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ABSTRACT
The von Neumann graph entropy is a measure of graph complexity

based on the Laplacian spectrum. It has recently found applications

in various learning tasks driven by networked data. However, it

is computational demanding and hard to interpret using simple

structural patterns. Due to the close relation between Lapalcian

spectrum and degree sequence, we conjecture that the structural

information, defined as the Shannon entropy of the normalized de-

gree sequence, might be a good approximation of the von Neumann

graph entropy that is both scalable and interpretable.

In this work, we thereby study the difference between the struc-

tural information and von Neumann graph entropy named as en-
tropy gap. Based on the knowledge that the degree sequence is

majorized by the Laplacian spectrum, we for the first time prove the

entropy gap is between 0 and log
2
e in any undirected unweighted

graphs. Consequently we certify that the structural information

is a good approximation of the von Neumann graph entropy that

achieves provable accuracy, scalability, and interpretability simulta-

neously.We further study two entropy based applicationswhich can

benefit from the bounded entropy gap and structural information:

network design and graph similarity measure. We combine greedy

method and pruning strategy to develop fast algorithm for the net-

work design, and propose a novel graph similarity measure with a

fast incremental algorithm for graph streams. Our experimental re-

sults on graphs of various scales and types show that the very small

entropy gap readily applies to a wide range of graphs and weighted

graphs. As an approximation of the von Neumann graph entropy,

the structural information is the only one that achieves both high

efficiency and high accuracy among the prominent methods. It is

at least two orders of magnitude faster than SLaQ [40] with com-

parable accuracy. Our structural information based methods also

exhibit superior performance in two entropy based applications.
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1 INTRODUCTION
Evidence has rapidly grown in the past few years that graphs are

ubiquitous in our daily life; online social networks, metabolic net-

works, transportation networks, and collaboration networks are

just a few examples that could be represented precisely by graphs.

One important issue in graph analysis is to measure the complexity

of these graphs [4, 28] which refers to the level of organization of

the structural features such as the scaling behavior of degree distri-

bution, community structure, etc. In order to capture the inherent

structural complexity of graphs, many entropy based graph mea-

sures [5, 13, 21, 28, 36, 37] are proposed, each of which is a specific

form of the Shannon entropy for different types of distributions

extracted from the graphs.

As one of the aforementioned entropy based graph complexity

measures, the von Neumann graph entropy defined as the Shan-

non entropy of the spectrum of the trace rescaled Laplacian matrix

of a graph (see Definition 3.1), is of special interests to scholars

and practitioners [2, 7, 8, 12, 15, 22, 30, 40]. This spectral based

entropy measure distinguishes between different graph structures.

For instance, it is maximal for complete graphs, minimal for graphs

with only single edge, and takes on intermediate values for ring

graphs. Actually, the entropy measure originates from quantum

information theory and is used to describe the mixedness of a quan-

tum system. It is Braunstein et al. that first use the von Neumann

entropy to measure the complexity of graphs by viewing each pure

state of a quantum system as one of the edges of a graph [5].

Built upon the Laplacian spectra, the von Neumann graph en-

tropy is a natural choice to capture the graph complexity since

the Laplacian spectra is well-known to contain rich information

about the multi-scale structure of graphs [17, 20]. As a result, it

has recently found applications in downstream tasks of complex

network analysis and pattern recognition. For example, the von

Neumann graph entropy facilitates the measure of graph similarity

via Jensen-Shannon divergence, which could be used to compress

multilayer networks [15] and detect anomalies in graph streams

[7]. As another example, the von Neumann graph entropy could

be used to measure edge centrality [30] and design entropy-driven

networks [33].

1.1 Motivations
However, despite the popularity received in applications, the main

obstacle encountered in practice is the computational inefficiency of

the exact von Neumann graph entropy. Indeed, as the spectral based

entropy measure, the von Neumann graph entropy suffers from

computational inefficiency since the computational complexity of

the graph spectrum is cubic in the number of nodes. Meanwhile,

the existing approximation approaches [7, 8, 40] such as quadratic

approximation fail to capture the presence of non-trivial structural

https://doi.org/10.1145/1122445.1122456
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Figure 1: The close relation between Laplacian spectra and
degree sequence in two representative real-world graphs.
Both the Laplacian spectra and degree sequence are sorted
in non-increasing order. The x-axis represents the index of
the sorted sequences, and the y-axis represents the value of
Laplacian spectrum and degree.

patterns that seem to interpret the spectral based entropy measure.

Therefore, there is a strong desire to find a good approximation that
achieves accuracy, scalability, and interpretability simultaneously.

Instead of starting from scratch, we are inspired by the well-

known knowledge that there is a close relationship between the

combinatorial characteristics of a graph and the algebraic properties

of its associated matrices [9]. To illustrate, we plot the Laplacian

spectrum and degree sequence together in a same figure for two

representative real-world graphs. As shown in Fig. 1, the sorted

spectrum sequence and the sorted degree sequence almost coincide

with each other. The similar phenomenon can also be observed in

larger scale free graphs, which indicates that it is possible to reduce

the approximation of the von Neumann graph entropy to the time-

efficient computation of simple node degree statistics. Therefore,

we ask without hesitation the first research question,

RQ1: Does there exist some non-polynomial function ϕ such that∑n
i=1

ϕ
(
di/

∑n
j=1

dj
)
is close to the von Neumann graph entropy?

where di is the degree of the node i in a graph of order n.
We emphasize on the non-polynomial property of the function

ϕ since most of previous works that are based on polynomial ap-

proximations fail to fulfill the interpretability. The challenges from

scalability and interpretability are translated directly into two re-

quirements on the function ϕ to be determined. First, the explicit

expression of ϕ must exist and keep simple to ensure the inter-

pretability of the sum over degree statistics. Second, the function ϕ
should be graph-agnostic to meet the scalability requirement, that

is, ϕ should be independent from the graph to be analyzed. One

natural choice yielded by the entropy nature of the graph complex-

ity measure for the non-polynomial function ϕ is ϕ(x) = −x log
2
x .

The sum −∑n
i=1

(
di/

∑n
j=1

dj
)

log
2

(
di/

∑n
j=1

dj
)
has been named

as one-dimensional structural information by Li et al. [28] in a

connected graph since it has an entropy form and captures the

information of a classic random walker in a graph. We extend this

notion to arbitrary undirected graphs. Following the question RQ1,
we raise the second research question,

RQ2: Is the structural information an accurate proxy of the von
Neumann graph entropy?

To address the second question, we conduct to our knowledge

a first study of the difference between structural information and

von Neumann graph entropy, which we name as entropy gap.

1.2 Contributions
To study the entropy gap, we are based on a fundamental rela-

tionship between Laplacian spectrum λ and degree sequence d in

undirected graphs: d is majorized by λ. In other words, there is a

doubly stochastic matrix P such that Pλ = d. Leveraging the ma-

jorization and classic Jensen’s inequality, we prove that the entropy

gap is no less than 0 in arbitrary undirected graphs. By exploiting

the Jensen’s gap [29] which is an inverse version of the classic

Jensen’s inequality, we further prove that the entropy gap is no

more than log
2
e in arbitrary unweighted undirected graphs. The

constant lower and upper bounds on the entropy gap are further

sharpened using more advanced knowledge about the Lapalcian

spectrum and degree sequence, such as the Grone-Merris majoriza-

tion [1]. We also apply the similar technique to bound the entropy

gap in weighted graphs.

In a nutshell, our paper makes the following contributions:

• Theory and interpretability: Inspired by the close relation be-

tween Laplacian spectrum and degree sequence, we for the first

time bridge the gap between the von Neumann graph entropy

and structural information by proving that the entropy gap is

between 0 and log
2
e in any unweighted graph. To the best of

our knowledge, the constant bounds on the approximation er-

ror in unweighted graphs are sharper than that of any existing

approaches with provable accuracy, such as FINGER [7]. There-

fore, the answers to both RQ1 and RQ2 are YES! Besides, the

structural information provides a simple geometric interpreta-

tion of the von Neumann graph entropy as a measure of degree

heterogeneity. Thus, the structural information is a good approxi-

mation of the vonNeumann graph entropy that achieves provable

accuracy, scalability, and interpretability simultaneously.

• Applications and efficient algorithms: Using the structural

information as a proxy of the von Neumann graph entropy with

bounded error (entropy gap), we develop fast algorithms for two

entropy based applications: network design and graph similarity

measure. For the network design aiming to maximize the von

Neumann entropy, we combine greedy method and pruning strat-

egy to speed up the searching process. For the graph similarity

measure, we propose a new distance measure based on structural

information and Jensen-Shannon divergence. We further show

that the proposed measure is a pseudometric and devise fast in-

cremental algorithm to compute the similarity between adjacent

graphs in a graph stream.

• Extensive experiments and evaluations: We use 3 random

graph models, 9 real-world static graphs, and 2 real-world tem-

poral graphs to evaluate the properties of the entropy gap and

proposed algorithms. The results show that the entropy gap is

small in a wide range of graphs, including the weighted graphs.

And it is insensitive to the change of graph size. Compared with

prominent methods for approximating the von Neumann graph

entropy, the structural information is superior in both accuracy

and computational speed. It is at least 2 orders of magnitude faster

than the accurate SLaQ [40] algorithm with comparable accuracy.

Our proposed algorithms based on structural information also

exhibit superb performance in two entropy based applications.

Roadmap: The remainder of this paper is organized as follows. We

review two related issues in Section 2. In Section 3 we introduce



Bridging the Gap between von Neumann Graph Entropy and Structural Information: Theory and Applications WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Comparison of methods for approximating the von
Neumann graph entropy in terms of fulfilled (✓) and miss-
ing (✗) properties.

[7] [40] [8] Structural Information (Ours)

Provable accuracy ✓ ✗ ✗ ✓

Scalability ✓ ✓ ✗ ✓

Interpretability ✗ ✗ ✗ ✓

the definitions of the von Neumann graph entropy, structural infor-

mation, and the notion of entropy gap. Section 4 shows the close

relationship between von Neumann graph entropy and structural

information by bounding the entropy gap. Section 5 presents effi-

cient algorithms for two graph entropy based applications. Section 6

provides experimental results. Section 7 offers some conclusions

and directions for future research.

2 RELATEDWORK
We review two main issues arised from the broad applications

[2, 6, 11, 15, 26, 30, 31, 33] of the von Neumann graph entropy:

computation and interpretation.

Approximate computation of the von Neumann graph en-
tropy: In an effort to overcome the computational inefficiency

of the von Neumann graph entropy, past works have resorted to

various numerical approximations. Chen et al. [7] first compute

a quadratic approximation of the entropy via Taylor expansion,

then derive two finer approximations with accuracy guarantee by

spectrum-based and degree-based rescaling, respectively. Before

Chen’s work, the Taylor expansion is widely adopted to give compu-

tationally efficient approximations [45], but there is no theoretical

guarantee on the approximation accuracy. Following Chen’s work,

Choi et al. [8] propose several more complex quadratic approxi-

mations based on advanced polynomial approximation methods

whose superiority are verified through experiments.

Besides, there is a trend to approximate spectral sums using

stochastic trace estimation based approximations [19], the merit

of which is the provable error-bounded estimation of the spectral

sums. For example, Kontopoulou et al. [22] propose three random-

ized algorithms based on Taylor series, Chebyshev polynomials,

and random projection matrices to approximate the von Neumann

entropy of density matrices. As another example, based on the

stochastic Lanczos quadrature technique [41], Tsitsulin et al. [40]

propose an efficient and effective approximation technique called

SLaQ to estimate the von Neumann entropy and other spectral de-

scriptors for web-scale graphs. However, the approximation error

bound of SLaQ for the von Neumann graph entropy is not provided.

The disadvantages of such stochastic approximations are also ob-

vious; their computational efficiency depends on the number of

random vectors used in stochastic trace estimation, and they are not

suitable for applications like anomaly detection in graph streams

and entropy-driven network design.

The comparison of methods for approximating the von Neumann

graph entropy is presented in Table 1. One of the common draw-

backs of the aforementioned methods is the lack of interpretability,

that is, none of these methods provide enough evidence to interpret

this spectral based entropy measure in terms of structural patterns.

By contrast, as a good proxy of the von Neumann graph entropy, the

structural information offers us the intuition that the spectral based

entropy measure is closely related to the degree heterogeneity of

graphs.

Spectral descriptor of graphs and its structural counterpart:
Researchers in spectral graph theory have always been interested

in establishing a connection between combinatorial characteristics

of a graph and the algebraic properties of its associated matrices.

For example, the algebraic connectivity (also known as Fiedler

eigenvalue), defined as the second smallest eigenvalue of a graph

Laplacian matrix, has been used to measure the robustness [20] and

synchronizability [46] of graphs. The magnitude of the algebraic

connectivity has also been found to reflect how well connected

the overall graph is [17]. As another example, the Fiedler vector,

defined as the eigenvector corresponding to the Fiedler eigenvalue

of a graph Laplacian matrix, has been found to be a good sign of

the bi-partition structure of a graph [14]. However, there are some

other spectral descriptors that have found applications in graph

analytics, but require more structural interpretations, such as the

heat kernel trace [39, 44] and von Neumann graph entropy.

Simmons et al. [38] suggest to interpret the von Neumann graph

entropy as the centralization of graphs, which is very similar to our

interpretation using structural information. They derive both upper

and lower bounds on the von Neumann graph entropy in terms of

graph centralization under some hard assumptions on the range of

the von Neumann graph entropy. Therefore, their results cannot

be directly converted to accuracy guaranteed approximations of

the von Neumann graph entropy for arbitrary simple graphs. By

constrast, our work shows that the structural information is an

accurate, scalable, and interpretable proxy of the von Neumann

graph entropy for arbitrary simple graphs. Besides, the techniques

used in our proof are also quite different from [38].

3 PRELIMINARIES
In this paper, we study the undirected graph G = (V ,E,A) with
positive edge weights, where V = {1, . . . ,n} is the node set, E is

the edge set, and A ∈ Rn×n+ is the symmetric weight matrix with

positive entry Ai j denoting the weight of an edge (i, j) ∈ E. If
the node pair (i, j) < E, then Ai j = 0. If graph G is unweighted,

the weight matrix A ∈ {0, 1}n×n is called the adjacency matrix

of G. The degree of node i ∈ V in graph G is defined as di =∑n
j=1

Ai j . The Laplacian matrix of graph G is defined as L = D −A
where D = diag(d1, . . . ,dn ) is the degree matrix. Let {λi }ni=1

be

the sorted eigenvalues of L such that λ1 ≥ λ2 ≥ · · · ≥ λn = 0,

which is called Laplacian spectrum. We define vol(G) = ∑n
i=1

di
as the volume of graph G, then vol(G) = tr(L) = ∑n

i=1
λi where

tr(·) is the trace operator. For the convenience of delineation, we
define a special function f (x) ≜ x log

2
x on the support [0,∞)

where f (0) ≜ limx ↓0 f (x) = 0 by convention. In the following,

we present formal definitions of the von Neumann graph entropy,

structural information, and the entropy gap. Slightly different from

the one-dimensional structural information proposed by Li et al.

[28], our definition of structural information does not require the

graph G to be connected.

Definition 3.1 (von Neumann graph entropy). The von Neumann

graph entropy of an undirected graph G = (V ,E,A) is defined as
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Hvn(G) = −
∑n
i=1

f (λi/vol(G)), where λ1 ≥ λ2 ≥ · · · ≥ λn = 0 are

the eigenvalues of the Laplacian matrix L = D −A of the graphG,
and vol(G) = ∑n

i=1
λi is the volume of G.

Definition 3.2 (Structural information). The structural informa-

tion of an undirected graph G = (V ,E,A) is defined as H1(G) =
−∑n

i=1
f (di/vol(G)), where di is the degree of node i in G and

vol(G) = ∑n
i=1

is the volume of G.

Definition 3.3 (Entropy gap). The entropy gap of an undirected

graph G = (V ,E,A) is defined as ∆H(G) = H1(G) − Hvn(G).

The von Neumann graph entropy and structural information

are well-defined for all the undirected graphs except for the graphs

with empty edge set, in which vol(G) = 0. When E = ∅, we take it

for granted thatH1(G) = Hvn(G) = 0.

4 APPROXIMATION ERROR ANALYSIS
In this section we bound the entropy gap in the undirected graphs

of order n. Since the nodes with degree 0 have no contribution to

structural information and von Neumann graph entropy, without

loss of generality we assume that di > 0 for any node i ∈ V .

4.1 Bounds on the Approximation Error
We first provide the additive approximation errors in Theorem 4.1,

Corollary 4.5, and Corollary 4.6, then obtain the multiplicative

approximation error in Theorem 4.7.

Theorem 4.1 (Bounds on the absolute approximation error).

For any undirected graph G = (V ,E,A), the inequality

0 ≤ ∆H(G) ≤
log

2
e

δ
· tr(A2)

vol(G) (1)

holds, where δ = min{di |di > 0} is the minimum positive degree.

Before proving Theorem 4.1, we introduce two techniques: ma-

jorization and Jensen’s gap. The former one is a preorder of the

vector of reals, while the latter is an inverse version of the Jensen’s

inequality, whose definitions are presented as follows.

Definition 4.2 (Majorization [32]). For a vector x ∈ Rd , we denote
by x↓ ∈ Rd the vector with the same components, but sorted in

descending order. Given x, y ∈ Rd , we say that x majorizes y
(written as x ≻ y) if and only if

∑k
i=1

x
↓
i ≥

∑k
i=1

y
↓
i for k = 1, . . . ,d

and xT 1 = yT 1.

Lemma 4.3 (Jensen’s gap [29]). Let X be a one-dimensional ran-
dom variable with mean µ and support Ω. Letψ (x) be a twice differ-
entiable function on Ω and define function h(x) = ψ (x )−ψ (µ)

(x−µ)2 − ψ
′(µ)
x−µ ,

then E[ψ (X )] −ψ (E[X ]) ≤ supx ∈Ω{h(x)} · var(X ). Additionally, if
ψ ′(x) is convex, then h(x) is monotonically increasing in x , and if
ψ ′(x) is concave, then h(x) is monotonically decreasing in x .

Lemma 4.4. The function f (x) = x log
2
x is convex, its first order

derivative f ′(x) = log
2
x + log

2
e is concave.

Proof. The second order derivative f ′′(x) = (log
2
e)/x > 0,

thus f (x) = x log
2
x is convex. □

We can see that the majorization characterizes the degree of

concentration between two vectors, x ≻ y means that the entries

of y are more concentrated on its mean yT 1/1T 1 than the entires

of x. An equivalent definition of the majorization [32] using linear

algebra says that x ≻ y if and only if there exists a doubly stochastic
matrix P such that Px = y. As a famous example of the majoriza-

tion, the Schur-Horn theorem [32] says that the diagonal elements

of a positive semidefinite Hermitian matrix are majorized by its

eigenvalues. Since xT Lx =
∑
(i, j)∈E Ai j (xi −x j )2 ≥ 0 for any vector

x ∈ Rn , the Laplacian matrix L is a positive semidefinite symmetric

matrix whose diagonal elements form the degree sequence d and

eigenvalues form the spectrum λ. Therefore, λ ≻ d implying that

there exists some doubly stochastic matrix P = (pi j ) ∈ [0, 1]n×n
such that Pλ = d.

Using the fact that Pλ = d and the convexity of f (x) in Lemma 4.4,

we can now proceed to prove Theorem 4.1.

Proof of Theorem 4.1. For each i ∈ V , we define a discrete

random variable Xi with probability mass function

∑n
j=1

pi jδλj (x),
where δa (x) is the Kronecker delta function. Then the expectation

E[Xi ] =
∑n
j=1

pi jλj = di and the variance var(Xi ) =
∑n
j=1

pi j (λj −
di )2 =

∑n
j=1

pi jλ
2

j − d
2

i .

First, we express the entropy gap in terms of the Lapalcian spec-

trum and the degree sequence. Since

H1(G) = −
n∑
i=1

(
di

vol(G)

)
log

2

(
di

vol(G)

)
= − 1

vol(G)

( n∑
i=1

f (di ) −
n∑
i=1

di log
2
(vol(G))

)
= log

2
(vol(G)) −

∑n
i=1

f (di )
vol(G) ,

(2)

and similarlyHvn(G) = log
2
(vol(G))−∑n

i=1
f (λi )/vol(G), we have

∆H(G) = H1(G) − Hvn(G) =
∑n
i=1

f (λi ) −
∑n
i=1

f (di )
vol(G) . (3)

Second, we use Jensen’s inequality to prove ∆H(G) ≥ 0. Since

f (x) is convex, f (di ) = f (E[Xi ]) ≤ E[f (Xi )] for any i ∈ {1, . . . ,n}.
By summing over i , we have

n∑
i=1

f (di ) ≤
n∑
i=1

E[f (Xi )] =
n∑
i=1

n∑
j=1

pi j f (λj ) =
n∑
j=1

f (λj ).

Therefore, ∆H(G) ≥ 0 for any undirected graphs.

Finally, we use Jensen’s gap to prove ∆H(G) ≤ log
2
e

δ
tr(A2)
vol(G) .

Apply the Jensen’s gap to Xi and f (x),

E[f (Xi )] − f (E[Xi ]) ≤ sup

x ∈[0,vol(G)]
{hi (x)} · var(Xi ), (4)

where

hi (x) =
f (x) − f (E[Xi ])
(x − E[Xi ])2

− f ′(E[Xi ])
x − E[Xi ]

.

Since f ′(x) is concave, hi (x) is monotonically decreasing in x .
Therefore, supx ∈[0,vol(G)]{hi (x)} = hi (0). Since

hi (0) =
f (0) − f (di )

d2

i
+

f ′(di )
di

=
log

2
e

di
≤

log
2
e

δ
,
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the inequality in (4) can be simplified as

n∑
j=1

pi j f (λj ) − f (di ) ≤
log

2
e

δ
· ©«

n∑
j=1

pi jλ
2

j − d
2

i
ª®¬ . (5)

By summing both sides of the inequality (5) over i , we get an
upper bound UB on

∑n
j=1

f (λj ) −
∑n
i=1

f (di ) as

UB =
log

2
e

δ
·

n∑
i=1

©«
n∑
j=1

pi jλ
2

j − d
2

i
ª®¬ =

log
2
e

δ
· ©«

n∑
j=1

λ2

j −
n∑
i=1

d2

i
ª®¬

=
log

2
e

δ
·
(
tr(L2) − tr(D2)

)
=

log
2
e

δ
·
(
tr(A2) − tr(AD) − tr(DA)

)
=

log
2
e

δ
· tr(A2)

As a result, ∆H(G) =
∑n
i=1

f (λi )−
∑n
i=1

f (di )
vol(G) ≤ log

2
e

δ
tr(A2)
vol(G) .

□

To illustrate the tightness of the bounds in Theorem 4.1, we

further derive bounds on the entropy gap for unweighted graphs,

especially the regular graphs. Via multiplicative error analysis, we

show that the structural information converges to the vonNeumann

graph entropy as graph size grows.

Corollary 4.5 (Constant bounds on the entropy gap). For
any unweighted, undirected graph G, 0 ≤ ∆H(G) ≤ log

2
e holds.

Proof. In unweighted graph G, tr(A2) = ∑n
i=1

∑n
j=1

Ai jAji =∑n
i=1

∑n
j=1

Ai j =
∑n
i=1

di = vol(G) and δ ≥ 1, therefore 0 ≤

∆H(G) ≤ log
2
e

δ
tr(A2)
vol(G) =

log
2
e

δ ≤ log
2
e . □

Corollary 4.6 (Entropy gap of regular graphs). For any
unweighted, undirected, regular graph Gd of degree d , the inequality
0 ≤ ∆H(Gd ) ≤

log
2
e

d holds.

Proof sketch. In any unweighted, regular graphGd , δ = d . □

Theorem 4.7 (Convergence of the multiplicative approx-

imation error). For almost all unweighted graphs G of order n,
H1(G)
Hvn(G) − 1 ≥ 0 and decays to 0 at the rate of o(1/log

2
(n)).

Proof. Dairyko et al. [10] proved that for almost all unweighted

graphs G of order n,Hvn(G) ≥ Hvn(K1,n−1) where K1,n−1 stands

for the star graph. SinceHvn(K1,n−1) = log
2
(2n−2)− n

2n−2
log

2
n =

1 + 1

2
log

2
n + o(1), H1(G)

Hvn(G) − 1 =
∆H(G)
Hvn(G) ≤

log
2
e

Hvn(K1,n−1) = o(
1

log
2
n ).
□

4.2 Sharpened Bounds on the Entropy Gap
Though the constant bounds on the entropy gap is tight enough

for applications, we can still sharpen the bounds on the entropy

gap in unweighted graphs using more advanced majorizations.

Theorem 4.8 (Sharpened lower bound on entropy gap). For
any unweighted, undirected graph G, ∆H(G) is lower bounded by
(f (dmax + 1) − f (dmax)+ f (δ − 1) − f (δ ))/vol(G) where dmax is the
maximum degree and δ is the minimum positive degree.

Proof. The proof is based on the advanced majorization [18]:

λ ≻ (d1 + 1,d2, . . . ,dn − 1) holds on any unweighted, undirected

graph G where d1 ≥ d2 ≥ · · · ≥ dn is the sorted degree sequence

of G. Similar to the proof of Theorem 4.1, we have

∑n
i=1

f (λi ) ≥
f (d1+1)+ f (dn−1)+∑n−1

i=2
f (di ). Then the sharpened upper bound

follows from the equation (3) since d1 = dmax and dn = δ . □

Theorem 4.9 (Sharpened upper bound on entropy gap). For
any unweighted, undirected graph G = (V ,E), ∆H(G) is upper
bounded by min{log

2
e,b1,b2} where b1 =

∑n
i=1

f (d∗i )
vol(G) −

∑n
i=1

f (di )
vol(G)

and b2 = log
2
(1+∑n

i=1
d2

i /vol(G)) −
∑n
i=1

f (di )
vol(G) . Here (d∗

1
, . . . ,d∗n ) is

the conjugate degree sequence of G where d∗k = |{i |di ≥ k}|.

Proof. We first prove ∆H(G) ≤ b1 using the Grone-Merris ma-

jorization [1]: (d∗
1
, . . . ,d∗n ) ≻ λ. Similar to the proof of Theorem 4.1,

we have

∑n
i=1

f (d∗i ) ≥
∑n
i=1

f (λi ), thusb1 ≥
∑n
i=1

f (λi )−
∑n
i=1

f (di )
vol(G) =

∆H(G). We then prove ∆H(G) ≤ b2. Since∑n
i=1

f (λi )
vol(G) =

n∑
i=1

(
λi∑n
j=1

λj

)
log

2
λi ≤ log

2

(∑n
i=1

λ2

i∑n
j=1

λj

)
and

∑n
i=1

λ2

i∑n
i=1

λi
=

tr(L2)
vol(G) = 1+

∑n
i=1

d2

i
vol(G) , ∆H(G) =

∑n
i=1

f (λi )−f (di )
vol(G) ≤ b2.

□

5 APPLICATIONS AND ALGORITHMS
As a measure of the structural complexity of a graph, the von Neu-

mann entropy has been applied in a variety of applications. For ex-

ample, the von Neumann graph entropy is exploited to measure the

importance of an edge [30]. As another example, the von Neumann

graph entropy can also be used to measure the distance between

graphs for graph classification and anomaly detection [2, 7]. In

addition, the von Neumann graph entropy is used in the context of

network embedding [11] to learn low-dimensional feature repre-

sentations of nodes. We observe that, in these applications, the von

Neumann graph entropy is used to address the following primitive

tasks:

• Entropy-based network design: Change the existing graph

to a new graph such that the entropy requirement is attained

with minimal perturbations on the existing graph. For example,

Minello et al. [33] use the von Neumann entropy to explore the

potential network growth model via experiments.

• Graph similarity measure: Compute a real positive number to

reveal the similarity between two graphs. For example, Domenico

et al. [15] use the von Neumann graph entropy to compute the

Jensen-Shannon distance between graphs for the purpose of

compressing multilayer networks.

To resolve both tasks, it requires computing the von Neumann

graph entropy exactly. To reduce the computational cost and pre-

serve the interpretability, we can use the accurate proxy, structural

information, to approximately solve these tasks.

5.1 Entropy-based network design
Network design aims to minimally perturb the network to fulfill

some goals. Consider a goal to maximize the von Neumann entropy

of a graph, it helps to understand how different structural patterns
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influence the entropy value. The entropy-based network design

problem is formulated as follows,

Problem 1 (MaxEntropy). Given an unweighted, undirected
graph G = (V ,E) of order n and an integer budget k , find a set F
of non-existing edges of G whose addition to G creates the largest
increase of the von Neumann graph entropy and |F | ≤ k .

Due to the spectral nature of the von Neumann graph entropy,

it is not easy to find an effective strategy to perturb the graph,

especially in the scenario where there are exponential number of

combinations for the subset F . If we use the structural informa-

tion as a proxy of the von Neumann entropy, Problem 1 reduces

to maximize H1(G ′) where G ′ = (V ,E ∪ F ) such that |F | ≤ k . To
further alleviate the computational pressure rooted in the exponen-

tial size of the search space for F , we adopt the greedy method in

which the new edges are added one by one until either the struc-

tural information attains its maximum value log
2
n or k new edges

have already been added. We denote the graph with l new edges

asGl = (V ,El ), thenG0 = G . Now suppose that we haveGl whose

structural information is less than log
2
n, then we want to find a

new edge el+1
= (u,v) such that H1(Gl+1

) is maximized, where

Gl+1
= (V ,El ∪ {el+1

}). SinceH1(Gl+1
) can be rewritten as

log
2
(2|El | + 2) − 1

2|El | + 2

(
f (du + 1) + f (dv + 1) +

∑
i,u,v

f (di )
)
,

the edge el+1
maximizingH1(Gl+1

) should also minimize the edge

centrality EC(u,v) = f (du + 1) − f (du )+ f (dv + 1) − f (dv ), where
di is the degree of node i in Gl .

We present the pseudocode of our fast algorithm EntropyAug

in Algorithm 1, which leverages the pruning strategy to acceler-

ate the process of finding a single new edge that creates a largest

increase of the von Neumann entropy. EntropyAug starts by ini-

tiating an empty set F used to contain the node pairs to be found

and an entropy value H used to record the maximum structural

information in the graph evolution process (line 1). In each follow-

ing iteration, it sorts the set of nodes V in non-decreasing degree

order (line 3). Note that the edge centrality EC(u,v) has a nice

monotonic property: EC(u1,v1) ≤ EC(u2,v2) if min{du1
,dv1
} ≤

min{du2
,dv2
} and max{du1

,dv1
} ≤ max{du2

,dv2
}. With the sorted

list of nodesVs , the monotonicity of EC(u,v) can be translated into

EC(Vs [i1],Vs [j1]) ≤ EC(Vs [i2],Vs [j2]) if the indices satisfy i1 < j1,
i2 < j2, i1 < i2, and j1 < j2. Thus, using the two pointers {head, tail}
and a thresholdT , it can prune the search space and find the desired

non-adjacent node pair as fast as possible (line 4-12). It then adds

the non-adjacent node pair minimizing EC(u,v) into F and update

the graph G (line 13). The structural information of the updated

graph is computed to determine whether F is the optimal subset

till current iteration (line 14-15).

5.2 Graph Similarity Measure
Entropy based graph similarity measure aims to compare graphs

using Jensen-Shannon divergence. The Jensen-Shannon divergence,

as a symmetrized and smoothed version of the Kullback-Leibler

divergence, is defined formally in the following Definition 5.1.

Definition 5.1 (Jensen-Shannon divergence). Let P and Q be two

probability distributions on the same support set ΩN = {1, . . . ,N }.

Algorithm 1: EntropyAug
Input: The graph G = (V ,E) of order n, the budget k
Output: A set of node pairs

1 F ← ∅,H ← 0;

2 while |F | < k do
3 Vs : list← sort V in non-decreasing degree order;

4 head← 0, tail← |Vs | − 1, T ← +∞;
5 while head < tail do
6 for i = head + 1, head + 2, . . . , tail do
7 if EC(Vs [head],Vs [i]) ≥ T then
8 tail← i − 1; break;
9 if (Vs [head],Vs [i]) < E then

10 u ← Vs [head], v ← Vs [i], T ← EC(u,v);
11 tail← i − 1; break;
12 head← head + 1;

13 E ← E ∪ {(u,v)}, F ← F ∪ {(u,v)};
14 if H1(G) > H thenH ← H1(G), F ∗ ← F ;

15 if H = log
2
n then break;

16 return F ∗.

The Jensen-Shannon divergence between P and Q is defined as

DJS(P ,Q) = H ((P +Q)/2) − H (P)/2 − H (Q)/2,

where H (P) = −∑N
i=1

pi logpi is the entropy of the distribution P .

Endres et al. [16] prove that

√
DJS(P ,Q) is a bounded metric on

the space of distributions over ΩN with its maximum value

√
log 2

being attained when min{pi ,qi } = 0 for every i ∈ ΩN . Since the

von Neumann graph entropy is an entropy of the spectrum based

distribution, Lamberti et al. [25] define a quantum Jensen-Shannon

distance between two graphs which is closely related to the von

Neumann graph entropy in the following Definition 5.2.

Definition 5.2 (Quantum Jensen-Shannon distance). The quantum
Jensen-Shannon distance between two weighted, undirected graphs

G1 = (V ,E1,A1) and G2 = (V ,E2,A2) is defined as DQJS(G1,G2) =√
Hvn(G) − (Hvn(G1) +Hvn(G2))/2, where G = (V ,E1 ∪ E2,A) is

an weighted graph with A = A1/2vol(G1) +A2/2vol(G2).

Based on the quantum Jensen-Shannon distance, we consider

the following problem that can be applied in anomaly detection

and multiplex network compression,

Problem 2. Compute the quantum Jensen-Shannon distance be-
tween adjacent graphs in a stream of graphs {Gk = (V ,Ek , tk )}Kk=1

where tk is the timestamp of the graph Gk and tk < tk+1
.

As a distancemeasure between graphs,DQJS is typically required

to be a pseudometric [39], that is, it should be symmetric and satisfy

triangle inequality. However, to the best of our knowledge, it is still

an open problem whether DQJS fulfills the triangle inequality [25].

Meanwhile, the quantum Jensen-Shannon distance inherits the

computational inefficiency from the von Neumann graph entropy.

Therefore, to solve Problem 2 efficiently we propose a new distance

measure based on structural information as a surrogate for DQJS.
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Algorithm 2: IncreSim

Input: G1 and {∆Gk }K−1

k=1

Output: {DSI(Gk ,Gk+1
)}K−1

k=1

1 d ← the degree sequence of the graph G1;

2 m ← ∑n
i=1

di/2;
3 H1(G1) ← log

2
(2m) − 1

2m
∑n
i=1

f (di );
4 for k = 1, . . . ,K − 1 do
5 ∆d ← the degree sequence of the signed graph ∆Gk ;

6 ∆m ← ∑
i ∈Vk ∆di/2;

7 Compute a,b,y, z in Lemma 5.6 via iterating over Vk ;

8 ComputeH1(Gk+1
) andH1(Gk ) based on Lemma 5.6;

9 DSI(Gk ,Gk+1
) ←

√
H1(Gk ) − (H1(Gk ) +H1(Gk+1

))/2;
10 m ←m + ∆m;

11 foreach i ∈ Vk do di ← di + ∆di ;

12 return {DSI(Gk ,Gk+1
)}K−1

k=1

Definition 5.3 (Structural information distance). The structural
information distance between two weighted, undirected graphs

G1 = (V ,E1,A1) and G2 = (V ,E2,A2) is defined as DSI(G1,G2) =√
H1(G) − (H1(G1) +H1(G2)) /2, where G = (V ,E1 ∪ E2,A) is an

weighted graph with A = A1/2vol(G1) +A2/2vol(G2).

It is a little surprising to find that DSI is a pseudometric, the

details of which are stated in Theorem 5.4.

Theorem 5.4 (Properties of the distance measure DSI). The
distance measure DSI(G1,G2) is a pseudometric on the space of undi-
rected graphs:
• DSI is symmetric, i.e., DSI(G1,G2) = DSI(G2,G1);
• DSI is non-negative, i.e., DSI(G1,G2) ≥ 0 where the equality
holds if and only if di,1∑n

k=1
dk,1
=

di,2∑n
k=1

dk,2
for every node i ∈ V

where di, j is the degree of node i in G j ;
• DSI obeys the triangle inequality, i.e.,

DSI(G1,G2) +DSI(G2,G3) ≥ DSI(G1,G3);
• DSI is upper bounded by 1, i.e., DSI(G1,G2) ≤ 1 where the
equality holds if and only if min{di,1,di,2} = 0 for every node
i ∈ V where di, j is the degree of node i in G j .

To establish a connection betweenDSI andDQJS, we study their

extreme values and present the results in Theorem 5.5.

Theorem 5.5 (Connection between DQJS and DSI). Both
DQJS(G1,G2) and DSI(G1,G2) attain the same maximum value of 1

under the identical condition that min{di,1,di,2} = 0 for every node
i ∈ V where di, j is the degree of node i in G j .

In order to compute the structural information distance between

adjacent graphs in the graph stream {Gk = (V ,Ek , tk )}Kk=1
, we

first compute the structural information H1(Gk ) for each k ∈
{1, . . . ,K}, which takes Θ(Kn) time. Then we compute the struc-

tural information ofGk whose adjacent matrixAk = Ak/2vol(Gk )+
Ak+1

/2vol(Gk+1
) for each k ∈ {1, . . . ,K − 1}. Since the degree of

node i in Gk is di,k =
di,k

2vol(Gk ) +
di,k+1

2vol(Gk+1
) and

∑n
i=1

di,k = 1, the

structural information of Gk is H1(Gk ) = −
∑n
i=1

f (di,k ) which
takes Θ(n) time for each k . Therefore, the total computational cost

is Θ((2K − 1)n).
In practice, the graph stream is fully dynamic such that it would

be more efficient to represent the graph stream as a stream of

edge insertions and deletions over time, rather than a sequence

of graphs. Suppose that the graph stream is represented as an

initial base graphG1 = (V ,E1, t1) and a sequence of graph changes

{∆Gk = (Vk ,E+,k ,E−,k , tk )}K−1

k=1
where tk is the timestamp of the

set E+,k of edge insertions and the set E−,k of edge deletions, andVk
is the subset of nodes covered by E+,k∪E−,k . We can view the graph

change∆Gk as a signed networkwhere the edge in E+,k has positive

weight +1 and the edge in E−,k has negative weight −1. The degree

of node i ∈ Vk in the graph change ∆Gk refers to

∑
j ∈Vk I{(i, j) ∈

E+,k }−I{(i, j) ∈ E−,k }. Using the information about previous graph

Gk and current graph change ∆Gk , we can compute the entropy

statistics of the current graph Gk+1
incrementally and efficiently

via the following lemma, whose proof can be found in the appendix.

Lemma 5.6. Using the degree sequence d of the graph Gk , the
structural information H1(Gk ), and the degree sequence ∆d of the
signed graph ∆Gk , the structural information of the graph Gk+1

can
be efficiently computed as

H1(Gk+1
) = f (2(m + ∆m)) − a − f (2m) + 2mH1(Gk )

2(m + ∆m) ,

wherem =
∑n
i=1

di/2, ∆m =
∑
i ∈Vk ∆di/2, and a =

∑
i ∈Vk f (di +

∆di ) − f (di ). Moreover, the structural information of the averaged
graph Gk between Gk and Gk+1

can be efficiently computed as

H1(Gk ) = −b − (2m − y)f (c) − c(f (2m) − 2mH1(Gk ) − z),

where y =
∑
i ∈Vk di , z =

∑
i ∈Vk f (di ), c = 2m+∆m

4m(m+∆m) , and b =∑
i ∈Vk f

(
di
4m +

di+∆di
4(m+∆m)

)
.

The pseudocode of our fast algorithm IncreSim for computing

the structural information distance in a graph stream is shown in

Algorithm 2. It starts by computing the structural information of the

base graph G1 (line 1-3), which takes Θ(n) time. In each following

iteration, it first computes the value of a,b, c,y, z (line 5-7), then

calculates the structural information distance between two adjacent

graphs (line 8-9), finally updates the edge countm and the degree

sequence d (line 10-11). The time cost of each iteration is Θ(|Vk |),
consequently the total time complexity is Θ(n +∑K−1

k=1
|Vk |).

6 EXPERIMENTS AND EVALUATIONS
We conduct extensive experiments over both synthetic and real-

world datasets to answer the following questions:

Q1. Universality of the entropy gap over arbitrary simple graphs:

Is the entropy gap close to 0 for a wide range of graphs? Is the

structural information a good proxy of the von Neumann graph

entropy for a wide range of graphs?

Q2. Sensitivity of the entropy gap to graph properties: How do

graph properties affect the value of entropy gap?

Q3. Accuracy of the approximation: As a proxy of the von Neu-

mann graph entropy, is the structural information more accu-

rate than its prominent competitors?
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Table 2: Real-world datasets used in our experiments.

Name #Nodes #Edges Category Statistics

Static graphs without timestamps Avg. degree

Zachary (ZA) 34 78 Friendship 4.59

Dolphins (DO) 62 159 Animal 5.13

Jazz (JA) 198 2,742 Contact 27.70

Skitter (SK) 1,696,415 11,095,298 Internet 13.08

Brightkite (BK) 58,228 214,078 Friendship 7.35

Caida (CA) 26,475 53,381 Internet 4.03

YouTube (YT) 1,134,890 2,987,624 Friendship 5.27

LiveJournal (LJ) 3,997,962 34,681,189 Friendship 17.35

Pokec (PK) 1,632,803 22,301,964 Friendship 27.32

Dynamic graphs with timestamps #Snapshots

Wiki-IT (WK) 1,204,009 34,826,283 Hyperlink 100

Facebook (FB) 61,096 788,135 Friendship 29

Q4. Speed of the computation: Is the computation of the structural

information faster than its prominent competitors?

Q5. Extensibility of the entropy gap to weighted graphs: Is the

entropy gap sensitive to the change of edge weights? Is the

entropy gap still close to 0 for weighted graphs?

Q6. Performance analysis (Appendix A):What is the performance

of EntropyAug (Algorithm 1) in maximizing the von Neumann

graph entropy? What is the performance of IncreSim (Algo-

rithm 2) in analyzing graph streams? Can the structural infor-

mation distance be further used to detect anomalies in a graph

stream?

6.1 Experimental Settings
Datasets: We consider both synthetic graphs and real-world graphs.

The synthetic graphs are generated from three well-known random

graph models: Erdös-Rényi (ER) model, Barabási-Albert (BA) model

[3], and Watts-Strogatz (WS) model [43]. The real-world graphs

[24, 27, 42] used in our experiments are listed in Table 2, which

contain both static graphs with varying size and average degree,

and temporal graphs with varying size and time span. In every static

graph, we ignore the direction and weight of all edges and remove

both self-loops and multiple edges. We treat every temporal graph

as a stream of undirected weighted edges with timestamps. For

the convenience of analysis, we partition these edges into several

groups where each group is within a certain time interval.

Hardwares: The experiments have been performed on a server

with Intel(R) Xeon(R) CPU 2.40 GHz (32 virtual cores) and 256GB

RAM, averaging 10 runs for random algorithms and random inputs

unless stated otherwise.

Implementation: All of the proposed algorithms and baselines

are implemented in Python.

Reproducibility: The code and datasets used in the paper are

available at https://github.com/xuecheng27/WWW21-Structural-

Information.

6.2 Q1. Universality (Fig. 2)
To evaluate the universality of the entropy gap, we measure the

structural information and exact von Neumann entropy on a set

of synthetic graphs with 2,000 nodes. For the ER and BA models,

we generate graphs with average degree in {2, 4, . . . , 200}. For the
WS model, we generate graphs with edge rewiring probability

in {0, 1/20, . . . , 1} for each average degree in {6, 10, 20, 50}. We

additionally measure the sharpened lower and upper bounds of the

entropy gap. The results are shown in Fig. 2.

The observations are three fold. First, the entropy gap is close
to 0 for a wide range of graphs. The entropy gap of each syn-

thetic graph is no more than 0.2, whereas the exact von Neumann

entropy is greater than 10. Second, the entropy gap is negatively
correlated with the average degree. Dense graph tends to have

very small entropy gap. Third, the structural information is lin-
early correlated with the von Neumann graph entropy, with
only few exceptions. There is no exception for the ER synthetic

graphs. For the BA synthetic graphs, the exceptions are those graphs

with extremely small average degree. For the WS synthetic graphs,

the exceptions are those graphs with extremely small edge rewiring

probability.

6.3 Q2. Sensitivity (Fig. 2, Fig. 3)
To evaluate the sensitivity of the entropy gap to graph proper-

ties such as average degree, graph size, and rewiring probability,

we further measure the entropy gap of 10 synthetic graphs with

average degree in {500, 1000, . . . , 5000} for each random model.

The average degree is chosen from {2, 5, 10, 20, 50, 100} for ER
and BA models, and the edge rewiring probability is chosen from

{0, 0.1, 0.2, 0.4, 0.8, 1} for the WS model.

The observations from Fig. 2 and Fig. 3 are three fold. First, the

entropy gap decreases as the average degree increases for all the

three random graph models. Second, the entropy gap decreases as

the edge rewiring probability increases for the WS model. Third,

the entropy gap is nearly insensitive to the change of graph
size.

6.4 Q3. Accuracy (Fig. 4)
To evaluate the accuracy of the structural information as an approx-

imation of the von Neumann graph entropy, we measure the struc-

tural information, exact von Neumann entropy (when the graph size

is small), and three prominent approximations (as competitors) in 9

real-world static graphs. The competitors are 1) FINGER-Ĥ [7] de-

fined as ĤF(G) = −Q log
2
(λmax/tr(L)) whereQ = 1− tr(L2)/tr2(L),

2) FINGER-H̃ [7] defined as H̃F(G) = −Q log
2
(2dmax/tr(L)), and 3)

SLaQ [40]. The results in Fig. 4 show that the structural infor-
mation is an accurate approximation of the von Neumann
graph entropy. The approximation error of structural information

is obviously much smaller than ĤF and H̃F. And it is comparable

to the approximation error of SLaQ with only few exceptions such

as YT and SK where the structural information is slightly better.

6.5 Q4. Speed (Fig. 5)
To evaluate computational speed of the structural information, we

measure the running time of structural information and its three

competitors in 9 real-world static graphs. The results in Fig. 5 show

that the computation of structural information is fast. It is
about 2 orders of magnitude faster than ĤF, at least 2 orders of

magnitude faster than SLaQ, and comparable to H̃F. Combining

https://github.com/xuecheng27/WWW21-Structural-Information
https://github.com/xuecheng27/WWW21-Structural-Information
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Figure 2: The structural information, von Neumann graph entropy, and entropy gap of synthetic graphs generated from three
random graph models with 2, 000 nodes, varying average degree, and edge rewiring probability.
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Figure 3: Effects of input graph properties on the entropy gap for three random graph models.
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Fig. 4 and Fig. 5, we conclude that the structural information
is the only one that achieves both high efficiency and high
accuracy among the prominent methods.
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6.6 Q5. Extensibility (Fig. 6)
To evaluate the extensibility of the entropy gap to weighted graphs,

we measure the entropy gap of synthetic weighted graphs. Specifi-

cally, we choose 3 real-world graphs (ZA, DO, JA) with small size,

a complete graph K1000 and ring graph R1000 each with 1000 nodes.

The weight of each edge is set uniformly at random in the range

[1,w]. We repeat the experiments for eachw ∈ {1, 2, . . . , 20}. The
results in Fig. 6 show that the entropy gap is insensitive to the
change of edge weights in these graphs. Therefore, it is of high
probability that the entropy gap is still very small for a wide range

of weighted graphs.

7 CONCLUSIONS AND FUTUREWORK
In this work, we suggest to use the structural information as a proxy

of the von Neumann graph entropy such that provable accuracy,

scalability, and interpretability are achieved at the same time. Since

experimental results show the entropy gap is insensitive to the
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graph size, we can estimate the entropy gap of a very large graph

using small graphs generated from the same generative random

graph model. We believe that our idea also provides new insights

into approximations of graph spectral descriptors: besides function

approximation, we can try to approximate the graph spectrum

using simple and easily available graph statistics, such as the degree

sequence.

There are multiple tangible research fronts we can pursue. First,

in some access limited scenarios such as the World Wide Web,

the complete degree sequence is often not available, therefore we

need to develop sampling-based methods to estimate the structural

information. Second, both the von Neumann graph entropy and

the structural information can be viewed as a function on the edge

set. Their properties such as the submodularity and monotonicity

is under exploration. Last, the approximation of von Neumann

entropy defined on the eigenvalues of normalized Laplacian matrix

is still in its infancy.

APPENDIX
A ADDITIONAL EXPERIMENTS (Q6)
A.1 Performance of EntropyAug (Fig. 7)
To evaluate the performance of EntropyAug (Algorithm 1) in maxi-

mizing the von Neumann graph entropy, we measure the running

time and dynamics of von Neumann graph entropy for Entropy-

Aug and two competitors in three small real-world graphs ZA,

DO, and JA. The two baselines are 1) “random” referring to the

random addition of k non-existing edges, and 2) “algebraic” [17]

referring to greedy addition of k non-existing edges that leads to

the largest increase of the algebraic connectivity λn−1. We believe

the “algebraic” algorithm is a competent competitor since maximiz-

ing λn−1 would make the Laplacian spectrum concentrated on its

mean, thereby maximizing the von Neumann entropy. The results

in Fig. 7 show that EntropyAug is the only one that achieves
both high efficiency and large increments of von Neumann
graph entropy.

A.2 Performance of IncreSim (Fig. 8)
To evaluate the performance of IncreSim (Algorithm 2) and its

relation with the VEO score, we measure the distance between

two adjacent graphs in two real-world temporal graphs. We choose

three methods (IncreSim, VEO score, and deltaCon) along with two

simple measures (the number of added edges and the number of

deleted edges). The VEO score [35] between two adjacent graphsGt

and Gt+1 is defined as 1 − 2( |Vt∩Vt+1 |+ |Et∩Et+1 |)
|Vt |+ |Vt+1 |+ |Et |+ |Et+1 | , which measures

the change rate of edge set and node set. The deltaCon [23] is a

prominent method to measure graph similarity based on fast belief

propagation. The results are shown in Fig. 8.

The observations are two fold. First, the structural informa-
tion distance is linearly correlated with the VEO score, indi-
cating that the structural information distance is not dominated by

only local information, but rather a global measure on the graphs.

For the FB temporal graph, the Pearson correlation coefficient

and Spearman rank-order correlation coefficient of DSI with the

VEO score are (0.95, 0.97) respectively, which is much higher than

(0.70, 0.77) with deltaCon. For the WK temporal graph, the two

correlation coefficients ofDSI with the VEO score are (0.96, 0.96) re-
spectively, which is also much higher than (−0.14, 0.00) with delta-

Con. Second, all of the three methods effectively captures the
dynamics of graph streams. For the FB temporal graph, the trend

of the three distance measures are similar. For the WK temporal

graph, we can see that the distance measure changes dramatically

in the beginning, then gradually turns to be flat, which implies that

the structure of WK temporal graph gradually becomes stable.

A.3 Performance of Structural Information
Distance in Anomaly Detection (Fig. 9)

We further evaluate the effectiveness of the structural informa-

tion distance in detecting the distributed denial-of-service (DDoS)

attacks in a graph stream. We first generate 10 synthetic graphs

G = {Gt }10

t=1
from the BA model, each of which has 100 nodes

and average degree d = 4. We believe that the synthetic graph

stream G is a good representative of the real-world scale-free graph

streams. Then we model the DDoS attack with strength k as follows:

(1) Randomly select a graph Gt ∗ from G. (2) Transform Gt ∗ into

an anomalous graph G ′t ∗ . Specifically, we first randomly select a

target node v , then randomly select k source nodes S = {si }ki=1
.

Finally, we connect the target node v with the source node si for
each i ∈ {1, . . . ,k}. (3) Generate the anomalous graph stream G′
via replacing the graph Gt ∗ from G with G ′t ∗ .

We use graph distance measure to rank the anomalous graph

in a graph stream. Suppose that the distance between Gt and Gt+1

is θt,t+1, then the anomalous score for Gt is
θt−1,t+θt,t+1

2
. We rank

the graphs according to their anomalous scores in descending order.

Then we use the rank of the true synthetic anomalous graph to

measure the effectiveness of the graph distancemeasure in detecting

DDoS attacks. We choose four candidates for the graph similarity

measure: DSI, DQJS, VEO score, and deltaCon. And we repeat the

random DDoS attacks for 100 times for each attack strength k ∈
{5, 10, 20, 30, 40}. The results are shown in Fig. 9.

The observations are two fold. First, DSI and DQJS have similar

behavior in analyzing graph streams. Their trends in analyzing the

synthetic graph stream G is nearly identical. Second, the structural

information distance DSI is very suitable for detecting DDoS at-

tacks in a graph stream. The structural information distance DSI

behaves better than the other competitors for the attack strength

k ∈ {20, 30, 40, 50}. When k ∈ {5, 10}, the performance of all the

distance measures are mainly affected by the properties of the

original normal graph stream.

B PROOF OF THEOREM 5.4
We are going to establish a close relation between DSI and the

Jensen-Shannon divergence DJS, then the pseudometric properties

of DSI simply follow from the metric properties of

√
DJS.

The structural informationH1(G j ) = −
∑n
i=1

f
(

di, j
vol(G j )

)
= H (Pj )

where Pj =
(

d1, j
vol(G j ) , . . . ,

dn, j
vol(G j )

)
is a distribution on the set V .

In the graph G = (V ,E1 ∪ E2,A), the degree di of node i is

di =
n∑
j=1

Ai j =
n∑
j=1

Ai j,1

2vol(G1)
+

Ai j,2

2vol(G2)
=

di,1
2vol(G1)

+
di,2

2vol(G2)
.
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Figure 7: Compared with the other two methods, our structural information based method is the only one that achieves both
high efficiency and large increments of von Neumann graph entropy.
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Then the volume of G is vol(G) = ∑n
i=1

di = 1. Therefore the

structural information of G is

H1(G) = −
n∑
i=1

f

(
di

vol(G)

)
= −

n∑
i=1

f

(
di,1

2vol(G1)
+

di,2
2vol(G2)

)
,

which is equivalent to the entropy of the distribution (P1 + P2)/2.
As a result, DSI(G1,G2) =

√
DJS(P1, P2).

C PROOF OF THEOREM 5.5
As shown in Theorem 5.4, the claim is true for DSI. It remains to

prove that DQJS(G1,G2) ≤ 1, and if min{di,1,di,2} = 0 for every

node i ∈ V then DQJS(G1,G2) = 1.

We prove DQJS(G1,G2) ≤ 1 using the inequality [31, 34] for the

von Neumann entropy: if ρ =
∑
i piρi is a mixture of density matrix

ρi with pi a set of positive real numbers such that

∑
i pi = 1, then

Hvn(
∑
i piρi ) ≤

∑
i piHvn(ρi ) + H ({pi }). Here the density matrix

ρi can be viewed as the scaled Laplacian matrix L̃i ≜ Li/tr(Li ) of
the graph Gi . Then

DQJS(G1,G2) =
√
Hvn(G) − (Hvn(G1) +Hvn(G2))/2

=

√
Hvn(L̃1 + L̃2) − (Hvn(L̃1) +Hvn(L̃2))/2

≤
√
Hvn(L̃1 + L̃2) − Hvn((L̃1 + L̃2)/2) + 1 = 1.

We denote by Sj the set of singletons in the graph G j for j ∈
{1, 2}. Since min{di,1,di,2} = 0 for every node i ∈ V , we have

S1 ∪ S2 = V which implies that (V \S1) ∩ (V \S2) = ∅ by the De

Morgan’s laws. Therefore, the node set V can be partitioned into

three disjoint subsets V \S1, V \S2, and S1 ∩ S2. Notice that one

singleton contributes one eigenvalue of 0 to the Laplacian spec-

trum, and the Laplacian spectrum of a graph is composed of the

Laplacian spectrum of its each connected components. We denote

by λj,1, . . . , λj,n−sj , 0, . . . , 0 the Laplacian spectrum of G j , where

sj = |Sj | for j ∈ {1, 2}. It follows that
∑n−sj
i=1

λj,i = vol(G j ). Since
A = A1/2vol(G1) + A2/2vol(G2), L = L1/2vol(G1) + L2/2vol(G2).
Then the Laplacian spectrum of G is composed of Laplacian spec-

trum of G j divided by 2vol(G j ) for j ∈ {1, 2} and zeros. As a result,

D2

QJS
(G1,G2) = −

2∑
j=1

n−sj∑
i=1

f

(
λj,i

2vol(G j )

)
+

1

2

2∑
j=1

n−sj∑
i=1

f

(
λj,i

vol(G j )

)
=

2∑
j=1

n−sj∑
i=1

λj,i

2vol(G j )
log

2
2 =

2∑
j=1

vol(G j )
2vol(G j )

= 1.

D PROOF OF LEMMA 5.6
Denote by

˜d the degree sequence of Gk+1
, then

H1(Gk+1
) = −

n∑
i=1

f

(
˜di

2(m + ∆m)

)
=

f (2(m + ∆m)) −∑n
i=1

f ( ˜di )
2(m + ∆m)

=
f (2(m + ∆m)) −∑

i ∈Vk f (di + ∆di ) −
∑
i ∈V k

f (di )
2(m + ∆m)

=
f (2(m + ∆m)) − a −∑n

i=1
f (di )

2(m + ∆m)

=
f (2(m + ∆m)) − a − f (2m) + 2mH1(Gk )

2(m + ∆m) .

The structural informationH1(Gk ) is equal to

−
n∑
i=1

f

(
di
4m
+

˜di
4(m + ∆m)

)
= −b −

∑
i ∈V k

f

(
2m + ∆m

4m(m + ∆m)di
)

= −b −
∑
i ∈V k

cdi (log
2
c + log

2
di ) = −b − f (c)

∑
i ∈V k

di − c
∑
i ∈V k

f (di )

= −b − f (c)(2m − y) − c(f (2m) − 2mH1(Gk ) − z)
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