6.1

Suppose *j* is the number of seen symbols in the stream. Currently we are seeing a_{j+1} . We denote the sampling symbol as a_i . We maintain *j* and a_i . a_i is updated to a_{j+1} with probability $\frac{1}{j+1}$, and with probability $1 - \frac{1}{j+1}$ remains the old value. If we keep a_i as our selection, then it will have been selected with probability $\left(1 - \frac{1}{j+1}\right)\frac{1}{j} = \frac{1}{j+1}$, which is the correct probability for selecting a_i from the stream. Therefore, the space we have to maintain is $O(\log m + \log n)$.

6.3 see solution to 6.1. each symbol is now a word.

6.8

$$H = \{h(x) = ax \bmod M\}$$

6.9

(a) No

Since the set $\{h_{ab}\}$ can be determined by any two of equations $h_{ab}(x) = u$, $h_{ab}(y) = v$, $h_{ab}(z) = w$, this set is not of hash functions 3-universal.

(b) H = {h_{abc}(x) = ax² + bx + c mod p|0 ≤ a, b, c < p}
With h_{abc}(x) = u, h_{abc}(y) = v, h_{abc}(z) = w, we can get
$$\begin{pmatrix} x^{2} & x & 1 \\ y^{2} & y & 1 \\ z^{2} & z & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} u \\ v \\ w \end{pmatrix} (mod p)$$

This equation has solution
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x^2 & x & 1 \\ y^2 & y & 1 \\ z^2 & z & 1 \end{pmatrix}^{-1} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
, because $x \neq y \neq z$.
So, there is a unique $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ that meet the criteria. Hence
Prob $(h_{abc}(x) = u, h_{abc}(y) = v, h_{abc}(z) = w)$
= $Prob(solution \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x^2 & x & 1 \\ y^2 & y & 1 \\ z^2 & z & 1 \end{pmatrix}^{-1} \begin{pmatrix} u \\ v \\ w \end{pmatrix})$
= $\frac{1}{p} * \frac{1}{p} * \frac{1}{p}$

6.10

Take k=3, Let H={(0,0,0),(0,1,1),(0,2,2),(1,0,1),(1,1,2),(1,2,0),(2,0,2),(2,1,0),(2,2,1)}