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Abstract—Many practical applications have observed knowl-
edge evolution, i.e., continuous born of new knowledge, with its
formation influenced by the structure of historical knowledge.
This observation gives rise to evolving knowledge graphs whose
structure temporally grows over time. However, both the modal
characterization and the algorithmic implementation of evolving
knowledge graphs remain unexplored. To this end, we propose
EvolveKG, a framework that reveals cross-time knowledge inter-
action with desirable performance of storage and computation.
The novelty of EvolveKG lies in Derivative Graph – a static
weighted snapshot of evolution at a certain time. Particularly,
each weight quantifies knowledge effectiveness with a temporarily
decaying function of consistency and attenuation, two proposed
factors depicting whether or not the effectiveness of a fact fades
away with time. Thanks to the cross-time interaction, EvolveKG
allows future knowledge prediction by virtue of the influence from
the historical ones. Empirically tested under two real datasets, the
superiority of EvolveKG is confirmed via its prediction accuracy.

I. INTRODUCTION

Knowledge graph has been proven as an effective model for
characterizing and studying complex multi-relational settings
in real world [1]–[4]. In recent years, many knowledge graphs,
such as Freebase [5], DBpedia [6] and YAGO [7], have been
established and utilized in various real applications, including
question answering [8], [9], information extraction [10], [11],
named entity disambiguation [12], [13], semantic parsing [14],
[15], to name a few. Traditionally, a knowledge graph consists
of entities (nodes) and relations (edges). Each of its edge is
represented as a triplet (subject entity, relation, object entity),
that indicates the fact subjectEntity relation objectEntity. For
example, a triplet (Jack, visits, France) indicates the fact Jack

visits France. However, traditional knowledge graphs merely
provide a static snapshot of knowledge structure, which over-
looks the evolving nature of knowledge.

Hence traditional knowledge graphs need to be augmented
into evolving knowledge graphs, where knowledge temporarily
expands over time with the continuously generated new facts.
Figure 1 illustrates an example of evolving knowledge graphs,
in which each edge is associated with a timestamp that records
the fact’s generation time. From the example we have the two
observations summarized as below: i) the evolving knowledge
graph expands over time. As we can see, the size of evolving
knowledge graph before year 2000 is limited to merely five
facts, which, however, surprisingly expands to a greater one
with over ten facts in year 2018. ii) the generation of new facts
is influenced by the historical ones. For example, Bob visited
U.S. and Canada in year 2017 and year 2018, respectively. It
is reasonable to infer that he established some business with
companies in North America in his early visit to U.S., which
consequently leads to his later visit to Canada. The illustrated
observations convey to us that in evolving knowledge graphs,
knowledge temporarily grows over time and the generation of

Fig. 1. An example of evolving knowledge graphs, where a fact happened
more recently is represented by the line with a larger width.

new knowledge is influenced by the historical ones, which we
term as knowledge evolution.

We note that different from traditional knowledge graphs
where knowledge interactions happen among knowledge at a
same generation time, knowledge evolution depicts the inter-
actions among knowledge across different generation times.
Put differently, in knowledge evolution, there is an additional
dimension - time, which can not be modeled by traditional
knowledge graphs due to their incompleteness. Besides, most
existing algorithms designed to learn knowledge graphs lack
ability to take advantage of rich temporary information avail-
able in evolving knowledge graphs, which results in a limited
performance on characterizing and utilizing cross-time influ-
ence happened in knowledge evolution. Motivated by this, in
this work we aim to investigate from the following two aspects:
• Modal characterization: Does there exist any typical fea-

ture of knowledge evolution? If so, how to mathematically
characterize them and how to quantify the cross-time influ-
ence among knowledge with different generation times?
• Algorithmic implementation: With the characterization of

knowledge’s cross-time influence, how to design and effi-
ciently implement the algorithms to predict the generation
of new knowledge by leveraging the historical ones?
To answer the questions, we first involve two factors, which

we term as consistency and attenuation, to capture knowledge
evolution of interest. i) Consistency: the generation likelihoods
of a fact, at two different time points, are consistent if no new
facts occurred between the time points; ii) Attenuation: the
fact with a more recent timestamp has a greater influence on
the future event compared with the one occurred earlier. For
better interpretation, let us revisit the example given above. In
general, the likelihoods that Bob visits Canada, in Jan. or Jun.
2018 are consistent if there are no new facts happened to him
and Canada (Consistency). Besides, by noting Bob has more
than one historical visits, we can infer that his visit on Canada
in year 2018 is mainly influenced by his later visit on U.S.,
rather than the early one on Czech Republic (Attenuation).

In order to characterize the above factors and launch algo-



rithmic learning in evolving knowledge graphs, we propose a
novel framework - EvolveKG. The key idea of EvolveKG is
to quantify the effectiveness of an evolving knowledge graph,
via an ingeniously proposed Derivative Graph, which is a
weighted snapshot of evolution at a certain time. Here each
weight representing the effectiveness of a fact is calculated by
a decaying function incorporating both consistency and atten-
uation. Leveraging effective historical knowledge, EvolveKG
can further enable applications such as cross-time knowledge
prediction. Meanwhile, EvolveKG provably returns ease of
implementation with regard to both storage and computational
complexities. Our work makes the following contributions:
• We characterize the facts in evolving knowledge graphs by

quadruplets. Compared with static knowledge graphs whose
edge only contains three items - subject entity, relation and
object entity, our work integrally records an additional item
- generation time of the fact. Thus the fact is represented as a
quadruplet (subject entity, relation, object entity, timestamp).

• EvolveKG characterizes effective knowledge contained in
evolving knowledge graphs with Derivative Graph, whose
size reflects the amount of effective knowledge and from
which we can know the knowledge evolution is accelerated,
constant or decelerated.

• The framework enables potential applications like cross-
time knowledge prediction in evolving knowledge graphs.
This application, which leverages historical knowledge to
predict the future one, can not be achieved by traditional
knowledge completion that aims to reproduce the missing
data from those within the same generation time.

• We present performance evaluations on the prediction accu-
racy of EvolveKG. Experiments are conducted on two real
datasets where it outperforms the baselines with up to 26.1%
and 40.3% gains in terms of MeanRank and Hits@10.

To our best knowledge, this is the first attempt to explore cross-
time interactions among knowledge, especially the influence
of historical knowledge on future one. And we believe that it
has potential to inspire a new research direction in modeling
and analyzing multi-relational settings with time dimension.

II. RELATED WORK

Knowledge Graph Learning: Knowledge graphs have been
verified to be useful in wide applications such as information
extraction [10], [11], question answering [8], [9], named entity
disambiguation [12], [13] and semantic parsing [14], [15].
One of fundamental and important techniques in knowledge
graphs is embedding, whose key idea is to embed the items
in knowledge graphs, i.e., entities and relations, in continuous
vector spaces, so as to make simplification while preserving
the network structure. Towards this aim, many models have
been proposed. TransE [1] is one of the most representative
models. It learns vector embeddings of entities and relations,
i.e., es, eo and r, in space Rk, k > 0. The basic idea of it
is that the functional translation corresponds to a translation
of embeddings, i.e., the model aims to learn parameters that
make es + r ≈ eo when (es, r, eo) holds. Besides, there are
some other extended models such as TransH [2], TransR [3],

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition
G(V,E) Knowledge graph with entity set V and relation set E.
G̃(V ′, E′) Derivative Graph of G(V,E).
esv / eov Subject / Object entity v.

(esv , r, e
o
u, t)

Fact where relation r occurs between subject entity esv
and object entity eou at time t.

dsv(t) / dov(t) Subject / object degree of entity v at time t.
d̂sv(t) / d̂ov(t) Weighted subject / object degree of entity v at time t.

ê(t) Average of weighted number of edges in G̃(V ′, E′).
λ Parameter of the attenuation function.

etc. However, all the above models consider knowledge graphs
as static ones, lack ability to capture their evolution and thus
are limited in cross-time knowledge prediction.

Evolving Network Modeling: A multitude of previous stud-
ies [18]–[21] have clarified that network structure evolves over
time. Regarding this, some models have been proposed, among
which Preferential Attachment is a simple but useful one. In
preferential attachment, for various reasons, nodes with more
existing edges are more likely to create a new one. It further
leads to a multiplicative process which is known to give power-
law distributions. Due to its usability, preferential attachment
has been widely used as a basic rule in varying scenes such as
social networks [22], protein networks [23] and nanoparticles
in liquid [24]. Besides preferential attachment, there are some
other extended models [19]–[21]. However, all these models
are formulated using probability theory as the mathematical
tool, which can not be applied to capture evolving knowledge
graphs since most of algorithms used in knowledge graphs are
heuristic ones based on machine leaning implementation.

III. THE PROPOSED FRAMEWORK: EVOLVEKG
This section presents the framework’s basic idea and some

requirements, implementation, as well as complexity analysis.

A. Evolving Knowledge Graph Representation
Before the illustration on the proposed framework, we first

give some definitions and common notations that will be used
in the remainder of this paper. We model Evolving Knowledge
Graphs as directed graphs with timestamped edges. In evolv-
ing knowledge graphs, each edge that points from a node to
the other represents an event occurred in real word. In order to
introduce time dimension, we extend the triplet (es, r, eo) that
is used in static knowledge graphs to a quadruplet (es, r, eo, t).
It represents a fact that relation r occurs between subject entity
es and object entity eo at time t. In the remaining parts, we
adopt superscript s or o to indicate whether an entity acts as
a subject or an object, and subscript to indicate the entity ID.
At time t, for an entity ev , the number of facts in which ev
acts as a subject is called subject degree, denoted by dsv(t),
and the number of facts in which ev acts as an object is called
object degree, denoted by dov(t). For convenience, we present
Table I to list all notations that will be used later.

B. Basic Idea and Requirements of EvolveKG
Before the introduction on basic idea and requirements, we

note that there are two widely accepted observations:



• The current behavior of a subject (an object) is influenced by
all its historical facts where it acts as a subject (an object).

• A fact with an earlier generation time has a smaller influence
on the entity’s current behavior, while the one with a later
generation time has a greater influence.

Inspired by these two observations, we model the influence of
an entity’s historical facts on its current behavior as a sum of
the influence of each fact, multiplied by a weight. The weight
is calculated by a function, called attenuation function, which
ranges from 0 to 1 and decreases with the fact’s existing time.
Thus, how to determine the expression of attenuation function
and judge whether it is a good one? We mathematically rewrite
the observations in more details and declare that an effective
attenuation function should satisfy all the below requirements.
Denoting the probability that entity esv forms a relation r with
entity eo at time t as P{(esv, r, eo, t)}, the requirements are
1) Consistency: If no fact happened during time t to t+ ∆t,

the probability, where entity ev acts as a subject, remains
unchanged, i.e., P{(esv, r, eo, t)} = P{(esv, r, eo, t+ ∆t)}.

2) Attenuation: If some facts, denoted by the set φ, happened
during time t to t+ ∆t, the probability satisfies

R1: P{ (esv, r, e
o, t+ ∆t)|φ1} > P{ (esv, r, e

o, t+ ∆t)|φ2},
where φ1 6= ∅ and φ2 = ∅.

R2: P{ (esv, r, e
o, t+ ∆t)|φ1} ≥ P{ (esv, r, e

o, t+ ∆t)|φ2},
where φ1 = {(esv, r, eo, t1)}, φ2 = {(esv, r, eo, t2)}, t1 ≥ t2.

R3: P{ (esv, r, e
o, t+ ∆t)|φ1} ≥ P{ (esv, r, e

o, t+ ∆t)|φ2},
where φ1 ⊃ φ2.

The above requirements indicate that the connecting proba-
bility remains unchanged if no new facts occurred during the
time range; while a subject entity esv with some historical facts
(R1), a fact happened more recently (R2), or a larger coverage
of historical facts (R3), is more likely to create new relations.
These requirements also hold when an entity acts as an object.

Through calculation and analysis, we find that the require-
ments can be satisfied if we set the attenuation function as
f(ti) = e−λ(t−ti), where t and ti denote the current time and
the generation time of the given fact, respectively. The proof
of this result is provided in Section IV.

C. Implementation of EvolveKG

To solve the problems illustrated above, we propose a novel
framework – EvolveKG. The framework owns two remarkable
advantages: i) Algorithm feasibility - EvolveKG makes it feasi-
ble to learn evolving knowledge graphs by algorithms designed
for static knowledge graphs; ii) Cost effectiveness - EvolveKG
reduces storage complexity without loss of performance and
involves no extra computation complexity.

The implementation of the framework includes two steps:
Step 1: Transformation from an evolving knowledge graph

to a newly proposed graph, i.e., Derivative Graph.
Step 2: Training on the Derivative Graph.

Then, we discuss the two steps in more details.
1) Discussion on Step 1: First, we present the definition of

Derivative Graph as below.

Definition 1 (Derivative Graph). For an evolving knowledge
graph G(V,E), its Derivative Graph at time t is defined as a
weighted graph G̃(V ′, E′), where V ′ = V and for each edge
(v, u) ∈ E that is generated at time ti, there exists an edge
(v, u) ∈ E′ with a weight e−λ(t−ti) in G̃(V ′, E′).

We note that the above definition has shown how to transform
an evolving knowledge graph into its Derivative Graph. Since
that each edge in Derivative Graph has a corresponding weight,
we accordingly present the definition of an entity’s Weighted
Subject Degree and Weighted Object Degree as below.

Definition 2 (Weighted Subject/Object Degree). For an entity
ev with subject facts set {(esv, ri, eoi , ti)}, 1 ≤ i ≤ dsv(t), and
object facts set {(esi , ri, eov, ti)}, 1 ≤ i ≤ dov(t), the entity’s
weighted subject degree and weighted object degree at time t
are defined as

d̂sv(t) =
∑

1≤i≤dsv(t)

e−λ(t−ti) and d̂ov(t) =
∑

1≤i≤dov(t)

e−λ(t−ti).

From an intuitive view, Derivative Graph is a characteri-
zation of effective information in evolving knowledge graphs.
Note that the information is sensitive to time and the weight of
an edge in Derivative Graph actually reflects the effectiveness
of this fact in the knowledge graph. Based on this, in the sec-
ond step of the framework, we can distinguish data according
to their effectiveness, and then conduct a biased training.

2) Discussion on Step 2: The major challenge of this step
lies in the problem that – How to proceed the training with a
weighted dataset? Before the discussion on solutions, we first
briefly review the training process. Given a loss function and
a training set with m data, in each epoch, data di results in a
loss li, and then the parameters are optimized by minimizing
the total loss L =

∑
1≤i≤m li. Based on this process, we come

up with two optional solutions to give a biased training:
1) Data side: Adopt a high sampling rate for data with high

effectiveness, and a low one for data with low effectiveness.
2) Loss side: Increase the ratio of loss caused by data with

high effectiveness, and inversely, decrease that resulted by
data with low effectiveness.

In the implementation, either of the two solutions can achieve
a biased training. One can make the selection between them
based on the specific applications. In this paper, we adopt the
second one and the loss function should be modified as

L(t) =
∑

i
e−λ(t−ti)li.

Following such a procedure, training and optimization can be
proceeded on Derivative Graph. And finally, the framework
makes it feasible to study evolving knowledge graphs through
existing algorithms designed for static ones.

To illustrate the proposed framework, we give an example of
an evolving knowledge graph with four facts. The example is
presented in Figure 2. In Step 1, the evolving knowledge graph
is transformed into a static weighted one. The weight of each
edge is calculated by attenuation function f(ti) = e−λ(t−ti).
In Step 2, each fact i results in a loss li, i ∈ {1, 2, 3, 4}. The
loss li is calculated by the function l(·), which is determined



Fig. 2. An illustration on the proposed framework – EvolveKG.

by the applied algorithm. Then, the total loss L is obtained by
summing over all the weighted loss e−λ(t−ti)li. And finally,
training process is proceeded to minimize the loss.

We give an example here to show how to apply EvolveKG
with TransE. Step 1: Transform an evolving knowledge graph
G(V,E) to its corresponding Derivative Graph G̃(V ′, E′) as
described. Step 2: Modify the loss function L(t) to enable a
biased training. Particularly, denoting the margin parameter as
γ, the set of correct quadruplets as S and that of corrupted ones
as S′, and representing the embedding of an entity (relation)
by its boldface, the loss function is modified as:

L(t) =
∑

(es,r,eo,ti)∈S
(es′,r,eo′,ti)∈S′

[γ + e−λ(t−ti)P − e−λ(t−ti)N ]+,

where P = d(es + r, eo), N = d(es′ + r, eo′) and d is a
dissimilarity measure.

D. Storage and Computation Complexities

Storage Complexity: First of all, let us consider a question:
Whether an entity’s current behavior is influenced by all its
historical facts? If no, under what conditions does a fact have
no influence? The answer is given in Lemma 1 with its proof
in Appendix A. Results show that the influence of a fact with
a sufficiently long existing time can be ignored. Based on this
result, we demonstrate that without performance loss, storage
complexity of EvolveKG is

∑t
i=tk

N(i), where N(i) denotes
the number of facts with timestamp i and t− tk = Θ(1).

Lemma 1. For an entity ev , assume that it acts as a subject
entity in dsv historical facts, and denote the facts by a set
{(esv, ri, eoi , ti)}, where ti ≤ tj for any i ≤ j. The influence
of the fact with timestamp tk, 1 ≤ k ≤ dsv , on the probability
P{(esv, r, eo, t)} can be ignored if tdsv − tk →∞.

Computation Complexity: We regard it from the two steps
of EvolveKG. In Step 1, it calculates the weight for each edge,
which results in a complexity Θ (|E|). In Step 2, it maks a
biased training. Assume the complexity of applied algorithm
per epoch is Θ (m), where m depends on the algorithm, e.g.,
(ne + nr)k for TransE. Since the only additional operation is
the modification on loss function, giving a complexity Θ(1),
the complexity in this step is Θ (mn+ 1), where n is the
number of epochs. In general, Θ (|E|)� Θ (mn) and thus we
conclude that EvolveKG introduces no additional complexity.

Algorithm 1: Evolution of Knowledge Graph Gt(V,E)

Choose a speed function s(t).
At time t = 0:

The initial graph G0(V,E) is given.
At time t > 0:

(Creation of New Facts) s(t) new facts are created.
(Preferential Attachment) For each new fact, an entity ev is
selected as the subject with the probability proportional to its
weighted subject degree d̂sv(t). Selection of the object follows
a symmetrical process.

IV. THEORETICAL ANALYSIS

This section proposes a model of knowledge graph evolu-
tion, based on which we (i) prove the correctness of attenuation
function and (ii) present some properties of Derivative Graph.

A. Model and Assumptions

In order to theoretically characterize how a knowledge graph
evolves over time, we adopt a modified version of Preferential
Attachment Model. This model is a classical one and has been
widely used to capture network evolution in various fields.

The model is presented in Algorithm 1. First of all, an initial
graph G0(V,E) and a speed function s(t) are provided. The
network topology of G0(V,E) could be generated randomly
because it has little effect on Gt(V,E) when t is sufficiently
large. By setting s(t) as a time dependent function, we allow
the evolution speed of the network change with time. Then,
in each time slot t, s(t) new facts are created. Each of the
fact selects a subject entity and an object entity based on the
preferential attachment manner. Accordingly, the connecting
probability of two entities can be calculated as in Lemma 2.

Lemma 2. The probability that a fact happens between subject
entity esv and object entity eou at time t is

P{(esv, r, eou, t)} =
1

Gt
d̂sv(t)d̂

o
u(t),

where Gt =
∑
v

∑
u
P{(esv, r, eou, t)} is the normalization factor.

Noting that an entity’s weighted degree reflects the effec-
tiveness of its historical facts, the intuition of Algorithm 1
could be explained as follows. An entity’s current behavior
is influenced by its historical facts, and in addition, an entity
with more effective historical facts has a greater probability to
perform similarly in current time. For better understanding, let
us recall the example where Bob is an active business man who
often visits around in past several years. Since Bob is an active
business man based on his historical facts, it is reasonable to
assume that he is likely to visit somewhere else currently.

In the adopted model, entity type and relation type are not
considered. It is because that in this section, our study focuses
on how the effectiveness of a fact evolves over time, rather
than the interactions among entities, where the latter one has
been well explored by many existing algorithms designed for
static knowledge graphs. Thus, for concise of notation, we use
triplet (es, eo, t) to denote a fact in the remaining part.



B. Proofs on the Correctness of Attenuation Function

We now com to the theoretical proofs of of attenuation func-
tion. The basic requirements of attenuation function, illustrated
in Section III-B, are proved in Theorem 1 and Theorem 2.

Theorem 1. For any two subject-object entity pairs (esv, e
o
u)

and (esw, e
o
z), if no fact, that involves any of the entities in the

given pairs, happens during time t to t+ ∆t, we have

P{(esv, eou, t)}
P{(esw, eoz, t)}

=
P{(esv, eou, t+ ∆t)}
P{(esw, eoz, t+ ∆t)}

.

Proof. According to the definition of connecting probability
P{(esv, eou, t)}, we have

P{(esv, eou, t)} =
1

Gt
d̂svd̂

o
u =

1

Gt

dsv∑
i=1

e−λ(t−ti)
dou∑
j=1

e−λ(t−tj)

=
1

Gt
e2λ∆t

dsv∑
i=1

e−λ(t+∆t−ti)
dou∑
j=1

e−λ(t+∆t−tj).

And similarly, we have

P{(esw, eoz, t)} =
1

Gt
e2λ∆t

dsw∑
i=1

e−λ(t+∆t−ti)
doz∑
j=1

e−λ(t+∆t−tj).

Thus, the ratio of connection probabilities between subject-
object pairs (esv, e

o
u) and (esw, e

o
z) is

P{(esv, eou, t)}
P{(esw, eoz, t)}

=

∑dsv
i=1 e

−λ(t+∆t−ti)
∑dou
j=1 e

−λ(t+∆t−tj)∑dsw
i=1 e

−λ(t+∆t−ti)
∑doz
j=1 e

−λ(t+∆t−tj)
.

Then, use the same method and we can obtain

P{(esv, eou, t+ ∆t)}
P{(esw, eoz, t+ ∆t)}

=

∑dsv
i=1 e

−λ(t+∆t−ti)
∑dou
j=1 e

−λ(t+∆t−tj)∑dsw
i=1 e

−λ(t+∆t−ti)
∑doz
j=1 e

−λ(t+∆t−tj)
.

Comparing the two equations we can observe that these two
ratios are the same, and thus we complete the proof.

Corollary 1. If there is no fact happened in a knowledge
graph during time t to t + ∆t, the connecting probabilities
P{(es, eo, t)} of any subject-object entity pairs in the graph
remain unchanged.

In addition to consistency proved in Theorem 1, we present
the proof of attenuation in Theorem 2, before which we first
give a useful lemma as below.

Lemma 3. For any variables a1 > a2 ≥ 0, b > 0 and c > 0,
it is satisfied that

c+ b+ a1

c+ b+ a2
· b+ a2

b+ a1
< 1.

Theorem 2. For an entity ev , given its connecting probability
P{(esv, eo, t)}, the probability at time t + ∆t, with the facts
happened during time t to t+ ∆t as the condition, satisfies

R1: For any k ≥ 1,

P{(esv, eo, t+ ∆t)|{(esv, eoi , ti)}, 1 ≤ i ≤ k}
>P{(esv, eo, t+ ∆t)|∅};

R2: For any t1 ≥ t2,

P{(esv, eo, t+ ∆t)|{(esv, eo1, t1)}}
≥P{(esv, eo, t+ ∆t)|{(esv, eo2, t2)}};

R3: For two fact sets φ1 ⊃ φ2,

P{(esv, eo, t+ ∆t)|φ1} ≥ P{(esv, eo, t+ ∆t)|φ2}.

The results are similar when entity ev acts as an object.

Proof. Note that the difference among the probabilities given
in the theorem lies in their conditions, i.e., set of facts that
happened during time t to t+ ∆t. Therefore, before the proof
of the results, we first consider a general case – comparison
of P{(esv, eo, t+ ∆t)|χ} and P{(esv, eo, t+ ∆t)|ψ}, where χ
and ψ are two arbitrary sets of historical facts.

According to the definition, we have

P{(esv, eo, t+ ∆t)|χ} =
∑
u

P{(esv, eou, t+ ∆t)|χ}

=
1

Gt+∆t
d̂sv(t+ ∆t)

∑
u

d̂ou(t+ ∆t)

∣∣∣∣∣χ
=

d̂sv(t+ ∆t)
∑
u d̂

o
u(t+ ∆t)(∑

i,i 6=v d̂
s
i (t+ ∆t) + d̂sv(t+ ∆t)

)∑
u d̂

o
u(t+ ∆t)

∣∣∣∣∣∣χ
a
=

d̂sv(t+ ∆t)
∣∣∣χ∑

i,i 6=v d̂
s
i (t+ ∆t) + d̂sv(t+ ∆t)

∣∣∣χ.
The equality (a) holds since that

∑
i,i 6=v d̂

s
i (t + ∆t) is inde-

pendent of the condition χ. Similarly, we have

P{(esv, eo, t+∆t)|ψ} =
d̂sv(t+ ∆t)

∣∣∣ψ∑
i,i6=v d̂

s
i (t+ ∆t) + d̂sv(t+ ∆t)

∣∣∣ψ .
And therefore, the ratio of the two probabilities is

P{(esv, eo, t+ ∆t)|χ}
P{(esv, eo, t+ ∆t)|ψ}

=

∑
i,i6=v d̂

s
i (t+ ∆t) + d̂sv(t+ ∆t)

∣∣∣ψ∑
i,i6=v d̂

s
i (t+ ∆t) + d̂sv(t+ ∆t)

∣∣∣χ ·
d̂sv(t+ ∆t)

∣∣∣χ
d̂sv(t+ ∆t)

∣∣∣ψ .
Let c =

∑
i,i 6=v d̂

s
i (t+ ∆t).

R1: Letting χ = ∅ and ψ = {(esv, e0
i , ti)}, 1 ≤ i ≤ k, we have

d̂sv(t+ ∆t)
∣∣∣χ = d̂sv(t)

d̂sv(t+ ∆t)
∣∣∣ψ = d̂sv(t) +

∑
1≤i≤k

e−λ(t−ti).

Let b = d̂sv(t), a1 =
∑

1≤i≤k e
−λ(t−ti) and a2 = 0. Finally,

with Lemma 3, we obtain the result.
R2: Letting χ = {(esv, eo2, t2)}, ψ = {(esv, eo1, t1)}, we have

d̂sv(t+ ∆t)
∣∣∣χ = d̂sv(t) + e−λ(t−t2)

d̂sv(t+ ∆t)
∣∣∣ψ = d̂sv(t) + e−λ(t−t1).

Let b = d̂sv(t), a1 = e−λ(t−t1) and a2 = e−λ(t−t2). Finally,



with Lemma 3, we obtain the result.
R3: Let χ = φ2 and ψ = φ1, and we have

d̂sv(t+ ∆t)
∣∣∣χ = d̂sv(t) +

∑
(esv,e

o
i ,ti)∈φ2

e−λ(t−ti)

d̂sv(t+ ∆t)
∣∣∣ψ = d̂sv(t) +

∑
(esv,e

o
i ,ti)∈φ1

e−λ(t−ti).

Similarly, let b = d̂sv(t), a1 =
∑

(esv,e
o
i ,ti)∈φ1

e−λ(t−ti) and
a2 =

∑
(esv,e

o
i ,ti)∈φ2

e−λ(t−ti). Finally, according to Lemma
3, we finish the proof. Following the same method, we can
obtain the results when the entity ev acts as an object.

Discussion on the requirements of attenuation function:
Combining the results presented in Theorem 1 and Theorem
2, we have theoretically proved that f(ti) = e−λ(t−ti) is an
effective attenuation function. Next, we give a discussion on
these requirements. In fact, attenuation proved in Theorem 2
can be satisfied with any increasing function, i.e., ∀t1 > t2,
f(t1) > f(t2). While, consistency proved in Theorem 1 is
a more rigorous one. We have tried several other forms of
attenuation function, such as negative linear functions, i.e.,
f(ti) = −a(t − ti) + b, reciprocal functions, i.e., f(ti) =
a 1
t−ti + b and find that the requirements can not be satisfied

with these functions. However, we believe f(ti) = e−λ(t−ti)

is not the only feasible choice for attenuation function. Some
more attenuation functions may be developed in future work.

C. Properties of Derivative Graph

We first present some necessary preliminaries. According
to the evolution speed s(t), the evolving knowledge graph can
be classified into three types:
Accelerated evolution: evolution speed s(t) increases with
time, i.e., ∀t1 > t2, s(t1) > s(t2).
Constant evolution: evolution speed s(t) remains unchanged
with time, i.e., ∀t1, t2, s(t1) = s(t2).
Decelerated evolution: evolution speed s(t) decreases with
time, i.e., ∀t1 > t2, s(t1) < s(t2).

Theorem 3. Assume t0 is a sufficient large time that satisfies
t0 →∞. Denote the evolution speed of graph G as s(t) and
we have that if G follows an accelerated evolution, i.e., s(t)
increases with time t, then ∀t1 > t2 ≥ t0, ∀ev ,

ê(t1) > ê(t2) and E[d̂v(t1)] > E[d̂v(t2)];

if G follows a constant evolution, i.e., s(t) remains unchanged
with time t, then ∀t1, t2 ≥ t0, ∀ev ,

ê(t1) = ê(t2) and E[d̂v(t1)] = E[d̂v(t2)];

and if G follows a decelerated evolution, i.e., s(t) decreases
with time t, then ∀t1 > t2 ≥ t0, ∀ev ,

ê(t1) < ê(t2) and E[d̂v(t1)] < E[d̂v(t2)],

where ê(t) is the averaged number of edges in G̃ and E[d̂v(t)]
is the average of weighted degree of entity ev .

Proof. Firstly, we consider the change of ê(t) at different time
slots. To calculate ê(t), note that in time slot ti, there are s(ti)
edges generated in the graph and their contributions to ê(t) at

time t are s(ti)e−λ(t−ti). Then, considering all the edges that
are generated from time slot 1 to t, we have

ê(t) =
∑

0≤ti≤t
s(ti)e

−λ(t−ti). (1)

In the following part, we discuss how ê(t) changes with time
in the three given cases.

Case 1: G follows an accelerated evolution, which indicates
that ∀t1 > t2 ≥ t0, s(t1) > s(t2). According to Equation (1),
we can obtain that

ê(t1) =
∑

0≤ti≤t1

s(ti)e
−λ(t1−ti) >

∑
t1−t2≤ti≤t1

s(ti)e
−λ(t1−ti).

Let tj = ti + t2 − t1, the equation can be rewrote as

ê(t1) >
∑

0≤tj≤t2
s(tj + t1 − t2)e−λ(t2−tj). (2)

And similarly, according to Equation (1), we have

ê(t2) =
∑

0≤ti≤t2
s(ti)e

−λ(t2−ti). (3)

Since that ∀t > t0, s(t+ t1− t2) > s(t), combining Equation
(2) and Equation (3) we have ê(t1) > ê(t2).

Case 2: G follows a constant evolution, which indicates
that ∀t1, t2 ≥ t0, s(t1) = s(t2). With Equation (1), we have

ê(t1) =
∑

0≤ti≤t1
s(ti)e

−λ(t1−ti) = s(0)
1

1− e−λ
.

ê(t1) = s(0)
1

1− e−λ
.

Therefore, ê(t1) = ê(t2) and we complete the proof.
Case 3: G follows a decelerated evolution, which indicates

that ∀t1 > t2 ≥ t0, s(t1) < s(t2). With Equation (1), we have

ê(t1) =
∑

0≤ti≤t1
s(ti)e

−λ(t1−ti)

=
∑

0≤ti≤t2

s(ti)e
−λ(t2−ti)e−λ(t2−t2) +

t1∑
t1≤ti≤t2+1

s(ti)e
−λ(t1−ti)

=ê(t2)− ê(t2)
(

1− e−λ(t2−t2)
)

+
∑

t1≤ti≤t2+1

s(ti)e
−λ(t1−ti).

In order to make the comparison between ê(t1) and ê(t2), we
should first calculate the value of ê(t2)

(
1− e−λ(t2−t2)

)
and

that of
∑t1
ti=t2+1 s(ti)e

−λ(t1−ti).

ê(t2)
(

1− e−λ(t1−t2)
)
> s(t2)

1− e−λ(t1−t2)

1− e−λ , (4)

where ê(t2) > s(t1)
∑t1
ti=0 e

−λ(t1−ti) = s(t1) 1
1−e−λ . And for

the second item, we have∑
t1≤ti≤t2+1

s(ti)e
−λ(t1−ti) < s(t2 + 1)

1− e−λ(t1−t2)

1− e−λ . (5)

Finally, we have that ê(t1) < ê(t2).
Secondly, we discuss the value of E[d̂v(t)]. From time slot

t−1 to t, the change of E[d̂sv(t−1)] is resulted by two parts:
- Part 1: Decrease resulted by existing edges.
- Part 2: Increase resulted by new generated edges.

Part 1: Time elapse results in the decrease of the weight of
each edge, by a factor e−λ. Therefore, we have

E[d̂sv(t)] = e−λE[d̂sv(t−1)] and E[d̂ov(t)] = e−λE[d̂ov(t−1)].



Part 2: Based on the evolving model, in time slot t, there
are s(t) new edges generated. The probability that one of these
edges connects to entity ev , where ev acts as a subject, is

P{(esv, eo, t)} =s(t− 1)
∑
u

P{(esv, eou, t− 1)}

=s(t− 1) · 1

Gt−1
d̂sv(t− 1)

∑
u

d̂ou(t− 1),
(6)

where Gt−1 is the normalization coefficient that satisfies

Gt−1 =
∑
v

∑
u

d̂sv(t− 1)d̂ou(t− 1)

=
∑
v

d̂sv(t− 1) ·
∑
u

d̂ou(t− 1) = ê2(t− 1)

Then, plugging the value of Gt−1 into Equation (6) and using
Equation (1), we have

P{(esv, eo, t)} = d̂sv(t− 1) · s(t− 1)
1∑t−1

ti=0 s(ti)e
−λ(t−1−ti)

.

Combining the results in Part 1 and Part 2, we have

E[d̂sv(t)] = e−λE[d̂sv(t− 1)] + P{(esv, eo, t)}

= E[d̂sv(t− 1)]

(
e−λ +

s(t− 1)∑t−1
ti=0 s(ti)e

−λ(t−1−ti)

)
.

In the following part, we discuss how E[d̂sv(t)] changes with
time in the three given cases.

In Case 1, graph G follows an accelerated evolution, which
indicates that ∀t1 > t2 ≥ t0, s(t1) > s(t2). Then, by noting
that ∀0 ≤ ti ≤ t − 1, s(ti) < s(t − 1), the equation given
above can be calculated as

E[d̂sv(t)] > E[d̂sv(t− 1)]

(
e−λ +

s(t− 1)

s(t− 1)
∑t−1
ti=0 e

−λ(t−1−ti)

)

= E[d̂sv(t− 1)]

(
e−λ +

1− e−λ

1− e−λt

)
= E[d̂sv(t− 1)].

The third equality holds since that t ≥ t0. The result indicates
that ∀t ≥ t0, ∀ev , E[d̂sv(t)] > E[d̂sv(t − 1)]. According to
this result, we can easily get the final conclusion, given in the
theorem, that ∀t1 > t2 ≥ t0, ∀ev , E[d̂sv(t1)] > E[d̂sv(t2)].

Following a similar method, by noting that ∀0 ≤ ti ≤ t −
1, s(ti) = s(t − 1) in Case 2 and ∀0 ≤ ti ≤ t − 1, s(ti) >
s(t− 1) in Case 3, we finish the proof.

Intuitions on the properties of Derivative Graph: Results
in Theorem 3 indicate that, the size of Derivative Graph grows
if an accelerated evolution happens in the evolving knowledge
graph; remains unchanged if a constant evolution happens;
and decreases if a decelerated evolution happens. Since the
relationship between the size of G(V,E) and that of G̃(V ′, E′)
follows a similar manner as that between a function and its
derivative function, we call G̃(V ′, E′) the Derivative Graph of
G(V,E). In addition, we note that the size of Derivative Graph
actually reflects the amount of effective information hidden
in the corresponding knowledge graph. And therefore, results
in Theorem 3 signify that an accelerated evolution stimulates
an increasing amount of effective information in an evolving
knowledge graph, which may be helpful for applications such
as knowledge prediction, graph implementation, etc.

TABLE II
STATISTICAL PROPERTIES OF DATASETS.

ICEWS GDELT
# Facts 133, 008 145, 508

# Entities 15, 624 6, 863
# Relations 236 227
Start Time 2016-01-01 2013-01-01
End Time 2016-12-31 2013-12-31

Time Granularity 1 day 1 day

V. EXPERIMENTAL MEASUREMENTS

Our proposed framework is evaluated by its performance of
knowledge prediction, applied to an existing algorithm TransE.

A. Description on Datasets

The experiments are conducted on two real datasets: Global
Database of Events, Language, and Tone (GDELT) [25] and
Integrated Crisis Early Warning System (ICEWS) [26].
GDELT is a CAMEO-coded dataset. The data are collected
from reports in a variety of international news sources such
as BBC Monitoring, Washington Post, New York Times, etc.
ICEWS is a temporal dataset that records coded interactions
among actors, i.e., cooperative or hostile actions between
individuals and groups. Facts are automatically identified and
extracted from news by the BBN ACCENT event coder.

In the above two datasets, each item consists of a subject entity,
a relation, an object entity and a timestamp, that naturally
form a quadruplet and represent the fact in evolving knowledge
graphs. More details on the datasets are listed in Table II.

B. Experimental Settings

1) Evaluation Protocol: For evaluation, we use two met-
rics, i.e., MeanRank and Hits@10, which is the same as that
in [1]. For each test quadruple, the corrupted quadruplets are
created by removing and replacing the subject entity by each
of entities of the dataset in turn. Then, repeat this procedure by
removing the object entity instead of the subject entity. Dissim-
ilarities of both correct quadruplets and corrupted quadruplets
are calculated by the model and sorted by an ascending order.
We report the mean of those predicted facts as MeanRank and
the proportion of correct facts ranked in the top 10 as Hits@10.

2) Baseline Schemes: As illustrated, EvolveKG can be ap-
plied to many existing algorithms of static knowledge graphs.
In the evaluation, we choose TransE as the target algorithm.
Other algorithms, like TransR, TransH are also appliable but
we do not include them since they are all derivatives of TransE.
For explicitation, we rename it as EvolveKG-TransE. Besides,
we include other two schemes to make the comparison:
• UTF-TransE: A modification of TransE, giving an Uniform

Training with the Full historical facts.
• UTR-TransE: A modification of TransE, giving an Uniform

Training with only Recent historical facts.
These schemes given above adopt different strategies to deal
with historical facts. UTF-TransE assumes an entity’s current
behavior is influenced by all its historical facts with a same
weight. UTR-TransE assumes only recent historical facts have
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influence on an entity’s current behavior. By comparing the
performances of them we can figure out that whether historical
knowledge has influence on the future one and whether the ef-
fectiveness of historical knowledge decays with its generation
time. Particularly, in both ICEWS and GDELT, UTR-TransE
only includes historical facts generated in recent two months.

3) Training Process and Parameter Setting: Owing to the
introduction of time, the training process and the validation in
our experiments are different from that in tradition one. Rather
than randomly sampling from the dataset, in our experiments,
we use data with an earlier timestamp for training and that
with a later timestamp for validation and test. For example,
a dataset with timestamp ranging from 1 to 100 is separated
into two parts: a training set with timestamp from 1 to 80 and
validation and test sets with timestamp from 81 to 100.

For the proposed framework, we set its attenuation function
parameter as λ = 0.01, which leads to a great attenuation on a
fact’s effectiveness, e.g., the effectiveness of a fact generated
one year ago is only 0.027, an extremely small influence on
the future event. For all the three algorithms, we set parameters
as learning rate l = 0.01, embedding dimension k = 50, and
select margin γ from the set {0.01, 0.05, 0.1, 0.2, 0.5}. The
optimal margin setting in GDELT is γ = 0.05 for EvolveKG-
TransE and UTF-TransE and γ = 0.2 for UTR-TransE, and
in ICEWS is γ = 0.2 for both EvolveKG-TransE and UTF-
TransE and γ = 0.5 for UTR-TransE. The number of total
epochs is set as 500. And the best models are selected by
early stopping using MeanRank on validation sets.

C. Quantitive Results

1) Examples on Knowledge Prediction: Table III presents
examples of knowledge prediction on object entity. The exper-
iments are conducted with EvolveKG-TransE on ICEWS. Fix
an subject entity, a relation and a timestamp (in this example
it is relaxed to a small time range, i.e., one month), all the top
predicted object entities, along with the true one represented
in boldface, are listed. In addition, following a similar method,
one can also predict subject entity, relation, or timestamp.

2) Performance on Knowledge Prediction: The evaluation
results on knowledge prediction are demonstrated in Figure 3
and Figure 4. From the figures we can observe that EvolveKG-
TransE outperforms the other two baselines in terms of both

50 100 150 200 250 300

# time slots

300

350

400

450

500

M
e
a
n
R

a
n
k

EvolveKG-TransE

(a) GDELT.

50 100 150 200 250 300

# time slots

1000

1100

1200

1300

1400

M
e
a
n
R

a
n
k

EvolveKG-TransE

(b) ICEWS.
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MeanRank and Hits@10. UTF-TransE’s second best perfor-
mance, compared with UTR-TransE, shows that the historical
knowledge does have influence on the formation of future one,
and it is beneficial to take them into account for knowledge
prediction. Whereas, it fails to capture the attenuation feature
of knowledge evolution and therefore has a lower performance
compared with EvolveKG-TransE. We also design experiments
to explore the influence of historical knowledge with different
time ranges on prediction performance. Results are provided
in Figure 5 and Figure 6, in which we attempt to predict the
knowledge occurred in time 300 to 360. The horizontal axis
of the figures represents the time range of utilized historical
knowledge. For example, the data point with 120 time slots
means that the prediction is conducted based on the historical
facts with timestamps ranging from 180 to 300. Based on the
results, we conclude that a wider range of historical knowledge
helps to improve the performance on prediction. We note that
our results in Lemma 1 can not be observed directly from the
figures, may resulted by the limited time range of datasets.

3) Performance on Complexity: Computation complexities
of the schemes are listed in Table IV, where they are evaluated
by running time per epochs on a computer with configuration
Intel(R) Xeon(R) CPU E5-2630 2.40GHz. Results show that
UTR-TransE has the smallest running time due to a reduced
size of training set, while EvolveKG-TransE and UTF-TransE,
sharing a common training set, have a roughly similar per-
formance. Based on the above results we conclude that, the
proposed framework is efficiently implemented, which brings
no additional complexity compared with the target algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, we theoretically model the evolving knowl-
edge graph and propose EvolveKG - a novel framework to
learn it. The idea of EvolveKG is to transform the evolving
knowledge graph to Derivative Graph and studies it through a
biased training. We present theoretical analysis on EvolveKG.
Results show that EvolveKG is efficiently implemented with
regard to both storage and computation, and the attenuation
function incorporates all the requirements. In addition to the-
oretical analysis, we also conduct experimental measurements
on two realistic temporary datasets. Results declare that the



TABLE III
EXAMPLES OF PREDICTION ON OBJECT ENTITY.

Subject Entity Relation Time Object Entity

Japan Engage in
negotiation 2016-11 Japan, South Korea, China, North Korea, Southeast Asia, Association of

Southeast Asian Nations,Government (Japan), Vietnam, United States, Laos

Pakistan Accuse 2016-11 Pakistan, Afghanistan, India, Other Authorities / Officials (Pakistan), Taliban,
Sri Lanka, Government (Afghanistan), Citizen (Pakistan), Saudi Arabia, Bangladesh

Judiciary (India) Make an appeal
or request 2016-11

Education (India), Government (India), Business (India), Company - Owner
or Operator (India), Member of the Judiciary (India), Party Member (India),
Other Authorities / Officials (India), Attacker (India), Criminal (India), Thief (India)

TABLE IV
RUNNING TIME PRE EPOCH.

EvolveKG-TransE UTF-TransE UTR-TransE
GDELT 12.578s 11.745s 7.364s
ICEWS 11.054s 10.474s 6.098s

proposed framework outperforms other baseline algorithms in
terms of both MeanRank and Hits@10.

There remains some future directions that can be explored.
For example, this work only discusses Derivative Graph from
a theoretical view. A desirable future work is to empirically
study Derivative Graph, which has potential to be a guide of
data selection since it characterizes the data effectiveness.
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APPENDIX A
PROOF OF LEMMA 1

We first define the statement “the influence of the fact
can be ignored”. Consider the conditional probability, denote
the connecting probability of esv and eo, with historical facts
{(esv, r1, e

o
1, t1), ..., (esv, rk, e

o
k, tk), ..., (esv, rdsv , e

o
dsv
, tdsv )} as P

and that with facts {(esv, r1, e
o
1, t1), ..., (esv, rk−1, e

o
k−1, tk−1),

(esv, rk+1, e
o
k+1, tk+1), ..., (esv, rdsv , e

o
dsv
, tdsv )} as Pk. We regard

the influence of the fact (esv, rk, e
o
k, tk) on the probability P

can be ignored if P
Pk

= 1. According to the above definition,
we now come to the proof of the lemma. Firstly, we have

P

Pk
=

1
Gt
1
Gt

∑
1≤i≤dsv

e−λ(t−ti)
∑

1≤j≤do e
−λ(t−tj)∑

1≤i≤dsv,i 6=k
e−λ(t−ti)

∑
1≤j≤do e

−λ(t−tj)

=

∑
1≤i≤dsv

e−λ(t−ti)∑
1≤i≤dsv,i 6=k

e−λ(t−ti)
.

(7)

Obviously, P
Pk

= 1 holds when e−λ(t−tk)∑
1≤i≤dsv,i 6=k

e−λ(t−ti)
= 0.

Note that the recently happened fact, i.e., (esv, rdsv , e
o
dsv
, tdsv ),

has the greatest influence on connection probability and thus

e−λ(t−tk)∑
1≤i≤dsv,i 6=k

e−λ(t−ti)
≤ e−λ(t−tk)

e
−λ(t−tdsv )

= e
−λ(tdsv

−tk) (8)

Combine Equation (7) and Equation (8), and finally we have
limtdsv−tk→∞

P
Pk

= 1. Therefore, we complete the proof.


