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Abstract—In camera sensor networks (CSNs), full view coverage,
meaning that any direction of any point in the operational region is
covered by at least one camera sensor, plays a significant role in object
identification. While prior work is dedicated to static CSNs for the seek
of critical condition to achieve full view coverage, such performance still
remains unknown in mobile CSNs. In this paper we take the initiative
to address this issue, where a centralized parameter, i.e., equivalent
sensing radius (ESR), is defined to unravel the critical requirement for
asymptotic full view coverage in mobile heterogeneous CSNs in the
sense that camera sensors of different sensing capabilities are moving
around in target area. Specifically, we derive ESR under three different
mobilities, i.e., 1-dimensional and 2-dimensional random walks and
random rotating model, and then explore respectively the corresponding
critical conditions to achieve almost surely coverage1. The static network
is introduced as a baseline in order to gain a clear understanding of
how mobility affects coverage performance differently. Interestingly, we
find that both 1 dimensional and 2 dimensional random walks exhibit
a smaller ESR than static one whereas ESR is even larger in random
rotating mobility than that in static CSNs. Moreover, the almost surely
coverage is found to be around 1.225 times of the critical condition to
achieve coverage with high probability2, and therefore turns out to be a
stronger result compared to the traditional coverage with high probability.
We then turn to the impact of various mobility patterns on sensing
energy consumption, a metric that is closely related to ESR, and show
that it can be decreased by random walks under certain delay tolerance.
The relationship between ESR and percentage of full view coverage is
also discussed and the results unify those under homogeneous CSNs.

1 INTRODUCTION
Coverage, as a crucial performance metric, is commonly
used in Wireless Sensor Networks (WSNs) in measure-
ment of how well a target field is monitored by sensors.
Intuitively, a better guarantee of coverage can lead to
higher network controllability, and therefore manifests
its importance in a wide range of control-aware appli-
cations such as security surveillance, traffic control, en-
vironmental monitoring, intrusion detection, industrial

The early version of this paper is appeared in the Proceedings of IEEE
INFOCOM 2014 [27].

1. Let An be a countable collection of sets, and lim supn→∞ An =∩∞
n=1

∪
m≥n Am, which means that for every element in the lim sup,

for every N , there exists an An with n ≥ N that has the element.
For event An, if P(lim supn→∞ An) = 1, we say the event An will
almost surely happen or happen infinitely often. Let lim infn→∞ An =∪∞

n=1

∩
m≥n Am, which means that for any element in the lim inf ,

there is an N such that the element is in every An for any n ≥ N . For
event An, if P(lim infn→∞ An) = 1, we say the event An will happen
eventually.

2. If event An satisfies limn→∞P (An) = 1, then event An will
happen with high probability.

process control [1] and etc. As a kind of derivative of
WSNs, Camera Sensor Networks (CSNs) have recently
attracted an increasing amount of attention due to the
significant ability of visual information collection, and
consequently can provide more comprehensive and ac-
curate information about real-time situation. Different
from traditional sensors that possess omnidirectional
sensing ability, a camera sensor is only capable of sensing
within a certain angle of view, beyond which it fails to
capture any information.

Such phenomenon can be briefly attributed to the
viewing direction, which, as a property that exclusively
belongs to camera sensors, distinguishes the coverage
issue of CSNs from the one that has been intensively
studied in conventional WSNs [2]- [13]. The main reason
is that the model suggested by those works characterizes
coverage through simply assuming that an object is con-
sidered to be covered if it is within the sensor’s sensing
range, which is usually supposed as a disk. However,
when it comes to a CSN, such simplification falls short of
well reflecting the features of camera sensors in the sense
that the model fails to embody viewing direction. To
solve this, Wang et al. [14] took a pioneer step ahead by
proposing a novel concept called full view coverage in
judgement of coverage performance in CSNs. An object
is said to be full view covered if its viewed direction is
always sufficiently close to its facing direction, regardless
of wherever it actually faces. The advantage of full view
coverage lies in incorporating the object recognition [15],
and meanwhile guarantees that every perspective of an
object at any point is under the view of some camera
sensor if the target area is full-view covered.

A key step to construct a full-view covered CSN
is to find out under which conditions such full view
coverage can be achieved. Nevertheless, in contrast to
the huge efforts made in traditional WSNs, the issue of
coverage in CSNs still remains underexplored. With their
proposed coverage metric as stated above, Wang et al.
[14] considered two types of deployment, i.e., random
and uniform deployment and the lattice based one in
CSNs, and provided a sufficient condition for full view
coverage in the former one as well as a critical (i.e.
both necessary and sufficient) condition under the latter.
Following that, Wu et al. [16] introduced heterogeneity
into the CSN, where they also analyzed the necessary
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and sufficient conditions to achieve full view coverage,
respectively. Another line of existing works are con-
cerned with full view barrier coverage in CSNs [17] [18].

All these works are commonly based on static net-
works for the seek of coverage condition. With recent
development in electronic technology and image sensors,
it is possible to deploy mobile CSNs with camera sensors
moving in the area of interest and takeing pictures or live
videos simultaneously. The ability of mobility greatly
expands CSN’s application range [19], while the use
of mobile camera sensors also brings about benefit of
enlarging the monitored area as mobile cameras are
able to move toward any corner of the area of interest.
Specifically, as demonstrated by Liu et al. [20] and
Saipulla et al. [21], mobility can lead to improvement
of barrier coverage performance since it may reduce the
detection time of intruders. However, a question remains
unknown: how could mobility potentially enhance
coverage in CSNs? And to what extent?

To address this issue, we present a first look into cover-
age problem in mobile CSNs. Leveraging the conception
of full view coverage in [14], we focus on the critical
coverage condition in three different mobility models,
i.e, 1-dimensional and 2-dimensional random walks as
well as random rotating mobility. Moreover, we use static
network as a baseline to get a clear understanding of the
benefit brought by mobility. For the sake of tractabil-
ity, here we consider asymptotic coverage in the sense
that the total number of cameras approaches to infinity.
Specifically we focus on a metric Equivalent Sensing
Range (ESR), which, as pointed out by previous study
[13], plays a vital role in determining the full coverage of
the whole sensor network, regardless of the total number
of sensors or the sensing radius of a single senor under
random mobility patterns, and is thus a much easier and
more general way to operate coverage control. However,
unlike the sensing range of traditional sensors, here it
relies heavily on several key factors such as the angle
of view (or in other words, viewing direction), sensing
radius, deployment density of camera sensors, and etc.
To quantify this element, we introduce the conception
of Equivalent Sensing Range (ESR), of which rigorous
definition will be provided in Section II.

Here it is worthwhile noting that in our definition of
ESR, we also take into consideration the heterogeneity
of camera sensors. The introduction of heterogeneity co-
incides well with the fact that camera sensors may come
from different manufacturers and thus have different
sensing parameters, or the sensing capability of cameras
will decline with the elapse of time or vary under
different obstruction of terrains. Specifically, we deal
with camera heterogeneity through dividing them into
different groups according to their sensing parameters
as is similarly conducted in [22] [23]. Then we define
in all the four scenarios the corresponding ESRs, which
incorporate the combined effects of viewing direction,
camera heterogeneity and mobility patterns. Based on

those, we derive critical ESRs under four mobility cases3

with uniform sensor deployment 4. The merit of critical
ESR lies in facilitating the evaluation of the overhead
for a CSN to achieve full view coverage, and both the
advantages and drawbacks incurred by mobility are
disclosed through the results.

However, there are several significant works that seem
to be similar with our work. The work [29] is one
of them. We have to admit that our work does share
some similarity with Kumar’s literature in terms of the
technical structure. Despite of that, there still exist may
differences between the two works.First of all, our work
assumes that the sensor just have partial view, which is
much closer to the reality. And the Φ considered is not
simply a constant, as we shown in Section 2.1 that “All
sensors in group Gy have identical sensing radius ry and
angle Φy ,but either ry ̸= rz or Φy ̸= Φz will hold if y ̸= z.
So our Φ will change as n varies. In addition, though
our analysis looks similar to that in Kumar’s work in
terms of the structure, our main contribution is on the
CRITICAL ESR, which is

√
3
2 ESR in the literature. With

the introduction of critical ESR, we are able to find the
tighter condition than that discovered in Kumar’s work.
Last but not least, our work addresses the first of several
future directions that Kumar pointed out in Section 4 in
his work. Overall, all those factors suffice to differ our
work from Kumar’s.

Our main contributions are highlighted as follows.
1. We provide the critical conditions (critical ESR) of

full view coverage or coverage with high probability
under four different mobile situations. Specifically, our
results disclose that the critical ESRs derived under
random walks can be reduced by approximately an

order of Θ
(√

logn+log logn
nθ

)
, where n and θ respectively

represent the number of camera sensors and viewing
angle, compared to that under static CSNs, whereas the
random rotating mobility leads to a critical ESR twice
than that of static CSNs.

2. We also derive the critical condition to achieve
almost surely coverage, which is shown to be approxi-
mately 1.225 times of that to achieve coverage with high
probability. Therefore, the almost surely coverage result
turns out to be stronger compared to the traditional cov-
erage with high probability. More delicate relationship
between the two types of coverage is also discussed.

3. We present an extra look into sensing energy
consumption, a metric that is closely related to ESR.
Comparing with static networks, we demonstrate that
both 1-dimensional and 2-dimensional random walks
can reduce the sensing energy consumption by an order
of Θ( logn+log logn

nθ ), at the expense of Θ(1) delay under
uniform deployment. In contrast, random rotating mo-
bility incurs no change on energy consumption, but with

3. We can treat static network as a special case of mobility.
4. As the major concern in the present work lies in the effect of mo-

bility, we leave it a future work for exploration of other deployments.
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the same delay cost.
While a general analysis framework of the coverage

process was given out by [28], we would like to state
some major differences between the results in our work
and those in the book [28]. First of all, as shown by
Kumar et al. [29] (Theorem 3.11 in [29]), the correspond-
ing lower bound of r(n) is πr2(n) = 4 logn+log logn+c(n)

n
for c(n) → ∞. In contrast, our result discloses that the
whole coverage area can be satisfied once πr2(n) =

2 logn+log logn+c(n)
n . Therefore, we obtain a stronger result.

Further, we notice from the book by Hall et al. [28]
(Chapter 1.6) that the expected amount of the target
destroyed by salvo of size n is

en = π−
∫
|y|<1

[1− (2πσ2)−1

∫
|x−y|≤r&θ≤ϕ

2

exp{−(2σ2)−1(x2
1 + x2

2)}dx1dx2]
ndy1dy2.

After simplification, we have

en → e∞(f) ≡ π −
∫
|y|≤1

exp{−λϕ
π
f(y)}dy.

Although we cannot obtain the exact expression of λ as n
goes to infinity, the simplified expression returns a more
refined result.

The rest of the paper is structured as follows. The
basic models and definitions are described in Section 2.
We show the geometric analysis and preliminaries in
Section 3. In Section 4, we study the static model and
derive the ESR to achieve full view coverage. The corre-
sponding analysis in mobile CSNs are available in Sec-
tion 6.2. Section 7 is dedicated to detailed discussion of
theoretical results while Section VII presents simulations.
In Section 8, we give the concluding remarks.

2 MODELS AND DEFINITIONS
2.1 Deployment Scheme and Sensing Model
In this paper, the operational region of the sensor net-
work is assumed to be a square of unit area. Similar to
the previous literature, we ignore the boundary effect by
considering a torus topology to simplify the analysis5.
n sensors are randomly and uniformly deployed in the
operational region, independently of each other. The ran-
dom strategy is favored in the situations where the op-
erational region is inimical and hostile, or it is expensive
and difficult to place sensors by human or programmed
robots. Under such circumstance, wireless sensors may
be sprinkled from aircrafts, delivered by artillery shell,
rocket, missile or thrown from a ship, instead of manual
placement by human beings or programmed robots.

A camera sensor S can sense perfectly in a sector
of radius r and angle ϕ, but has no sensing capability
outside that sector. Without confusion, S also represents
the location of the sensor. The angular bisector of ϕ is

5. Actually, coverage problem near the boundaries differs signifi-
cantly from general situations. However, it is beyond the scope of this
paper.

recognized as orientation of S, denoted by f⃗ . This model
is commonly used in literature [24] and [25], called binary
sector model. Further, since the quality of information
provided by a camera is sensitive to its viewpoint, there
are other two essential directions to be considered. The
direction towards which a point P faces is called its
facing direction, denoted by p⃗. The vector

−→
PS is called

viewed direction of the object, which reflects the viewpoint
of sensor S. Figure 1 illustrates these directions which
will be considered in subsequent discussion.

S

P

viewed direction of object

sensor s orientation

facing direction of object

Fig. 1. For sensor S and point P , the orientation, viewed
direction and facing direction are depicted respectively.

We consider heterogeneous sensors, of which the dif-
ferent qualities are described by partitioning sensors into
u groups G1, G2, · · · , Gu. As the total number of sensors
is n, each group Gy (y = 1, 2, · · · , u) has ny = cyn
sensors, where cy is a constant invariant to n. Clearly,
cy satisfies 0 < cy < 1 and

∑u
y=1 cy = 1. All sensors

in group Gy have identical sensing radius ry and angle
ϕy , but either ry ̸= rz or ϕy ̸= ϕz will hold if y ̸= z
(y, z = 1, 2, · · · , u). We mainly study the asymptotic cov-
erage here, implying that n is a variable approaching to
infinity, whereas ry and ϕy , which is sometimes denoted
by ry(n) and ϕy(n), are dependent variables of n. Hence,
the requirements for ry(n) and ϕy(n) change as n varies.
2.2 Static and Mobility Patterns
For mobility patterns, we divide the sensing process
into time slots with unit length, and sensors can move
according to certain mobility patterns in each time slot.
When assuming the network works in a large amount
of time slots, a single time slot can also be viewed as an
instant.

Static Model: Wherever a sensor is located, its ori-
entation f⃗ faces towards all possible directions with
equal probability. And once a sensor is deployed, neither
its orientation f⃗ nor its location will change, which
means that the camera will not steer its lens during the
operation.

2-Dimensional Random Walk Mobility Model: At
the very beginning of each time slot, each sensor uni-
formly chooses a random direction σ ∈ [0, 2π), and then
it rotates its sensor’s orientation to the chosen one and
moves along the direction with a constant velocity v
in each time slot on a 2-dimensional surface and the
velocity is Θ(1).

1-Dimensional Random Walk Mobility Model: Sen-
sors are classified into two types of equal quantity, i.e.,
H-nodes and V-nodes. And sensors of each type move
horizontally and vertically, respectively. At the very be-
ginning of each time slot, each sensor randomly and uni-
formly chooses a direction along its moving dimension
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and travels in the selected direction for a certain distance
D, a random variable uniformly distributed from 0 to 1.6

The velocities of the sensors are not considered, as long
as the sensors could reach the destination within the time
slot, and remain stationary until the next slot.

Random Rotating Mobility Model: Cameras can ro-
tate and change their orientation in a clockwise/coun-
terclockwise manner. At the very beginning of each time
slot, each sensor randomly chooses a rotating direction,
i.e. a clockwise or counterclockwise one, and then rotates
an angle Ψ, a random variable uniformly distributed
between 0 and 2π. Note that the results can be easily
expanded to more general cases where Ψ follows a
certain distribution function fΨ(ψ). We omit it here for
the sake of brevity. Similarly, the velocity of sensors is
also ignored.

The static model has been widely adopted due to its
favorable property of characterizing lower and upper
bounds of the performance. Note that in some previous
literatures, it is also called I.I.D. mobility pattern. Since
I.I.D mobility model does not change the coverage area
of sensors, we can simply treat it as a quasi-static model,
or view static model as I.I.D. mobility model with an in-
finity period. Comparatively, the 2-dimensional random
walk mobility model can highly exploit the randomness
of the motion of the nodes and is closer to realistic
situations where the statistics of the moving habit is un-
known. The 1-dimensional random walk mobility model
is motivated by certain networks where nodes move
along determined tracks such as the networks employed
in streets, systems consisted of satellites moving in fixed
orbits and etc. In the random rotation mobility that
we propose, camera sensors are allowed to rotate their
orientation to broaden the viewing angle.

2.3 Performance Metrics

To assess the full view coverage performance in CSNs,
we give the following five definitions.

2.3.1 Definition of θ-view coverage
For a specific facing direction p⃗ of point P, it achieves
θ-view coverage if it is covered by at least one sensor
and the angle between p⃗ and its viewed direction is no
more than θ. Here, θ ∈ (0, π] is a predefined constant
parameter called effective angle.

2.3.2 Definition of full θ-view coverage
For a point P , it is said to be full θ-view covered if
every possible facing direction p⃗ is θ-view covered. The
operational region achieves full θ-view coverage if and
only if (iff) every point in this region achieve full θ-view
coverage. For the sake of simplicity, we also call it full
view coverage without incurring too much ambiguity
throughout the rest of the paper.

6. Long distance travel is energy-consuming. And if the sensor can
travel beyond the dimension of the operational region (i.e., D > 1),
it can always cover the area along its moving dimension which is
meaningless.

PS

Fig. 2. The sensor’s angle is ϕy and the angle φ between the
viewed direction and the facing direction needs to be less than
the effective angle θ.

2.3.3 Definition of full view coverage in a period T
If during a time period T (T time slots), the network is
in the state of full view coverage for at least one time
slot, we say the network achieves full view coverage in
period T .

2.3.4 Definition of Equivalent Sensing Radius
For heterogeneous camera sensor networks, we define
the equivalent sensing radius (ESR) for each static and
mobility pattern to analyze the asymptotic full view-

coverage. Specifically, the ESR is r =
√∑u

y=1 cy
ϕy

2π r
2
y

for static model, and is r =
∑u

y=1 cy
ϕy

2π ry for both 1-
dimensional and 2-dimensional random walks and the
ESR and is r =

√∑u
y=1 cy(

17
8 − 1

2 (
3
2 − ϕy

2π )
2)r2y for ran-

dom rotating mobility model.
In this part, ϕy

2π is viewed as the weight of each sensor’s
radius. When ϕ = 2π, it is equivalent to a sensor whose
sensing range is a circle, and ESR in this case is reduced
to that of omnidirectional sensors [22].

As we mentioned above, we would like to discuss
three moving states of sensors. Thus, the motivation of
ESR is to unify them as well as present the combination
of ry and ϕy of the camera sensor. And our goal is to
find a suitable characteristic of sensors to achieve the
full view coverage of a given area with a given number
of sensors. The critical ESR enables us to find the suitable
characteristic of sensors. It is undeniable that there are
many alternative indices that can be used. However, the
reason that we choose ESR in the present work is that the
parameters of both the sensing radius (ry) and viewing
angle (ϕy) required in ESR can be easily obtained when
we purchase a camera sensor. In this way, we can easily
confirm our results in real practice.

Intuitively, the coverage of the network is positively
correlated with ESR. The ESR needed when the network
exactly achieves asymptotic coverage is called critical
ESR, which is defined as follows.

2.3.5 Definition of Critical ESR
Let H denotes the event that the operational region is
full view covered. Then

lim
n→∞

P (H) = 1, if ri ≥ cRi(n) for any c > 1;

lim
n→∞

P (H) < 1, if ri ≤ ĉRi(n) for any 0 < ĉ < 1,
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where Ri(n) is the critical ESR under four different static
and mobile patterns, with i =stat, r.r., 2.r.w., 1.r.w.,
representing the abbreviations of “static model”, “ran-
dom rotating mobility model”, “2-dimensional random
walk mobility model” and“1-dimensional random walk
mobility model”, respectively.

When ESR exceeds the critical one, the operational
region will be full covered with probability one when
n is sufficiently large, and guarantees the sufficiency of
critical ESR. In contrast, when ESR is below the critical
value, even though n is large enough, the operational
region still cannot be full covered with probability one,
which reflects the necessity of critical ESR.

3 OVERVIEW OF THE GEOMETRIC ANALYSIS

It has been shown in Wang et al. [22] that a dense
grid M with

√
m ×

√
m is almost always covered when

m = n log n. Based on which we can also prove that
the θ-view coverage of a facing direction set K formed
by k directions of a point can guarantee its full view
coverage when k = n log n. Technically, a key factor
behind such result lies in the facing direction set of a
point. Figure 3 (b) illustrates an example of a facing
direction set K of point P . We use k = 8 facing directions
to uniformly distribute the angle of circumference into 8
parts. The correlation between full view coverage of P
and k directions is presented in Lemma 1.

 

 

Tj

j

s

P

 

0 

(a) (b)

a

v b

Fig. 3. (a) A set of four nearest directions including a and
b in the direction set K; (b) The possible area Tj to θ-view
cover orientation Oj .

Lemma 1: Assume θ, θ0, k are constants and θ0 = θ +
2π
k . K is what we shown above. If these k directions can

all achieve θ-view coverage, then point P can achieve
full view coverage with effective angle θ0.

Proof: Let v be an arbitrary facing direction of point
P. Without loss of generality, we assume it is inside the
sector formed by virtual orientation a and b in K and
is closest to orientation a, as shown in Figure 3 (a).
By assumption, there exists at least one sensor that can
cover a, with effective angle θ. Suppose one of them
locates at point s (in Figure 3 (a)), and ∠(s, a) < θ. s
also represents the viewed direction without confusion.
Besides ∠(a, v) < 2π

k , then

∠(s, v) = ∠(s, a) + ∠(a, v) < θ +
2π

k
= θ0. (1)

Obviously Eq. (1) still holds when the sensor locates
between a and b. Also limk→∞ θ0 = θ, which means θ0 is
only slightly larger than θ, when k is large enough. With
THEOREM 4.1 in [3], the following theorem is derived.

Theorem 1: For point P, if a k facing direction set K
satisfies k = n log n, the θ-view coverage of set K can
promise the full view coverage of P with effective angle
θ when n is large enough.
Thus we can focus on the θ-view coverage of orientation
set K for the dense gird M to estimate full view coverage
performance of the operational region.

4 CRITICAL SENSING RANGE IN STATIC
CSNS
We start with the analysis of full view coverage for
static camera sensor networks, and obtain the critical
ESR of heterogeneous cameras for coverage with high
probability. We also derive the critical equivalent sensing
range for almost surely coverage. We first have the
following theorem.

Theorem 2: Under the uniform deployment with static
model, the critical ESR for static heterogeneous CSNs to
achieve asymptotic full view coverage is

Rstat(n) =

√
2(log n+ log log n)

nθ
.

Let Pi,j,Sy denote the probability that orientation Oj of
point Pi is θ-viewed covered by Sensor S in group Gy . To
make Oj of set K θ-viewed covered, at least one sensor
should locate in sector Tj , as shown in Figure 3(b). For
sector Tj , the angular bisector is orientation j, with an
angle 2θ. Then
Pi,j,Sy

= P(S falls in Tj)× P(S has proper orientation)

=
2θ

2π
× πr2y(n)×

ϕy
2π

=
r2y(n)ϕyθ

2π

4.1 Necessary Condition of Theorem 2

Let Gstat(n, u) denote the network that each point in M
achieves full view coverage when the category of sensors
is u. And we use Pf−stat(n, u) to represent the probabil-
ity that Gstat(n, u) has at least one point that is not full
view covered. Then we derive the following proposition.
For simplicity, we say a direction uncovered and not θ-
view covered equivalently, and a point uncovered and
not full view covered interchangeably. To simplify the
proof, we define a variable ω(n) to combine the rstat(n)
with the Rstat(n).

Proposition 1: In the static heterogeneous CSN, if

rstat(n) =

√
2(log n+ log log n+ ω(n))

nθ
,

m = n log n and k = n log n, then

lim inf
n→∞

Pf−stat(n, u) ≥ e−2ω − θ

π
e−3ω,

where ω = limn→∞ ω(n).
Proof: To simplify the complexity of the proof, we

provide the following lemma first.
Lemma 2: Given a variable x = x(n) satisfies 0 <

x(n) < 1
2 , and a variable y = y(n) > 0, then (1 − x)y ∼

e−xy if x2y approaches to zero as n→ ∞.
Using the similar method in the proof of LEMMA 1 [16],
the proof of Lemma 2 can easily follow. Then we study
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the case that r(n) =
√

2(logn+log logn+ω(n))
nθ for a fixed ω.

Referring to Bonferroni inequalities, we get
Pf−stat(n, r(n))

≥
∑
Pi∈M

P({some point Pi is not full view covered})

≥
∑
Pi∈M

P({Pi is the only uncovered point})

≥
∑
Pi∈M

∑
Oj∈K

P({only Oj of Pi is uncovered})

1
≥
∑
Pi∈M

∑
Oj∈K

P({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

P({ Oj and Oh of Pi are uncovered}).

(2)

The
1
≥ is where Bonferroni inequalities applied. For the

first term of the R.H.S. of Eq. (2)
P({Oj of Pi is uncovered})

≥
u∏

y=1

P({Oj is uncovered by sensors in Gy})

=

u∏
y=1

(
1−

r2y(n)ϕyθ

2π

)cyn

,

(3)

where r2y(n)ϕyθ

2π represents the probability that orientation
Oj of point Pi is θ-viewed covered by Sensor S in group
Gy , while cyn represents the number of sensors in group
Gy . Then with Lemma 2 and Eq. (3), we obtain that∑

Pi∈M

∑
Oj∈K

P({Oj of Pi are uncovered)

≥ mk

u∏
y=1

(
1−

r2y(n)ϕyθ

2π

)cyn

∼ mke−nθ
∑u

y=1 cy
ϕy
2π r2y(n) = mke−nθr2stat(n)

= (n log n)2e−2(logn+log logn+ω) = e−2ω.

(4)

For the second term of the R.H.S. of Eq. (2)
P({Oj and Oh of Pi are uncovered})

≤ 2θ

2π

u∏
y=1

(
1− 3

2

r2y(n)ϕyθ

2π

)cyn

+

(
1− 2θ

2π

) u∏
y=1

(
1− 2

r2y(n)ϕyθ

2π

)cyn

,

(5)

where the two terms on the right side correspond to
the cases where ∠(Oj , Oh) ≤ 2θ and ∠(Oj , Oh) > 2θ,
respectively. For the first term, 3

2

r2y(n)ϕyθ

2π is the average
area sensors may locate to θ-view cover Oj or Oh. Since
the overlapping area between Oj and Oh is a random
variable uniformly distributed between 0 and θr2(n), the
corresponding possible area is also a random variable,
uniformly distributed between r2y(n)ϕyθ

2π and 2
r2y(n)ϕyθ

2π , so

that its expectation is 3
2

r2y(n)ϕyθ

2π . The second term can be
analyzed in a similar manner.

Then according to Lemma 2 and Eqn. (5), we obtain∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

P({Oj and Oh of Pi are uncovered)

≤ mk2
2θ

2π

u∏
y=1

(
2π − 3

2r
2
y(n)ϕyθ

2π

)cyn

+mk2
(
1− 2θ

2π

) u∏
y=1

(
2π − 2r2y(n)ϕyθ

2π

)cyn

∼ mk2
θ

π
e−

3nθ
2 r2stat +mk2

(
1− θ

π

)
e−2nθr2stat

=
θ

π
e−3ω +

(
1− θ

π

)
e−4ω 1

n log n
.

Since we consider the asymptotic coverage prob-
lem where the total number of cameras n ap-
proaches to infinity, for any fixed ω, we can obtain
lim infn→∞ Pf−stat(n, u) ≥ e−2ω − θ

π e
−3ω . Now we con-

sider the ω = lim infn→∞ ω(n),which indicates that
ω(n) < ω + δ for any δ > 0, for all n > Nδ . Since
Pf−stat(n, u) is monotonically decreasing in rstat and
thus in ω, we have lim infn→∞ Pf−stat(n, u) ≥ e−2(ω+δ)−
θ
π e

−3(ω+δ), for all n > Nδ .

It has been known that Pf−stat(n, u) is bounded away
from zero. Combined with the definition of ESR for static
model, we know that rstat ≥ Rstat =

√
2(logn+log logn)

nθ

is necessary to achieve the full view coverage of M.
Moreover, if sensing range rstat is smaller than

√
3
2 of

critical ESR of static model, the result can be extended
as stated in the following Theorem.

Theorem 3: Under the uniform deployment with static
model, if the CSN satisfies rstat(n) <

√
3
2Rstat, there still

will be an nonegligible probability that the network is
uncovered. So we can say that the rstat(n) >

√
3
2Rstat is

the necessary condition of Theorem 2

Proof: We denote the event that the operational
region with n camera sensors has at least one point
that is not full view covered as Ĥn, and use P(Ĥn) to
represent the corresponding probability.

Assuming rstat(n) = c
√

3
2Rstat, and referring to Bon-

ferroni inequalities, we get

P(Ĥn) ≥
∑
Pi∈M

∑
Oj∈K

P({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

P({ Oj and Oh of Pi are uncovered})
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= mk

u∏
y=1

(
1−

r2y(n)ϕyθ

2π

)cyn

−mk2
2θ

2π

u∏
y=1

(
1− 3

2

r2y(n)ϕyθ

2π

)cyn

−mk2
(
1− 2θ

2π

) u∏
y=1

(
1− 2

r2y(n)ϕyθ

2π

)cyn

∼ mke−nθ
∑u

y=1 cy
ϕy
2π r2y(n) −mk2

θ

π
e−

3nθ
2

∑u
y=1 cy

ϕy
2π r2y(n)

−mk2
(
1− θ

π

)
e−2nθ

∑u
y=1 cy

ϕy
2π r2y(n)

=
1

(n log n)3c2−2
− θ

π

1

(n log n)
9
2 c

2−3
−
(
1− θ

π

)
1

(n log n)6c2−3
.

If rstat(n) is smaller than
√

3
2Rstat, namely, c < 1, then

according to the characteristic of P-series, we know that
∞∑

n=1

P(Ĥn) >

∞∑
n=1

1

(n log n)3c2−2
−

∞∑
n=1

θ

π

1

(n log n)
9
2 c

2−3

−
∞∑

n=1

(
1− θ

π

)
1

(n log n)6c2−3
>∞.

And {Ĥn} is a sequence of independence events. Then
using Borel–Cantelli Lemma in [26], we know that

P(lim sup
n→∞

Ĥn) = 1,

which means the event Ĥn will infinitely often happen
under an asymptotic network. Namely, when rstat(n) ≤√

3
2Rstat, for any N , there is always an n which is larger

than N , that event Ĥn will happen. Shortly, the network
is almost surely uncovered when rstat(n) is smaller than√

3
2Rstat.

4.2 Sufficient Condition of Theorem 2
Now we turn to explore the sufficient condition. First,
we obtain the following proposition.

Proposition 2: In CSN, if n sensors are randomly and
uniformly deployed in a unit square, and rstat(n) =
cRstat where c > 1, then

lim inf
n→∞

P(Ĥ) = 0. (6)

where Ĥ denotes the event that the operational region
is not full view covered as defined in Section 2.

The proof is easy to complete so we skip it here
due to space limitations. Then from Proposition 2 and
the definition of critical ESR for static model, we know
that rstat ≥ Rstat =

√
2(logn+log logn)

nθ is sufficient to
achieve the full view coverage of M. Based on that,
we can further obtain the result where sensing range
is larger than critical ESR in static network, as is stated
in Theorem 4.

Theorem 4: Under the uniform deployment with static
model, if the CSN satisfies rstat(n) > cRstat, c > 1, then
it is sufficient for the network to achieve full coverage.
4.3 Critical ESR for Full View Coverage of the Oper-
ational Range
So far we have already proved that Rstat =√

2(logn+log logn)
nθ is the sufficient condition to achieve full

view coverage for dense grid M. Referring to LEMMA 3.1
in [3], as well as Lemma 1 and Theorem 1 in this paper
and using similar approach as THEOREM 4.1 in [3], the
density of the dense grid m = n log n and the density
of the orientation set k = n log n are sufficiently large
to evaluate the full view coverage of the whole area.
Moreover, referring to Theorems 3 and 4, we conclude
that Ra.s.c. =

√
3
2Rstat is the critical condition to achieve

almost surely coverage for static model.
5 THE CRITICAL SENSING RANGE FOR MO-
BILE CSNS

Now we proceed to investigate full view coverage prob-
lem for CSNs under uniform deployment mobile scenar-
ios. Recall that we particularly consider three different
mobile patterns, namely, 2-dimensional random walk
mobility model, 1-dimensional random walk mobility
model and random rotating mobility model.

5.1 Critical ESR Under 2-Dimensional Random Walk
We investigate full view coverage in one time slot un-
der 2-Dimensional Random Walk Mobility Model, and
Figure 4 illustrates the effect of random walk mobility
of the sensor on area coverage. We will first analyze full
view coverage for dense grid M, and then expand it to
the whole area.

Theorem 5: Under the uniform deployment with 2-
dimensional random walk mobility model, the critical
ESR for mobile heterogeneous CSNs to achieve asymp-
totic full view coverage is

R2.r.w(n) =

{
logn+log logn

2nTv sin θ if θ < π
2

logn+log logn
2nTv if θ ≥ π

2

.

We will focus on the proof of the case where θ < π
2 , and

the proof is similar when θ ≥ π
2 .

5.1.1 Failure Probability of an Orientation in K
Let Fi,j denote the event that orientation Oj of point Pi is
not θ-viewed covered during the time slot τ , and P(Fi,j)
denote the corresponding probability. We use Pi,j,Sy

to
represent that Oj of point Pi is θ-viewed covered by
Sensor S in group Gy . Then we obtain

Pi,j,Sy
=
(
(θ + α)r2y(n) + 2vTry(n) sin θ

) ϕy
2π
. (7)

3T
time

sp
a
ce

2 3T T0

vT

 time T

direction

Fig. 4. T/3, 2T/3 and T ; the right one illustrates the trace of
sensor mobility during the whole interval [0, T ). The shadowed
disks constitute the area being covered at the given time instant,
and the union of the region inside the dotted line and the
shadowed disks represents the area being covered during the
time interval.
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Fig. 5. Illustration of calculating the mobility area. It is difficult
to calculate the mobility area directly, so we rearrange the area
into a square and then can easily obtain the result.

In Eq. (7), (θ + α)r2y(n) + 2vTry(n) sin θ represents the
possible area the sensor may locate in order to θ-view
cover Oj during T slots, if it does not change its direction
during the process. (Similarly as we can see from the Fig.
5 that the Eq. (7) can change into (θ+α)r2y(n)+2vTry(n).)
In this formula θr2y(n) represents the possible area where
sensors in group Gy, y = 1, 2, .., u might locate if it is
stationary,like sector Tj in Figure 3. αr2y(n) represents
the additional area due to rotation, which is caused by
the sensor’s initial orientation and its chosen direction δ.
Considering its mobility character, the possible area can
be 2vTry(n) sin θ more, like the region inside the dotted
line in Figure 4. If the sensor changes its direction during
this period, the sensing area will overlap, making it no
larger than 2vTry(n) sin θ. For formula ϕy

2π , it represents
the probability that the sensor in group Gy has proper
orientation to sense the point. With all those factors
determined, P(Fi,j) can then be calculated.

5.1.2 Necessary ESR for Full View Coverage

Here, we use Ĥτ to denote the event that the dense
grid M is not fully full view covered in the time slot
τ , and present the following proposition regarding the
necessary condition. We will slightly abuse the notation
and use the ω which represent the same meaning as that
in Proposition 1

Proposition 3: In the mobile heterogeneous CSN with
2-dimensional random walk mobility model, if r2.r.w. =
logn+log logn+ω(n)

2nTv sin θ and the density of the dense grid M
is m = n log n, the density of the orientation set K is
k = n log n, then

lim inf
n→∞

Pτ (Ĥτ ) ≥ e−2ω − θ

π
e−3ω,

where ω = limn→∞ ω(n).
Proof: Similar to the proof of Proposition 1, we first

study the case where r2.r.w. =
logn+log logn+ω

2nTv sin θ , for a fix
ω.
Pτ (Ĥτ ) ≥

∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

Pτ ({Oj and Oh of Pi are uncovered).

(8)

And we calculate that
Pτ ({Oj of Pi is uncovered})

=

u∏
y=1

(
1−

(
(θ + α)r2y(n) + 2vTry(n) sin θ

) ϕy
2π

)cyn

=

u∏
y=1

(
1− (1 + λy)

ϕyvTry(n) sin θ

π

)cyn

,

where λy =
(θ+α)ry(n)
2vT sin θ = Θ(ry(n)) = o(1), since the

asymptotic coverage problem is considered.
Then we can bound the first term of R.H.S of Eq. (8),∑

Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered}) (9)

≥mke−4vT sin θn
u∑

y=1

cy
ϕy
2π
ry

=mke−4vT sin θnr2.r.w.

=e−2ω.

Similarly, we bound the second term∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

Pτ ({Oj and Oh of Pi are uncovered) ∼ θ

π
e−3ω.

Then we have lim infn→∞ Pτ (Ĥτ ) ≥ e−2ω − θ
π e

−3ω . Since
ω is a function of n, the conclusion holds.
According to Proposition 3, we know that R2.r.w. ≥
logn+log logn+ω(n)

2nTv sin θ is necessary to achieve the full view
coverage of M. Moreover, if sensing range is smaller
than

√
3
2 of critical ESR of the 2-dimensional random

walk mobility model, we can extend our result to the
following theorem. We omit the proof here since it shares
a similar technique adopted in the proof of Theorem 3.

Theorem 6: Under the uniform deployment with the 2-
dimensional random walk mobility model, if the CSN
satisfies r2.r.w.(n) <

√
3
2R2.r.w., there still will be an

nonegligible probability that the network is uncovered.
So we can say that the r2.r.w. >

√
3
2R2.r.w. is the

necessary condition for the network to achieve full view
coverage.

5.1.3 Sufficient ESR for Full View Coverage

Before we proceed, we first present the following propo-
sition.

Proposition 4: In CSN, if n sensors are randomly and
uniformly deployed in a unit square, and r2.r.w.(n) =
cR2.r.w.(n) where c > 1, then

lim inf
n→∞

Pτ (Ĥτ ) = 0. (10)

The proof can be completed using a similar approach as
in Proposition 2 following that fact that Eq. (10) can be
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further written as

Pτ (Ĥτ ) = Pτ (

m∪
i=1

Fi)

≤ mk

u∏
y=1

(
1−

(
(θ + α)r2y(n) + 2vTry(n) sin θ

) ϕy
2π

)cyn

∼ (n log n)2e−4vT sin θnr2.r.w.

=
1

(n log n)2c2−2
→ 0,

(11)

for any c > 1.
From Proposition 4 and the definition of critical ESR

for 2-dimensional random walk mobility model, we
know that r2.r.w. ≥ cR2.r.w. =

logn+log logn+ω(n)
2nTv sin θ ,namely

c > 1, is sufficient to achieve the full view coverage of M.
Moreover, Theorem 7 states an extended result if sensing
range is more than critical ESR of the 2-dimensional
random walk.

Theorem 7: Under the uniform deployment with 2-
dimensional random walk mobility model, if the CSN
satisfies r2.r.w.(n) > cR2.r.w.,c > 1, then it is sufficient for
the network to achieve full coverage.

5.1.4 Critical ESR for Full View Coverage of the Opera-
tional Range

Similar to the analysis in the static model, Theorem 5
follows. Namely, R2.r.w. =

logn+log logn
2nTv sin θ is the critical con-

dition to achieve coverage with high probability. More-
over, referring to Theorems 6 and 7, we conclude that
Ra.s.c. =

√
3
2R2.r.w. is the critical condition to achieve

almost surely coverage for 2-dimensional random walk
mobility model. Apparently, there is a decrease in critical
ESR under 2-dimensional random walk compared to
static case. Further more, we proceed to analyze how
it will be affected in 1-dimensional random walk.

5.2 Critical ESR Under 1-Dimensional Random Walk

5.2.1 Failure Probability of an Orientation in K
Similarly, let Fi,j denote the event that orientation Oj of
point Pi is not θ-viewed covered during the time slot τ ,
and P(Fi,j) denote the corresponding probability. We use
Pi,j,Sy

to represent that Oj of point Pi is θ-view covered
by Sensor S in group Gy .

It can be derived from Wang et al. [22] that un-
der 1-dimensional random walk mobility model, the
probability that S falls in the circle around of Pi,
with radius ry is Pi,S = 4

3ry . And it is clear that
P(S falls in cirle around Pi)=Pi,S . Then we obtain
Pi,j,Sy

= P(S falls in Tj)× P(S has a proper orientation)

= P(S falls in the cirle around Pi)×
2θ

2π
× ϕy

2π

=
θϕy
2π2

Pi,S =
2θϕyry(n)

3π2
,

(12)

based on which P(Fi,j) can be easily calculated.

5.2.2 Necessary ESR for Full View Coverage
Here, we use Ĥτ denote the event that the dense grid
M is not fully full view covered in time slot τ . And
we now present the following proposition regarding the
necessary condition.We will slightly abuse the notation
and use the ω which represent the same meaning as that
in Proposition 1.

Proposition 5: In the mobile heterogeneous CSN with
1-dimensional random walk mobility model, if r1.r.w. =
3π(logn+log logn+ω(n)

) 2θn and the density of the dense grid
M is m = n log n, the density of the orientation set K is
k = n log n, then

lim inf
n→∞

Pτ (Ĥτ ) ≥ e−2ω − θ

π
e−3ω,

where ω = limn→∞ ω(n).
Proof: Similar to the proof of Proposition 1, we first

study the case where r1.r.w. =
3π(logn+log logn+ξ(n))

2θn , for
a fix ξ.
Pτ (Ĥτ ) ≥

∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

Pτ ({Oj and Oh of Pi are uncovered).

(13)

And we calculate that
Pτ ({Oj of Pi is uncovered}) =

u∏
y=1

(
1− 2θϕyry(n)

3π2

)cyn

.

Then we can bound the first term of R.H.S of Eq. (13),∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered}) ≥ e−2ω, (14)

for any γ > 1 and all n > Nξ.
Then we bound the second term∑
Pi∈M

Oj≠Oh∑
Oj ,Oh∈K

Pτ ({Oj and Oh of Pi are uncovered)

≤ mk2
2θ

2π

u∏
y=1

(
1− ry(n)ϕyθ

π2

)cyn

+mk2
(
1− 2θ

2π

) u∏
y=1

(
1− 4

3

ry(n)ϕyθ

π2

)cyn

∼ mk2
θ

π
e−

2nθ
π

∑u
y=1 cy

ϕy
2π ry(n)

+mk2
(
1− θ

π

)
e−

8nθ
3π

∑u
y=1 cy

ϕy
2π ry(n)

= mk2
θ

π
e−

2nθ
π r1.r.w. +mk2

(
1− θ

π

)
e−

8nθ
3π r1.r.w.

=
θ

π
e−3ω +

(
1− θ

π

)
e−4ω 1

n log n
.

Since we consider the asymptotic coverage problem,
which means that the total number of cameras n ap-
proaches to infinity, then we have

Pτ (Ĥτ ) ≥ e−2ω − θ

π
e−3ω. (15)

Taking into account that ω is a function of n, the
conclusion still holds.
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According to Proposition 5, we know that r1.r.w.(n) ≥
R1.r.w. = 3π(logn+log logn)

2θn can achieve the full view
coverage of M. Following that, the result can be naturally
extended to the case where sensing range is smaller
than

√
3
2 of critical ESR of the 1-dimensional random

walk, as is stated in Theorem 8. And we omit the
corresponding proof since it follows a similar manner
to that of Theorem 3.

Theorem 8: Under the uniform deployment with the 1-
dimensional random walk mobility model, if the CSN
satisfies r1.r.w.(n) <

√
3
2R1.r.w., there still will be an

nonegligible probability that the network is uncovered.
So we can say that the r1.r.w.(n) >

√
3
2R1.r.w. is the

necessary condition for the network to achieve full view
coverage.
5.2.3 Sufficient ESR for Full View Coverage
First, we obtain the following proposition.

Proposition 6: In CSN, if n sensors are randomly and
uniformly deployed in a unit square, and r1.r.w. =
cR1.r.w.(n) where c > 1, then

lim inf
n→∞

Pτ (Ĥτ ) = 0. (16)

The proposition can be proved using a similar approach
as in Proposition 2, given the fact that

Pτ (Ĥτ ) = Pτ (

m∪
i=1

Fi) ≤ mk

u∏
y=1

(
1− 2θϕyry(n)

3π2

)cyn

∼ (n log n)2e−
4θ
3πnr1.r.w. =

1

(n log n)2c2−2
→ 0,

for any c > 1.
From Proposition 5 and the definition of critical ESR

for 1-dimensional random walk mobility model, we
know that r1.r.w. ≥ R1.r.w. =

3π(logn+log logn)
2θn is sufficient

to achieve the full view coverage of M. Based on this we
can make our conclusion in the following theorem.

Theorem 9: Under the uniform deployment with 1-
dimensional random walk mobility model, if the CSN
satisfies r1.r.w.(n) > cR1.r.w.,c > 1, then it is sufficient for
the network to achieve full coverage.
The proof again can be done by adopting a similar
method ysed in the proof of Theorem 4, and we skip
it for the sake of concision.
5.2.4 Critical ESR for Full View Coverage of the Opera-
tional Range
Similar to the analysis in static model, we can reach the
following theorem regarding the relation between critical
ESR and full view coverage.

Under the uniform deployment with 1-
dimensional random walk mobility model,
R1.r.w.(n) = 3π(logn+log logn)

2θn is the critical condition
to achieve coverage with high probability. Moreover,
referring to Theorems 8 and 9, we draw the conclusion
that Ra.s.c. =

√
3
2R1.r.w. is the critical condition to

achieve almost surely coverage for 1-dimensional

random walk mobility model. Again, we see a decrease
in critical ESR compared to that in static networks.
This implies that even restricted mobility such as
1-dimensional random walk can lead to an improved
coverage condition. The next part subsequently discloses
the effect of random rotating mobility.

5.3 Critical ESR Under Random Rotating Mobility

We investigate the situation in one time slot under the
random rotating mobility pattern, the effect of which on
area coverage is illustrated in Figure 6. To proceed, we
will still firstly analyze the full view coverage for dense
grid M, and then extend it to the whole area.

3T
time

sp
a
ce

2 3T T0
 time T

Fig. 6. Full view coverage of CSNs under random rotating walk:
the left figure depicts a sequence of snapshots showing camera
sensors’ position change in time slots T/3, 2T/3 and T ; the
right one illustrates the trace of sensor mobility during the whole
interval [0, T ). The shadowed disks constitute the area being
covered at the given time instant, and the union of the region
inside the dotted line and the shadowed disks represents the
area being covered during the time interval.

5.3.1 Failure Probability of an Orientation in K
Similarly, Fi,j denotes the event that orientation Oj of
point Pi is not θ-viewed covered, and P(Fi,j) denotes
the corresponding probability. With Pi,j,Sy

representing
the same meaning as that under 2-dimensional random
walk, we have
Pi,j,Sy

= P(S falls in Tj)× P(S has proper orientation)

= πr2y(n)×
2θ

2π
× P(S has proper orientation).

Here the event that the sensor has proper orientation
means that the supposed viewed direction

−→
PS locates in

the sensing region of the sensor. We will first calculate
the probability that sensor S has proper orientation,
which is denoted as P(S) in the following.

The initial angle from the bisector of the sensor to
−→
PS

is denoted as G, a variable random uniformly distributed
from 0 to 2π according to the deployment pattern. And
the angle the sensor moves in a time slot is denoted as H ,
which is also a random variable distributed uniformly
from 0 to 2π. Still, the sensor can rotate clockwise or
counterclockwise, and the results are the same.

As shown in Figure 7, we set orientation
−→
PS as angle

0. When the bisector of the sensor initially locates in
the sectorial area between

−−→
P1S and

−−→
P2S, it can surely

have a proper orientation. Otherwise when it moves
counterclockwise, the bisector should go through

−−→
P1S,
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Fig. 7. The figure on the left shows the sensor that locates in
Tj with the supposed viewed direction, and the one on the right
illustrates the rotating process of the sensor.

and when clockwise, the bisector should come cross
−−→
P2S,

which can be formulated as{
G−H <

ϕy

2 , if S moves counterclockwisely,
G+H > 2π − ϕy

2 , if S moves clockwisely.
(17)

When the sensor moves clockwise, we obtain

P(S) =
ϕy
2π

+

(
1− ϕy

2π

)
P
(
G+H > 2π − ϕy

2

)
=
ϕy
2π

+

(
1− ϕy

2π

)(
1

2
+
ϕy
8π

)
=

1

2

(
1 +

3ϕy
4π

−
ϕ2y
8π2

)
.

(18)

When the sensor moves counterclockwise, similarly,

P(S) =
1

2

(
1 +

3ϕy
4π

−
ϕ2y
8π2

)
.

Then we have

Pi,j,Sy
= πry(n)

2 × 2θ

2π
× P(S)

=
θr2y(n)

2

(
1 +

3ϕy
4π

−
ϕ2y
8π2

)
.

(19)

Then, P(Fi,j) can be easily calculated.

5.3.2 Necessary ESR for Full View Coverage

Here, we use Ĥτ to denote the event that the dense
grid M is not fully full view covered in time slot τ . The
following lemma states the correlation between network
density m, the number of directions k as well as the
sensing range.We will slightly abuse the notation and
use the ω which represent the same meaning as that in
Proposition 1. We now present the following proposition
regarding the necessary condition.

Proposition 7: In the mobile heterogeneous
CSN with random rotating mobility model, if

rr.r. =
√

4(logn+log logn+ω(n))
nθ and the density of the

dense grid M is m = n log n, the density of the
orientation set K is k = n log n, then

lim inf
n→∞

Pτ (Ĥτ ) ≥ e−2ω − e−3ω,

where ω = limn→∞ ω(n).
Proof: We use a similar apporach as in Proposition 1

and first study the case where rr.r. =
√

4(logn+log logn+ω)
nθ ,

for a fix ω.
Pτ (Ĥτ ) ≥

∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

Pτ ({Oj and Oh of Pi are uncovered).

(20)

And we calculate that
Pτ ({Oj of Pi is uncovered})

=

u∏
y=1

(
1− θ

2

(
1 +

ϕ

π
− ϕ2

4π2

)
r2y(n)

)cyn

.

Then the first term of R.H.S of Eq. (20) can be bounded
as ∑

Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered}) ≥ e−2ω, (21)

for all n > Nω .
Similarly, the second term of R.H.S of Eq. (20) has∑

Pi∈M

Oj ̸=Oh∑
Oj ,Oh∈K

Pτ ({Oj and Oh of Pi are uncovered) ∼ e−3ω.

(22)
Since we consider the coverage problem in an asymp-

totic sense where the total number of cameras n ap-
proaches to infinity, we have

Pτ (Ĥτ ) ≥ e−2ω − e−3ω. (23)

Taking into account that ω is a function of n, the
conclusion still holds.

According to Proposition 7, we know that Rr.r.(n) =√
4(logn+log logn)

nθ is necessary to achieve the full view
coverage of M. The result also holds for the case where ω
changes, and we thus finish the necessary part. Theorem
10 presents the result where the sensing range is smaller
than

√
3
2 of critical ESR of random rotating mobility

model.
Theorem 10: Under the uniform deployment where

sensors move according to random rotating mobility
model, if the CSN satisfies rr.r(n) <

√
3
2Rr.r., there still

will be an nonegligible probability that the network is
uncovered. So we can say that the rr.r(n) >

√
3
2Rr.r. is

the necessary condition for the network to achieve full
view coverage.

5.3.3 Sufficient ESR for Full View Coverage

The following proposition provides the relation between
ESR and critical ESR under random rotating mobility
model.

Proposition 8: In CSN, if n sensors are randomly and
uniformly deployed in a unit square, and rr.r.(n) =
cRr.r.(n) where c > 1, then

lim inf
n→∞

Pτ (Ĥτ ) = 0. (24)
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Here it again can be derived that

Pτ (Ĥτ ) = Pτ (

m∪
i=1

Fi)

≤ mk

u∏
y=1

[
1− θ

2

(
1 +

3ϕ

4π
− ϕ2

8π2

)
r2y(n)

]cyn
∼ (n log n)2e−

nθ
2 r2r.r. =

1

(n log n)2c2−2
→ 0,

(25)

for any c > 1.
According to Proposition 8, along with the definition

of critical ESR for random rotating mobility model, we

know that rr.r.(n) ≥ Rr.r. =
√

4(logn+log logn)
nθ is sufficient

to achieve the full view coverage of M. And the result
when sensing range is larger than

√
3
2 of critical ESR of

the random rotating mobility model also follows, and
is presented in Theorem 11, which can be proved by
adopting the similar technique in the proof of Theorem
4.

Theorem 11: Under the uniform deployment with ran-
dom rotating mobility model, if the CSN satisfies
rr.r.(n) > cRr.r.,c > 1, then it is sufficient for the network
to achieve full coverage.

5.3.4 Critical ESR for full view coverage of the opera-
tional range
Similar to the analysis in the static model, we can reach
the following theorem.

Under uniform deployment with sensors moving ac-
cording to random rotating mobility model, Rr.r. =√

4(logn+log logn)
nθ is the sufficient condition to achieve

coverage with high probability. Moreover, referring to
Theorems 10 and 11, we conclude that Ra.s.c. =

√
3
2Rr.r.

is the critical condition to achieve almost surely coverage
for random rotating mobility model.

Surprisingly, the critical ESR is manifested to be larger
under random rotating mobility than that obtained un-
der static CSNs. The result discloses that mobility does
not always lead to performance improvement. All the
insights behind the theoretical results will be further
discussed in the next section.

6 DISCUSSION OF THEORETICAL FINDINGS

6.1 Relationship between Coverage with High Prob-
ability and Almost Surely Coverage

According to Sections 4 and 5, we find that the critical
ESR (Ra.s.c) to achieve almost surely coverage is

√
3
2

times of that to achieve coverage with high probability
for both static and mobile situations considered. In this
section, we take the static model as an example to
disclose the relationship between coverage with high
probability and almost surely coverage.

According to Theorem 4, we know that when rstat(n)
is larger than Rstat, it is sufficient for the operational
region to achieve full coverage with high probability.

Recall that when rstat(n) ≥ Rstat, P(lim infn→∞ Hn) = 1.
Technically, as defined in Section 2, this means that the
event Hn will eventually almost surely happen or that
ultimately all of the event Hn will occur almost surely
under asymptotic network. Namely, there exists an N so
that the operational region will be almost surely covered
for all n which is larger than N .

According to Theorem 3 and Proposition 1, we know
that when r(n) is between Rstat and

√
3
2Rstat, the

operational region is being covered with probability
one. However, when r(n) is smaller than

√
3
2Rstat,

P(lim supn→∞ Ĥn) = 1. As defined in Section 2, this
means that the event Ĥn will happen under asymptotic
network. In other words, for any number N , there exists
an n which is larger than N so that the operational region
is not being covered.

According to Theorem 2, we know that when r(n) is
below Rstat, the operational region is being covered with
probability less than one. And the probability of cover-
age or coverage percentage can be calculated according
to the sensing radius.

6.2 Critical Condition for Homogeneous CSNs
Previous sections mainly focus on heterogeneous static
and mobile CSNs in the sense that sensors may have
different sensing parameters such as sensing radius and
sensing angles. Based on those, we can further expand
our results to homogeneous case, where all sensors have
identical sensing parameters. We only provide the main
results here since the analysis shares a similar idea to
that in heterogeneous cases.

• With static model, the critical sensing radius (CSR)
is R(n) =

√
4π(logn+log logn)

nθϕ .
• With 2-dimensional random walk mobility model,

the CSR is

R(n) =

{
π(logn+log logn)

nTvϕ sin θ if θ < π
2

π(logn+log logn)
nTvϕ if θ ≥ π

2

• With 1-dimensional random walk mobility model,
the CSR is R(n) = 3π2(logn+log logn)

θnϕ .
• With random rotating mobility model, the CSR is

R(n) =
√

4(logn+log logn)

nθ(1+ 3ϕ
4π− ϕ2

8π2 )
.

In COROLLARY 5.1 of [3], Kumar presented that in
a static and homogeneous network under uniform de-
ployment, c(n) ≥ 1 + ϕ(np)+k log log(np)

log(np) is sufficient for a
unit square to be asymptotically k-covered, where c(n) =
npπr2

log(np) , ϕ(np) = o(log log(np)) and p is the probability
that a sensor is currently operating. By assuming that
p = 1, k = 1, and ignoring ϕ(np) as n→ ∞, we translate
this landmark result to our model, and obtain

r ≥
√

(log n+ log log n)

nθ
,

which matches our result under static model when tak-
ing ϕ = 2π to represent omni-directional sensors. This
result verifies the generality of our model.
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To have an overview of all the derived results in the
present work, Table 1 summarizes the results obtained
in both homogeneous and heterogeneous networks.
6.3 Impact of Mobility on Sensing Energy Consump-
tion
We consider the impact of mobility here. Sensors are
considered to have critical ESR, with radius ry = ri, i =
stat, 2.r.w., 1.r.w., r.r., under static, 2-dimensional ran-
dom walk, 1-dimensional random walk, and random
rotating correspondingly. As we just convert the value of
the angle of each sensor to the weight of its radius when
we derive the critical ESR, the sensors can be viewed as
omnidirectional traditional sensors and we here use the
area the sensor covers to represent the sensing energy
consumption of it.

We have the following results:
(a) Under Static Model:

Estat = Θ

(
log n+ log log n

n

)
. (26)

(b) Under 2-Dimensional Random Walk Mobility
Model:

E2.r.w. = Θ

((
log n+ log log n

n

)2
)
. (27)

(c) Under 1-Dimensional Random Walk Mobility
Model:

E1.r.w. = Θ

((
log n+ log log n

n

)2
)
. (28)

(d) Under Random Rotating Mobility Model:

Er.r. = Θ

(
log n+ log log n

n

)
. (29)

Therefore, taking static model as a baseline, we have

E2.r.w. = E1.r.w. = Θ

(
log n+ log log n

n

)
× Estat,

Er.r. = Estat,

which indicates that compared with static model, both
the 2-dimensional random walk mobility model and 1-
dimensional random walk mobility model can decrease
the energy consumption in CSNs. And this improvement
sacrifices the delay upper bounded by Θ(1) as the move-
ment is divided into time slots. This is actually a tradeoff
between energy consumption and the delay.

However, for random rotating mobility, the energy
consumption is the same as when sensors are stationary,
but it still causes a delay upper bounded by Θ(1), due to
the division of the time slots. Furthermore, this results
in much more energy consumption for movement. Thus,
the movements like random rotating should be avoided
for full view coverage.

More importantly, from previous theoretical analysis
we could conclude that when we consider the critical
sensing range under 2-dimensional random walk mo-
bility model and 1-dimensional random walk mobility
model, the rectangular area the sensor covers when it

moves contributes most for coverage performance rather
than the sectorial area it covers when it is static. For
instance, under 2-dimensional random walk mobility
model, the area θr2y(n) in Eq. (7) does not affect the final
result.

7 SIMULATION RESULTS
In this part, we analyze the numerical results to validate
the theoretical results on critical ESR to achieve full
view coverage. Moreover, we investigate the relationship
between ESR and the percentage of full view coverage.

7.1 Simulation Setup

We again take the static model as an instance. The
simulation can be easily extended to the other three
mobile models. The target area is a unit square and we
use two settings for sensor density, i.e., n = 25 ∗ 25 and
n = 100 ∗ 100. For simplicity, we consider the homoge-
neous case, namely all the sensors have the same sensing
parameter (sensing radius and angle). The effective angle
is fixed, and we use three values for the fixed effective
angle, i.e., θ = π/6, π/4, π/3 (or 30, 45, 60 in degree)
respectively.

We vary the ESR in simulations from 0 to 0.16 for n =
625, and from 0 to 0.05 for n = 10000, to observe the
percentage of full view coverage, which is defined as
the percentage of points that are full view covered.

7.2 Analysis of Simulation Results

7.2.1 Impact of ESRs on Full View Coverage
Figures 6(a) and 6(b) report the results of the percentage
of full view coverage under different ESRs. We let the
x-axis denote the percentage of full view coverage and
the y-axis denote the ESR. The results in the two figures
are obtained in the cases where n = 625 and n = 10000,
respectively. In both cases, the ESRs needed for full view
coverage increase as the required probability increases,
although the ESR for n = 10000 is much lower than
that for n = 625. According to the formulation derive
in Section 4, we calculate the critical ESR for full view
coverage when θ = π/6, π/4, π/3 (or 30, 45, 60 in degree),
respectively, and use dotted lines to indicate the critical
ESR on Figures 6(a) and 6(b). It is clear that the network
is able to achieve full view coverage with probability one
when ESR is larger than the critical ESR. This verifies our
result of the critical condition obtained previously.
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Fig. 8. Relationship between equivalent sensing range R(n)
and percentage of full view coverage under different n.
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TABLE 1
Comparison of ESR and CSR

Network Type ESR for heterogeneous network CSR for homogeneous network Energy Consumption

Static R(n) =

√
2(log n+log log n)

nθ R(n) =
√

4π(log n+log log n)
nθϕ Θ( log n+log log n

n )

2.r.w. R(n) =

{ log n+log log n
2nTv sin θ if θ < π

2
log n+log log n

2nTv if θ ≥ π
2

R(n) =

{
π(log n+log log n)

nTvϕ sin θ if θ < π
2

π(log n+log log n)
nTvϕ if θ ≥ π

2

Θ(( log n+log log n
n )2)

1.r.w. R(n) =
3π(log n+log log n)

2θn R(n) =
3π2(log n+log log n)

θnϕ Θ(( log n+log log n
n )2)

r.r. R(n) =

√
4(log n+log log n)

nθ R(n) =

√
4(log n+log log n)

nθ(1+
3ϕ
4π

− ϕ2

8π2 )
Θ( log n+log log n

n )

Moreover, we observe from Figures 6(a) and 6(b) that
although the ESR needed to achieve full view cover-
age for the whole area may be high whereas the ESR
needed for a high percentage (but not 100%) of full view
coverage is much lower. For example, given θ = π/3
and sensor density n = 10000, 90% of the field is full
view covered when ESR r(n) = 0.015, which is only
around half of the required critical ESR to achieve 100%
full view coverage with ESR r(n) = 0.0296. Hence, our
results can provide useful guidelines in CSN design by
balancing coverage performance and ESR according to
certain engineering requirements.

7.2.2 Impact of Parameters n and θ on CSR

Here we continue to analyze the influence of the number
of camera sensors n and sensing angle θ on the critical
ESR denoted by R(n). Figure 7(a) plots the relation-
ship between R(n) and θ, when n changes accordingly
under 1-dimensional random walk mobility model. As
a counterpart, Figure 7(b) illustrates the relationship
between R(n) and n, when θ changes accordingly under
1-dimensional random walk. When n is fixed, R(n)
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Fig. 9. Relationship between (a) R(n) and θ, (b) R(n) and n,
when n changes accordingly under 1-dimensional random walk
mobility model

becomes larger, as θ decreases for all the static and
mobility patterns we have discussed. Hence, we need
sensors of larger sensing range when a better view
of object’s face is required. It is obvious since larger
sensing region render more sensors to cover a certain
object, making it more likely to catch its frontal image.
When it is sufficiently large (such as the case of n=4000,
5000 shown in Figure 7(a), n incurs no further influence
on network performance. This fact coincides with the
instinct that when there are plenty of sensors in the
network, adding more sensors will not further reduce
the critical equivalent sensing range. Furthermore, as can
be seen in Figure 7(a), changing n will lead to a more

apparent change of R(n) for smaller effective angle θ,
whereas n will have little influence on R(n) when θ goes
to π. Similar analysis also holds for Figure 7(b).

8 CONCLUSION
This paper studied the coverage problem in both static
and mobile CSNs. In heterogeneous scenarios, we de-
fined a metric named ESR for the corresponding model-
ing, and derived the critical sensing range for full view
coverage under static model, 2-dimensional random
walk mobility, 1-dimensional random walk and random
rotating model. The results indicate that random walk
mobility model can decrease the sensing energy con-
sumption under certain delay tolerance. Furthermore,
we derived the critical condition to achieve almost surely
coverage, which is a much stronger result compared with
the traditional coverage with probability one. We find
that the critical condition to achieve almost surely cov-
erage is around 1.225 times of that to achieve coverage
with high probability. We also extended our result from
heterogeneous networks to homogeneous ones for the
corresponding ESR and CSR.
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