)

Γ(i+ 1,u(i)) =
β(i)

α(i)
H̄(y(i)− H̄T (1|V| ⊗ y∗)) (44)

Thus, for a given i, the random family is {Γ(i +
1,u(i))}u(i)∈RM|V| which satisfies Assumptions C.1-C.2.

2) Verification of Assumption C.3: Now we define

V (u(i)) =

(u(i)− 1|V| ⊗ y∗)T
[
(L ⊗ EM ) +

β(i)

α(i)
H̃
]
(u(i)− 1|V| ⊗ y∗).

(45)

It is obviously that the function V (u(i)) ∈ C2 and its
second-order partial derivatives are bounded. With Lemma 4,
it follows that

V (1|V| ⊗ y∗) = 0;V (u(i)) > 0,∀u(i) ̸= 1|V| ⊗ y∗, (46)

and hence, we can find a constant δ1 such that

(u(i)− 1|V| ⊗ y∗)T
[
(L ⊗ EM ) +

β(i)

α(i)
H̃
]2

(u(i)− 1|V| ⊗ y∗)

≥ δ1
∥∥u(i)− 1|V| ⊗ y∗∥∥2 , ∀u(i) ∈ RM|V|.

(47)

Therefore, we have the supremum of the inner product of
R(u(i)) and Vy(u(i)),

sup
∥u(i)−1|V|⊗y∗∥>σ

(R(u(i)), Vy(u(i)))

= −2 inf
∥u(i)−1|V|⊗y∗∥>σ

{
(u(i)− 1|V| ⊗ y∗)T

[
(L ⊗ EM )

+
β(i)

α(i)
H̃

]2
(u(i)− 1|V| ⊗ y∗)

}
≤ −2 inf

∥u(i)−1|V|⊗y∗∥>σ
δ1
∥∥u(i)− 1|V| ⊗ y∗∥∥2

≤ −2δ1σ
2 < 0.

(48)

Thus, C.3 is satisfied.
3) Verification of Assumption C.4: Based on Eq. (43) and

(44), we can obtain

∥R(u(i))∥2 =

= (u(i)− 1|V| ⊗ y∗)T
[
(L ⊗ EM ) +

β(i)

α(i)
H̃
]2

(u(i)− 1|V| ⊗ y∗)

= −1

2
(R(u(i)), Vy(u(i))).

(49)

E
[
∥Γ(i+ 1,u(i))∥2

]
=

β2(i)

α2(i)
E
[∥∥H̄(y(i)− H̄T (1|V| ⊗ y∗))

∥∥2] .
(50)

With the Assumption A.1-A.4, the term

E
[∥∥H̄(y(i)− H̄T (1|V| ⊗ y∗))

∥∥2] ≤ δ2,

where δ2 is a finite positive constant. From α(i)
β(i) → γ > 0, we

thus have
E
[
∥Γ(i+ 1,u(i))∥2

]
< δ3, (51)

where δ3 is a positive finite constant. We then have

∥R(u(i))∥2 + E
[
∥Γ(i+ 1,u(i))∥2

]
≤ −1

2
(R(u(i)), Vy(u(i))) + δ3

≤ −1

2
(R(u(i)), Vy(u(i))) + δ3(1 +

∥∥u(i)− 1|V| ⊗ y∗∥∥2)
≤ −1

2
(R(u(i)), Vy(u(i))) + δ3

(
1 +

1

δ1
(u(i)− 1|V| ⊗ y∗)T ·

[
(L ⊗ EM ) +

β(i)

α(i)
H̃
]2

(u(i)− 1|V| ⊗ y∗)

)
(by Equation (49))

≤ −1

2
(R(u(i)), Vy(u(i))) + δ4(1 + V (u(i))),

(52)

where δ4 = max
{
δ3,

δ3
δ1

}
> 0. Thus C.4 is satisfied.

4) Verification of Assumption C.5: We can choose appro-
priate {α(i)}i≥0 to meet C.5. For instance, we can use the
form in D.2.

To sum up, the Assumptions C.1-C.5 are satisfied, and the
theorem is proved.
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B. Proof of Theorem 3

Proof: The proof is also based on Theorem 6. Since
Assumptions C.1-C.5 are satisfied, we now demonstrate that
D.1-D.5 are satisfied.

1) Verification of Assumptions D.1-D.3: Recalling the def-
initions of R(u(i)) in Eq. (43), we define δ(u(i)) ≡ 0 and

B = −[γL ⊗ EM + H̃], (53)

where γ ∈ R. Thus D.1 is satisfied.
Assumption D.2 can be easily satisfied by choosing the

weight sequence appropriate weight sequence {α(i)}i≥0 and
{β(i)}i≥0.

For Assumption D.3, we then let a > 1
2λmin(γL⊗EM+H̃)

,
which can make the following equation stable:

Σ = −a[γL ⊗ EM + H̃] +
1

2
EM |V| = aB +

1

2
EM |V|. (54)

2) Verification of Assumption D.4: With the i.i.d assump-
tions, the function

A(i,u(i)) = E[Γ(i+ 1,u(i))ΓT (i+ 1,u(i))]

= E
[
(H̄y(i)− H̃1|V| ⊗ y∗)(H̄y(i)− H̃1|V| ⊗ y∗)T

]
.

(55)

is independent of i, and in particular, A(i,u(i)) is a constant,
because

E
[
(H̄y(i)− H̃1|V| ⊗ y∗)(H̄y(i)− H̃1|V| ⊗ y∗)T

]
= E

[
H̄ϵϵT H̄T

]
= H̄SϵH̄T .

(56)

Thus we have

lim
i→∞,u(i)→1|V|⊗y∗

A(i,u(i)) = H̄SϵH̄T = S0. (57)

3) Verification of Assumption D.5: From (44) , it follows
that

∥Γ(i+ 1,u(i))∥2 =
β2(i)

α2(i)

∥∥∥H̄y(i)− H̃1|V| ⊗ y∗
∥∥∥2

≤ 4

γ2

∥∥∥H̄y(i)− H̃1|V| ⊗ y∗
∥∥∥2 . (58)

Given a fixed σ > 0, for
∥∥u(i)− 1|V| ⊗ y∗

∥∥ < σ, we define
another random family as{

Γ̃(i+ 1,u(i))
}
i≥0

=

{
4

γ2

∥∥∥H̄y(i)− H̃1|V| ⊗ y∗
∥∥∥2}

i≥0

.

(59)

The boundedness of E[
∥∥∥Γ̃(i+ 1,u(i))

∥∥∥2] follows from
Chebyshev’s inequality that as R → ∞,

sup
∥u(i)−1|V|⊗y∗∥<σ

sup
i≥0

P
[∥∥∥H̄y(i)− H̃1|V| ⊗ y∗

∥∥∥2 > R

]
≤ 1

R
sup

∥u(i)−1|V|⊗y∗∥<σ

sup
i≥0

E
[∥∥∥H̄y(i)− H̃1|V| ⊗ y∗

∥∥∥2]
<

δ2
R

→ 0.

(60)

The family (59) is thus uniformly integrable. Then
∥Γ(i+ 1,u(i))∥2 is also uniformly integrable. The Assump-
tion D.5 is satisfied.

Up till now, Assumptions D.1-D.5 are satisfied and we can
obtain the theorem.

APPENDIX C

In this section, we present proofs of the lemmas.

A. Proof of Lemma 2

Proof:
For the convenience of notification, we define the set ΘC

as ΘC = {θ|θ ∈ Θ, ϕ(θ) ≤ C} and Θ∗ = {θ|θ ∈ Θ, ϕ(θ) ≤
ϕ(θ∗)}, where the function ϕ is the prox-function defined in
A.4. Clearly, we have ΘC ⊂ Θ∗ if ϕ(θ∗) ≥ C.

Then we define the following two functions, Eq. (61) and
(62), for the proof.

δT (C) = max
θ∈ΘC

{
T∑

t=0

⟨g(t),θ(t)− θ⟩

}
,

= max
θ∈ΘC

{
T∑

t=0

⟨g(t),θ(t)− θ0⟩+
T∑

t=0

⟨g(t),θ0 − θ⟩

}

=

T∑
t=0

⟨g(t),θ(t)− θ0⟩+ max
θ∈ΘC

{⟨
T∑

t=0

g(t),θ0 − θ

⟩}

=

T∑
t=0

⟨g(t),θ(t)− θ0⟩+ εC(−sT+1),

(61)

where sT+1 =
∑T

t=0 g(t), and

εC(s) = max
θ∈ΘC

min
ω≥0

{⟨s,θ − θ0⟩+ ω(C − ϕ(θ))}

≤ min
ω≥0

max
θ∈ΘC

{⟨s,θ − θ0⟩ − ωϕ(θ)}+ ωC

= Vω(s) + ωC,

(62)

where Vω(s) is the function in Lemma 1.
Thus we have εC(s) ≤ Vω(s)+ωC, which further indicates

δT (C) ≤
T∑

t=0

⟨g(t),θ(t)− θ0⟩+ Vω(−sT+1) + ωC (63)

Vω(t+1)(−st+1) ≤ Vω(t)(−st+1)

≤ Vω(t)(−st)−
⟨
g(t),∇Vw(t)(−st)

⟩
+

∥g(t)∥2∗
2ω(t)τ

= Vω(t)(−st)− ⟨g(t),θ(t)− θ0⟩+
∥g(t)∥2∗
2ω(t)τ

.

(64)

Thus, we have for ∀1 ≤ t ≤ T ,

⟨g(t),θ(t)− θ0⟩ ≤ Vω(t)(−st)−Vω(t+1)(−st+1)+
∥g(t)∥2∗
2ω(t)τ

.

(65)
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Summing all inequalities, we obtain

T∑
t=0

⟨g(t),θ(t)− θ0⟩ ≤ Vω(1)(−s1)− Vω(T+1)(−sT+1)

+
1

2τ

T∑
t=1

∥g(t)∥2∗
ω(t)

.

(66)

In view of [20],

Vω(1)(−s1) ≤
1

2τω(1)
∥g(0)∥2∗ ≤ 1

2τω(0)
∥g(0)∥2∗ . (67)

Thus, we have
T∑

t=0

⟨g(t),θ(t)− θ0⟩ ≤ −Vω(T+1)(−sT+1)+
1

2τ

T∑
t=0

∥g(t)∥2∗
ω(t)

.

(68)
Thus, we have

δT (C) ≤ 1

2τ

T∑
t=0

∥g(t)∥2∗
ω(t)

+ ωC, (69)

which further indicates for ∀θ̂ ∈ ΘC ⊂ Θ∗,
T∑

t=0

⟨
g(t),θ(t)− θ̂

⟩
≤ 1

2τ

T∑
t=0

∥g(t)∥2∗
ω(t)

+ ωC

≤ 1

2τ

∥g(t)∥2∗
ω(t)

+ ωϕ(θ∗).

(70)

B. Proof of Lemma 4

Proof: Based on fk’s L-Lipschitz continuity, we have

f(θk(t),yk)− f(θ∗,y∗) = f(θk(t),yk)− f(φ(t),yk)

+ f(φ(t),yk)− f(θ∗,yk) + f(θ∗,yk)− f(θ∗,y∗)

≤ L ∥θk(t)−φ(t)∥+ f(φ(t),yk)− f(θ∗,yk)

+ L ∥yk − y∗∥ .
(71)

Lemma 1 implies that :

∥θk(t)−φ(t)∥ ≤ 1

ωτ
∥µ̄(t)− µk(t)∥ , (72)

Substituting the above inequality into Eq. (71), we obtain the
result

f(θk(t),yk)− f(θ∗,y∗) ≤ f(φ(t),yk)− f(θ∗,yk)

+
L

ωτ
∥µ̄(t)− µk(t)∥+ L ∥yk − y∗∥ .

(73)

C. Proof of Positive Semidefiniteness

In this part, we present a lemma to demonstrate the semidef-
initeness of matrix

[
α(i)(L ⊗ EM ) + β(i)H̃

]
.

Lemma 4. If the DRC algorithm is under the Assumption
A.1-A.3, and both {α(i)}i≥0 and {β(i)}i≥0 are positive

consequences, then for each i ≥ 0,
[
α(i)(L ⊗ EM ) + β(i)H̃

]
is a symmetric positive definite matrix.

Proof: The symmetricity of matrix[
α(i)(L ⊗ EM ) + β(i)H̃

]
for each i is obvious. To

prove the positive semidefinite property, we assume, on the
contrary, that the matrix

[
α(i)(L ⊗ EM ) + β(i)H̃

]
is not

positive semidefinite. Therefore, according to the definition
of positive semidefiniteness, there exists a nonzero vector
y( ̸= 0) ∈ RM |V| and

yT
[
α(i)(L ⊗ EM ) + β(i)H̃

]
y = 0. (74)

Due to the positive semidefiniteness of matrix L ⊗ EM and
H̃ as well as the limitation that for each i, both α(i) and β(i)
are positive, we have

yT (L ⊗ EM )y = 0,yT H̃y = 0. (75)

Combining the partition as y =
[
yT
1 , ...,y

T
k ,y

T
|V|

]T
,yk ∈

RM , ∀1 ≤ k ≤ |V| and (75), we get

yT (L ⊗ EM )y =

|V|∑
r=1

|V|∑
s=1

(yr,yj)Lrs

=

|V|∑
r=1

|V|∑
s=1

Lrs(
M∑
t=1

xt
rx

t
s) =

M∑
t=1

(

|V|∑
r=1

|V|∑
s=1

Lrsx
t
rx

t
s) = 0.

(76)

Construct a new column vector ỹ = [ỹT
1 , ..., ỹ

T
M ]T , ỹt ∈

R|V|, ∀1 ≤ t ≤ M . Define each ỹ as ỹl = [xt
1, ..., x

t
|V|]

T ,
which indicates that the k-th element of vector ỹt is the t-th
element of vector yk. From the fact that λ2(G) > 0, and the
definition of second eigenvalue of graph, it follows

λ2(G) = min
y⊥1|V|,y ̸=0|V|

(Ly,y)
(y,y)

> 0. (77)

We further assume column vectors η1, ...,η|V| ∈ R|V| rep-
resent a group of orthonormal basis in |V|-dimensional Eu-
clidean space, and η1 = 1√

|V|
1|V|. Thus, vector ỹt can be

written as a linear summation of orthonormal basis, which is
given by

ỹt =

|V|∑
h=1

alhηh, ∀1 ≤ t ≤ M. (78)

From (77) and (78) we obtain

|V|∑
r=1

|V|∑
s=1

Lrsx
t
rx

t
s = (Lỹt, ỹt) =

 |V|∑
h=1

alhLηh,

|V|∑
h=1

alhηh


=

|V|∑
i=1,j=1

alialj(Lηi,ηj) =

|V|∑
j=1

a2lj(Lηj ,ηj) ≥ 0.

(79)

Specially, iff yt ∥ 1|V|, we have

|V|∑
r=1

|V|∑
s=1

Lrsx
t
rx

t
s = 0. (80)
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Thus, iff yt ∥ 1|V|,∀1 ≤ t ≤ M , we have

yT (L ⊗ EM )y =
M∑
t=1

 |V|∑
r=1

|V|∑
s=1

Lrsx
t
rx

t
s

 = 0. (81)

Therefore, we have

yk = c,∀1 ≤ k ≤ |V|, (82)

where c ∈ RM and c ̸= 0M . Meanwhile, (75) implies that
|V|∑
k=1

yT
kH

T
k Hkyk = 0. (83)

According to the assumption A.3, equations (82) and (83)
imply

cTHc = 0. (84)

This is a contradiction, since H is full rank and c ̸= 0. Thus
matrix [α(i)(L ⊗ EM ) + β(i)H̃] is positive semidefinite for
each i ≥ 0.
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