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Abstract—Multicast tree is a key structure for data dissemina-
tion from one source to multiple receivers in wireless networks.
Minimum length multica modeled as the Steiner Tree Problem,
and is proven to be NP-hard. In this paper, we explore how
to efficiently generate minimum length mult wireless sensor
networks (WSNs), where only limited knowledge of network
topology is available at each node. We design and analyze a
simple algorithm, which we call Toward Source Tree (TST), to
build multicast trees in WSNs. We show three metrics of TST
algorithm, i.e., running and energy efficiency. We prove that its
running time is O(

√
n logn), the best among all existing solutions

to our best knowledge. We prove that TST tree length is in the
same order as Steiner tree, give a theoretical upper bound and
use simulations to show the ratio be only 1.114 when nodes are
uniformly distributed. We evaluate energy efficiency in terms
of message complexity and the number of forwardin prove that
they are both order-optimal. We give an efficient way to construct
multicast tree in support of transmission of voluminous data.

I. INTRODUCTION

Wireless Sensor Network (WSN) is a network of wireless
sensor nodes into which sensing, computation and commu-
nication functions are integrated. Sensors are self-organizing
and deployed over a geographical region [2]. Multicasting,
i.e., one-to-many message transmission, is one of the most
common data transmission patterns in WSNs. Tree is the topol-
ogy for non-redundant data transmission. To enable efficient
multicast, multicast tree has been proposed and widely used.
It has not only been used for multicast capacity analysis in
wireless networks [3]–[5], but in practice, multicast supports
a wide range of applications like distance education, military
command and intelligent system [6].

Many researchers have been working on constructing ef-
ficient multicast trees [7]–[9], [12]. They have proposed a
number of algorithms so as to minimize the routing complexity
as well as achieve the time and energy efficiency (for details,
please refer to the next section), but most of them did not
focus on an important performance measure: the tree length.
This is a critical metric since larger tree length clearly results
in longer delay. To enable the messages to be forwarded
farther, sensors have to increase their transmission power,
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causing more energy consumption as well as more serious
interference to neighboring nodes. Besides, as the transmission
distance increases, the messages suffer from higher probability
of transmission failure.

Recently, GEographic Multicast (GEM), inspired by Eu-
clidean Steiner Tree, was proposed for routing in dense
wireless networks [11]. Formally, given a network G = (V,E),
the weight of each edges, and a set of terminals S ⊆ V ,
the Steiner Tree Problem is to find a tree in G that spans S
with the minimum total weight [13]. This problem has been
proven to be NP-hard [14], and has not been visited for a
long time. Former forms of its approximate implementation
were not appropriate for constructing multicast trees in WSNs
for various reasons (details will be discussed in the following
section.) In GEM, the authors took the first step to utilize
the Steiner tree for constructing multicast trees in WSNs,
achieving routing scalability and efficiency. This approach can
potentially reduce the tree length, but this very simple form
of utilization only considers the hop count in an unweighted
graph, but not the total length of the multicast tree in a
weighted graph. Further, as for the performance analysis, the
statistical properties were all under the assumption that all
nodes are uniformly distributed, making it difficult to tell its
efficiency under a realistic network environment.

In this paper, inspired by taking the advantage of the
Steiner tree property, we design a novel distributed algorithm
to construct an approximate minimum-length multicast tree
for wireless sensor networks, aiming at achieving energy
efficiency, ease of implementation and low computational
complexity, at an affordable cost on the sub-optimality of tree
length. In what follows, we call our design Toward Source
Tree Algorithm, or TST for short. We quantitatively evaluate
TST algorithm performance under general node distribution,
and show that TST has the following satisfactory metrics:
• Its running time is O(

√
n log n), the best among all

existing solutions for large multicast groups.
• Its tree length is in the same order as Steiner tree, and

simulation shows the constant ratio between them is only
1.114 with uniformly distributed nodes.

• Its message complexity (which we will formally define
later) and the number of nodes that participate in for-
warding are both order-optimal, yielding high energy
efficiency for sensor networks.
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• Its theoretical properties and distributive nature render
it suitable for sensor network architecture and protocol
design for performance improvement.

The rest of paper is organized as follows. Section II states
related work. In Section III, we introduce our network model.
In Section IV, we present our Toward Source Tree Algorithm
to construct a multicast tree. In Section V, VI and VII,
we evaluate the performance of our algorithm mainly from
three aspects: multicast tree length, running time and energy
efficiency separately. In Section VIII, we use extensive simu-
lations to further evaluate the performance and also illustrate
how to apply our TST algorithm to practical applications. We
conclude this paper and present discussions of future works
in Section IX.

II. RELATED WORK

We review related works in three categories: the application
of minimum multicast tree, multicast routing and the approx-
imate Steiner tree.
Minimum-length Multicast Tree. The most significant ad-
vantage of minimum multicast tree in wireless sensor networks
is energy efficiency. As sensor nodes are often powered by
batteries that drain rather fast and are difficult to replace,
energy conserving is extremely crucial in sensor networks.
Furthermore, nodes in sensor network consume most of its
energy in communication [18]. Hence, minimum multicast
tree-based routing is desirable in many cases. Specifically, it
is extensively used in the following two applications in sensor
networks - user query and data aggregation.
As wireless sensor networks are mostly data centric [19],
users have to query for information and disseminate it in the
network. To spread the query in a network as energy-efficient
as possible, we need to build a minimum multicast tree and
route the data following the trees topology [20]. To achieve
this, some existing works apply a Steiner tree-based approach
[21].
Data aggregation is to integrate the data from different sources
and route for eliminating redundancy. It saves energy by
reducing the number of transmissions [22]. Minimum-length
tree topology is a widely used technique to solve the implosion
problems in data centric routing [20]. In data aggregation, the
routing pattern of a sensor network is similar to a reverse
multicast tree [20]. Achieving the optimal data aggregation,
i.e., constructing the minimum multicast tree, is also treated
as a Steiner tree problem [22].
Besides improve energy efficiency and extending network life-
time, routing on a minimum multicast tree also has underlying
merits, such as indirectly reducing network delay [23]. Since
the total length of tree is minimized, it is obvious that the path
won’t be too long between the source and any destination.
Multicase tree construction. Many studies focus on multicast
routing in wireless networks, and useful techniques for routing
have been proposed in WSN. Sanchez et al. proposed Geo-
graphic Multicast Routing (GMR), a heuristic neighborhood
selection algorithm based on local geographic information [7].
Later Park et al. [24] combined distributed geographic multi-
casting with beaconless routing. In Localized Energy-Efficient

Multicast Algorithm (LEMA), forwarding elements apply the
MST algorithm locally for routing [8]. Dijkstra-based Lo-
calized Energy-Efficient Multicast Algorithm (DLEMA) finds
energy shortest paths leading through nodes with maximal
geographical advance towards desired destinations [9]. Hier-
archical geographic multicast routing (HGMR) tries to com-
bine the advantages of geographic multicast routing (GMR)
and hierarchical rendezvous point multicast (HRPM) [10]. It
achieves transmission times close to GMR, encoding overhead
close to HRPM, and good packet delivery ratio in simulations.
Our concern for delay and the running time of multicast
tree construciton is orthogonal to the evaluation metrics in
HGMR. In summary, few works have considered minimizing
the distance of multicast routing or providing comprehensive
quantitative analysis theoretically on the performance of rout-
ing policies.
Approximate Steiner Tree. Shortest Path Heuristic (SPH) and
Kruskal Shortest Path Heuristic (KSPH) add new nodes to
existing subtrees through the shortest path [15]. Average Dis-
tance Heuristic (ADH) joins subtrees that contain receivers by
a path passing non-receivers with minimal average distance to
existing subtrees [16]. Santos et al. pushed forward distributed
dual ascent (DA) algorithm, achieving good performance in
practice [17]. The comparison of these algorithms with our
TST algorithm is shown in Table 2.1. These algorithms
were proposed for point-to-point networks. In this paper,
we consider the Steiner Tree Problem in wireless sensor
networks that are broadcast in nature. In addition, each node
has limited computation and storage capability. Devices are
usually battery-powered, therefore energy-efficiency is of great
importance. Due to these specific features and requirements,
existing algorithms for P2P are not suitable for WSN.

To sum up, there have been extensive existing works focus-
ing on multicast tree construction or the approximate Steiner
tree problems, but we have not found a perfect adoption of
Steiner tree into constructing multicast trees.

III. NETWORK MODEL

Let us first use mathematical model to capture a wireless
sensor network. We assume the network consists of n nodes
in total (or we call the network size is n), distributed indepen-
dently and identically in a unit square. Each node is assigned
with a unique identifier to be distinguished from others. Each
time when a source needs to transmit messages, it chooses m
receivers randomly. In other words, m is the number of nodes
that participate in a multicast transmission, or we call it the
multicast group size. For our statistical analysis, we focus on
the dense network and large multicast group where m and n
are both very large, and m ≤ n. This is particularly suitable
to describe a wireless sensor network.

The geographical distribution of nodes is described by a
density function f(x) where x is the position vector. Here we
allow x to be of any dimension; in the rest of this paper we let
it be a two-dimensional vector for ease of presentation, but it
does not hurt any generality. We assume f(x) is independent
of n and m. We also assume that 0 < ε1 ≤ f(x) ≤ ε2
where ε1 and ε2 are both constants, i.e., a node has a positive
probability to be located in any region of this area.
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TABLE 2.1: Comparison of Distributed Algorithms for Approximate Steiner Construction
Algorithm Expected tree length Expected time Expected messages Assumptions
SPH [15] 2-approximation

Steiner tree,
O(
√
m)

O(m
»

n
logn ) O(mn)

Known shortest paths;
Point-to-point network.KSPG [15] O(m

»
n

logn ) O(mn)

ADH [16] O(m
»

n
logn ) O(n log n+mn)

DA [17] O(
√
m) O(n2) O(mn2)

Unknown shortest paths;
Applied in point-to-point network.

TST O(
√
m) O(

√
n log n) O(n)

Unknown shortest paths;
Applied in wireless network.

To ensure the connectivity of the whole network, we set
the transmission range r = Θ

(»
logn
n

)
[25]. For all nodes,

r is the same and fixed. We assume that two nodes u and
v can communicate with each other directly if and only if
the Euclidean distance between them, duv , is no larger than
r. Every node can obtain its own geographical location, e.g.,
via the Global Position System (GPS). However, nodes do
not know the exact location of other nodes until they receive
messages containing that piece of information.

TABLE 3.1: Notations and Definitions
n the total number of nodes in the network
m the number of receivers
r transmission range
rc coverage range of receiver searching
LV the length of temporary tree
LM the length of multicast tree

IV. ALGORITHM

In this section, we describe our Toward Source Tree algo-
rithm in detail. This algorithm consists of three phases. In the
first phase, the source broadcasts a message and wakes up
all receivers it chooses. In the second phase, every receiver
chooses the closest neighboring receiver that has shorter
Euclidean distances to the source node than the receiver node
itself, and then a “temporary tree” can be established among
all receivers. However “temporary tree” is a virtual topology
since multicast group members may not be connected directly
to each other given limited transmission range. We select
appropriate relays to keep these members connected while
controlling the tree length. However, till the end of this stage
cycles might exist. Hence we eliminate these cycles to further
reduce tree length and avoid redundant transmissions in the
third phase. In what follows we describe the process in detail,
and we will use an example to illustrate how to generate such
a tree at the end of this section.

A. Phase 1: Identifying Receivers

Each node has a label indicating its role in the multicast tree:
“S” stands for the source and “R” for receivers. In this phase,
a message containing all receivers’ identifiers is sent from the
source so that all nodes in the network can be aware whether
they are receivers. Upon receiving this message, receivers then
wake up, label themselves with “R” and be ready to participate

Algorithm 1 Neighbor Request from Multicast Members
1: for all receiver R in a multicast group do
2: the number of request session: k ← 0
3: coverage range: rc ← r
4: time out interval: T0 ← Θ

(
2k log n

)
5: set the node sequence as {R}
6: total hop: H ← 0
7: path length: p← 0
8: forward the request message to its neighborhood
9: while no response is received when time is out for the

kth request session do
10: k ← k + 1
11: rc ← 2kr
12: Tk+1 ← 2Tk
13: set the node sequence as {R}
14: H ← 0
15: p← 0
16: forward the request message to its neighborhood
17: end while
18: end for

in the multicast routing. The source will also specify its own
location in this message.

This step is necessary for multicast routing since no one
except the source knows which nodes the messages are desti-
nated for. In this phase, the broadcast information will notify
the nodes who are selected into the multicast group, and all
receivers will be awakened.

B. Phase 2: Connecting All Receivers

In this phase, we first build a “temporary tree” consisting of
only the multicast group members, and then find the minimum-
hop shortest path between each pair of members that are
directly connected in the “temporary tree”. All multicast group
members will be connected with the newly added relays.

Step 1: Searching Receivers in the Neighorhood
In this step, each multicast member chooses an appropriate

neighbor to connect to. The neighboring member selection
criteria is: each member chooses the closest one from the set
of members that have shorter Euclidean distances to the source
node than this node itself. If no such neighboring member can
be found, then this multicast member directly connects to the
source.

When a member tries to contact its neighbor members,
it is regarded as the sender that sends request message. Its
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form is: <sender id, sender location, location of previous
hop, coverage range rc, node sequence, total hop H , path
length p>. Sender id is used to identify the multicast members
sending the request message, and path length can be updated
with the location of previous hop and current hop. The
coverage range rc sets the range within which the multicast
member searches for its neighboring members. The Euclidean
distance between the sender and current node can be calculated
with sender location, and messages will be discarded if the
distance is larger than rc. Node sequence records in order the
nodes through which this message has passed, which acts as
a guide for response from neighboring receivers so that the
response can be routed via the available path. The hop count
H is the number of hops the message has passed through, and
p is the path length the message have been through when it
reaches the current node.

In each search session, the member broadcasts the request
message within search coverage range. The sender sets an
appropriate timeout interval. Once the sender receives replies
from neighboring nodes, the search session terminates. Then
it enters step 2. However, if time runs out and no reply is
obtained, it means that no appropriate neighboring members
are found. The sender then doubles its search range and initi-
ates another search. In Algorithm 1, we show how a multicast
group member connects to their neighboring members or the
source.

A node may receive more than one request message from
the same sender. If it is within coverage range, it will choose
the one with the fewest hops among all the messages. If the
numbers of hops are the same, it picks out the message with
the shortest path length. Then it modifies this message. It adds
itself to the node sequence, increases the hop count by 1 and
calculates new path length given the location of the previous
hop. With these information updated, it forwards the message.
Algorithm 2 describes how nodes deal with request messages
in detail.

When a multicast member finds it closer to the source than
the sender of the request message, it might be chosen as the
neighbor by the sender. Therefore, this member will choose
a path to the sender and respond with the respond message.
The form of the respond message is: <sender id, respondent
id, node sequence, total hop H , path length p>. The respond
message can be routed with the path information provided by
the node sequence.

Step 2: Connecting to the Nearest Neighbor
With respond messages, every member selects the closest

neighbor. Once a neighbor is chosen, the connect message is
forwarded via the minimum-hop shortest path. The connect
message is used to establish a connection between nodes in
the multicast group. At the same time, all relay nodes on
the minimum-hop shortest path record this pair of members,
previous hop and the next hop on the path. When all receivers
send the connect message, a “temporary tree” among all
mutlicast group members including the source is constructed.

C. Phase 3: Eliminating Cycles
In Phase 2, we construct a “temporary tree” made up of

multicast group members. However, when other nodes are

Algorithm 2 Request Forwarding
1: for all node u receiving request message do
2: dist = ‖location of u - sender location‖
3: if dist < rc then
4: add u to node sequence
5: H ← H + 1
6: newDist = ‖location of u - location of previous hop‖
7: p ← p + newDist
8: forward the request message to its neighborhood
9: if u is in the multicast group then

10: nodeSourceDist = ‖location of u - source location‖
11: senderSourceDist = ‖sender location - source

location‖
12: if nodeSourceDist < senderSourceDist then
13: send respond message back to the sender
14: end if
15: end if
16: end if
17: end for

added to it as relays, cycles might be formed. In particular,
when paths connecting different pairs of multicast members
share the same relay nodes, such node may receive redundant
information, which indicates that cycles come into being.
Therefore, we check the existence of cycles in this phase and
eliminate them if any.

Suppose a node u acts as a relay for k (k > 1) pairs of nodes
in the multicast group, which are directly connected in the tem-
porary tree, denoted as (R11, R12), (R21, R22),..., (Rk1, Rk2).
Let us assume that in each pair, Ri1 is closer to source than
Ri2 (1 ≤ i ≤ k). A relay stores its previous and the next hop
of the path from Ri1 to Ri2, and they are denoted as PHi

and NHi respectively. Then it chooses one pair randomly, say,
(Rj1, Rj2) and keeps the information: (Rj1, Rj2, PHj , NHj).
For other pairs (Ri1, Ri2) where Ri1 6= Rj1, the relay modifies
their information as (Rj1, Ri2, PHj , NHi). Define a set Q,
where Q = {q | q =< Ri1, Ri2, PHi >,∀ Ri1 6= Rj1}. Last,
it sends “Eliminate message Q” and its previous hops delete
unnecessary edges accordingly. In Algorithm 3, we show how
to wipe out the cycles.

D. Proof of Tree Topology

The previous subsections describe how we can connect
mutlicast group members using our TST algorithm. Now let
us prove that the topology constructed by TST algorithm is
exactly a tree. We first show that temporary tree formed in
the second phase has a tree topology in Lemma 1. But relays
are added into the temporary tree to connect receivers, which
might result in the existence of cycles. In Lemma 2 we show
that cycle elimination can in fact guarantee the tree topology.

Lemma 1: The temporary tree connecting m receivers has
a tree topology.
Proof: Assume that each wireless node is identified with
a unique label ni. We order these nodes based on their
distance from the source node, and we have an ordered set:
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{n1, n2, ..., nm} such that nj is closer to the source than ni
for 1 ≤ j < i. It is easy to show that ni can only connect
to node in the set {n1, ..., ni−1} according to our construc-
tion algorithm. Such ordering guarantees that the generated
topology is acyclic. Besides, every multicast member tries to
connect to another member that is closer to source, so every
member can find a path to the source. Naturally the generated
topology is also connected. A connected and acyclic graph is
a tree.

Algorithm 3 Cycle Elimination
1: for all node u engaged in paths between k pairs of

members do
2: choose an integer j such that 1 ≤ j ≤ k
3: for all i such that 1 ≤ i ≤ k and i 6= j do
4: forward Eliminate message Qi =< Ri1, Ri2, PHi >
5: end for
6: end for
7: for all node w receiving “Eliminate message Qi” do
8: if w is exactly PHi then
9: if w is not in the multicast group then

10: PHi ← previous hop of w on path (Ri1, Ri2)
11: forward the modified Qi to the previous hop
12: eliminate information: (Ri1, Ri2, PHi, NHi)
13: end if
14: end if
15: end for

Based on Lemma 1, we have the following lemma:
Lemma 2: The topology connecting nodes generated by TST

algorithm is a tree that spans all multicast group members.
Proof: The existence of cycles means that some nodes in
the multicast tree may receive redundant messages, i.e., some
nodes have more than one previous hop. For these nodes, they
send “Eliminate messages” and ensure that they have only one
previous hop. When all nodes in the multicast tree have only
one previous hop, no cycle exists.

Multiple previous hops also indicate that multiple paths
may exist between two nodes. Once some previous hops
are unnecessary, the paths involving these hops can also be
eliminated. Thus Algorithm 3 can eliminate these unnecessary
paths, and this completes our proof.

E. Illustration

We use an example to illustrate our TST algorithm in Figure
4.1. Nodes are distributed in the unit square as shown in Figure
1(a). Solid nodes represent source nodes labeled by “S”, or
multicast members labeled by “R”. The hollow nodes can
be chosen as relays. The first step is to build a temporary
tree spanning all multicast members. The dashed lines denote
virtual connections between two members. Then nodes on the
minimal-hop shortest path are engaged as relays between two
neighboring members. They form the topology as shown in
Figure 1(b). Note that there exists a cycle marked with dotted
rectangular box. The last step is to eliminate unnecessary
edges as is done in Figure 1(c). Finally we obtain the multicast
tree as is shown in Figure 1(d).

   R

   R

   R

   R

   R

   R

   R

   R

   R

   S

(a) Building a temporary tree span-
ning multicast group members

(b) Adding relay nodes

(c) Eliminating redundant edges and
maintaining the topology of tree

(d) Constructing the multicast tree
with relays added

Fig. 4.1: Steps of the TST algorithm

V. LENGTH ANALYSIS

The previous section described our Toward Source Tree
algorithm. In the next three sections, we will discuss its
performance in terms of tree length, time complexity, and
energy efficiency. In this section, we discuss the length of TST.
We first obtain the length of temporary tree, first assuming
uniform distribution nodes and then extending to a general
setting. Next we explore the length of minimal-hop path that
connects two receivers. Combining the length of temporary
tree and the path, we can derive the upper bound for the
multicast tree length.

A. Temporary Tree in Uniform Distribution

We start by discussing the tree length of the temporary tree.
Lemma 3: Assume nodes are uniformly distributed in a unit

square. The expected length of the temporary tree spanning m
receivers is upper bounded by c

√
m, where c = 5.622.

Proof: See Appendix A.

B. Temporary Tree in General Distribution

Based on the conclusions of tree length in uniform distribu-
tion, we further study the case that nodes are non-uniformly
distributed. We partition the unit square into k small squares,
where m = k1+γ and 0 < γ < 1. We construct trees among
nodes in each square, and then connect nodes in different cells
so that all nodes in the network are connected. For each square,
the source is outside the square and we still apply the TST
algorithm for the tree construction. Lemma 4 can estimate the
intra-square edge length, and we study the inter-square edge
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length in Lemma 5. With both inter- and intra- square edge
estimation, we derive upper bound for temporary tree length
in general distribution.

   
 S

S’

R

   x

  y

Fig. 5.1: Approximate neighbor region when the source is
located outside the square

Lemma 4: (Intra-square edges) Let m nodes be indepen-
dently distributed in a unit square with density function f(x).
The source S is located outside the square. Let each node
connect to the closest neighbor that has shorter Euclidean
distance to S than the node it self. If no such receiver exists,
it does not connect to other nodes. A tree can be constructed
among m nodes, and the expected length of such a tree is
upper bounded by c

√
m, where c = 5.622.

Proof: For those nodes that not closest to S, they can always
find another node to connect to. For the node that is closest
to S, it will be connected to by other nodes. We can prove
that the topology formed by m nodes is exactly a tree with
Lemma 1. We denote this tree as T .

There are two differences of this lemma from Lemma 3.
One is that the source is located outside the square, and the
other is that a node won’t connect to others when it can’t find
another one that has shorter Euclidean distance to the source.
Now we find a point S′ that is closest to S in the boundary
of square region, as is shown in Figure 5.1. With S′ as the
source, a temporary tree as mentioned in TST algorithm can
be established spanning all nodes in the network. We denote
the temporary tree as T ′. In the following we demonstrate that
the tree length of T ′ can be used to estimate the upper bound
of length of T .

For a node R, we use NR to denote the regions where nodes
might be selected by R as a its neighbor. We use a rectangular
region as approximate neighbor region N ′R, and N ′R ⊆ NR.
The approximate neighbor region is the region marked with
parallel lines in Figure 5.1. We use the method adopted in the
proof of Lemma 3 to estimate the length of T .

It can be observed that the approximate neighbor regions
are the same in both cases that we take S as the source and
that we take S′ as the source. There are some details that
need to be clarified. Firstly, when we only consider the nodes
in approximate neighbor region, the estimated tree length is
larger than actual length, because we ignore the nodes that
are closer to node R. Secondly, if neighbors exist in the

approximate region, the estimations of edge length are the
same for both T and T ′. Thirdly, if no neighbor is found in
approximate region for a node, we assume that it does not
connect to others in T but it connects to the source in T ′ in
our calculation. From the analysis above, we can conclude that
length of T is upper bounded by the length of T ′.

Also recall that in our proof of Lemma 3, and 5.622
√
m is

the upper bound for temporary tree length wherever S′ is. In
summary, we can directly use estimated tree length in Lemma
3 as the upper bound of the tree length of T . This completes
our proof.

Lemma 5: (Inter-square edges) Let m nodes be indepen-
dently distributed in a unit square with density function f(x).
The unit square [0, 1]× [0, 1] can be partitioned into k square
cells with edge length of 1√

k
, where m = k1+γ and 0 < γ < 1.

The length of inter-square edges connecting k cells in the unit
square is o(

√
m).

Proof: We know that the expected number of nodes in each
square cell is greater than m

k ε1 = kγε1. To compute the
minimal distance between two nodes in adjacent squares, we
partition the cell with edge length of 1√

k
into smaller grids

with edge length of 1
kα , where α > 1

2 .
We claim that if α−γ < 1

2 , the minimal length between two
adjacent cells is in an order of o

Ä
1√
k

ä
. This comes from the

observation that we can connect adjacent cells by connecting
nodes in adjacent grids whose edge length is 1

kα , as is shown
in Figure 5.2. In this figure, the yellow and the black squares
are two adjacent cells with edge length of 1√

k
. The blue grids

contained in them are the smaller squares with edge length of
1
kα . Green lines are used to show that nodes in the adjacent
grids are connected.

As we can see from Figure 5.2, for two adjacent cells with
edge length of 1√

k
, kα−1/2 pairs of nodes in adjacent grids

might exist. Denote P1 as the probability that a node exists
in a grid with edge length of 1/kα. Since the area of each
square is very small, we can regard nodes in the same square
uniformly distributed. We have

P1 = 1− (1− 1

k2α−1
)
mε1
k .

Denote P2 as the probability that nodes exist in both of the
adjacent grids.

P2 = 1− P 2
1 .

There are kα−1/2 pairs of nodes in adjacent grids, and we
denote P as the probability that at least one pair exist. We
have

P = 1− P k
α−1/2

2 .

Hence we have

P = 1− (1− (1− (1− 1

k2α−1
)
mε1
k )2)k

α−1/2

(5-1)

In order to let k squares connected by inter-square edges, it
should hold that P k → 1. Therefore, we need the following
condition

1− k−
1

kα−1/2 � (1− (1− 1

k2α−1
)
mε1
k )2. (5-2)
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The expression that r1(k)� r2(k) means that r2(k)/r1(k)→
0 as k →∞. Condition (5-2) is equivalent to condition (5-3).

log k

k−1/2+γ+αε1
� 1

k2α−1
, (5-3)

Condition (5-3) can be satisfied when α < γ + 1
2 . With

1
2 < α < γ + 1

2 , we can evaluate P . By (5-1) it can be
verified that

P ∼ 1− exp(−2ε1k
1/2−α+γ − ε1

log 2
k1/2−α). (5-4)

It is easy to show that P k → 1 with the expression (5-4),
which means such pairs of nodes exist for all adjacent cells
with high probability. Since (1−P ) is exponentially decaying
to zero, the expectation of total path length needed to connect
k cells is

k1−αP k + k1/2k(1− P ) ∼ k1−α = o(k1/2) (5-5)

Due to the fact that k = o(m), the expected path length for
inter-square connection is in the order of o(

√
m).

1/kα

1/k1/2 1/k1/2

Fig. 5.2: Inter-square edges between nodes in adjacent square
cells

Lemma 6: Let m nodes be independently distributed with
density function f(x). The expectation for the total length of
temporary tree E[LV ] is smaller than c

√
m. We have E[LV ] ≤

c
√
m
∫
x∈[0,1]2

√
f(x)dx, where c ≈ 5.622.

Proof: See Appendix B.

C. Path With Minimal Hops

Receivers are connected by the minimal-hop path. In this
part, we study the relationship between the path length and
Euclidean distance between two nodes.

Lemma 7: Let n nodes be independently and identically
distributed over [0, 1]× [0, 1] with distribution function f(x).
Suppose that the Euclidean distance between two nodes u and
v is x. The following properties hold:

(a) The expectation of fewest relays that are needed to
connect u and v converges to x

r as n approaches ∞;
(b) The length expectation of the path connecting uv and in-

volving the fewest relays converges to Euclidean distance
x.

Proof: See Appendix C.

D. Multicast Tree

We divide the [0, 1]×[0, 1] network region into k squares. In
each square, we construct a tree and connect nodes with intra-
square edges. Adjacent squares are connected by the inter-
square edges. All nodes are connected by intra- and inter-
square edges, and they can be used to estimate the tree length.

Theorem 1: Let n nodes be independently and identically
distributed in a unit square and their distribution satisfies the
density function f(x). We construct a multicast tree spanning
m receivers as well as the source with TST algorithm. When
m and n are both very large, the expected length of the tree is
upper bounded by c

√
m
∫
x∈[0,1]2

√
f(x)dx, where c = 5.622.

Proof: Denote ei,j as the edge connecting Receivers i and j in
the temporary tree TV , li,j as the length of the minimal-hop
path between the two receivers. Since redundant edges will
be eliminated, E(LM ) ≤

∑
ei,j∈TV

E(li,j). And the path length

converges to Euclidean distance as network size goes to ∞
according to Lemma 7. So we have:

E(LM ) ≤ c
√
m

∫
x∈[0,1]2

»
f(x)dx. (5-6)

Remark: We derive an upper bound for the Toward Source
Tree, but it is not a tight bound. In Section VIII, we will show
that TST algorithm has even better empirical performance than
our theoretical bound.

Lemma 8: Suppose Xi, 1 ≤ i <∞, are independent random
variables with distribution µ having compact support in Rd,
d ≥ 2. If the monotone function ψ satisfies ψ(x) ∼ xα as
x→ 0 for some 0 < α < d, then with probability 1

lim
n→∞

n−(d−α)/dM(X1X2, ..., Xn) = c(α, d)

∫
Rd
f(x)(d−α)/ddx

(5-7)

Here f denotes the density of the absolutely continuous part
of µ and c(α, d) denotes a strictly positive constant which
depends only on the power α and the dimension d [26].

Given a graph with some nodes and edges, building a
minimal length tree spanning a subset of nodes with relays
appropriately added is formulated as Steiner Tree Problem. If
no relay nodes are allowed, then the tree with minimal length
is called minimal spanning tree. However, Steiner tree can
only optimize tree length by a constant ratio compared with
the minimal spanning tree.

Lemma 9: Let P be a set of n points on the Euclidean plane.
Let ls(P ) and lm(P ) denote the lengths of the Steiner mini-
mum tree and the minimum spanning tree on P respectively.
The inequality holds: [28]

ls(P ) ≥
√

3

2
lm(P ) (5-8)

Combining the two lemmas above, we can conclude that
the length of Steiner tree spanning m receivers is:

LST ≥
√

3

2
c1
√
m

∫
[0,1]2

»
f(x)dx (5-9)
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Here c1 is the constant equal to c(1, 2) mentioned in Lemma
8. Roberts estimated that c1 = 0.656 [27].

From (5-6) and (5-9), we prove that the length of Toward
Source Tree is in the same order as that of Steiner tree, and
the difference between them is only a constant ratio no larger
than 10.

Remark 1: Many works have shown the lengths of any
well-designed spanning tree consisting of m nodes can reach
the order of O(

√
m), but the order-optimality of our Toward

Source Tree in tree length is not a trivial result. TST is not
a simple spanning tree of m multicast group members, since
other relay nodes must be selected carefully and be involved in
multicasting due to the limited transmission range of wireless
sensors. Hence minimum multicast tree is formulated as a
Steiner tree problem instead of minimum spanning tree prob-
lem. Constructing a minimum spanning tree takes polynomial
time, while constructing a Steiner tree is proved to be NP-
hard. Asymptotic tree length of TST is a result based on
quanlitative analysis of this hard problem in graph theory. As
far as we know, few works have given asymptotic length of
their multicast trees.
One may also doubt that when the network is dense, we
can choose infinitely many relay nodes such that the path
length between two multicast members approaches their Eu-
clidean distance. In this way, the tree can also reach the
order-optimality in length. However, we should notice that it
would bring terribly long delay and large energy consumption
since too many extra nodes are involved in multicasting. The
technique to balance the tree length and delay is that we choose
minimum-hop shortest path between multicast members, as is
described in Section IV.
The minimum length multicast tree has potential benefits of
energy efficiency and delay reduction. The asymptotic length
of TST not only indicates its order-optimality, but also shows
that TST is quite a good approximation of Steiner tree since
the approximation ratio is no larger than 10.

VI. RUNNING TIME ANALYSIS

Time efficiency is another important aspect to evaluate
the quality of multicast routing algorithms. In practice, it is
expected that the multicast tree can be constructed with small
time costs. Now let us derive the time complexity of TST.

Theorem 2: Let n nodes be independently and identically
distributed in unit square. The running time of TST algorithm
is O(

√
n log n).

Proof: There are three serial phases in TST algorithm, so we
discuss the time cost of each phase one by one.

In Phase 1, the messages containing location information of
the source are broadcast in the network. The furthest distance
between the source and another node is O(1), so at most
O
(
1
r

)
relays are needed for a message to reach one node.

In expectation, there are πr2ε2n = O
(
nr2
)

nodes within
transmission range of a node and hence a node has to wait for
O
(
nr2
)

time slots to transmit a message. The time needed
for Phase 1 is:

O

Ç…
1

r

å
≤ E(t1) ≤ O (nr) . (6-1)

In Phase 2, the dominant time cost is searching for neigh-
boring receivers. In the kth search session, the coverage range
is 2kr. We need O

(
2k
)

relays to forward request messages
from one receiver to any other nodes within its search coverage
range. Since the coverage range does not exceed

√
2, the

number of search sessions cannot be more than
†
log2

√
2
r

£
.

E(t2) ≤ O

Ö⌈
log2

√
2
r

⌉∑
i=0

2inr2

è
≤ O(nr). (6-2)

In Phase 3, the worst case is that relays on the path whose
length is O(1) form cycles. Time for cycle elimination is

E(t3) = O

Å
1

r
nr2
ã

= O(nr). (6-3)

The total running time is E(t) =
i=3∑
i=1

E(ti), so we have

O

Å…
n

log n

ã
≤ E(t) ≤ O(

√
n log n). (6-4)

which completes our proof.

O(√n/log�n ) O(√n log�n) O(c  ) Complexity

Approximation ratio
     of tree length

1

10

{Infeasible 
   region

n

Fig. 6.1: Relationship between tree length and time complexity

Remark: For any algorithm to construct a multicast tree
among a group of nodes, broadcast in Phase 1 is necessary.
Since no node has a knowledge of the multicast group except
the source, such information has to be forwarded to every
node in the network so that they can know whether they
should participate in multicasting. The lower bound of time
for multicast tree construction is O

(»
n

logn

)
. Since TST

achieves the time complexity upper bounded by O(
√
n log n),

the minimal time cost to construct a multicast tree is also
upper bounded by O(

√
n log n). Hence the time complexity

of TST algorithm shares the same upper and lower bounds as
the minimal time cost, and the ratio between these two bounds
is only O(log n).

The length of multicast trees have a great influence on
communication quality in terms of transmission delay and
wireless interference. Construction of minimum-length trees is
an NP-hard problem, and takes exponential time. Approximate
algorithms achieve larger tree length with lower time com-
plexity. Now we explore the relationship between tree length
and time complexity in Figure 6.1. Since the lower bound of
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time needed for multicast tree construction is O
(»

n
logn

)
,

the region with time complexity smaller than O
(»

n
logn

)
is

infeasible. Accurate solution to Steiner tree problem achieves
the approximation ratio of 1 at the cost of exponential time,
and our algorithm achieves the ratio of 10. The approximation
ratio of other algorithms like those in Table 2.1 approaches 1
but they have larger time costs.

VII. ENERGY EFFICIENCY

Energy is a primary consideration in wireless sensor net-
works since sensors are battery-powered and their energy
is limited. We consider the following factors: 1) the energy
consumed to construct such multicast trees; and 2) the energy
needed to send messages along the tree constructed by this
algorithm. The former one is usually measured by the amount
of exchanged messages to run distributed routing algorithms;
and the latter directly depends on the number of nodes
participating in the transmission. We focus on both aspects.

A. Message Complexity

The following theorem quantifies the message complexity
in TST.

Theorem 3: Let n nodes be independently and identically
distributed in the unit square. The message complexity of TST
algorithm is O(n).

Proof: See Appendix D.
Remark: Since each node needs a message telling them
whether they are chosen as receivers, the lower bound of
message complexity is O(n). Hence TST algorithm is an
order-optimal solution in terms of message complexity.

B. Number of Forwarding Nodes

Since the transmission range is fixed, the number of trans-
mitters in the tree determines the energy consumption for in-
formation propagation. We evaluate the number of forwarding
nodes in this subsection.

Theorem 4: Let n nodes be independently and identically
distributed in the unit square. The number of forwarding nodes
in the multicast tree is

NTST =

 Θ
(»

mn
logn

)
, m = O

Ä
n

logn

ä
;

Θ(m), m = ω
Ä

n
logn

ä
.

(7-1)

When m = O (n/ log n), the number of forwarding nodes is
order-optimal.

Proof: Let TV be the virtual tree, ei,j be an edge in the
virtual tree connecting two receivers i and j, and di,j be the
Euclidean distance between them. When m is small, relay
nodes form the dominant part of the forwarding nodes in our
multicast tree. The total number of transmitting nodes, NTST

in the Toward Source Tree is: NTST = Θ

Ç ∑
ei,j∈TV

dij
r

å
= Θ

Ä√
m
r

ä
. As m grows larger, receivers are close to each

other and thus fewer relay nodes are added. Therefore, re-
ceivers are dominant in the multicast tree, NTST = Θ(m).
We should discuss the number of forwarding nodes in two
cases, and there exists a critical value for m that determines in

which case it should be discussed. The critical value satisfies:
Θ
Ä√

mc
r

ä
= Θ(mc), so mc = Θ

(
1
r2

)
.

Denote Nmin as the minimal number of relay nodes that
are engaged in propagating the messages from one source
to m receivers. [3] gives the lower bound of Nmin under
the assumption that all nodes are uniformly distributed. Now
we use its method and explore Nmin in the case of gen-
eral distribution. When m is small, the distance between
two receivers is large compared with the transmission range.
Nmin = Ω

Ä√
m
r

ä
. This lower bound is achievable with our

algorithm, so Nmin = Θ
Ä√

m
r

ä
. When m is very large, there

exist many receivers within the transmission range of one
node, so that one transmission can deliver messages to a large
number of receivers. In this case, we only need to choose
a connected dominating set from m receivers, and Nmin is
exactly the size of minimum connected dominating set. We
will give the definitions of both connected dominating set and
minimum connected dominating set.

Definition 1 (Connected dominating set): D is the connected
dominating set of a graph G if and only it satisfies two
properties:

(a) Any node in D can reach any other node in D by a path
that stays entirely within D.

(b) Every vertex in G either belongs to D or it is adjacent to
a vertex in D.

Definition 2 (Minimum connected dominating set): MD is
the minimum connected dominating set of graph G if MD is
the connected dominating set containing the smallest number
of nodes.

We still need to discuss Nmin in two cases. There also
exists a critical value md, and Θ(md) = Θ

Ä√
md
r

ä
, so md =

Θ
Ä

n
logn

ä
.

Nmin =

 Θ
(»

mn
logn

)
, m = O

Ä
n

logn

ä
;

Ω
Ä

n
logn

ä
, m = ω

Ä
n

logn

ä
.

(7-2)

From (7-1) and (7-2), we can find when m = O
Ä

n
logn

ä
, the

number of forwarding nodes in the multicast tree is optimal
in order sense.
Remark:When m = ω

Ä
n

logn

ä
, the number of forwarding

nodes in TST tree may not be order-optimal. However, in
graph theory, finding the minimum connected dominating set
of a given graph is proved to be NP-complete [29]. And it
also requires global information of network topology. So we
consider it an acceptable sacrifice of energy to achieve the
feasibility and time-efficiency in practice.

VIII. SIMULATIONS AND APPLICATIONS

We first perform extensive simulations to evaluate the
empirical performance of Toward Source Tree algorithm, in
terms of the length of the multicast tree, message complexity
and the number of forwarding nodes engaged in the tree,
and then present concrete examples of how Toward Source
Tree algorithm can be applied to realistic scenarios. In the
simulations, we mainly consider two common distribution
patterns: uniform distribution and normal distribution.
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Fig. 8.2: Message complexity
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Fig. 8.3: Number of forwarding nodes

A. Performance Evaluation

1) Uniform Distribution: We first consider nodes are uni-
formly distributed in a unit square and transmission range is set
to be r =

»
logn
n . We explore the effect of multicast group size

m on the tree length. Assuming that the network size is fixed
as 1000, we obtain the lengths of the Stenier tree and TST
tree when the value of m varies. The length of the Steiner tree
can be obtained via NewBossa in [30]. Two curves in Figure
8.1(a) describe the relationship between m and the length of
the Toward Source Tree as well as the Steiner Tree. It is shown
that the length of TST tree is larger than that of the Steiner
Tree but quite close to it. According to simulation statistics,
the ratio of the tree length achieved by the two algorithms
is 1.114 on average. When nodes are uniformly distributed,

Toward Source Tree is a good approximation of the Steiner
Tree.

Then we evaluate the message complexity in the construc-
tion of TST tree, and explore the relationship among the
network size n, the multicast group size m and message
complexity. We set the network size n = 200, 600, 1000
respectively, and record the quantity of exchanged messages
when multicast group size m varies. Different curves cor-
respond to different network sizes in Figure 8.2(a). As can
be seen in the figure, the quantity of exchanged messages
increases with the multicast group size as well as the network
size. It is quite intuitive that the larger network size can
result in more exchanged messages. Since the transmission
power necessary to maintain the connectivity is less in dense
networks than in sparse networks, more relays are engaged in
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multicasting as the network size increases. Hence messages
used to contact nodes and inquire routing information become
more.

We find that more messages are exchanged when we fix the
network size and add more multicast group members. This
result is not so intuitive. On the one hand, multicast group
members become closer to each other when the multicast
group size increases, so they need to search for the appropriate
neighbors in a smaller coverage range. Fewer nodes are in-
quired within the coverage range, and fewer request messages
are sent. On the other hand, when a multicast group member
looks for neighbors, more other members might find they are
closer to the source. Hence more response messages might
be sent back. Total messages increase as more nodes join the
multicast group.

Finally, we consider the number of forwarding nodes en-
gaged in multicasting. To derive the statistical properties of
TST, we set the network size as 100, 000. In Figure 8.3(a),
when the multicast group is small, the first part of the curve
indicates that the number of forwarding nodes is O(

√
m).

As there are more multicast group members, the number of
forwarding nodes grows linearly with the group size.

2) Non-uniform Distribution: We randomly choose the
location of source, xs, within the unit square first. For the case
of non-uniform distribution, we consider that nodes satisfy the
normal distribution: f(x) = 1√

2π
e−
‖x−xs‖2

2 , where ‖x − xs‖
is the Euclidean distance between the node and the source.
It is possible that the nodes are scattered outside unit square
during simulations. If this happens, we relocate these nodes
until they are within this unit square.

We evaluate the TST algorithm still in terms of tree length,
message complexity and the number of forwarding nodes.
We find the results are quite similar to those in the uniform
distribution. In Figure 8.1(b), the length of TST tree is only
a little larger than the optimal length in our simulations. The
statistics show that the ratio between them is 1.110 on average.
As for the message complexity, Figure 8.2(b) shows that
more messages are exchanged among more multicast group
members or in denser networks, and the quantity of messages
is still O(n). As is shown in Figure 8.3(b), the number of
transmitting nodes in the multicast tree is linear with

√
m,

and becomes linear with m when more nodes participate in
the multicast group assuming that the network size keeps
unchanged.

B. Practical Applications

TST algorithm can be implemented in practical systems as
well as be integrated into sensor network architecture and
protocol design to improve the network performance. Many
sensor network systems need multicast transmission as they
involve different kinds of sensors and interactions between
various modules such as the LED lighting system in [31],
the localization system in [32] and the building monitoring
system in [33]. These make multicast groups naturally form
within the systems and multicasting through a minimum
multicast tree is a desirable way for these energy-constrained
sensor applications. Therefore, we can apply TST algorithm
for multicast routing within the aforementioned systems. In

addition, during the tree construction process, TST algorithm
only requires single-hop transmission, which conforms to the
communication protocols (e.g. zigbee) used in these systems.

Besides, currently, a notable trend in sensor network study
is to adopt the IPv6-based architecture [34], in which mul-
ticasting is frequently used for scope addressing, discovery
and configuration [34]. In those IPv6-based architectures, TST
algorithm exhibits an apparent advantage for multicast routing
over other algorithms in the sense that the sender does not
need to have any prior knowledge of geographical locations
of intended destinations before the tree construction. Theses
locations can be acquired in the first phase of TST algorithm.
Such property caters to the most common situation of multicast
in IPv6 [35].

IX. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel algorithm, which we
call Toward Source Tree, to generate approximate Steiner
Trees in wireless sensor networks. The TST algorithm is a
simple and distributed scheme for constructing low-cost and
energy-efficient multicast trees in the wireless sensor network
setting. We prove its performance measures in terms of tree
length, time complexity, and energy efficiency. We show that
the tree length is in the same order as, and is in practice
very close to, the Steiner tree. We prove its running time is
the shortest among all existing solutions. We prove that its
message complexity and the number of nodes that participate
in forwarding are both order-optimal, yielding high energy
efficiency for applications.

For future research, we present several directions to extend
the current study of minimum multicast tree construction as
follows.
• Our present work mainly focuses on the optimization of

path length, energy and computation costs in multicast of
wireless sensor networks. It is also interesting to develop
an algorithm which optimizes other metrics jointly such
as the throughput [39], load balancing [37] and conges-
tion control [37]. The idea that utilizes multiple multicast
trees to provide backup routing paths for load balancing
[37] is particularly enlightening.

• Our algorithm is currently designed for static networks. It
is of great interest to consider multicast tree construction
in time-varying networks [38], [39] or mobile networks,
where the major technique of tree construction may differ
greatly from that in static networks.

• The proposed TST algorithm in our work is a dis-
tributed algorithm, and the analysis is performed in the
setting of stochastic networks. It suggests an inspiring
direction to combine combinatorial optimization methods
with stochastic optimization methods [38], [39] to solve
multicast routing problems in sensor networks.
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APPENDIX A
TREE LENGTH IN THE UNIFORM CASE

When we analyze the temporary tree made up of the
source and m receivers, transmission range can be ignored
since it does nothing with the temporary tree construction.
We establish a two-dimensional coordinate system shown in
Figure 1.1. Let the source be the origin, and X-axis as well
as Y-axis parallel to the square edge. The whole network is
divided into m square cells, and the edge length of each cell is
1√
m

. In the coordinate system, the edge length is normalized
to be 1, so the intersections in the network have integer
coordinates. We use the coordinate of the vertex that is farthest

http://www.cs.princeton.edu/~rwerneck/bossa/
http://www.cs.princeton.edu/~rwerneck/bossa/
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from the origin in the square cell as the the coordinate of this
cell, and hence cells also have integer coordinates.

In Figure 1.1, the red node is the source node S and the
blue node is the receiver node R whose coordinate is (x, y).
Without loss of generality, suppose that x and y are both
positive. Then we set the radius to be the Euclidean distance
between S and R, and draw two circles with the center in
S and in R respectively. The intersected region of the unit
square and two circles’ overlapping area is the shaded region
in Figure 1.1. According to criteria for neighboring receiver
selection, the shaded region in figure is where the possible
neighbor receivers of R are located. If no receiver lies in this
shaded area, R can only connect to S directly.

x

  y

Source

Receiver

Fig. 1.1: Two-dimensional coordinate system, actual and
approximate neighbor regions

Now we illustrate how the neighbor is selected by the
receiver in a more detailed way. Suppose that the coordinate of
the possible neighboring receiver is (a, b) (a and b don’t need
to be integers). And there are three conditions that should be
satisfied: 

a2 + b2 < x2 + y2,

(x− a)2 + (y − b)2 < x2 + y2

(a, b) is within the unit square
(1-1)

Let NR denote all the nodes whose coordinates satisfy the
conditions above, i.e., NR = {(a, b) | node (a,b) might be
connected to by the receiver R}. For simplicity of analysis,
we reduce the size of the set NR and get a new set N ′R, an
approximate neighbor region which is the rectangular region
marked with parallel lines, which is shown in Figure 1.1.

N ′R = {(a, b)|0 ≤ a ≤ bxc , 0 ≤ b ≤ byc} (1-2)

Now nodes in N ′R are the ones that are possibly chosen
as neighbors by R in our analysis later. Note that in our
algorithm, it is possible that some nodes in other cells with
coordinates not in N ′R might also be connected to by the

receiver R. With the constraints above, the estimated length
of temporary tree among m receivers is larger than that of the
tree built with our algorithm since we ignore some nodes that
are close to receiver R. Upper bound of the temporary tree
length built with our algorithm can thus be derived.

Besides shrinking the neighbor region, we also rearrange the
nodes in each cell. Suppose that the coordinate of a node is
(a, b), then we move it to the point with coordinate (bac , bbc).
All nodes are now farther from receiver R after rearrangement.
Let MR be the set of all receivers and pi,j be the probability
that the node in the cell whose coordinate is (i, j) is chosen
by the receiver R as a neighbor to connect to. Let pS be the
probability that the receiver directly connects to the source.

We assume that the nodes in cell (i, j) are chosen if all
cells (i′, j′) are empty, where i ≤ i′ ≤ bxc and j ≤ j′ ≤ byc
(but i = i′ and j = j′ are not satisfied at the same time). This
assumption can also make the edge length estimation larger
than the actual edge length. Since some nodes that are closer
to the receiver might also be chosen as a neighbor receiver but
they are not taken into consideration under this assumption,
the estimated probability that one node is chosen is larger than
actual probability.

pi,j ≤ p(all (i′, j′)s are empty)

− p(all (i′, j′)s and (i, j) are empty) (1-3)

≤
Å

1− (bxc+ 1− i)(byc+ 1− j)− 1

m

ãm−1
−
Å

1− (bxc+ 1− i)(byc+ 1− j)
m

ãm−1
(1-4)

We define new variables a and b as: a = bxc + 1 − i and
b = byc+ 1− j. Note that a and b are both integers. We can
obtain the following expression with (1-4).

pi,j =

®
cm−11 − cm−12 (0 < c2 < c1 < 1), ab = Θ(m);

e−
m−1
m ab(e

m−1
m − 1), ab = o(m).

(1-5)

Since
√
m(cm−11 − cm−22 ) → 0, we can omit the case that

ab = Θ(m) when we calculate the length expectation.

pS ≤ (1− bxc byc
m

)m−1. (1-6)

The expected length of temporary tree is:

E(LV )

≤ 1√
m

∑
R∈MR

E (

bxc∑
i=1

byc∑
j=1

pi,j
»

(x− i+ 1)2 + (y − j + 1)2

+ pS
√
x2 + y2 ) (1-7)

Combining (1-5), (1-6) and (1-7), we have

E(LV ) ≤ 1√
m

∑
R∈MR

E (

bxc∑
a=1

byc∑
b=1

e−
m−1
m ab(e

m−1
m − 1)

·
»

(a+ 1)2 + (b+ 1)2 + e−
m−1
m bxcbyc

√
x2 + y2 )

(1-8)
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For the first part in (1-7), we use the integration to evaluate
its pattern.

bxc∑
a=1

byc∑
b=1

e−
m−1
m ab

»
(a+ 1)2 + (b+ 1)2

≤
∫
(a,b)∈[1,x]×[1,y]\[1,2]×[1,2]

e−
m−1
m ab(a+ b)dadb (1-9)

+

byc∑
b=2

e−
m−1
m b
»

4 + (b+ 1)2 +

bxc∑
a=2

e−
m−1
m a
»

4 + (a+ 1)2

+ e−
m−1
m · 2

√
2 + e−4

m−1
m · 3

√
2 (1-10)

≤ 2η − ηx − ηy − ηx

x
− ηy

y
+
ηxy

x
+
ηxy

y
+ w1(x, y)

+ 2
√

2η + 3
√

2η4 −
∫ 2

1

∫ 2

1

e−
m−1
m ab(a+ b)dadb.

(1-11)

Here η = e−1+1/m in (1-11). Inequality (1-10) holds because
when a ≥ 2 and b ≥ 2 (a, b does not equal to 2 at the
same time),

√
(a+ 1)2 + (b+ 1)2 ≤ a + b. Then we take

the components for summation at a = 1 and b = 1 . We must
add the value at a = b = 2 since (1-10) does not hold at this
point. The substraction in (1-11) comes from the fact that we
have already add this value at a = b = 2, so we must subtract
the corresponding term in this part. For clarity, we replace
some expressions with functions.

J(x, y) = 2η − ηx − ηy − ηx

x
− ηy

y
+
ηxy

x
+
ηxy

y
,

w1(x, y) =

byc∑
b=2

ηb
»

22 + (b+ 1)2 +

bxc∑
a=2

ηa
»

22 + (a+ 1)2,

w2(x, y) = ηbxcbyc
√
x2 + y2,

c3 = 2
√

2η + 3
√

2η4 − (2e+ 1)(e− 1)2/e4.

The expected length of temporary tree can be expressed as:

E(LV ) ≤ e
m−1
m − 1√
m

∑
R∈MR

E(J(x, y) + w1(x, y) + c3)

+
1√
m

∑
R∈MR

E(w2(x, y)) (1-12)

The coordinate (x,y) of a receiver is dependent on the location
of source. The farther the receiver is from the source, the larger
the value of J(x, y)+w1(x, y) is. We can obtain the maximum
of E(J(x, y)+w1(x, y)), when the source is located at one of
the square’s four vertices. Thus the receiver coordinate ranges
from (0, 0) to (

√
m,
√
m).

For E(w1(x, y)), there exist constraints for both x and y.
That is, x ≥ 2 and y ≥ 2. So the integral of w1(x, y) is written
as:

1√
m

∑
R∈MR

E(w1(x, y)) ≤ 1√
m

∫ √m
2

∫ √m
2

w1(x, y)dxdy.

(1-13)

We use discrete summation to evaluate the expression on the

right side of the inequality (1-13).∫ √m
2

∫ √m
2

w1(x, y)dxdy

≤ 2
4∑
a=2

ηa
»

(1 + a)2 + 4 +
x∑
a=5

ηa(a+ 4/3) +

y∑
b=5

ηb(b+ 4/3)

(1-14)

It is not hard to check the summation on the right side of
(1-14). We find that

1√
m

∫ √m
2

∫ √m
2

w1(x, y)

≤ 2(
4∑
i=2

e−i
»

(1 + i)2 + 4 +
19e− 16

3e4(e− 1)2
)
√
m. (1-15)

Wherever the source is, the part, 1√
m

∑
R∈MR

E(w2(x, y)),

can be ignored. This is because

1√
m

∑
R∈MR

E(w2(x, y))

≤ 1√
m

∫ √m
0

∫ √m
0

e−
m−1
m bxcbyc(x+ y)dxdy ≈ 2

e
√
m
→ 0

(1-16)

In the end, we consider the part E(J(x, y)) in E(LV ).

1√
m

∑
R∈MR

E(J(x, y)) ≤ 1√
m

∫ √m
0

∫ √m
0

J(x, y)dxdy

∼ 2√
m

(
√
m− 1)2η ∼ 2

e

√
m

(1-17)

With (1-15), (1-16) and (1-17), we can derive the upper bound
of E(LV ) by (1-12).

E(LV ) ≤ 5.622
√
m. (1-18)

This completes our proof.

APPENDIX B
TREE LENGTH IN THE GENERAL DISTRIBUTION

We partition the unit square into k square cells with edge
length of 1√

k
. m = k1+γ and 0 < γ < 1. In each cell, the

expected number of points is approaching infinity (actually is
greater than mε1/k).

First, we prove an assertion for a scaled uniform distri-
bution. With Lemma 3, we know that length of temporary
tree spanning m receivers is upper bounded by c

√
m, when

nodes are uniformly distributed in a unit square. In a scaled
square region with edge length of 1√

k
, the expected length of

temporary tree is smaller than c√
k

√
m.

We first construct a tree consisting of intra-square and inter-
square edges. Intra-square edge means that a receiver chooses
to connect to another receiver located in the same square, while
inter-square edge means that a receiver connects to another
located in a different square.

Let us first consider the intra-square edges. Source is located
inside one of k cells, and outside (k − 1) cells. For the cell
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containing the source, we build a temporary tree among all
nodes in it. For other cells, we let each node in it connect to the
closest neighbor that has shorter Euclidean distance to source
and it does not connect to any nodes if no such neighbor exists.
As is proved in Lemmas 1 and 5, trees can be established
within these k cells. Then we consider the inter-square edges.
For any cell, there is always an adjacent cell that is closer to
source.

We let a node from each cell connect to another node in
adjacent cells and the inter-square edge between them has the
minimal distance among all node pairs. So all squares are
connected by inter-square edges. With intra-square edges and
inter-square edges, all of m receivers form a tree topology.
We denote this tree as Ta.

We consider the length of intra-square edges within the
unit square. Suppose that Sqi is one of k cells in the set
{Sq1, · · · , Sqk} and its edge length of 1√

k
. According to Lem-

mas 3 and 5, we can conclude that total length of intra-square
edges within Sqi is is upper bounded by c√

k

»
m
∫
Sqi

f(x)dx
with scaling method. The expected length of intra-square edges
within the whole network can be obtained by the summation:
k∑
i=1

c 1√
k

»
m
∫
Sqi

f(x)dx. Since the integration over the small

square is smaller than 1
k maxx∈Sqi f(x), we take the square

root of this expression and by the definition of Riemann-
Stiejies integration, we know that the sum is

k∑
i=1

c
1√
k

 
m

∫
Sqi

f(x)dx ≤ c
√
m

∫
x∈[0,1]2

»
f(x)dx.

(2-1)

The total length of inter-square edges within the unit square
is o(
√
m) as we have proved in Lemma 5. So the expected

length of Ta is upper bounded by

c
√
m

∫
x∈[0,1]2

»
f(x)dx.

Based on neighbor selection criteria in TST algorithm, each
node always connects to the closest node that has shorter
Euclidean distance to the source. However, for intra-square
edges in Ta, the node is also required to connect to the
neighbor in the same square. More limitations are imposed
on neighbor selection, so the edge length between two nodes
might be larger than that in temporary tree. Therefore, the
length of Ta can be regarded as the upper bound of that of
temporary tree.

The expected length of temporary tree is:

E(LV ) ≤ c
√
m

∫
x∈[0,1]2

»
f(x)dx. (2-2)

This completes our proof.

APPENDIX C
MINIMUM HOP PATH

From work [25], we know that transmission range is set as
r = Θ

(»
logn
n

)
, in order to ensure that network is connected.

There are about Θ(log n) nodes within the transmission range
of one node. Finding the path with minimal hops between two

nodes can be regarded as a connectivity problem, which is a
Poisson process.

Since the expression for the area where two circles intersect
is hard to estimate, we estimate it in the infinite norm without
affecting the results.

(a) 2-norm (b) infinite-norm

Fig. 3.1: We estimate the probability of points on the red line
instead of green arc

The transmission range is set as r =
»

2
ε1

»
logn
n . There

are two receivers u and v, and the left circle in Figure 3.1(a)
shows the transmission range of u. The circumscribed square
is embedded properly in this left circle. The right circle with
center in v has a radius of x. The intersected part of square
and the right circle is the green arc. For simplicity, we use the
red line rather than the green arc, and this will overestimate
the path length. We can use ∞-norm in Figure 3.1(b) for
estimation instead of the 2−norm.

Let A be the event that next point exists with distance s,
and B be the event that there is a point within the transmission
region. It is easy to see that

P (A|B) =
e−2nε1(r−s)r(1− e−2nε1sr)

1− e−2nε1r2

=
e−2nε1r

2

1− e−2nε1r2
(e2nε1sr − 1) (3-1)

Denote Er(x) as the expected number of relay nodes on the
path with minimal hops to a receiver with distance x. Here we
consider that r in the ∞ norm are contained by

√
2r in the

2−norm, so we have the following functional equation when
plugging in r = ε1

− 1
2

»
logn
n :

Er(x) =

∫ r

0

(1 + Er(x− s))
2nε1re

−2nε1r2

1− e−2nε1r2
e2nε1srds

=
2nε1r

n2 − 1

∫ r

0

(1 + Er(x− s))e2nsrds (3-2)

= 1 +
2nε1r

2

n2 − 1

∫ 1

0

Er(x− αr)e2nε1r
2αdα

= 1 +
2 log n

n2 − 1

∫ 1

0

Er(x− αr)n2αdα (3-3)

Clearly the lower bound of hop count is x/r. As for the
upper bound of hop count, Er(x), we can also prove that
Er(x) ≤ d(x/r)+1 for a fixed d > 1 and a large enough n by
induction. We know that Er(x) = 1 when x ∈ (0, r), so it is
satisfied that Er(x) ≤ d(x/r)+1. Suppose that Er(x−αr) ≤
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dx−αrr + 1, we can show

Er(x) = 1 +
2 log n

n2 − 1

∫ 1

0

Er(x− αr)n2αdα

≤ 2 +
2 log n

n2 − 1

∫ 1

0

d
x− αr
r

n2αdα (3-4)

≤ 2 + d
x

r
− d n2

n2 − 1
+

d

2 log n
≤ d(x/r) + 1 (3-5)

Inequality (3-5) holds for

d ≥ 2 log n(n2 − 1)

n2(2 log n− 1) + 1
. (3-6)

We can conclude that Er(x) converges to x/r uniformly
when n is very large. The first property has been proved.
And because the transmission range is r, the total tree length
converges to x. So the second property also holds.

APPENDIX D
MESSAGE COMPLEXITY

We only consider the approximate neighbor region shown
by the shaded area in Figure 4.1(a) as in length analysis. We
rearrange the cells in the feasible region along with the nodes
in these cells, and put them in a column. We first compare
x-coordinates of the cells, and cells with larger x-coordinates
will be put at the top of the column. If they have the same
x-coordinates, cells with larger y-coordinates will be put at the
top. Figure 4.1(b) illustrates this arrangement. We have bxc×
byc cells rearranged in a column. These cells are numbered
from 1 to bxc × byc. After rearrangement, it is easy to see
that the actual distance between nodes in the ith cell and the
receiver R must be smaller than i+3√

m
.

     x

  y
  

Source

Receiver

1

3

4

5

6

2

(a) Approximate neighbor region

1

2

5

6

3

4

  Receiver

(b) Rearrangement of
cells

Fig. 4.1: Shrinking neighbor region and rearranging cells

There are five types of messages are exchanged in TST algo-
rithm, and their quantities are denoted as Msgi respectively
(1 ≤ i ≤ 5). In phase 1, all nodes participate in message
propagation, so E(Msg1) = n.

In Phase 2, three types of messages are sent during this
process: request message, respond message and connect mes-
sage. We rearrange the cells as in Figure 4.1(b). The ith cell is
represented by gi, and the probability that one node is located
in the ith cell is assumed as p(gi). The probability that a node

in the ith cell is chosen as a neighbor by the receiver (x, y)
is denoted as pi. We have

pi = (1−
i−1∑
j=1

p(gi))
m−1 − (1−

i∑
j=1

p(gi))
m−1

= e
−(m−1)

i−1∑
j=1

p(gj)

− e
−(m−1)

i∑
j=1

p(gj)

(4-1)

≤ e−
m−1
m (i−1)ε1 − e−

m−1
m iε2 (4-2)

When no appropriate receivers are found in this region,
receiver R connects to the source directly. Its probability is
denoted as pS .

pS ≤ (1− bxc byc
m

ε1)m−1 (4-3)

If the receiver in the ith cell is selected by receiver R, k
search sessions are needed in total for receiver R, where k =†
log2

i+3√
mr

£
.

E(MsgR2 ) ≤
bxcbyc∑
i=1

pi

⌈
log2

i+3√
mr

⌉∑
k=0

π(2kr)2ε2n

+

†
log2

√
x2+y2√
mr

£∑
k=0

pSπ(2kr)2ε2n (4-4)

Combining (4-2), (4-3) and (4-4), we have

E(MsgR2 ) ≤ O

Ñ
n

m

bxcbyc∑
i=1

(e−
m−1
m (i−1)ε1 − e−

m−1
m iε2)(i+ 1)2

é
+O

( n
m
e−

m−1
m bxcbycε1(x2 + y2)

)
(4-5)

It is easy to prove that

bxcbyc∑
i=1

(e−
m−1
m (i−1)ε1 − e−

m−1
m iε2)(i+ 1)2 = O(1). (4-6)

e−
m−1
m bxcbycε1(x2 + y2) = O(1). (4-7)

Combining (4-5), (4-6) and (4-7), we can obtain

E(MsgR2 ) = O
( n
m

)
, (4-8)

so the expected number of request messages is: E(Msg2) =∑
R∈MR

E(MsgR2 ) = O (n). Next comes respond message. If

the neighbor search ends up in the kth session, the expected
number of responding receivers is at most m

3
4π(2

kr)2ε2
1− 1

4π(2
kr)2ε2

≤
π(2kr)2ε2m. If the response is from the receiver in the ith cell,
as we have proved, there are O( i+1√

mr
) relays on the minimal-

hop path connecting two receivers.

E(MsgR3 )

≤ O

Ñ
bxcbyc∑
i=1

pi
(
π(2kr)2ε2m

)
2k
∣∣∣∣
k=
⌈
log2

i+3√
mr

⌉
é
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+O

Ñ
pS
(
π(2kr)2ε2m

)
2k
∣∣∣∣
k=

†
log2

√
x2+y2√
mr

£é (4-9)

≤ O

Ñ
bxcbyc∑
i=1

Ä
e−

m−1
m (i−1)ε1 − e−

m−1
m iε2

ä (i+ 3)3√
mr

é
+O

Ç
e−

m−1
m bxcbycε1 (x2 + y2)

3
2

√
mr

å
(4-10)

≤ O
Å

1√
mr

ã
. (4-11)

The total number of respond messages is:

E(Msg3) =
∑
R∈MR

E(MsgR2 ) = O

Å√
m

r

ã
.

The last type of message in the second phase is connect mes-
sage, it can not be larger than respond messages. E(Msg4) ≤
O
Ä√

m
r

ä
.

In cycle elimination, all relays participate in forwarding
eliminate message for the worst case.

E(Msg5) ≤ O (n) . (4-12)

The total message complexity is

E(Msg) = O(n). (4-13)

This completes our proof.
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