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Abstract—The interaction among users in different social net-
works raises deep concern on user privacy, as it may facilitate the
assailants to identify user identities by matching the anonymized
networks with a correlated sanitized one. Prior arts regarding
such de-anonymization problem can be primarily divided into a
seeded case or a seedless one, depending on whether or not there
are a subset of pre-identified nodes. The seedless case is much
more complicated since the adjacency matrix representation of
one-hop user relations delivers limited structural information.

To address this issue, we, for the first time, integrate the multi-
hop neighborhood relationships, which exhibit more structural
commonness between the anonymized and the sanitized networks,
into seedless de-anonymization process. Our aim is to sufficiently
leverage these multi-hop neighbors of all nodes and minimize the
total disagreements of these multi-hop adjacency matrices, which
we call collective adjacency disagreements (CADs), between two
networks of different sizes. Theoretically, we demonstrate that
CAD enlarges the difference between wrongly matched node
pairs and correctly matched pairs, whereby two networks can be
correctly matched with high probability even when the network
density is below log n. Algorithmically, we adopt the conditional
gradient descending method on a collective-form objective, which
can efficiently find the minimal CADs for networks with broad
degree distributions. Experiments on both synthetic and real-
world networks return desirable de-anonymization accuracies
thanks to the rich structural information manifested by such
collectiveness, since most nodes can be correctly matched with
their correspondences, especially in sparse networks where mere-
ly utilizing adjacency relations might fail to work.

I. INTRODUCTION

A wave of interaction between different social networks

brings potential risk of privacy disclosure with the advance-

ment of nowadays de-anonymization techniques [1], [2]. Al-

though some social networks remove personal identifiers when

they publish their data to third-parties, there could still be some

other sanitized social networks whose data are available to the

public. Therefore, the adversaries may re-identify these data

by mapping the network structure to the sanitized ones.

Such process of unveiling users’ identities by leveraging

information from other domains is defined as social net-

work de-anonymization, which is initiated by Narayanan and

Shmatikov [3]. The de-anonymization problem has received

conscionable attention so far, which is usually formulated

based on a common paradigm that will also be adopted in

our work. In this paradigm, an underlying network charac-

terizes the potential relationships between users, while the

adversaries can observe two networks, i.e., an anonymized

one and a sanitized one, whose node sets and edges are

independently sampled from the underlying network. Since the

two observed networks are different but correlated, the aim of

de-anonymization is to discover the correct matching between

the two observed networks, which may contain partially the

same users and user relationships, with the network structure

as the only side information available to the adversaries.

Known as being equivalent to the NP-hard quadratic as-

signment problem [4], the de-anonymization problem can be

primarily classified into the seeded or seedless case, depending

on whether there exist some pre-identified nodes for inference.

Abundant researches [5], [6] have been devoted to the seeded

case, where node can be incrementally matched in terms of

their adjacency relations with the aid of a small set of seeds.

In contrast, the seedless case turns out to be more challenging

[7], due either to the insufficient auxiliary information for

the direct matching via a comparison between the adjacency

matrices or to the high complexity for the indirect matching

via evaluating the nodal or edge similarities.

In this paper, we probe into the seedless de-anonymization

problem, where our particular concern is the tradeoff between

the incomplete utilization of the structural information and

the high computational complexity. On the one hand, if we

depend merely on the adjacency relationships [8] in trade for

efficiency, the local topologies of nodes may not bring desir-

able matching accuracy in solving this problem, as existing

researches [5], [6], [9] on different network models usually

set demands of a large mean degree k̄ = Ω(log n). On the

other hand, to explore richer structural commonalities between

two networks, the similarity matrix or Kronecker product

[10] is often referred, which, however, may bring a high

computational complexity of Ω(n4). Therefore, the question

naturally arises: is it possible to solve the de-anonymization

problem both effectively and efficiently?

To answer this question, we note that in social networks,

there is an interesting phenomenon named friendship paradox

[11], where, on average, the number of friends of our random

friend is always greater than or equal to the number of

ourselves’ friends. Put differently, the neighbors of a user may

expose more information than the user himself/herself. This

phenomenon inspires us to collect one’s friends, the friends of

his/her friends and so forth to assist with user identification in

the de-anonymization problem of interest. Particularly, in the

common paradigm mentioned earlier, we collect the multi-hop

neighborhood relations between different node pairs in both

the sanitized and anonymized networks, and aim to match the

users in the two networks by minimizing the total number

of the mismatched relations within l hops. This number is

called collective adjacency disagreement (CAD) at level l. As



will be illustrated later, CAD is capable of revealing richer

structural information, thus leading to an enhancement of

matching accuracy (a dramatic increase from 0 to 1 in some

cases) without incurring extra computational complexity.

With the collectiveness taken into consideration, the pur-

poses of this paper are two-folded: 1) we aim to improve

the matching performance by virtue of our newly introduced

collective adjacency, which unveils more side structural in-

formation that can assist in de-anonymization process; 2) we

attempt to realize the de-anonymization by efficiently mini-

mizing CAD, which is approximated by a convex problem that

can be solved with relatively low computational complexity.

Thereafter, we can unfold our contributions as follows:

1. We formalize the social network de-anonymization prob-

lem in the context of multi-hop adjacency relationship, and

further generate the collective-form de-anonymization problem

which aims to minimize the total differences between multi-

hop adjacency matrices of the two observed networks called

collective adjacency disagreement (CAD), which is better

behaved for networks with broad degree distributions.

2. We theoretically derive the conditions for networks with

arbitrary edge existence distributions to be correctly matched

by ensuring that the correct matching possesses the minimal

CAD, from which we also indicate an upper bound of the

number of wrong matches that have lower adjacency disagree-

ments than the correct matching. Specifically, networks with

mean degree Ω((log n)1/l) can be successfully de-anonymized

with high probability when assisted by the CAD at level l.
3. In view of the NP-hardness to find the correct matching,

we incorporate the collectiveness into the Fast Approximating

Quadratic programming [8] and propose a Collective De-

anonymizaion Algorithm (CDA). This algorithm is further

refined by our RCDA algorithm in terms of both efficiency

and effectiveness via the combination of an O(n2)-time ap-

proximation method and a pre-sorting of nodes based on their

degrees. As validated empirically, RCDA incurs less runtime

while retaining comparable or even better accuracy than CDA.

Extensive experiments are performed on different kinds of

networks, including synthetic networks such as Erdős-Rényi

networks [12], Scale-Free networks [13], and real-world net-

works with unknown distributions. Empirical results suggest

that smaller CAD usually brings higher matching accuracy,

while the adjacency disagreement is poorly relevant with the

accuracy when networks cannot be fully correctly matched.

II. RELATED WORKS

Social network de-anonymization is of rich and evolving

concern in recent decades. Originally officially formulated by

Narayanan and Shmatikov [3], this problem has been con-

cretized in both theoretical and experimental aspects supported

with a large amount of literature. These arts chiefly probe

into two distinct categories of de-anonymization techniques,

namely seeded and seedless attacks from the adversaries.

In the seeded case, a small set of nodes will be pre-

identified [3]. On this basis, a frequently utilized method is

bootstrap percolation, which can successively de-anonymize

the neighbors of identified nodes with a handful of seeds under

both Erdős-Rényi network model [5] and Scale-Free network

model [14]. A similar method is also proposed in [15] to

de-anonymize the nodes based on their local neighborhood

relationships. Further, Nilizadeh et al. [16] improve the seeded

de-anonymization scheme at a community level, whereby the

users within a same de-anonymized community can be further

de-anonymized with existing methods.

In contrast, the seedless case puts forward higher require-

ments to the adversaries since nodes can hardly be incremen-

tally de-anonymized. Pedarsani and Grossglauer [17] mathe-

matically build a random graph model, where two observed

networks are obtained by independently sampling on edges of

an underlying network, and derive the condition for correct

matching in the seedless de-anonymization problem. Kazemi

et al. [18] facilitate this model with node sampling, and reveal

that networks can be correctly de-anonymized when the mean

degrees are Ω(log n). Practically, algorithms such as [19]

by minimizing the adjacency disagreements are proposed to

realize ‘perfect’ de-anonymization. Community-based seedless

attacks are also delved into to achieve optimal performance

under an MAP [20] or MMSE [21] estimator.

However, the literature above mainly takes advantage of

the nearest neighborhood relations among nodes. In social

networks, it is clarified that a perspective of two-hop neighbors

“makes it easier for the contagion to prevail” [22]. As stated

by Morone and Makse [23], a node could be influential to

not only its directly connected neighbors, but also multi-hop

neighbors. Analogously, to de-anonymize the nodes from the

social network, the multi-hop neighbors for a node can also be

helpful in identifying its special property. In [24], for instance,

it is shown that the performance improves significantly in

seeded graph matching with l-hop local neighborhoods. In this

work, we combine the efficiency of FAQ algorithm and the rich

features of the collectiveness, aiming to solve the seedless de-

anonymization problem both efficiently and effectively.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

To characterize the correlated and different sized networks,

we assume that there is an undirect and acyclic underlying

social network G = G(n,p) which represents the underlying

social relationships between network nodes. Here n is the

number of nodes and p = {puv} is the set of edge existence

probabilities, where puv is the probability that there is an edge

between two nodes u, v (∈ {1, 2, . . . , n}) in network G.

We further assume that the adversaries could observe a

sanitized network GA, where users’ identities are all available,

and an anonymized network GB , of which users’ identities

are unavailable for privacy issue. In reality, for instance, GA

can be the online social relationships on the Internet, while

GB manifests the offline communication records crawled by

the adversaries. For a static realization of G = G(n,p), we

establish the sanitized network GA by sampling only the edge

set of G with probability s, while the anonymized network GB

is generated by sampling the edge set of G with probability s
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Fig. 1. The G(n,p; t, s) network model composed of G, GA ,GB . Moreover,

G
(2)
A and G

(2)
B are the derivative 2-hop adjacent networks.

and the node set of G with probability t. We note that the edges

connecting removed nodes are also removed in the sampling

process. As a result, the observed networks can be illustrated

as GA = G(n,ps) and GB = G(nt,ps), with different but

correlated node and edge sets. Here ps is a new set originated

from multiplying s to each element in set p. We can refer to

Fig. 1 for the sampling process, where the gray node and the

gray dashed edges are removed owing to sampling.

To sum up, we call the above model the G(n,p; s, t) net-

work model. Generally, a network model G(n,p; s1, s2, t1, t2)
can be composed of an underlying network G(n,p) and two

observed networks formed by different edge sampling rates

s1, s2 and node sampling rates t1, t2. However, when nodes u
and v are only sampled in networks GA and GB , respectively,

whether we match u with v or keep both of them unmatched

will make no difference to the matching accuracy. Therefore,

we focus on the simpler G(n,p; s, t) model in the rest of the

paper. In fact, as it will be clear in Section IV, even the analysis

on this simplified model is non-trivial.

The one-hop relations between different user pairs in net-

works G, GA and GB can be represented by the adjacency

matrices. However, as noted earlier, the adjacency matrices

convey limited information for seedless de-anonymization,

which motivates us to turn to multi-hop relations. To facilitate

our discussion, we define some terminologies as follows.

Definition 1. (Multi-hop adjacency matrix) Denote the node
set of a network GA as VA. For nodes u, v ∈ VA, the l-hop
adjacency matrix A(l) follows that A(l)

uv = 1 if and only if the
shortest path between u and v is l and A

(l)
uv = 0 otherwise.

Definition 2. (Multi-hop edge) For nodes u, v ∈ VA, we say
there is an l-hop edge between them if A(l)

uv = 1.

Definition 3. (Multi-hop adjacent network) The network with
adjacency matrix A(l) is named as G

(l)
A . A network G

(l)
A is an

l-hop adjacent network if it is composed of l-hop edges.

Obviously, A(1) = GA and G
(1)
A = GA. Hereinafter, the

superscript (1) can be omitted without loss of readability.

Besides, these definitions are also applicable for network GB .

Note that the multi-hop edges for each node can be detected

through Breadth-First Searching (BFS). Fig. 1 exhibits a

simple example of the G(n,p; s, t) model along with the 2-

hop adjacent networks derived from GA and GB .

B. Problem Formulation of De-anonymization
1) The traditional de-anonymization with one-hop ad-

jacency matrices. Given the adjacency matrices of social

networks GA and GB , we have A ∈ R
n1×n1 and B ∈ R

n2×n2 ,

where R is the set of real numbers, and n1 and n2 are the

number of nodes in GA and GB , respectively. Without loss

of generality, we can assume that n1 ≥ n2. Mathematically,

the social network de-anonymization problem can thus be

formulated as

P1 : minimize
P∈Πn1×n2

‖A− PBPT ‖2F , (1)

where P ∈ Πn1×n2 is an identify matrix satisfying P ∈
{0, 1}n1×n2 , P1n2

� 1n1
and PT 1n1

= 1n2
. Here 1n is

an n × 1 vector of all ones, and X � X ′ means that their

difference X ′−X is positive semi-definite. The matrix P can

also be described as an injective function π : VA → VB , where

π(u) = v if Puv = 1 for any v and π(u) = 0 otherwise, for

u ∈ {1, 2, . . . , n1} and v ∈ {1, 2, . . . , n2}. Both forms (P and

π) will be utilized in the following sections.

2) The collective-form de-anonymization with multi-
hop adjacency matrices. The de-anonymization accuracy is

defined as the fraction of correctly matched nodes in the

anonymized network GB . However, as existing works [17],

[18] have stated, the correct matching achieves the minimum

of problem P1 only when the mean degree is Ω(log n). When

the networks get sparser, the solution for P1 may not work

well. To make use of richer structural information, we collect

the l-hop adjacent matrices A(l) and B(l) of GA and GB , as

defined in Definition 1. Based on that, we can denote

Δ(l)
π = f (l)(P ) := ‖A(l) − PB(l)PT ‖2F (2)

as the adjacency disagreement between A(l) and B(l) under

the injective function π (or the identify matrix P ), and define

the collective adjacency disagreement as follows.

Definition 4. (Collective adjacency disagreement) The col-
lective adjacency disagreement (CAD) at level l between
networks GA and GB is the summation of the disagreements
of their multi-hop adjacency matrices within l hops, i.e.,

Γ(l)
π = g(l)(P ) :=

∑l

i=1
f (i)(P ). (3)

In the following, we transform our overarching goal to solve

the collective-form de-anonymization problem as

P2 : minimize
P∈Πn1×n2

g(l)(P ). (4)

Remark. Since we regard the minimal disagreements as our

goal, the existence of structurally equivalent nodes will hinder

the de-anonymization process, as they are indistinguishable

under our target function. However, the whole network can

be correctly matched under certain conditions, which, in other

words, ensure that every node can be unique and identifiable.

IV. CONDITIONS FOR CORRECT MATCHING

With the network model and the formulated problem, we

derive the theoretical conditions for correctly matching two

observed networks in this section. To proceed in an orderly

way, we first explore the condition for correct matching in a

special case of l = 1, then extend the result to l ≥ 1.



Fig. 2. Two different injective functions for networks GA and GB . The
shaded parts are the set of correctly matched nodes Vc, while the blank parts
are composed of the sets of mismatched nodes Vm and unmatched nodes Vu.

A. Preliminary Divisions of the Nodes and the Node Pairs
For a given injective function π, the nodes in different

networks can be classified into three categories: correctly

matched (v ∈ Vc), mismatched (v ∈ Vm), and unmatched

(v ∈ Vu), as illustrated in Fig. 2. Considering that the number

of unmatched vertices is |Vu| = n(1 − t) when n is large,

we can further denote the injective function as πk if there

are exactly k mismatched vertices (on the left side of Fig.

2). Therefore, π0 (on the right side of Fig. 2) stands for the

correct matching where all nodes in B are correctly matched.
Accordingly, we can divide the node pairs 1 into three parts.

The first part, denoted as Ec,k, is the correctly matched pairs
where both nodes are from Vc; the second part is denoted as
Em,k, which is the mismatched node pairs where one of them
is a mismatched node and the other is either mismatched or
correctly matched; the last part is the unmatched pairs denoted
as Eu, at least one node of whom is unmatched. The expected
cardinalities of Ec,k, Em,k and Eu can be expressed as⎧⎪⎨

⎪⎩
|Ec,k| =

(
nt−k

2

)
,

|Em,k| =
(
k
2

)
+

(
k
1

)(
nt−k

1

)
,

|Eu| =
(
n(1−t)

2

)
+

(
n(1−t)

1

)(
nt
1

)
.

(5)

B. Condition for Correct Matching With l = 1
Based on the definitions above, we provide the condition

under which correct matching is achievable by minimizing

the adjacency disagreement Δπ , as stated in Theorem 1. To

clarify, we denote pmax = max(p) as the maximum in set p
and p̄ = E[p] as the expectation of all elements in set p.

Theorem 1. For the network model G(n,p; s, t) with observed
networks GA, GB , the correct injective function π0 minimizes
the adjacency disagreement Γ(1)

π = Δπ with probability going
to 1 as the number of nodes n goes to infinity, if sampling
rates s, t = Θ(1), while pmax = o (1) and

p̄ =
12(2− s)

s3t

(log n)

n
+ ω

(
1

n

)
= Ω

(
log n

n

)
. (6)

Proof. Let us take Fig. 2 again for illustration. We denote

the adjacency disagreements of the two different injective

functions πk and π0 as Δk and Δ0, respectively. The outline

of this proof can be divided into two steps: 1) For a given

injective function πk where exactly k nodes are wrongly

matched, we approximate the probability of Δk ≤ Δ0; 2) we

then evaluate the number of injective functions πk which may

have lower adjacency disagreement than the correct matching,

and prove that the expected errors for all these wrong matches

are negligible under the conditions stated in the theorem.

1) The probability of Δk ≤ Δ0. As node pairs in Ec,k

and Eu contribute equally to Δk and Δ0, we write

Δk −Δ0 = Xk − Yk, (7)

1Node pairs uv and vu will be the same pair regardless of their order.

where Xk is the number of wrongly matched edges in Em,k by

πk, Yk is the number of edges in Em,k that are only sampled

in GA or GB . They can be described as{
Xk =

∑
uv∈Em,k

|1{Auv=1} − 1{Bπ(u)π(v)=1}|,
Yk =

∑
uv∈Em,k

|1{Auv=1} − 1{Buv=1}|. (8)

Note that if Em,k is non-empty (only when k > 0), Xk can

hardly equal to Yk. We can then compare their expectations.
Since P (Auv = 1, Buv = 0) = puvs(1− s) = puvs(1− s)

and P (Auv = 0, Buv = 1) = puvs(1 − s), we can evaluate
the expectation of Yk as

E[Yk] = E

⎡
⎣ ∑

uv∈Em,k

2puvs(1− s)

⎤
⎦ = |Em,k| · 2p̄s(1− s), (9)

where p̄ = E[p] is the expected value of edge existence

probability in underlying graph G.
For Xk, if uv �= π(u)π(v), the probability that only

one of the two edges is sampled is puvs(1 − pπ(u)π(v)s) +
pπ(u)π(v)s(1 − puvs). Meanwhile, there could be at most
k/2 node pairs that make uv = π(u)π(v) with the fact
that |Vm| = k. Since k/2 	 |Em,k|, we approximate the
expectation of Xk as

E[Xk] =E

⎡
⎣ ∑

uv∈Em,k

puvs+ pπ(u)π(v)s− 2puvpπ(u)π(v)s

⎤
⎦

=|Em,k| · 2p̄s.
(10)

Here puvpπ(u)π(v)(	 puv) are omitted in the approximation.

According to Lemma A.1 in [20], for two random variables

X and Y which are the sum of independent Bernoulli variables

with E[X] ≥ E[Y ], the probability of X − Y ≤ 0 satisfies

P (X − Y ≤ 0) ≤ 2 exp

(−(E[X]− E[Y ])2

12(E[X] + E[Y ])

)
. (11)

Hence, we approximate the probability of Δk −Δ0 ≤ 0 by

P (Δk −Δ0 ≤ 0) = P (Xk − Yk ≤ 0)

≤2 exp

(−(E[Xk]− E[Yk])
2

12(E[Xk] + E[Yk])

)

≈2 exp

(
−|Em,k| · p̄

6

s3

2− s

)

≈2 exp

(
−k(2nt− k) · p̄

12

s3

2− s

)
.

(12)

2) The expected number of wrong matches S. We denote
Sk =

∑
πk

1{Δk≤Δ0} as the number of wrong matches with k
mismatched nodes that has lower adjacency disagreement than
the correct matching. Therefore, the expected number of total
wrong matches S =

∑nt
k=1 Sk that have smaller adjacency

disagreement than π0 is

E[S] =

nt∑
k=1

E[Sk] =

nt∑
k=1

∑
πk

E[1{Δk≤Δ0}]

=
nt∑
k=1

∑
πk

P (Δk ≤ Δ0) ≤
nt∑
k=1

nkP (Δk ≤ Δ0)

≤2
nt∑
k=1

nk exp

(
−k(2nt− k) · p̄

12

s3

2− s

)

≤2

nt∑
k=1

exp

(
k

(
log n− np̄

12

s3t

2− s

))
.

(13)

Since we have assumed that p̄ = 12(2−s)
s3t

logn
n + ω

(
1
n

)
in the



statement of Theorem 1, the first term of this summation goes

to zeros, whereby the whole summation goes to zero.

Remark. In the derivation, we approximate the summation

of edge existence probabilities for node pairs in Em, with

the global average existence probability p̄, which proves the

Theorem 1 only in a statistical sense. Put differently, there

could be a small set of special cases that satisfy our conditions

but cannot be correctly matched. This problem can be fixed

if the expectation p̄ is replaced with pmin = min(p) in

the statement of this theorem. Besides, Eqn. (13) suggests

that only a limited number S of wrong matches may have

smaller adjacency disagreements than the correct matching.

Hence, the probability that we find the correct matching can

be approximated by 1 − S/n!, where n! is the number of all

possible permutations with n nodes.

C. General Condition for Correct Matching With l ≥ 1

Supported by Theorem 1, we can further expose similar

conditions for l ≥ 1, and state our result in Theorem 2.

Theorem 2. For the network model G(n,p; s, t) with observed
networks GA, GB , denote pmax = max(p) and p̄ = E[p].
The correct injective function π0 minimizes the collective
adjacency disagreement Γ

(l)
π with probability going to 1 as

the number of nodes n goes to infinity, if the hops l = Θ(1),
sampling rates s, t = Θ(1), pmax = o

(
n1/l/n

)
, and

p̄ =
12(1 + tl−1 − sltl−1)

s3lt2l−1

(logn)1/l

n
+ ω

(
1

n

)
= Ω

(
(logn)1/l

n

)
.

Proof. Let us take a look back at Fig. 1, where we say there is

an l-hop edge between nodes u and v in network GA if A
(l)
uv =

1. Note that the three different node sets (Vc, Vm, Vu) will stay
invariant for l-hop adjacency matrices A(l) and B(l), with the
corresponding node pairs remaining unchanged. Recall that

the definition of collective adjacency disagreement Γ
(l)
π is

Γ(l)
π =

∑l

i=1
Δ(i)

π . (14)

Essentially, we mean to minimize the sum of Δ
(l)
π with

different number of hops l. Similar to Eqn. (8), we can define

X
(l)
k as the number of wrongly matched multi-hop edges

within l hops in Em,k under injective function πk, and Y
(l)
k as

the number of multi-hop edges within l hops in Em,k under
the correct injective function π0. They are expressed as⎧⎨
⎩

X
(l)
k =

∑
uv∈Em,k

∑l
i=1 |1{A(i)

uv=1} − 1{B(i)
π(u)π(v)

=1}|,
Y

(l)
k =

∑
uv∈Em,k

∑l
i=1 |1{A(i)

uv=1} − 1{B(i)
uv=1}|.

(15)

For brevity, we can simply write Γπk
by Γk. By the fact that

Γ
(l)
k − Γ

(l)
0 = X

(l)
k − Y

(l)
k , (16)

we can approximate the probability of Γ
(l)
k < Γ

(l)
0 with Eqn.

(11) and the results of Lemma 1, whose detailed deriva-

tion is deferred to Appendix A. We further denote S
(l)
k =∑

πk
1{Γ(l)

k ≤Γ
(l)
0 } as the number of wrong matches that have

exactly k mismatched nodes and lower CAD at level l than

that of the correct matching, and S(l) =
∑nt

k=1 S
(l)
k as the

summation of them. In the vein of inequalities (12) and (13),

we calculate the upper bound of the expectation of S(l) by

E[S(l)] ≤ 2

n∑
k=1

exp

(
k

(
log n− nlp̄l

12

s3lt2l−1

1 + tl−1 − sltl−1

))
.

As long as p̄ = Ω
(

(logn)1/l

n

)
and n → ∞, the term log n −

nlp̄l

12
s3lt3l−2

1+tl−1−sltl−1 = −ω(1). Further, once the first term of

this summation goes to 0, the whole summation also goes to

0, which leads to E[S(l)] → 0. This completes our proof.

Lemma 1. When n → ∞, pmax = o(n1/l/n) and p̄ =

Ω
(
(log n)1/l/n

)
, the expectations of X

(l)
k and Y

(l)
k can be

approximated as{
E[X

(l)
k ] = |Em,k|

(
nl−1p̄lsl(1 + tl−1)

)
,

E[Y
(l)
k ] = |Em,k|

(
nl−1p̄lsl(1 + tl−1 − 2sltl−1)

)
.

(17)

Remark. To establish an intuitive understanding of Theo-

rem 2, we may approximate the maximal degree for nodes

in a network as kmax = npmax and the mean degree as

k̄ = np̄. The conditions for edge existence probabilities pmax

and p̄ in our theorem can be transformed to the conditions

that kmax = o(n1/l) and k̄ = Ω((log n)1/l). As the mean

degree for this network is Ω((log n)1/l), a node will averagely

get Ω(log n) l-hop neighbors, which reaches the information-

theoretic lower bound [25] to correctly match two networks.

On this basis, Eqn. (17) implies the fact that the expected

errors caused from wrongly matched pairs are larger than those

from correctly matched pairs (E[X
(l)
k ] > E[Y

(l)
k ]), and the

difference between the two errors gets larger as l increases

(E[X
(l)
k ] − E[Y

(l)
k ] = Θ(nl−1pl) is positively correlated with

l). This also interprets that higher level of collective adjacency

disagreement can be more beneficial to the de-anonymization

of sparser networks as the number of nodes n is large enough.

V. ALGORITHMS

While Theorem 2 ensures the possibility of correct match-

ing, its algorithmic realization still remains to be unsolved. In

this section, we design a collective de-anonymization algorith-

m (CDA), and refine it in both efficiency and effectiveness to

match two networks that contain node sets of different sizes.

A. Collective De-anonymization Algorithm
Recall that P2 (Eqn. (4)) is intrinsically a combinatorial

optimization problem with a discrete feasible region. The

combinatorial nature of the feasible region determines that

finding a global optimum of P2 is NP-hard [8]. Thus, instead

of directly solving this problem, we first rewrite Eqn. (2) as

Δ(l)
π = ‖A(l) − PB(l)PT ‖2F

=‖A(l)‖2F + ‖B(l)‖2F − 2tr
(
A(l)PB(l)PT

)
.

(18)

Further, by denoting

h(l)(P ) =
∑l

i=1
tr
(
A(i)PB(i)PT

)
, (19)

the problem P2 can be equivalent to

P3 : maximize
P∈Πn1×n2

h(l)(P ). (20)

Classically, we can then relax the feasible region of P
from the discrete Πn1×n2 to a continuous Dn1×n2 . For P ∈
Dn1×n2 , it follows P ∈ [0, 1]n1×n2 , P1n2

� 1n1
, PT 1n1

=
1n2

. Such relaxation ensures the feasible region is continuous

and convex, thereby bringing the following convex problem:

P4 : maximize
P∈Dn1×n2

h(l)(P ). (21)



Algorithm 1 Collective De-anonymization Algorithm

Input: Adjacent matrices A ∈ R
n×n, B ∈ R

m×m (m ≤ n);
number of hop l; (optional) matrix P ∈ Dn×m.

Output: The optimal injective function π : V → V .

1: Initialize: P =
1n·1Tm

n if it is not specified; A(i) and

B(i) (i ≤ l) computed from A and B with Breadth-First
Searching; step size α = 1; step tolerance ε = 10−4.

2: while α > ε do
3: Compute ∇h(l)(P ) from Eqn. (22);
4: Q = argmaxQ∈Πn×m

tr(QT∇h(l)(P ));
5: Compute step size α = argmaxα h(l)((1−α)P +αQ)

over α ∈ [0, 1];
6: Renew the matrix P = (1− α)P + αQ;
7: Compute P ∗ = argmaxQ∈Πn×m tr(QTP );
8: return π, where π(u) = v if P ∗

uv = 1 for any v and
π(u) = 0 if P ∗

uv = 0 for all v.

Thereafter, the solution for the convex problem P4 can

be approached with the Frank-Wolfe method [26], [8], which

iteratively minimizes the linear approximation of the objective

function given by its first-order Taylor approximation and

moves towards a minimizer of this linear function. We thus

provide the gradient of h(l)(P ) as follows.

∇h(l)(P ) = 2
∑l

i=1
A(i)PB(i). (22)

With the gradient of h(l)(P ), we can exhibit our CDA

as Algorithm 1. The main idea of this algorithm inherits

Frank-Wolfe method (lines 2-6). Besides, the convex problems

at lines 4 and 7 are solved by Hungarian Algorithm [27],

which is one of the most popular combinatorial optimization

algorithm that solves the assignment problem within O(n3)
time complexity. The complexity of the whole algorithm is

also O(n3) because the iteration of the Frank-Wolfe method

terminates in finite steps. Since the Frank-Wolfe method does

not require the objective function to be square matrix, our

algorithm is also suitable for two graphs of differently sized

vertex sets. The multi-hop adjacency matrices A(i) and B(i)

(i ≤ l) are also utilized in the computation of h(l)(P ).

B. The Refined Algorithm
We further refine Algorithm 1 with respect to both efficiency

and effectiveness. On the one hand, as the Hungarian algorithm

costs too much time, we incorporate the Sinkhorn method [28],

which alternately re-scales all rows and all columns of a matrix

to sum to 1 and costs O(n2), to approximate the solution of

the convex problem in the iteration. On the other hand, we pre-

sort the nodes in both networks by degree before matching,

which can narrow the distance between to-be-matched nodes

from the intuition that nodes are likely to be matched with

those who have similar degree [9]. The refined collective de-

anonymization algorithm (RCDA) can be referred as Alg. 2.

In Alg. 2, the Sinkhorn function at line 4 can normalize

the summation of the rows and columns of the input matrix,

which works as illustrated in Alg. 3. By taking exponential on

h(l)(P ), the input matrix exp(h(l)(P )) is positive definite that

satisfies the requirement of Sinkhorn method. The output, i.e.,

the normalized matrix, is an approximation to the solution of

the original problem at line 4 in Alg. 1. The first six lines in

Algorithm 2 Refined Collective De-anonymization Algorithm

Input: Adjacent matrices A ∈ R
n×n, B ∈ R

m×m (m ≤ n);
number of hop l; (optional) matrix P ∈ Dn×m.

Output: The optimal injective function π : V → V .

1: Initialize: P =
1n·1Tm

n if not specified; A and B sorted in

a decreasing order by the sum of their column; A(i) and
B(i) (i ≤ l) computed from A and B with Breadth-First
Searching; step size α = 1; step tolerance ε = 10−4.

2: while α > ε do
3: Compute ∇h(l)(P ) from Eqn. (22);
4: Q = Sinkhorn(exp

(∇h(l)(P )
)
);

5: Compute step size α = argmaxα h(l)((1−α)P +αQ)
over α ∈ [0, 1];

6: Renew the matrix P = (1− α)P + αQ;
7: Compute P ∗ = argmaxQ∈Πn×m tr(QTP );
8: return π = CDA(A,B, l, P ∗).

Algorithm 3 Sinkhorn

Input: A positive definite matrix P ∈ R
n×m with n > m.

Output: A matrix Q ∈ Dn×m.
1: Initialize: Q = 0n×m; tolerance ε = 10−16.
2: while ‖P −Q‖2F > ε do
3: normalize across rows by Quv = Puv/

∑n
u=1 Puv;

4: normalize across columns by Puv = Quv/
∑m

v=1 Quv;
5: return Q.

Alg. 2 cost O(n2) since the iteration (lines 2−6) usually ends

in finite rounds. It is also worth noting that the last line of Alg.

2 calls Alg. 1 once with the computed permutation matrix P ∗

as a supplementary input parameter. Since the approximated

method decreases the matching accuracy, a call for Alg. 1

compensates the accuracy loss with slightly more time costs.

Nevertheless, as we have obtained a roughly accurate P ∗ at

line 7 as preliminary, the complexity of Alg. 2, though remains

O(n3) in order sense, will lead to much shorter running time

in practice than that of directly calling for Alg. 1.

Remark. A family of literature has paid endeavor to the

exploration of heuristic algorithms for social network de-

anonymization. As far as we concern, our work is an initial

attempt to incorporate the collectiveness into existing heuris-

tics. Though the proposed algorithms in this section are based

on a simple heuristic, the power of collectiveness, as it will be

clear, brings significant improvements. Our qualitative finding

is expected to hold in future combination with other heuristics.

VI. EXPERIMENTS

We proceed to evaluate the performance of our proposed

RCDA algorithm in this section. Since we are matching two

networks in the proposed algorithm, we use the terms ‘de-

anonymization process’ and ‘the matching process’ alterna-

tively. We evaluate the running time, matching accuracy and

the collective adjacency disagreement (CAD).

A. Synthetic Networks
Synthetic experiments are performed on both Erdős-Rényi

(ER) networks and Scale-Free (SF) networks. For an ER

network G(n, p), every node pair can be connected with the

same probability p. For an SF network G(n, λ, c), its degree

distribution follows d(k) ∼ k−λ and E[d(k)] = c.
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Fig. 3. (a) comparison of the running time for RCDA with different collective
number of hops l and the comparison between RCDA and CDA; (b) the
accuracy and collective adjacency disagreements (CADs) at levels 1 to 5.

In the sequel, we first evaluate the running time of the

proposed algorithm and compare the collective adjacency dis-

agreements at different levels. To this end, we build different

ER networks where the cardinality of the node sets varies from

100 to 3,000. Other parameters are set to be p = log n/n,

s = 0.9 and t = 1. In Fig. 3, the points are the averagely

costed time in 10 experiments under given circumstances, and

the curves are the fitted curves for them. In Fig. 3(a), the

time cost function for RCDA with l = 3 (the full curve in

yellow) can be approximated by t(n) = 9.1 ∗ 10−7n3 − 8.5 ∗
10−4n2 + 0.23n− 7.1, while the time cost function for CDA

with l = 3 (the dashed curve in yellow) can be approximated

by t(n) = 6.8 ∗ 10−6n3 − 5.5 ∗ 10−3n2 + 1.2n − 33. This

confirms our theoretical conclusion that the complexity for

both algorithms are O(n3). Meanwhile, the refined algorithm

does save a large amount of running time in that sense.
We also implement FAQ algorithm [8] in this figure since

it is a special case of the CDA algorithm when l = 1. It can

be observed that it yields similar performance to RCDA with

l = 1. Both algorithms fail to de-anonymize the network when

l = 1. Further, the RCDA algorithm costs similar time when

it makes use of different collective levels l. This is because it

only costs O(nl) to find the l-hop neighbors for all nodes with

the Breath-First Searching method. We should also note that

that higher level of collectiveness does not necessarily mean

higher efficiency or accuracy, as the networks in simulations

do not have infinite number of nodes. When there is enough

information to realize the correct matching, extra information

may only cost extra time without performance improvement.
The results in Fig. 3(b) are two-folded: 1) when we do

not utilize the collectiveness (FAQ and RCDA with l = 1),

the matching accuracies approach 0 and the CADs get large;

2) when the collectiveness are considered (RCDA with l ≥
2), the accuracies become 1 and the CADs approach their

minimum. The comparison among sub-figures in Fig. 3(b)

also demonstrates a commonality that when networks can

be correctly matched, CADs at different levels achieve their

minima. Therefore, for simplicity, we plot only the CAD at

level 1 (i.e., the adjacency disagreement) in the following

simulations on both ER and SF networks if not specified.
We then compare the performance of the proposed RCDA

algorithm with different parameters on both ER networks and
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Fig. 4. Simulations on ER and SF networks.

SF networks. The elementary setting for these models is: the

number of nodes n = 1000, mean degree of the underlying

network c = 10, edge sampling rate s = 0.9 and node

sampling rate t = 1. We then tune the mean degree and

sampling rates as illustrated in Fig. 4. We take an average of

100 times of duplicate experiments for each parameter setting

to eliminate the side effects from sampling randomness and

figure out the commonness in different structured networks.

1) On the mean degree: Figs. 4(a) and 4(b) exhibit the

experiments on a sequence of mean degree c of the underlying

network. For ER networks, the edge existence probability p
corresponds to the ratio of the mean degree and the number of

nodes. As the figures display, with the help of collectiveness,

the matching accuracy gets higher with the increase of mean

degree, and approaches 1 when the mean degree is larger than

log n = 6.9. In fact, a large fraction of nodes are correctly

de-anonymized with collectiveness even when c = 2, where

the synthetic networks are quite sparse. It is also worth noting

that the adjacency disagreements are almost as small as those

of the correct matching when l ≥ 2, which suggests that these

achieved accuracies are the best matching performance if the

collective adjacency disagreement is given as the cost function.

2) On the edge sampling rate: Figs. 4(c) and 4(d) plot

the results for varied edge sampling rates s on both observed

networks. Since the mean degree of the observed networks

arises from the multiplication of the mean degree of the

underlying network and the edge sampling rate, the matching

accuracy returns a similar trend to Figs. 4(a) and 4(b). The

difference appears between their adjacency disagreements,

which get increased with the growth of mean degree c but

get decreased with the enlargement of edge sampling rate s.

When the disagreements are compared with that of the correct

matching, it is clear that this algorithm achieves minimal

CADs only when s is large, where the accuracies approach 1.



This also indicates that the proposed algorithm can be further

improved for better matching performance.

3) On the node sampling rate: Figs. 4(e) and 4(f) are

illustrated by varying the node sampling rate t on the observed

anonymized network. Since the random removal of nodes will

not influence the mean degree to the observed networks in

the average sense, the performance becomes different for ER

networks and SF networks. Although some nodes may never

be surely matched as they have same structure with others in

the SF networks, just like the edge points in a star network, the

RCDA algorithm brings high accuracies in a wide range. As

we can find from Fig. 4(f), the accuracy is hardly decreased

even when we remove 40% of nodes in the second Scale-

Free network. This occurs because the degree of nodes in

the SF network gets larger variance, which leads to a higher

discernibility for these nodes.

Through a vertical comparison, we conclude that these

three parameters in our test are equally influential to the

performance of matching accuracy. In general, the larger these

parameters are, the higher the matching accuracy will be.

B. Real Networks
We further perform experiments on the real-world Wikipedi-

a Network [29] with 1382 nodes. The two observed networks

are composed of an English version of 1382 entries collected

in Wikipedia and a corresponding French version. An edge is

created if there is a hyperlink in one entry that is directed to

another. Since we have only the observed networks without

a ground-truth, it is usually incapable for us to determine the

edge sampling rate s. Instead, we can sample on the node set

with rate t to form smaller observed networks. In consequence,

we plot figures with varied node sampling rate t for the real

datasets, where (1− t) fraction of nodes in the French version

network are randomly removed and then the remaining nodes

are matched with those in the English version network.

The experimental result is reported in Fig. 5. Since this

network cannot be fully correctly matched with our algorithm,

we establish a thorough analysis on its collective adjacency

disagreements at level 5.

This dataset performs the superiority of collectiveness. As

it exhibits in Fig. 5, the experimental results can be divided

into three categories: 1) For the RCDA algorithm with l ≥
2, a large fraction of nodes in this network can be correctly

de-anonymized and their collective adjacency disagreements

are relatively small; 2) for the RCDA algorithm with l = 1,

it achieves about half of the accuracy of those who utilize

collectiveness, while its CADs are even smaller than the CADs

of others expect the correct matching in most cases; 3) for the

FAQ algorithm (without collectiveness), almost no nodes can

be correctly de-anonymized and its CADs are always higher

than the CADs of the correct matching. This result is still a

strong support to the power of collectiveness, which is claimed

be helpful in improving the de-anonymization accuracy.

Then we focus on the transformation of accuracies and

CADs along with the increase of the node sampling rate t.
From this perspective, it can be also divided into three stages.
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Fig. 5. Wikipedia data sets. One of the observed network is in English with
n = 1382 entries, while the other is in French with nt (0.6 ≤ t ≤ 1) entries.

For the first stage when t < 0.7, the CADs with different

hop levels are far from that of the correct matching, thus

they perform low accuracies. However, for the second stage,

as the increase of t, especially when 0.7 < t < 0.95, the

CADs of the RCDA algorithms are close to the CAD of the

correct matching. Consequently, the corresponding accuracies

get steady rises. Finally when t > 0.95, these CADs become

lower than the CAD of the correct matching, which, in result,

brings few increases to the accuracies.

VII. CONCLUSION

In this paper, we introduce the collectiveness, i.e., a collec-

tion of multi-hop neighborhood relationships, into the social

network de-anonymization problem. In theoretical aspect, we

prove that sparse networks whose mean degrees are less

than log n can also be correctly matched with the assist of

collectiveness. On this basis, we propose the Refined Collec-

tive De-anonymization algorithm (RCDA), which maintains

a time complexity of O(n3). From the experimental results,

employing the collectiveness in this algorithm always provides

higher matching accuracies and lower time costs than previous

algorithms without collectiveness. Such performance improve-

ments are applicable in differently structured networks, as well

as in de-anonymizing the networks which possess different

node set sizes with the sanitized network.
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APPENDIX A

PROOF OF LEMMA 1

As defined, X
(l)
k is the number of wrongly matched multi-

hop edges within l hops in Em,k under the injective function

π = πk while Y
(l)
k is the number of multi-hop edges within l

hops in Em,k under the correct injective function π0, i.e.,⎧⎪⎨
⎪⎩

X
(l)
k =

∑
uv∈Em,k

∑l
i=1

∣∣∣∣1{A(i)
uv=1} − 1{B(i)

π(u)π(v)
=1}

∣∣∣∣,
Y

(l)
k =

∑
uv∈Em,k

∑l
i=1

∣∣∣1{A(i)
uv=1} − 1{B(i)

uv=1}

∣∣∣. (23)

Note that the distance between each two different nodes u
and v must be constant. We denote dG(u, v) as the shortest
distance between nodes u and v in network G, i.e., dG(u, v) =

l if and only if G
(l)
uv = 1, and denote⎧⎪⎨

⎪⎩
x
(l)
uv :=

∑l
i=1

∣∣∣∣1{A(i)
uv=1} − 1{B(i)

π(u)π(v)
=1}

∣∣∣∣,
y
(l)
uv :=

∑l
i=1

∣∣∣1{A(i)
uv=1} − 1{B(i)

uv=1}

∣∣∣, (24)



which provides

X
(l)
k =

∑
uv∈Em,k

x(l)
uv, Y

(l)
k =

∑
uv∈Em,k

y(l)
uv . (25)

The parameters x
(l)
uv and y

(l)
uv can be re-written as

x(l)
uv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2, if dA(u, v) ≤ l, dB(π(u), π(v)) ≤ l,

and dA(u, v) �= dB(π(u), π(v)),

1, if (dA(u, v) ≤ l, dB(π(u), π(v)) > l) ,

or (dA(u, v) > l, dB(π(u), π(v)) ≤ l) ,

0, if (dA(u, v) > l, dB(π(u), π(v)) > l) ,

or (dA(u, v) = dB(π(u), π(v)) ≤ l) .

(26)

y(l)
uv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2, if dA(u, v) ≤ l, dB(u, v) ≤ l,

and dA(u, v) �= dB(u, v),

1, if (dA(u, v) ≤ l, dB(u, v) > l) ,

or (dA(u, v) > l, dB(u, v) ≤ l) ,

0, if (dA(u, v) > l, dB(u, v) > l) ,

or (dA(u, v) = dB(u, v) ≤ l) .

(27)

We then derive the expectations of x
(l)
uv and y

(l)
uv from the

joint probability that nodes u, v are within distance l in both

networks GA and GB .

For better illustration, we consider a special case where

the underlying graph G = G(n, p) is an Erdős-Rényi random

network [12], whose edges exist with same probability p. In

network G, a node is expected to have (n−1)p ≈ np neighbors

on average. Since we have assumed that p = o(n1/l)/n and

l = Θ(1), it could be intuitive (and is proved by [30]) that the

expected number of l-hop neighbors for a node u in network

G is (np)l(	 n). In other words, the probability that the

shortest distance between two certain nodes u and v is l can

be approximated by

P (dG(u, v) = l) = (np)l/n = nl−1pl. (28)

Further, since the distance between every two nodes is unique,

it is reasonable to approximate that

P (dG(u, v) ≤ l) =
∑l

i=1
ni−1pi = nl−1pl. (29)

The second equation establishes because we have assumed that

np � 1, which indicates nl−1pl � ni−1pi for all i < l.
Sampled from network G, networks GA = G(n, ps) and

GB = G(nt, ps) are themselves random networks, thus{
P (dA(u, v) = l) = nl−1(ps)l,

P (dB(u, v) = l) = (nt)l−1(ps)l.
(30)

We denote D
(l)
uv as the event that nodes u, v are of distance

l in both GA and GB . If dG(u, v) = l, the probability of D
(l)
uv

can be illustrated as the probability that there is at least one
path from u to v in G that is sampled in network GA and one
path sampled in network GB . Since the sampling process for
networks GA and GB is independent from each other, we get

P (dA(u, v) = l|dG(u, v) = l) =sl, (31)

P (dB(u, v) = l|dG(u, v) = l) =sltl−1, (32)

P (D(l)
uv |dG(u, v) = l) =sl · sltl−1. (33)

On the contrary, if dG(u, v) �= l especially when dG(u, v) < l,

it is complicated to find the probability of D
(l)
uv . Luckily, it can

be asserted that P (D
(l)
uv |dG(u, v) < l) ≤ sl−1 ·sl−1tl, as there

should be at least one l-length path from u to v in G being

sampled to networks GA and GB to make D
(l)
uv true. Therefore,

P (D(l)
uv) =P (dG(u, v) = l)P (D(l)

uv |dG(u, v) = l)

+ P (dG(u, v) < l)P (D(l)
uv |dG(u, v) < l)

=nl−1pls2ltl−1

+
(
Σl−1

i=1n
i−1pi

)
P (D(l)

uv |dG(u, v) < l)

(∗)
=nl−1pls2ltl−1.

(34)

Here (∗) establishes because nl−1pl is the dominating com-

ponent in this equation.
Moreover, we can approximate the joint probability of

dA(u, v) > l and dB(u, v) > l as follows.
P (dA(u, v) > l, dB(u, v) > l)

=P (dG(u, v) > l) · 1 + P (dG(u, v) ≤ l)

· P (dA(u, v) > l, dB(u, v) > l|dG(u, v) ≤ l)

=(1− nl−1pl) + nl−1pl · (1− sl)(1− sltl−1)

=1− nl−1plsl(1 + tl−1 − sltl−1).

(35)

With Eqns. (30), (34) and (35), we have

P (y(l)
uv = 0)

=P (dA(u, v) > l, dB(u, v) > l) + Σl
i=1P (D(i)

uv)

=[1− nl−1plsl(1 + tl−1 − sltl−1)] + Σl
i=1n

l−1pls2ltl−1

=1− nl−1plsl(1 + tl−1 − 2sltl−1).

(36)

Meanwhile,

P (y(l)
uv = 1)

=P (dA(u, v) > l, dB(u, v) ≤ l)

+ P (dA(u, v) ≤ l, dB(u, v) > l)

=P (dB(u, v) ≤ l)P (dA(u, v) > l|dG(u, v) ≤ l)

+ P (dA(u, v) ≤ l)P (dB(u, v) > l|dG(u, v) ≤ l)

=(nt)l−1(ps)l(1− sl) + nl−1(ps)l(1− sltl−1)

=nl−1plsl(1 + tl−1 − 2sltl−1).

(37)

By calculation, P (y
(l)
uv = 2) = 1− P (y

(l)
uv = 0)− P (y

(l)
uv =

1) = 0. We note that this probability should be a positive value
in reality, while it is far less than nl−1pl thus approximated to
be zero here. Therefore, we can approximate the expectation

E[y(l)
uv ] =

2∑
k=0

k · P
(
y(l)
uv = k

)
= nl−1plsl(1 + tl−1 − 2sltl−1).

(38)

In the vein of deriving E[y
(l)
uv ], we can also obtain the

expectation of x
(l)
uv as

E[x(l)
uv] = nl−1plsl(1 + tl−1). (39)

According to Eqn. (25), the expectations of X
(l)
k and Y

(l)
k

can thereupon be approximated with

E[X
(l)
k ] = |Em,k|

(
nl−1plsl(1 + tl−1)

)
,

E[Y
(l)
k ] = |Em,k|

(
nl−1plsl(1 + tl−1 − 2sltl−1)

)
.

(40)

Eqns. (28) to (40) are all derived based on an Erdős-

Rényi network model. Finally, when it turns to an arbitrarily

distributed network G(n,p), it is reasonable to replace the

parameter pl with the multiplication of a series of puv , i.e.,∏l
i=1 puivi , since they represent the same probability (of l

edges existing) in different models. This multiplication can be

further approximated by p̄l, where p̄ = E[p], considering that

we assume puv for different node pairs u, v is independent

from one another. Consequently, the expectations of X
(l)
k and

Y
(l)
k can be approximated as we have stated in Eqn. (17).
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